Properties

Label 2160.3.c.q.1889.24
Level $2160$
Weight $3$
Character 2160.1889
Analytic conductor $58.856$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(1889,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.1889");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1889.24
Character \(\chi\) \(=\) 2160.1889
Dual form 2160.3.c.q.1889.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.67464 + 1.77419i) q^{5} -9.67132i q^{7} -8.58075i q^{11} -19.0519i q^{13} +26.2977 q^{17} -26.6206 q^{19} +25.8661 q^{23} +(18.7045 + 16.5874i) q^{25} -18.3616i q^{29} +7.56234 q^{31} +(17.1588 - 45.2099i) q^{35} +47.0280i q^{37} +0.602357i q^{41} -62.2825i q^{43} -79.2020 q^{47} -44.5345 q^{49} -80.9629 q^{53} +(15.2239 - 40.1119i) q^{55} -15.4109i q^{59} -62.7576 q^{61} +(33.8017 - 89.0605i) q^{65} -48.3536i q^{67} +99.6423i q^{71} +60.7117i q^{73} -82.9872 q^{77} -60.8209 q^{79} +77.0753 q^{83} +(122.932 + 46.6572i) q^{85} +28.7841i q^{89} -184.257 q^{91} +(-124.442 - 47.2300i) q^{95} +23.3070i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 72 q^{25} + 72 q^{31} - 408 q^{49} + 168 q^{55} - 240 q^{61} + 312 q^{79} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.67464 + 1.77419i 0.934928 + 0.354839i
\(6\) 0 0
\(7\) 9.67132i 1.38162i −0.723037 0.690809i \(-0.757255\pi\)
0.723037 0.690809i \(-0.242745\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.58075i 0.780068i −0.920801 0.390034i \(-0.872463\pi\)
0.920801 0.390034i \(-0.127537\pi\)
\(12\) 0 0
\(13\) 19.0519i 1.46553i −0.680483 0.732763i \(-0.738230\pi\)
0.680483 0.732763i \(-0.261770\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 26.2977 1.54692 0.773462 0.633843i \(-0.218523\pi\)
0.773462 + 0.633843i \(0.218523\pi\)
\(18\) 0 0
\(19\) −26.6206 −1.40108 −0.700541 0.713612i \(-0.747058\pi\)
−0.700541 + 0.713612i \(0.747058\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 25.8661 1.12462 0.562308 0.826928i \(-0.309914\pi\)
0.562308 + 0.826928i \(0.309914\pi\)
\(24\) 0 0
\(25\) 18.7045 + 16.5874i 0.748179 + 0.663497i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 18.3616i 0.633158i −0.948566 0.316579i \(-0.897466\pi\)
0.948566 0.316579i \(-0.102534\pi\)
\(30\) 0 0
\(31\) 7.56234 0.243946 0.121973 0.992533i \(-0.461078\pi\)
0.121973 + 0.992533i \(0.461078\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 17.1588 45.2099i 0.490251 1.29171i
\(36\) 0 0
\(37\) 47.0280i 1.27103i 0.772090 + 0.635513i \(0.219211\pi\)
−0.772090 + 0.635513i \(0.780789\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.602357i 0.0146916i 0.999973 + 0.00734582i \(0.00233827\pi\)
−0.999973 + 0.00734582i \(0.997662\pi\)
\(42\) 0 0
\(43\) 62.2825i 1.44843i −0.689574 0.724215i \(-0.742202\pi\)
0.689574 0.724215i \(-0.257798\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −79.2020 −1.68515 −0.842574 0.538580i \(-0.818961\pi\)
−0.842574 + 0.538580i \(0.818961\pi\)
\(48\) 0 0
\(49\) −44.5345 −0.908868
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −80.9629 −1.52760 −0.763801 0.645452i \(-0.776669\pi\)
−0.763801 + 0.645452i \(0.776669\pi\)
\(54\) 0 0
\(55\) 15.2239 40.1119i 0.276798 0.729307i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 15.4109i 0.261202i −0.991435 0.130601i \(-0.958309\pi\)
0.991435 0.130601i \(-0.0416907\pi\)
\(60\) 0 0
\(61\) −62.7576 −1.02881 −0.514407 0.857546i \(-0.671988\pi\)
−0.514407 + 0.857546i \(0.671988\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 33.8017 89.0605i 0.520025 1.37016i
\(66\) 0 0
\(67\) 48.3536i 0.721696i −0.932625 0.360848i \(-0.882487\pi\)
0.932625 0.360848i \(-0.117513\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 99.6423i 1.40341i 0.712466 + 0.701706i \(0.247578\pi\)
−0.712466 + 0.701706i \(0.752422\pi\)
\(72\) 0 0
\(73\) 60.7117i 0.831667i 0.909441 + 0.415834i \(0.136510\pi\)
−0.909441 + 0.415834i \(0.863490\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −82.9872 −1.07776
\(78\) 0 0
\(79\) −60.8209 −0.769884 −0.384942 0.922941i \(-0.625779\pi\)
−0.384942 + 0.922941i \(0.625779\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 77.0753 0.928618 0.464309 0.885673i \(-0.346303\pi\)
0.464309 + 0.885673i \(0.346303\pi\)
\(84\) 0 0
\(85\) 122.932 + 46.6572i 1.44626 + 0.548908i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 28.7841i 0.323417i 0.986839 + 0.161708i \(0.0517004\pi\)
−0.986839 + 0.161708i \(0.948300\pi\)
\(90\) 0 0
\(91\) −184.257 −2.02480
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −124.442 47.2300i −1.30991 0.497158i
\(96\) 0 0
\(97\) 23.3070i 0.240279i 0.992757 + 0.120139i \(0.0383342\pi\)
−0.992757 + 0.120139i \(0.961666\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 114.136i 1.13006i −0.825071 0.565029i \(-0.808865\pi\)
0.825071 0.565029i \(-0.191135\pi\)
\(102\) 0 0
\(103\) 166.463i 1.61614i −0.589085 0.808071i \(-0.700511\pi\)
0.589085 0.808071i \(-0.299489\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.42346 −0.0506865 −0.0253433 0.999679i \(-0.508068\pi\)
−0.0253433 + 0.999679i \(0.508068\pi\)
\(108\) 0 0
\(109\) 201.133 1.84525 0.922627 0.385694i \(-0.126038\pi\)
0.922627 + 0.385694i \(0.126038\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −54.7095 −0.484155 −0.242077 0.970257i \(-0.577829\pi\)
−0.242077 + 0.970257i \(0.577829\pi\)
\(114\) 0 0
\(115\) 120.915 + 45.8915i 1.05143 + 0.399057i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 254.334i 2.13726i
\(120\) 0 0
\(121\) 47.3708 0.391494
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 58.0074 + 110.726i 0.464059 + 0.885804i
\(126\) 0 0
\(127\) 52.7864i 0.415641i 0.978167 + 0.207820i \(0.0666370\pi\)
−0.978167 + 0.207820i \(0.933363\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 162.244i 1.23850i −0.785193 0.619251i \(-0.787436\pi\)
0.785193 0.619251i \(-0.212564\pi\)
\(132\) 0 0
\(133\) 257.456i 1.93576i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −104.273 −0.761115 −0.380557 0.924757i \(-0.624268\pi\)
−0.380557 + 0.924757i \(0.624268\pi\)
\(138\) 0 0
\(139\) 135.011 0.971303 0.485652 0.874152i \(-0.338582\pi\)
0.485652 + 0.874152i \(0.338582\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −163.479 −1.14321
\(144\) 0 0
\(145\) 32.5770 85.8337i 0.224669 0.591957i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 286.649i 1.92382i −0.273374 0.961908i \(-0.588140\pi\)
0.273374 0.961908i \(-0.411860\pi\)
\(150\) 0 0
\(151\) 2.67570 0.0177199 0.00885994 0.999961i \(-0.497180\pi\)
0.00885994 + 0.999961i \(0.497180\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 35.3512 + 13.4170i 0.228072 + 0.0865616i
\(156\) 0 0
\(157\) 290.335i 1.84927i 0.380860 + 0.924633i \(0.375628\pi\)
−0.380860 + 0.924633i \(0.624372\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 250.160i 1.55379i
\(162\) 0 0
\(163\) 187.526i 1.15047i 0.817989 + 0.575234i \(0.195089\pi\)
−0.817989 + 0.575234i \(0.804911\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −78.3652 −0.469253 −0.234626 0.972086i \(-0.575387\pi\)
−0.234626 + 0.972086i \(0.575387\pi\)
\(168\) 0 0
\(169\) −193.973 −1.14777
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 227.871 1.31717 0.658586 0.752505i \(-0.271155\pi\)
0.658586 + 0.752505i \(0.271155\pi\)
\(174\) 0 0
\(175\) 160.422 180.897i 0.916699 1.03370i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 89.2278i 0.498479i −0.968442 0.249240i \(-0.919819\pi\)
0.968442 0.249240i \(-0.0801807\pi\)
\(180\) 0 0
\(181\) −24.5898 −0.135856 −0.0679278 0.997690i \(-0.521639\pi\)
−0.0679278 + 0.997690i \(0.521639\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −83.4367 + 219.839i −0.451009 + 1.18832i
\(186\) 0 0
\(187\) 225.654i 1.20671i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 28.7155i 0.150343i −0.997171 0.0751714i \(-0.976050\pi\)
0.997171 0.0751714i \(-0.0239504\pi\)
\(192\) 0 0
\(193\) 224.729i 1.16440i −0.813046 0.582200i \(-0.802192\pi\)
0.813046 0.582200i \(-0.197808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −109.880 −0.557766 −0.278883 0.960325i \(-0.589964\pi\)
−0.278883 + 0.960325i \(0.589964\pi\)
\(198\) 0 0
\(199\) −84.1079 −0.422653 −0.211326 0.977416i \(-0.567778\pi\)
−0.211326 + 0.977416i \(0.567778\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −177.581 −0.874782
\(204\) 0 0
\(205\) −1.06870 + 2.81580i −0.00521316 + 0.0137356i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 228.424i 1.09294i
\(210\) 0 0
\(211\) −58.6451 −0.277939 −0.138970 0.990297i \(-0.544379\pi\)
−0.138970 + 0.990297i \(0.544379\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 110.501 291.148i 0.513959 1.35418i
\(216\) 0 0
\(217\) 73.1378i 0.337041i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 501.020i 2.26706i
\(222\) 0 0
\(223\) 207.329i 0.929727i 0.885382 + 0.464864i \(0.153897\pi\)
−0.885382 + 0.464864i \(0.846103\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 279.237 1.23012 0.615060 0.788480i \(-0.289132\pi\)
0.615060 + 0.788480i \(0.289132\pi\)
\(228\) 0 0
\(229\) 133.801 0.584283 0.292142 0.956375i \(-0.405632\pi\)
0.292142 + 0.956375i \(0.405632\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.8561 0.0508843 0.0254422 0.999676i \(-0.491901\pi\)
0.0254422 + 0.999676i \(0.491901\pi\)
\(234\) 0 0
\(235\) −370.241 140.520i −1.57549 0.597955i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 145.655i 0.609434i 0.952443 + 0.304717i \(0.0985619\pi\)
−0.952443 + 0.304717i \(0.901438\pi\)
\(240\) 0 0
\(241\) −104.021 −0.431621 −0.215810 0.976435i \(-0.569239\pi\)
−0.215810 + 0.976435i \(0.569239\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −208.183 79.0128i −0.849725 0.322501i
\(246\) 0 0
\(247\) 507.171i 2.05332i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.36967i 0.0174090i −0.999962 0.00870452i \(-0.997229\pi\)
0.999962 0.00870452i \(-0.00277077\pi\)
\(252\) 0 0
\(253\) 221.951i 0.877276i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 240.157 0.934463 0.467231 0.884135i \(-0.345252\pi\)
0.467231 + 0.884135i \(0.345252\pi\)
\(258\) 0 0
\(259\) 454.823 1.75607
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 164.037 0.623715 0.311858 0.950129i \(-0.399049\pi\)
0.311858 + 0.950129i \(0.399049\pi\)
\(264\) 0 0
\(265\) −378.472 143.644i −1.42820 0.542052i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 414.194i 1.53976i −0.638192 0.769878i \(-0.720317\pi\)
0.638192 0.769878i \(-0.279683\pi\)
\(270\) 0 0
\(271\) −350.857 −1.29468 −0.647338 0.762203i \(-0.724118\pi\)
−0.647338 + 0.762203i \(0.724118\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 142.332 160.498i 0.517572 0.583631i
\(276\) 0 0
\(277\) 334.661i 1.20816i −0.796923 0.604081i \(-0.793540\pi\)
0.796923 0.604081i \(-0.206460\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 452.747i 1.61120i −0.592459 0.805600i \(-0.701843\pi\)
0.592459 0.805600i \(-0.298157\pi\)
\(282\) 0 0
\(283\) 177.203i 0.626160i −0.949727 0.313080i \(-0.898639\pi\)
0.949727 0.313080i \(-0.101361\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.82559 0.0202982
\(288\) 0 0
\(289\) 402.569 1.39297
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −371.342 −1.26738 −0.633690 0.773587i \(-0.718461\pi\)
−0.633690 + 0.773587i \(0.718461\pi\)
\(294\) 0 0
\(295\) 27.3419 72.0405i 0.0926845 0.244205i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 492.798i 1.64815i
\(300\) 0 0
\(301\) −602.354 −2.00118
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −293.369 111.344i −0.961866 0.365063i
\(306\) 0 0
\(307\) 350.668i 1.14224i 0.820866 + 0.571120i \(0.193491\pi\)
−0.820866 + 0.571120i \(0.806509\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 314.727i 1.01198i 0.862538 + 0.505992i \(0.168874\pi\)
−0.862538 + 0.505992i \(0.831126\pi\)
\(312\) 0 0
\(313\) 82.9434i 0.264995i −0.991183 0.132497i \(-0.957700\pi\)
0.991183 0.132497i \(-0.0422996\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 339.930 1.07234 0.536168 0.844111i \(-0.319871\pi\)
0.536168 + 0.844111i \(0.319871\pi\)
\(318\) 0 0
\(319\) −157.556 −0.493906
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −700.060 −2.16737
\(324\) 0 0
\(325\) 316.021 356.355i 0.972372 1.09648i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 765.988i 2.32823i
\(330\) 0 0
\(331\) 418.232 1.26354 0.631771 0.775155i \(-0.282328\pi\)
0.631771 + 0.775155i \(0.282328\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 85.7886 226.036i 0.256085 0.674733i
\(336\) 0 0
\(337\) 150.481i 0.446530i 0.974758 + 0.223265i \(0.0716715\pi\)
−0.974758 + 0.223265i \(0.928328\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 64.8905i 0.190295i
\(342\) 0 0
\(343\) 43.1872i 0.125910i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −576.039 −1.66005 −0.830027 0.557724i \(-0.811675\pi\)
−0.830027 + 0.557724i \(0.811675\pi\)
\(348\) 0 0
\(349\) −205.529 −0.588908 −0.294454 0.955666i \(-0.595138\pi\)
−0.294454 + 0.955666i \(0.595138\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 414.970 1.17555 0.587777 0.809023i \(-0.300003\pi\)
0.587777 + 0.809023i \(0.300003\pi\)
\(354\) 0 0
\(355\) −176.785 + 465.792i −0.497985 + 1.31209i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 292.348i 0.814340i −0.913352 0.407170i \(-0.866516\pi\)
0.913352 0.407170i \(-0.133484\pi\)
\(360\) 0 0
\(361\) 347.655 0.963033
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −107.714 + 283.805i −0.295108 + 0.777549i
\(366\) 0 0
\(367\) 130.948i 0.356807i 0.983957 + 0.178403i \(0.0570932\pi\)
−0.983957 + 0.178403i \(0.942907\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 783.019i 2.11056i
\(372\) 0 0
\(373\) 667.901i 1.79062i −0.445443 0.895310i \(-0.646954\pi\)
0.445443 0.895310i \(-0.353046\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −349.822 −0.927910
\(378\) 0 0
\(379\) 136.623 0.360482 0.180241 0.983622i \(-0.442312\pi\)
0.180241 + 0.983622i \(0.442312\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 291.572 0.761285 0.380642 0.924722i \(-0.375703\pi\)
0.380642 + 0.924722i \(0.375703\pi\)
\(384\) 0 0
\(385\) −387.935 147.235i −1.00762 0.382429i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.2735i 0.0726826i 0.999339 + 0.0363413i \(0.0115703\pi\)
−0.999339 + 0.0363413i \(0.988430\pi\)
\(390\) 0 0
\(391\) 680.220 1.73969
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −284.315 107.908i −0.719786 0.273185i
\(396\) 0 0
\(397\) 21.2201i 0.0534510i −0.999643 0.0267255i \(-0.991492\pi\)
0.999643 0.0267255i \(-0.00850801\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 154.148i 0.384409i 0.981355 + 0.192205i \(0.0615637\pi\)
−0.981355 + 0.192205i \(0.938436\pi\)
\(402\) 0 0
\(403\) 144.077i 0.357510i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 403.535 0.991487
\(408\) 0 0
\(409\) −458.331 −1.12061 −0.560307 0.828285i \(-0.689317\pi\)
−0.560307 + 0.828285i \(0.689317\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −149.044 −0.360881
\(414\) 0 0
\(415\) 360.299 + 136.746i 0.868190 + 0.329509i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 102.481i 0.244586i 0.992494 + 0.122293i \(0.0390247\pi\)
−0.992494 + 0.122293i \(0.960975\pi\)
\(420\) 0 0
\(421\) −116.487 −0.276691 −0.138346 0.990384i \(-0.544178\pi\)
−0.138346 + 0.990384i \(0.544178\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 491.885 + 436.211i 1.15738 + 1.02638i
\(426\) 0 0
\(427\) 606.949i 1.42143i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 146.831i 0.340675i 0.985386 + 0.170338i \(0.0544858\pi\)
−0.985386 + 0.170338i \(0.945514\pi\)
\(432\) 0 0
\(433\) 7.56030i 0.0174603i −0.999962 0.00873013i \(-0.997221\pi\)
0.999962 0.00873013i \(-0.00277892\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −688.572 −1.57568
\(438\) 0 0
\(439\) −221.140 −0.503735 −0.251868 0.967762i \(-0.581045\pi\)
−0.251868 + 0.967762i \(0.581045\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −54.3553 −0.122698 −0.0613491 0.998116i \(-0.519540\pi\)
−0.0613491 + 0.998116i \(0.519540\pi\)
\(444\) 0 0
\(445\) −51.0685 + 134.555i −0.114761 + 0.302371i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 342.268i 0.762289i 0.924515 + 0.381144i \(0.124470\pi\)
−0.924515 + 0.381144i \(0.875530\pi\)
\(450\) 0 0
\(451\) 5.16868 0.0114605
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −861.333 326.907i −1.89304 0.718476i
\(456\) 0 0
\(457\) 577.506i 1.26369i 0.775095 + 0.631844i \(0.217702\pi\)
−0.775095 + 0.631844i \(0.782298\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 776.198i 1.68373i −0.539690 0.841864i \(-0.681459\pi\)
0.539690 0.841864i \(-0.318541\pi\)
\(462\) 0 0
\(463\) 526.497i 1.13714i −0.822634 0.568571i \(-0.807496\pi\)
0.822634 0.568571i \(-0.192504\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 106.009 0.227000 0.113500 0.993538i \(-0.463794\pi\)
0.113500 + 0.993538i \(0.463794\pi\)
\(468\) 0 0
\(469\) −467.643 −0.997108
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −534.430 −1.12987
\(474\) 0 0
\(475\) −497.924 441.567i −1.04826 0.929614i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 106.127i 0.221560i 0.993845 + 0.110780i \(0.0353349\pi\)
−0.993845 + 0.110780i \(0.964665\pi\)
\(480\) 0 0
\(481\) 895.970 1.86272
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −41.3512 + 108.952i −0.0852602 + 0.224643i
\(486\) 0 0
\(487\) 461.009i 0.946631i 0.880893 + 0.473315i \(0.156943\pi\)
−0.880893 + 0.473315i \(0.843057\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 710.511i 1.44707i 0.690288 + 0.723534i \(0.257484\pi\)
−0.690288 + 0.723534i \(0.742516\pi\)
\(492\) 0 0
\(493\) 482.867i 0.979447i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 963.673 1.93898
\(498\) 0 0
\(499\) −103.124 −0.206662 −0.103331 0.994647i \(-0.532950\pi\)
−0.103331 + 0.994647i \(0.532950\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 862.704 1.71512 0.857558 0.514387i \(-0.171980\pi\)
0.857558 + 0.514387i \(0.171980\pi\)
\(504\) 0 0
\(505\) 202.499 533.544i 0.400988 1.05652i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 443.439i 0.871196i −0.900141 0.435598i \(-0.856537\pi\)
0.900141 0.435598i \(-0.143463\pi\)
\(510\) 0 0
\(511\) 587.163 1.14905
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 295.337 778.153i 0.573470 1.51098i
\(516\) 0 0
\(517\) 679.612i 1.31453i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 602.433i 1.15630i 0.815930 + 0.578151i \(0.196226\pi\)
−0.815930 + 0.578151i \(0.803774\pi\)
\(522\) 0 0
\(523\) 810.326i 1.54938i 0.632340 + 0.774691i \(0.282094\pi\)
−0.632340 + 0.774691i \(0.717906\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 198.872 0.377367
\(528\) 0 0
\(529\) 140.058 0.264759
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.4760 0.0215310
\(534\) 0 0
\(535\) −25.3527 9.62226i −0.0473882 0.0179855i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 382.139i 0.708978i
\(540\) 0 0
\(541\) 877.470 1.62194 0.810971 0.585087i \(-0.198940\pi\)
0.810971 + 0.585087i \(0.198940\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 940.222 + 356.848i 1.72518 + 0.654767i
\(546\) 0 0
\(547\) 627.998i 1.14808i 0.818828 + 0.574039i \(0.194624\pi\)
−0.818828 + 0.574039i \(0.805376\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 488.796i 0.887107i
\(552\) 0 0
\(553\) 588.218i 1.06369i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 195.072 0.350219 0.175109 0.984549i \(-0.443972\pi\)
0.175109 + 0.984549i \(0.443972\pi\)
\(558\) 0 0
\(559\) −1186.60 −2.12271
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 831.859 1.47755 0.738774 0.673953i \(-0.235405\pi\)
0.738774 + 0.673953i \(0.235405\pi\)
\(564\) 0 0
\(565\) −255.747 97.0652i −0.452650 0.171797i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 555.389i 0.976078i −0.872822 0.488039i \(-0.837712\pi\)
0.872822 0.488039i \(-0.162288\pi\)
\(570\) 0 0
\(571\) −453.650 −0.794484 −0.397242 0.917714i \(-0.630033\pi\)
−0.397242 + 0.917714i \(0.630033\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 483.813 + 429.053i 0.841414 + 0.746178i
\(576\) 0 0
\(577\) 103.410i 0.179220i 0.995977 + 0.0896098i \(0.0285620\pi\)
−0.995977 + 0.0896098i \(0.971438\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 745.420i 1.28299i
\(582\) 0 0
\(583\) 694.722i 1.19163i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 851.682 1.45091 0.725453 0.688272i \(-0.241630\pi\)
0.725453 + 0.688272i \(0.241630\pi\)
\(588\) 0 0
\(589\) −201.314 −0.341789
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1032.74 1.74155 0.870775 0.491681i \(-0.163617\pi\)
0.870775 + 0.491681i \(0.163617\pi\)
\(594\) 0 0
\(595\) 451.237 1188.92i 0.758381 1.99818i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 710.247i 1.18572i −0.805305 0.592861i \(-0.797998\pi\)
0.805305 0.592861i \(-0.202002\pi\)
\(600\) 0 0
\(601\) 647.056 1.07663 0.538316 0.842743i \(-0.319061\pi\)
0.538316 + 0.842743i \(0.319061\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 221.441 + 84.0449i 0.366019 + 0.138917i
\(606\) 0 0
\(607\) 498.590i 0.821401i −0.911770 0.410700i \(-0.865284\pi\)
0.911770 0.410700i \(-0.134716\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1508.94i 2.46963i
\(612\) 0 0
\(613\) 374.575i 0.611053i 0.952184 + 0.305526i \(0.0988325\pi\)
−0.952184 + 0.305526i \(0.901168\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −170.764 −0.276765 −0.138383 0.990379i \(-0.544190\pi\)
−0.138383 + 0.990379i \(0.544190\pi\)
\(618\) 0 0
\(619\) 531.705 0.858974 0.429487 0.903073i \(-0.358694\pi\)
0.429487 + 0.903073i \(0.358694\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 278.380 0.446838
\(624\) 0 0
\(625\) 74.7152 + 620.518i 0.119544 + 0.992829i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1236.73i 1.96618i
\(630\) 0 0
\(631\) 671.104 1.06356 0.531778 0.846884i \(-0.321524\pi\)
0.531778 + 0.846884i \(0.321524\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −93.6532 + 246.757i −0.147485 + 0.388594i
\(636\) 0 0
\(637\) 848.465i 1.33197i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 828.196i 1.29204i 0.763321 + 0.646019i \(0.223567\pi\)
−0.763321 + 0.646019i \(0.776433\pi\)
\(642\) 0 0
\(643\) 730.562i 1.13618i −0.822968 0.568088i \(-0.807683\pi\)
0.822968 0.568088i \(-0.192317\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −936.478 −1.44742 −0.723708 0.690106i \(-0.757564\pi\)
−0.723708 + 0.690106i \(0.757564\pi\)
\(648\) 0 0
\(649\) −132.237 −0.203755
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1006.97 −1.54207 −0.771037 0.636791i \(-0.780262\pi\)
−0.771037 + 0.636791i \(0.780262\pi\)
\(654\) 0 0
\(655\) 287.852 758.430i 0.439468 1.15791i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 183.595i 0.278597i 0.990250 + 0.139299i \(0.0444848\pi\)
−0.990250 + 0.139299i \(0.955515\pi\)
\(660\) 0 0
\(661\) −157.268 −0.237924 −0.118962 0.992899i \(-0.537957\pi\)
−0.118962 + 0.992899i \(0.537957\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −456.777 + 1203.51i −0.686883 + 1.80980i
\(666\) 0 0
\(667\) 474.943i 0.712059i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 538.507i 0.802544i
\(672\) 0 0
\(673\) 145.482i 0.216169i 0.994142 + 0.108085i \(0.0344717\pi\)
−0.994142 + 0.108085i \(0.965528\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −50.4636 −0.0745400 −0.0372700 0.999305i \(-0.511866\pi\)
−0.0372700 + 0.999305i \(0.511866\pi\)
\(678\) 0 0
\(679\) 225.410 0.331974
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −292.599 −0.428403 −0.214202 0.976789i \(-0.568715\pi\)
−0.214202 + 0.976789i \(0.568715\pi\)
\(684\) 0 0
\(685\) −487.437 185.000i −0.711587 0.270073i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1542.49i 2.23874i
\(690\) 0 0
\(691\) −312.011 −0.451535 −0.225768 0.974181i \(-0.572489\pi\)
−0.225768 + 0.974181i \(0.572489\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 631.128 + 239.536i 0.908098 + 0.344656i
\(696\) 0 0
\(697\) 15.8406i 0.0227268i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1192.92i 1.70174i −0.525377 0.850869i \(-0.676076\pi\)
0.525377 0.850869i \(-0.323924\pi\)
\(702\) 0 0
\(703\) 1251.91i 1.78081i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1103.84 −1.56131
\(708\) 0 0
\(709\) 147.979 0.208715 0.104358 0.994540i \(-0.466721\pi\)
0.104358 + 0.994540i \(0.466721\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 195.609 0.274346
\(714\) 0 0
\(715\) −764.205 290.043i −1.06882 0.405655i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 396.045i 0.550827i 0.961326 + 0.275413i \(0.0888148\pi\)
−0.961326 + 0.275413i \(0.911185\pi\)
\(720\) 0 0
\(721\) −1609.91 −2.23289
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 304.571 343.444i 0.420098 0.473716i
\(726\) 0 0
\(727\) 195.196i 0.268496i 0.990948 + 0.134248i \(0.0428619\pi\)
−0.990948 + 0.134248i \(0.957138\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1637.89i 2.24061i
\(732\) 0 0
\(733\) 587.367i 0.801319i −0.916227 0.400659i \(-0.868781\pi\)
0.916227 0.400659i \(-0.131219\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −414.910 −0.562972
\(738\) 0 0
\(739\) 265.498 0.359267 0.179634 0.983734i \(-0.442509\pi\)
0.179634 + 0.983734i \(0.442509\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1345.90 −1.81144 −0.905718 0.423881i \(-0.860667\pi\)
−0.905718 + 0.423881i \(0.860667\pi\)
\(744\) 0 0
\(745\) 508.570 1339.98i 0.682644 1.79863i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 52.4520i 0.0700294i
\(750\) 0 0
\(751\) −355.090 −0.472823 −0.236411 0.971653i \(-0.575971\pi\)
−0.236411 + 0.971653i \(0.575971\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.5079 + 4.74721i 0.0165668 + 0.00628770i
\(756\) 0 0
\(757\) 978.475i 1.29257i 0.763096 + 0.646285i \(0.223678\pi\)
−0.763096 + 0.646285i \(0.776322\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 334.505i 0.439560i 0.975549 + 0.219780i \(0.0705339\pi\)
−0.975549 + 0.219780i \(0.929466\pi\)
\(762\) 0 0
\(763\) 1945.22i 2.54943i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −293.607 −0.382799
\(768\) 0 0
\(769\) 117.430 0.152705 0.0763527 0.997081i \(-0.475673\pi\)
0.0763527 + 0.997081i \(0.475673\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 553.474 0.716007 0.358004 0.933720i \(-0.383458\pi\)
0.358004 + 0.933720i \(0.383458\pi\)
\(774\) 0 0
\(775\) 141.450 + 125.440i 0.182516 + 0.161858i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.0351i 0.0205842i
\(780\) 0 0
\(781\) 855.005 1.09476
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −515.110 + 1357.21i −0.656191 + 1.72893i
\(786\) 0 0
\(787\) 731.043i 0.928898i 0.885600 + 0.464449i \(0.153748\pi\)
−0.885600 + 0.464449i \(0.846252\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 529.113i 0.668917i
\(792\) 0 0
\(793\) 1195.65i 1.50775i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1108.67 1.39105 0.695527 0.718500i \(-0.255171\pi\)
0.695527 + 0.718500i \(0.255171\pi\)
\(798\) 0 0
\(799\) −2082.83 −2.60680
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 520.952 0.648757
\(804\) 0 0
\(805\) 443.832 1169.41i 0.551344 1.45268i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1154.29i 1.42681i 0.700753 + 0.713404i \(0.252848\pi\)
−0.700753 + 0.713404i \(0.747152\pi\)
\(810\) 0 0
\(811\) −1231.92 −1.51901 −0.759507 0.650499i \(-0.774560\pi\)
−0.759507 + 0.650499i \(0.774560\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −332.707 + 876.617i −0.408230 + 1.07560i
\(816\) 0 0
\(817\) 1658.00i 2.02937i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1050.87i 1.27999i −0.768380 0.639994i \(-0.778937\pi\)
0.768380 0.639994i \(-0.221063\pi\)
\(822\) 0 0
\(823\) 438.283i 0.532543i 0.963898 + 0.266272i \(0.0857918\pi\)
−0.963898 + 0.266272i \(0.914208\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 281.785 0.340732 0.170366 0.985381i \(-0.445505\pi\)
0.170366 + 0.985381i \(0.445505\pi\)
\(828\) 0 0
\(829\) 264.448 0.318996 0.159498 0.987198i \(-0.449012\pi\)
0.159498 + 0.987198i \(0.449012\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1171.16 −1.40595
\(834\) 0 0
\(835\) −366.329 139.035i −0.438717 0.166509i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1593.36i 1.89912i 0.313585 + 0.949560i \(0.398470\pi\)
−0.313585 + 0.949560i \(0.601530\pi\)
\(840\) 0 0
\(841\) 503.853 0.599111
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −906.754 344.145i −1.07308 0.407273i
\(846\) 0 0
\(847\) 458.138i 0.540895i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1216.43i 1.42942i
\(852\) 0 0
\(853\) 316.402i 0.370928i 0.982651 + 0.185464i \(0.0593788\pi\)
−0.982651 + 0.185464i \(0.940621\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 223.873 0.261229 0.130614 0.991433i \(-0.458305\pi\)
0.130614 + 0.991433i \(0.458305\pi\)
\(858\) 0 0
\(859\) 487.293 0.567280 0.283640 0.958931i \(-0.408458\pi\)
0.283640 + 0.958931i \(0.408458\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −722.801 −0.837545 −0.418772 0.908091i \(-0.637539\pi\)
−0.418772 + 0.908091i \(0.637539\pi\)
\(864\) 0 0
\(865\) 1065.21 + 404.287i 1.23146 + 0.467384i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 521.888i 0.600562i
\(870\) 0 0
\(871\) −921.226 −1.05766
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1070.86 561.008i 1.22384 0.641153i
\(876\) 0 0
\(877\) 127.733i 0.145648i 0.997345 + 0.0728239i \(0.0232011\pi\)
−0.997345 + 0.0728239i \(0.976799\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 476.607i 0.540984i −0.962722 0.270492i \(-0.912814\pi\)
0.962722 0.270492i \(-0.0871863\pi\)
\(882\) 0 0
\(883\) 42.5119i 0.0481449i 0.999710 + 0.0240724i \(0.00766324\pi\)
−0.999710 + 0.0240724i \(0.992337\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.2543 0.0126881 0.00634405 0.999980i \(-0.497981\pi\)
0.00634405 + 0.999980i \(0.497981\pi\)
\(888\) 0 0
\(889\) 510.514 0.574257
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2108.40 2.36103
\(894\) 0 0
\(895\) 158.307 417.108i 0.176880 0.466042i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 138.856i 0.154457i
\(900\) 0 0
\(901\) −2129.14 −2.36308
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −114.949 43.6271i −0.127015 0.0482068i
\(906\) 0 0
\(907\) 1492.02i 1.64500i 0.568762 + 0.822502i \(0.307423\pi\)
−0.568762 + 0.822502i \(0.692577\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 202.505i 0.222289i −0.993804 0.111144i \(-0.964548\pi\)
0.993804 0.111144i \(-0.0354516\pi\)
\(912\) 0 0
\(913\) 661.363i 0.724385i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1569.11 −1.71114
\(918\) 0 0
\(919\) 1675.22 1.82287 0.911437 0.411440i \(-0.134974\pi\)
0.911437 + 0.411440i \(0.134974\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1898.37 2.05674
\(924\) 0 0
\(925\) −780.073 + 879.634i −0.843322 + 0.950955i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 249.474i 0.268540i −0.990945 0.134270i \(-0.957131\pi\)
0.990945 0.134270i \(-0.0428690\pi\)
\(930\) 0 0
\(931\) 1185.53 1.27340
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 400.353 1054.85i 0.428186 1.12818i
\(936\) 0 0
\(937\) 669.921i 0.714964i 0.933920 + 0.357482i \(0.116365\pi\)
−0.933920 + 0.357482i \(0.883635\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1505.28i 1.59966i 0.600226 + 0.799830i \(0.295077\pi\)
−0.600226 + 0.799830i \(0.704923\pi\)
\(942\) 0 0
\(943\) 15.5807i 0.0165224i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1647.39 1.73959 0.869794 0.493415i \(-0.164252\pi\)
0.869794 + 0.493415i \(0.164252\pi\)
\(948\) 0 0
\(949\) 1156.67 1.21883
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1785.17 1.87321 0.936605 0.350386i \(-0.113950\pi\)
0.936605 + 0.350386i \(0.113950\pi\)
\(954\) 0 0
\(955\) 50.9468 134.234i 0.0533474 0.140560i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1008.46i 1.05157i
\(960\) 0 0
\(961\) −903.811 −0.940490
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 398.713 1050.53i 0.413174 1.08863i
\(966\) 0 0
\(967\) 371.768i 0.384455i −0.981350 0.192228i \(-0.938429\pi\)
0.981350 0.192228i \(-0.0615712\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 564.620i 0.581483i −0.956802 0.290741i \(-0.906098\pi\)
0.956802 0.290741i \(-0.0939019\pi\)
\(972\) 0 0
\(973\) 1305.74i 1.34197i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 485.194 0.496616 0.248308 0.968681i \(-0.420125\pi\)
0.248308 + 0.968681i \(0.420125\pi\)
\(978\) 0 0
\(979\) 246.989 0.252287
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −959.728 −0.976325 −0.488163 0.872753i \(-0.662333\pi\)
−0.488163 + 0.872753i \(0.662333\pi\)
\(984\) 0 0
\(985\) −513.649 194.948i −0.521471 0.197917i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1611.01i 1.62893i
\(990\) 0 0
\(991\) 184.184 0.185857 0.0929286 0.995673i \(-0.470377\pi\)
0.0929286 + 0.995673i \(0.470377\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −393.174 149.224i −0.395150 0.149973i
\(996\) 0 0
\(997\) 655.370i 0.657342i −0.944445 0.328671i \(-0.893399\pi\)
0.944445 0.328671i \(-0.106601\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.c.q.1889.24 24
3.2 odd 2 inner 2160.3.c.q.1889.1 24
4.3 odd 2 1080.3.c.c.809.24 yes 24
5.4 even 2 inner 2160.3.c.q.1889.2 24
12.11 even 2 1080.3.c.c.809.1 24
15.14 odd 2 inner 2160.3.c.q.1889.23 24
20.19 odd 2 1080.3.c.c.809.2 yes 24
60.59 even 2 1080.3.c.c.809.23 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.3.c.c.809.1 24 12.11 even 2
1080.3.c.c.809.2 yes 24 20.19 odd 2
1080.3.c.c.809.23 yes 24 60.59 even 2
1080.3.c.c.809.24 yes 24 4.3 odd 2
2160.3.c.q.1889.1 24 3.2 odd 2 inner
2160.3.c.q.1889.2 24 5.4 even 2 inner
2160.3.c.q.1889.23 24 15.14 odd 2 inner
2160.3.c.q.1889.24 24 1.1 even 1 trivial