Properties

Label 2160.3.l.g.161.4
Level $2160$
Weight $3$
Character 2160.161
Analytic conductor $58.856$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,3,Mod(161,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.161");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2160.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(58.8557371018\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.4
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 2160.161
Dual form 2160.3.l.g.161.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607i q^{5} +9.70820 q^{7} -14.1803i q^{11} -5.70820 q^{13} -5.94427i q^{17} -32.4164 q^{19} -1.58359i q^{23} -5.00000 q^{25} +2.06888i q^{29} -49.2492 q^{31} +21.7082i q^{35} -26.5836 q^{37} +65.2361i q^{41} -49.3738 q^{43} -70.1378i q^{47} +45.2492 q^{49} +28.6393i q^{53} +31.7082 q^{55} +95.2361i q^{59} +19.0000 q^{61} -12.7639i q^{65} -107.666 q^{67} +75.2624i q^{71} -96.7902 q^{73} -137.666i q^{77} +101.833 q^{79} +44.6656i q^{83} +13.2918 q^{85} -56.2918i q^{89} -55.4164 q^{91} -72.4853i q^{95} +132.584 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} + 4 q^{13} - 76 q^{19} - 20 q^{25} - 36 q^{31} - 160 q^{37} + 44 q^{43} + 20 q^{49} + 100 q^{55} + 76 q^{61} - 216 q^{67} - 92 q^{73} + 300 q^{79} + 80 q^{85} - 168 q^{91} + 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 9.70820 1.38689 0.693443 0.720511i \(-0.256093\pi\)
0.693443 + 0.720511i \(0.256093\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 14.1803i − 1.28912i −0.764553 0.644561i \(-0.777040\pi\)
0.764553 0.644561i \(-0.222960\pi\)
\(12\) 0 0
\(13\) −5.70820 −0.439093 −0.219546 0.975602i \(-0.570458\pi\)
−0.219546 + 0.975602i \(0.570458\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 5.94427i − 0.349663i −0.984598 0.174832i \(-0.944062\pi\)
0.984598 0.174832i \(-0.0559381\pi\)
\(18\) 0 0
\(19\) −32.4164 −1.70613 −0.853063 0.521807i \(-0.825258\pi\)
−0.853063 + 0.521807i \(0.825258\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 1.58359i − 0.0688518i −0.999407 0.0344259i \(-0.989040\pi\)
0.999407 0.0344259i \(-0.0109603\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.06888i 0.0713408i 0.999364 + 0.0356704i \(0.0113567\pi\)
−0.999364 + 0.0356704i \(0.988643\pi\)
\(30\) 0 0
\(31\) −49.2492 −1.58868 −0.794342 0.607470i \(-0.792184\pi\)
−0.794342 + 0.607470i \(0.792184\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 21.7082i 0.620234i
\(36\) 0 0
\(37\) −26.5836 −0.718475 −0.359238 0.933246i \(-0.616963\pi\)
−0.359238 + 0.933246i \(0.616963\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 65.2361i 1.59112i 0.605872 + 0.795562i \(0.292824\pi\)
−0.605872 + 0.795562i \(0.707176\pi\)
\(42\) 0 0
\(43\) −49.3738 −1.14823 −0.574114 0.818775i \(-0.694654\pi\)
−0.574114 + 0.818775i \(0.694654\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 70.1378i − 1.49229i −0.665782 0.746146i \(-0.731902\pi\)
0.665782 0.746146i \(-0.268098\pi\)
\(48\) 0 0
\(49\) 45.2492 0.923454
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 28.6393i 0.540365i 0.962809 + 0.270182i \(0.0870840\pi\)
−0.962809 + 0.270182i \(0.912916\pi\)
\(54\) 0 0
\(55\) 31.7082 0.576513
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 95.2361i 1.61417i 0.590435 + 0.807085i \(0.298956\pi\)
−0.590435 + 0.807085i \(0.701044\pi\)
\(60\) 0 0
\(61\) 19.0000 0.311475 0.155738 0.987798i \(-0.450225\pi\)
0.155738 + 0.987798i \(0.450225\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 12.7639i − 0.196368i
\(66\) 0 0
\(67\) −107.666 −1.60695 −0.803475 0.595339i \(-0.797018\pi\)
−0.803475 + 0.595339i \(0.797018\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 75.2624i 1.06003i 0.847987 + 0.530017i \(0.177814\pi\)
−0.847987 + 0.530017i \(0.822186\pi\)
\(72\) 0 0
\(73\) −96.7902 −1.32589 −0.662947 0.748666i \(-0.730694\pi\)
−0.662947 + 0.748666i \(0.730694\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 137.666i − 1.78787i
\(78\) 0 0
\(79\) 101.833 1.28902 0.644511 0.764595i \(-0.277061\pi\)
0.644511 + 0.764595i \(0.277061\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 44.6656i 0.538140i 0.963121 + 0.269070i \(0.0867163\pi\)
−0.963121 + 0.269070i \(0.913284\pi\)
\(84\) 0 0
\(85\) 13.2918 0.156374
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 56.2918i − 0.632492i −0.948677 0.316246i \(-0.897577\pi\)
0.948677 0.316246i \(-0.102423\pi\)
\(90\) 0 0
\(91\) −55.4164 −0.608972
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 72.4853i − 0.763003i
\(96\) 0 0
\(97\) 132.584 1.36684 0.683421 0.730025i \(-0.260492\pi\)
0.683421 + 0.730025i \(0.260492\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 24.0000i 0.237624i 0.992917 + 0.118812i \(0.0379085\pi\)
−0.992917 + 0.118812i \(0.962091\pi\)
\(102\) 0 0
\(103\) 78.8328 0.765367 0.382684 0.923879i \(-0.375000\pi\)
0.382684 + 0.923879i \(0.375000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 59.6656i 0.557623i 0.960346 + 0.278811i \(0.0899404\pi\)
−0.960346 + 0.278811i \(0.910060\pi\)
\(108\) 0 0
\(109\) −22.9149 −0.210228 −0.105114 0.994460i \(-0.533521\pi\)
−0.105114 + 0.994460i \(0.533521\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 128.387i 1.13617i 0.822971 + 0.568084i \(0.192315\pi\)
−0.822971 + 0.568084i \(0.807685\pi\)
\(114\) 0 0
\(115\) 3.54102 0.0307915
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 57.7082i − 0.484943i
\(120\) 0 0
\(121\) −80.0820 −0.661835
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.1803i − 0.0894427i
\(126\) 0 0
\(127\) −40.7477 −0.320848 −0.160424 0.987048i \(-0.551286\pi\)
−0.160424 + 0.987048i \(0.551286\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 260.164i − 1.98599i −0.118176 0.992993i \(-0.537705\pi\)
0.118176 0.992993i \(-0.462295\pi\)
\(132\) 0 0
\(133\) −314.705 −2.36620
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 164.331i − 1.19950i −0.800188 0.599749i \(-0.795267\pi\)
0.800188 0.599749i \(-0.204733\pi\)
\(138\) 0 0
\(139\) −34.4984 −0.248190 −0.124095 0.992270i \(-0.539603\pi\)
−0.124095 + 0.992270i \(0.539603\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 80.9443i 0.566044i
\(144\) 0 0
\(145\) −4.62616 −0.0319046
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 38.1803i − 0.256244i −0.991758 0.128122i \(-0.959105\pi\)
0.991758 0.128122i \(-0.0408949\pi\)
\(150\) 0 0
\(151\) −182.997 −1.21190 −0.605950 0.795503i \(-0.707207\pi\)
−0.605950 + 0.795503i \(0.707207\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 110.125i − 0.710481i
\(156\) 0 0
\(157\) −144.705 −0.921689 −0.460844 0.887481i \(-0.652453\pi\)
−0.460844 + 0.887481i \(0.652453\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 15.3738i − 0.0954897i
\(162\) 0 0
\(163\) −16.8328 −0.103269 −0.0516344 0.998666i \(-0.516443\pi\)
−0.0516344 + 0.998666i \(0.516443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 36.5805i − 0.219045i −0.993984 0.109522i \(-0.965068\pi\)
0.993984 0.109522i \(-0.0349321\pi\)
\(168\) 0 0
\(169\) −136.416 −0.807198
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 32.3313i 0.186886i 0.995625 + 0.0934430i \(0.0297873\pi\)
−0.995625 + 0.0934430i \(0.970213\pi\)
\(174\) 0 0
\(175\) −48.5410 −0.277377
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 136.774i 0.764100i 0.924142 + 0.382050i \(0.124782\pi\)
−0.924142 + 0.382050i \(0.875218\pi\)
\(180\) 0 0
\(181\) 45.9180 0.253690 0.126845 0.991923i \(-0.459515\pi\)
0.126845 + 0.991923i \(0.459515\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 59.4427i − 0.321312i
\(186\) 0 0
\(187\) −84.2918 −0.450758
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 68.3870i 0.358047i 0.983845 + 0.179024i \(0.0572938\pi\)
−0.983845 + 0.179024i \(0.942706\pi\)
\(192\) 0 0
\(193\) 77.7082 0.402633 0.201317 0.979526i \(-0.435478\pi\)
0.201317 + 0.979526i \(0.435478\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 103.997i 0.527903i 0.964536 + 0.263952i \(0.0850259\pi\)
−0.964536 + 0.263952i \(0.914974\pi\)
\(198\) 0 0
\(199\) −239.751 −1.20478 −0.602389 0.798203i \(-0.705784\pi\)
−0.602389 + 0.798203i \(0.705784\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 20.0851i 0.0989416i
\(204\) 0 0
\(205\) −145.872 −0.711572
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 459.676i 2.19941i
\(210\) 0 0
\(211\) 10.1672 0.0481857 0.0240929 0.999710i \(-0.492330\pi\)
0.0240929 + 0.999710i \(0.492330\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 110.403i − 0.513503i
\(216\) 0 0
\(217\) −478.122 −2.20332
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 33.9311i 0.153534i
\(222\) 0 0
\(223\) −72.2492 −0.323988 −0.161994 0.986792i \(-0.551792\pi\)
−0.161994 + 0.986792i \(0.551792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 26.4752i 0.116631i 0.998298 + 0.0583155i \(0.0185729\pi\)
−0.998298 + 0.0583155i \(0.981427\pi\)
\(228\) 0 0
\(229\) −280.495 −1.22487 −0.612435 0.790521i \(-0.709810\pi\)
−0.612435 + 0.790521i \(0.709810\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 115.082i − 0.493914i −0.969026 0.246957i \(-0.920569\pi\)
0.969026 0.246957i \(-0.0794307\pi\)
\(234\) 0 0
\(235\) 156.833 0.667374
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 147.390i − 0.616695i −0.951274 0.308347i \(-0.900224\pi\)
0.951274 0.308347i \(-0.0997759\pi\)
\(240\) 0 0
\(241\) −62.5805 −0.259670 −0.129835 0.991536i \(-0.541445\pi\)
−0.129835 + 0.991536i \(0.541445\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 101.180i 0.412981i
\(246\) 0 0
\(247\) 185.039 0.749148
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 309.580i − 1.23339i −0.787203 0.616694i \(-0.788472\pi\)
0.787203 0.616694i \(-0.211528\pi\)
\(252\) 0 0
\(253\) −22.4559 −0.0887584
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 75.7477i − 0.294738i −0.989082 0.147369i \(-0.952920\pi\)
0.989082 0.147369i \(-0.0470805\pi\)
\(258\) 0 0
\(259\) −258.079 −0.996444
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 367.974i 1.39914i 0.714564 + 0.699570i \(0.246625\pi\)
−0.714564 + 0.699570i \(0.753375\pi\)
\(264\) 0 0
\(265\) −64.0395 −0.241658
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 279.358i − 1.03850i −0.854621 0.519252i \(-0.826211\pi\)
0.854621 0.519252i \(-0.173789\pi\)
\(270\) 0 0
\(271\) −62.4164 −0.230319 −0.115159 0.993347i \(-0.536738\pi\)
−0.115159 + 0.993347i \(0.536738\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 70.9017i 0.257824i
\(276\) 0 0
\(277\) 26.6262 0.0961233 0.0480617 0.998844i \(-0.484696\pi\)
0.0480617 + 0.998844i \(0.484696\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 412.869i 1.46929i 0.678454 + 0.734643i \(0.262650\pi\)
−0.678454 + 0.734643i \(0.737350\pi\)
\(282\) 0 0
\(283\) −104.292 −0.368522 −0.184261 0.982877i \(-0.558989\pi\)
−0.184261 + 0.982877i \(0.558989\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 633.325i 2.20671i
\(288\) 0 0
\(289\) 253.666 0.877736
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 311.243i − 1.06226i −0.847289 0.531131i \(-0.821767\pi\)
0.847289 0.531131i \(-0.178233\pi\)
\(294\) 0 0
\(295\) −212.954 −0.721879
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 9.03947i 0.0302323i
\(300\) 0 0
\(301\) −479.331 −1.59246
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 42.4853i 0.139296i
\(306\) 0 0
\(307\) −454.158 −1.47934 −0.739671 0.672969i \(-0.765019\pi\)
−0.739671 + 0.672969i \(0.765019\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 211.957i 0.681535i 0.940148 + 0.340768i \(0.110687\pi\)
−0.940148 + 0.340768i \(0.889313\pi\)
\(312\) 0 0
\(313\) 284.827 0.909989 0.454995 0.890494i \(-0.349641\pi\)
0.454995 + 0.890494i \(0.349641\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 252.056i − 0.795128i −0.917574 0.397564i \(-0.869856\pi\)
0.917574 0.397564i \(-0.130144\pi\)
\(318\) 0 0
\(319\) 29.3375 0.0919670
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 192.692i 0.596569i
\(324\) 0 0
\(325\) 28.5410 0.0878185
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 680.912i − 2.06964i
\(330\) 0 0
\(331\) 177.915 0.537507 0.268754 0.963209i \(-0.413388\pi\)
0.268754 + 0.963209i \(0.413388\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 240.748i − 0.718650i
\(336\) 0 0
\(337\) 462.450 1.37225 0.686127 0.727482i \(-0.259309\pi\)
0.686127 + 0.727482i \(0.259309\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 698.371i 2.04801i
\(342\) 0 0
\(343\) −36.4133 −0.106161
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 493.384i − 1.42186i −0.703265 0.710928i \(-0.748275\pi\)
0.703265 0.710928i \(-0.251725\pi\)
\(348\) 0 0
\(349\) 62.0820 0.177885 0.0889427 0.996037i \(-0.471651\pi\)
0.0889427 + 0.996037i \(0.471651\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 123.836i 0.350810i 0.984496 + 0.175405i \(0.0561235\pi\)
−0.984496 + 0.175405i \(0.943877\pi\)
\(354\) 0 0
\(355\) −168.292 −0.474061
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 243.994i − 0.679648i −0.940489 0.339824i \(-0.889632\pi\)
0.940489 0.339824i \(-0.110368\pi\)
\(360\) 0 0
\(361\) 689.823 1.91087
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 216.430i − 0.592958i
\(366\) 0 0
\(367\) 236.371 0.644062 0.322031 0.946729i \(-0.395634\pi\)
0.322031 + 0.946729i \(0.395634\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 278.036i 0.749424i
\(372\) 0 0
\(373\) 301.167 0.807419 0.403709 0.914887i \(-0.367721\pi\)
0.403709 + 0.914887i \(0.367721\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 11.8096i − 0.0313252i
\(378\) 0 0
\(379\) 102.003 0.269137 0.134569 0.990904i \(-0.457035\pi\)
0.134569 + 0.990904i \(0.457035\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 705.158i − 1.84114i −0.390574 0.920572i \(-0.627723\pi\)
0.390574 0.920572i \(-0.372277\pi\)
\(384\) 0 0
\(385\) 307.830 0.799558
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 346.043i − 0.889570i −0.895637 0.444785i \(-0.853280\pi\)
0.895637 0.444785i \(-0.146720\pi\)
\(390\) 0 0
\(391\) −9.41330 −0.0240749
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 227.705i 0.576469i
\(396\) 0 0
\(397\) 172.128 0.433571 0.216786 0.976219i \(-0.430443\pi\)
0.216786 + 0.976219i \(0.430443\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 436.407i − 1.08830i −0.838989 0.544148i \(-0.816853\pi\)
0.838989 0.544148i \(-0.183147\pi\)
\(402\) 0 0
\(403\) 281.125 0.697580
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 376.964i 0.926202i
\(408\) 0 0
\(409\) −353.663 −0.864701 −0.432350 0.901706i \(-0.642316\pi\)
−0.432350 + 0.901706i \(0.642316\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 924.571i 2.23867i
\(414\) 0 0
\(415\) −99.8754 −0.240664
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 503.060i − 1.20062i −0.799768 0.600310i \(-0.795044\pi\)
0.799768 0.600310i \(-0.204956\pi\)
\(420\) 0 0
\(421\) −448.745 −1.06590 −0.532951 0.846146i \(-0.678917\pi\)
−0.532951 + 0.846146i \(0.678917\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 29.7214i 0.0699326i
\(426\) 0 0
\(427\) 184.456 0.431981
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 263.204i 0.610681i 0.952243 + 0.305341i \(0.0987703\pi\)
−0.952243 + 0.305341i \(0.901230\pi\)
\(432\) 0 0
\(433\) 155.702 0.359589 0.179794 0.983704i \(-0.442457\pi\)
0.179794 + 0.983704i \(0.442457\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 51.3344i 0.117470i
\(438\) 0 0
\(439\) −44.0031 −0.100235 −0.0501174 0.998743i \(-0.515960\pi\)
−0.0501174 + 0.998743i \(0.515960\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 842.902i 1.90271i 0.308090 + 0.951357i \(0.400310\pi\)
−0.308090 + 0.951357i \(0.599690\pi\)
\(444\) 0 0
\(445\) 125.872 0.282859
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 505.656i − 1.12618i −0.826395 0.563091i \(-0.809612\pi\)
0.826395 0.563091i \(-0.190388\pi\)
\(450\) 0 0
\(451\) 925.070 2.05115
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 123.915i − 0.272340i
\(456\) 0 0
\(457\) 414.577 0.907172 0.453586 0.891213i \(-0.350145\pi\)
0.453586 + 0.891213i \(0.350145\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 103.909i − 0.225398i −0.993629 0.112699i \(-0.964050\pi\)
0.993629 0.112699i \(-0.0359496\pi\)
\(462\) 0 0
\(463\) −814.997 −1.76025 −0.880126 0.474740i \(-0.842542\pi\)
−0.880126 + 0.474740i \(0.842542\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 32.8096i 0.0702561i 0.999383 + 0.0351281i \(0.0111839\pi\)
−0.999383 + 0.0351281i \(0.988816\pi\)
\(468\) 0 0
\(469\) −1045.24 −2.22866
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 700.138i 1.48021i
\(474\) 0 0
\(475\) 162.082 0.341225
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 574.456i − 1.19928i −0.800269 0.599641i \(-0.795310\pi\)
0.800269 0.599641i \(-0.204690\pi\)
\(480\) 0 0
\(481\) 151.745 0.315477
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 296.466i 0.611270i
\(486\) 0 0
\(487\) −189.131 −0.388359 −0.194179 0.980966i \(-0.562204\pi\)
−0.194179 + 0.980966i \(0.562204\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 453.437i − 0.923496i −0.887011 0.461748i \(-0.847222\pi\)
0.887011 0.461748i \(-0.152778\pi\)
\(492\) 0 0
\(493\) 12.2980 0.0249452
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 730.663i 1.47015i
\(498\) 0 0
\(499\) −100.088 −0.200578 −0.100289 0.994958i \(-0.531977\pi\)
−0.100289 + 0.994958i \(0.531977\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 564.692i − 1.12265i −0.827596 0.561324i \(-0.810292\pi\)
0.827596 0.561324i \(-0.189708\pi\)
\(504\) 0 0
\(505\) −53.6656 −0.106269
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 839.522i − 1.64935i −0.565603 0.824677i \(-0.691357\pi\)
0.565603 0.824677i \(-0.308643\pi\)
\(510\) 0 0
\(511\) −939.659 −1.83886
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 176.276i 0.342283i
\(516\) 0 0
\(517\) −994.577 −1.92375
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 380.227i 0.729802i 0.931046 + 0.364901i \(0.118897\pi\)
−0.931046 + 0.364901i \(0.881103\pi\)
\(522\) 0 0
\(523\) 194.207 0.371332 0.185666 0.982613i \(-0.440556\pi\)
0.185666 + 0.982613i \(0.440556\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 292.751i 0.555504i
\(528\) 0 0
\(529\) 526.492 0.995259
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 372.381i − 0.698651i
\(534\) 0 0
\(535\) −133.416 −0.249376
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 641.649i − 1.19044i
\(540\) 0 0
\(541\) 159.836 0.295445 0.147723 0.989029i \(-0.452806\pi\)
0.147723 + 0.989029i \(0.452806\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 51.2392i − 0.0940168i
\(546\) 0 0
\(547\) 647.295 1.18335 0.591677 0.806175i \(-0.298466\pi\)
0.591677 + 0.806175i \(0.298466\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 67.0658i − 0.121716i
\(552\) 0 0
\(553\) 988.614 1.78773
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 901.161i 1.61788i 0.587889 + 0.808942i \(0.299959\pi\)
−0.587889 + 0.808942i \(0.700041\pi\)
\(558\) 0 0
\(559\) 281.836 0.504179
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 529.003i 0.939615i 0.882769 + 0.469807i \(0.155677\pi\)
−0.882769 + 0.469807i \(0.844323\pi\)
\(564\) 0 0
\(565\) −287.082 −0.508110
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 493.623i − 0.867527i −0.901027 0.433764i \(-0.857185\pi\)
0.901027 0.433764i \(-0.142815\pi\)
\(570\) 0 0
\(571\) 760.246 1.33143 0.665715 0.746206i \(-0.268127\pi\)
0.665715 + 0.746206i \(0.268127\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.91796i 0.0137704i
\(576\) 0 0
\(577\) −38.4559 −0.0666480 −0.0333240 0.999445i \(-0.510609\pi\)
−0.0333240 + 0.999445i \(0.510609\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 433.623i 0.746339i
\(582\) 0 0
\(583\) 406.115 0.696596
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 548.489i 0.934394i 0.884153 + 0.467197i \(0.154736\pi\)
−0.884153 + 0.467197i \(0.845264\pi\)
\(588\) 0 0
\(589\) 1596.48 2.71050
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 9.97058i − 0.0168138i −0.999965 0.00840690i \(-0.997324\pi\)
0.999965 0.00840690i \(-0.00267603\pi\)
\(594\) 0 0
\(595\) 129.039 0.216873
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 507.755i 0.847670i 0.905739 + 0.423835i \(0.139316\pi\)
−0.905739 + 0.423835i \(0.860684\pi\)
\(600\) 0 0
\(601\) −680.416 −1.13214 −0.566070 0.824357i \(-0.691537\pi\)
−0.566070 + 0.824357i \(0.691537\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 179.069i − 0.295982i
\(606\) 0 0
\(607\) 305.374 0.503087 0.251544 0.967846i \(-0.419062\pi\)
0.251544 + 0.967846i \(0.419062\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 400.361i 0.655255i
\(612\) 0 0
\(613\) −876.584 −1.42999 −0.714995 0.699130i \(-0.753571\pi\)
−0.714995 + 0.699130i \(0.753571\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 740.489i − 1.20014i −0.799946 0.600072i \(-0.795138\pi\)
0.799946 0.600072i \(-0.204862\pi\)
\(618\) 0 0
\(619\) 309.902 0.500650 0.250325 0.968162i \(-0.419463\pi\)
0.250325 + 0.968162i \(0.419463\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 546.492i − 0.877195i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 158.020i 0.251224i
\(630\) 0 0
\(631\) 324.830 0.514786 0.257393 0.966307i \(-0.417137\pi\)
0.257393 + 0.966307i \(0.417137\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 91.1146i − 0.143487i
\(636\) 0 0
\(637\) −258.292 −0.405482
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 951.246i − 1.48400i −0.670398 0.742002i \(-0.733877\pi\)
0.670398 0.742002i \(-0.266123\pi\)
\(642\) 0 0
\(643\) −835.289 −1.29905 −0.649525 0.760341i \(-0.725032\pi\)
−0.649525 + 0.760341i \(0.725032\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 247.393i − 0.382370i −0.981554 0.191185i \(-0.938767\pi\)
0.981554 0.191185i \(-0.0612330\pi\)
\(648\) 0 0
\(649\) 1350.48 2.08086
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 228.293i − 0.349606i −0.984603 0.174803i \(-0.944071\pi\)
0.984603 0.174803i \(-0.0559288\pi\)
\(654\) 0 0
\(655\) 581.745 0.888160
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 907.512i − 1.37710i −0.725187 0.688552i \(-0.758247\pi\)
0.725187 0.688552i \(-0.241753\pi\)
\(660\) 0 0
\(661\) −468.152 −0.708248 −0.354124 0.935199i \(-0.615221\pi\)
−0.354124 + 0.935199i \(0.615221\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 703.702i − 1.05820i
\(666\) 0 0
\(667\) 3.27627 0.00491195
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 269.426i − 0.401530i
\(672\) 0 0
\(673\) −195.629 −0.290682 −0.145341 0.989382i \(-0.546428\pi\)
−0.145341 + 0.989382i \(0.546428\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 114.158i 0.168623i 0.996439 + 0.0843116i \(0.0268691\pi\)
−0.996439 + 0.0843116i \(0.973131\pi\)
\(678\) 0 0
\(679\) 1287.15 1.89565
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1240.50i 1.81625i 0.418705 + 0.908123i \(0.362484\pi\)
−0.418705 + 0.908123i \(0.637516\pi\)
\(684\) 0 0
\(685\) 367.456 0.536432
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 163.479i − 0.237270i
\(690\) 0 0
\(691\) −487.669 −0.705743 −0.352872 0.935672i \(-0.614795\pi\)
−0.352872 + 0.935672i \(0.614795\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 77.1409i − 0.110994i
\(696\) 0 0
\(697\) 387.781 0.556357
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 925.384i − 1.32009i −0.751226 0.660046i \(-0.770537\pi\)
0.751226 0.660046i \(-0.229463\pi\)
\(702\) 0 0
\(703\) 861.745 1.22581
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 232.997i 0.329557i
\(708\) 0 0
\(709\) −616.322 −0.869283 −0.434642 0.900603i \(-0.643125\pi\)
−0.434642 + 0.900603i \(0.643125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 77.9907i 0.109384i
\(714\) 0 0
\(715\) −180.997 −0.253143
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 404.067i 0.561984i 0.959710 + 0.280992i \(0.0906634\pi\)
−0.959710 + 0.280992i \(0.909337\pi\)
\(720\) 0 0
\(721\) 765.325 1.06148
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 10.3444i − 0.0142682i
\(726\) 0 0
\(727\) 834.991 1.14854 0.574271 0.818665i \(-0.305285\pi\)
0.574271 + 0.818665i \(0.305285\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 293.492i 0.401493i
\(732\) 0 0
\(733\) −678.480 −0.925620 −0.462810 0.886457i \(-0.653159\pi\)
−0.462810 + 0.886457i \(0.653159\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1526.74i 2.07155i
\(738\) 0 0
\(739\) 284.580 0.385089 0.192544 0.981288i \(-0.438326\pi\)
0.192544 + 0.981288i \(0.438326\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 489.947i 0.659418i 0.944083 + 0.329709i \(0.106951\pi\)
−0.944083 + 0.329709i \(0.893049\pi\)
\(744\) 0 0
\(745\) 85.3738 0.114596
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 579.246i 0.773359i
\(750\) 0 0
\(751\) 1180.49 1.57189 0.785945 0.618297i \(-0.212177\pi\)
0.785945 + 0.618297i \(0.212177\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 409.193i − 0.541978i
\(756\) 0 0
\(757\) 358.255 0.473257 0.236628 0.971600i \(-0.423958\pi\)
0.236628 + 0.971600i \(0.423958\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 428.115i − 0.562569i −0.959624 0.281285i \(-0.909239\pi\)
0.959624 0.281285i \(-0.0907605\pi\)
\(762\) 0 0
\(763\) −222.462 −0.291562
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 543.627i − 0.708770i
\(768\) 0 0
\(769\) 421.656 0.548318 0.274159 0.961684i \(-0.411601\pi\)
0.274159 + 0.961684i \(0.411601\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 792.246i 1.02490i 0.858718 + 0.512449i \(0.171262\pi\)
−0.858718 + 0.512449i \(0.828738\pi\)
\(774\) 0 0
\(775\) 246.246 0.317737
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 2114.72i − 2.71466i
\(780\) 0 0
\(781\) 1067.25 1.36651
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 323.570i − 0.412192i
\(786\) 0 0
\(787\) −218.456 −0.277581 −0.138790 0.990322i \(-0.544321\pi\)
−0.138790 + 0.990322i \(0.544321\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1246.41i 1.57574i
\(792\) 0 0
\(793\) −108.456 −0.136767
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 78.5341i 0.0985371i 0.998786 + 0.0492686i \(0.0156890\pi\)
−0.998786 + 0.0492686i \(0.984311\pi\)
\(798\) 0 0
\(799\) −416.918 −0.521800
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1372.52i 1.70924i
\(804\) 0 0
\(805\) 34.3769 0.0427043
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 922.233i 1.13997i 0.821656 + 0.569983i \(0.193050\pi\)
−0.821656 + 0.569983i \(0.806950\pi\)
\(810\) 0 0
\(811\) −1199.82 −1.47944 −0.739719 0.672916i \(-0.765041\pi\)
−0.739719 + 0.672916i \(0.765041\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 37.6393i − 0.0461832i
\(816\) 0 0
\(817\) 1600.52 1.95902
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 460.663i 0.561099i 0.959840 + 0.280550i \(0.0905167\pi\)
−0.959840 + 0.280550i \(0.909483\pi\)
\(822\) 0 0
\(823\) 1375.20 1.67096 0.835478 0.549523i \(-0.185191\pi\)
0.835478 + 0.549523i \(0.185191\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 497.800i − 0.601935i −0.953634 0.300968i \(-0.902690\pi\)
0.953634 0.300968i \(-0.0973096\pi\)
\(828\) 0 0
\(829\) −1339.24 −1.61549 −0.807744 0.589533i \(-0.799312\pi\)
−0.807744 + 0.589533i \(0.799312\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 268.974i − 0.322898i
\(834\) 0 0
\(835\) 81.7965 0.0979598
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 297.613i − 0.354723i −0.984146 0.177362i \(-0.943244\pi\)
0.984146 0.177362i \(-0.0567563\pi\)
\(840\) 0 0
\(841\) 836.720 0.994910
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 305.036i − 0.360990i
\(846\) 0 0
\(847\) −777.453 −0.917890
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 42.0976i 0.0494684i
\(852\) 0 0
\(853\) 887.647 1.04062 0.520309 0.853978i \(-0.325817\pi\)
0.520309 + 0.853978i \(0.325817\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 623.977i 0.728094i 0.931381 + 0.364047i \(0.118605\pi\)
−0.931381 + 0.364047i \(0.881395\pi\)
\(858\) 0 0
\(859\) 1015.24 1.18189 0.590945 0.806712i \(-0.298755\pi\)
0.590945 + 0.806712i \(0.298755\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1480.72i 1.71578i 0.513833 + 0.857890i \(0.328225\pi\)
−0.513833 + 0.857890i \(0.671775\pi\)
\(864\) 0 0
\(865\) −72.2949 −0.0835779
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 1444.02i − 1.66171i
\(870\) 0 0
\(871\) 614.577 0.705600
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 108.541i − 0.124047i
\(876\) 0 0
\(877\) −253.957 −0.289575 −0.144788 0.989463i \(-0.546250\pi\)
−0.144788 + 0.989463i \(0.546250\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 490.502i 0.556756i 0.960472 + 0.278378i \(0.0897968\pi\)
−0.960472 + 0.278378i \(0.910203\pi\)
\(882\) 0 0
\(883\) 881.878 0.998730 0.499365 0.866392i \(-0.333567\pi\)
0.499365 + 0.866392i \(0.333567\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 267.827i − 0.301947i −0.988538 0.150973i \(-0.951759\pi\)
0.988538 0.150973i \(-0.0482407\pi\)
\(888\) 0 0
\(889\) −395.587 −0.444979
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2273.61i 2.54604i
\(894\) 0 0
\(895\) −305.836 −0.341716
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 101.891i − 0.113338i
\(900\) 0 0
\(901\) 170.240 0.188946
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 102.676i 0.113454i
\(906\) 0 0
\(907\) −493.240 −0.543815 −0.271907 0.962323i \(-0.587654\pi\)
−0.271907 + 0.962323i \(0.587654\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1798.73i 1.97445i 0.159328 + 0.987226i \(0.449067\pi\)
−0.159328 + 0.987226i \(0.550933\pi\)
\(912\) 0 0
\(913\) 633.374 0.693728
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2525.73i − 2.75434i
\(918\) 0 0
\(919\) 338.000 0.367791 0.183896 0.982946i \(-0.441129\pi\)
0.183896 + 0.982946i \(0.441129\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 429.613i − 0.465453i
\(924\) 0 0
\(925\) 132.918 0.143695
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 1205.17i − 1.29728i −0.761096 0.648639i \(-0.775339\pi\)
0.761096 0.648639i \(-0.224661\pi\)
\(930\) 0 0
\(931\) −1466.82 −1.57553
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 188.482i − 0.201585i
\(936\) 0 0
\(937\) 1187.65 1.26750 0.633750 0.773538i \(-0.281515\pi\)
0.633750 + 0.773538i \(0.281515\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1037.42i 1.10247i 0.834350 + 0.551235i \(0.185843\pi\)
−0.834350 + 0.551235i \(0.814157\pi\)
\(942\) 0 0
\(943\) 103.307 0.109552
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 304.180i − 0.321203i −0.987019 0.160602i \(-0.948657\pi\)
0.987019 0.160602i \(-0.0513435\pi\)
\(948\) 0 0
\(949\) 552.498 0.582190
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1308.97i 1.37353i 0.726881 + 0.686763i \(0.240969\pi\)
−0.726881 + 0.686763i \(0.759031\pi\)
\(954\) 0 0
\(955\) −152.918 −0.160124
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 1595.36i − 1.66357i
\(960\) 0 0
\(961\) 1464.49 1.52392
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 173.761i 0.180063i
\(966\) 0 0
\(967\) −769.489 −0.795749 −0.397874 0.917440i \(-0.630252\pi\)
−0.397874 + 0.917440i \(0.630252\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 73.4164i 0.0756091i 0.999285 + 0.0378045i \(0.0120364\pi\)
−0.999285 + 0.0378045i \(0.987964\pi\)
\(972\) 0 0
\(973\) −334.918 −0.344212
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 865.384i 0.885756i 0.896582 + 0.442878i \(0.146043\pi\)
−0.896582 + 0.442878i \(0.853957\pi\)
\(978\) 0 0
\(979\) −798.237 −0.815359
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1728.98i − 1.75888i −0.476013 0.879438i \(-0.657919\pi\)
0.476013 0.879438i \(-0.342081\pi\)
\(984\) 0 0
\(985\) −232.544 −0.236085
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 78.1880i 0.0790577i
\(990\) 0 0
\(991\) −445.675 −0.449722 −0.224861 0.974391i \(-0.572193\pi\)
−0.224861 + 0.974391i \(0.572193\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 536.099i − 0.538793i
\(996\) 0 0
\(997\) 78.2253 0.0784607 0.0392303 0.999230i \(-0.487509\pi\)
0.0392303 + 0.999230i \(0.487509\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.3.l.g.161.4 4
3.2 odd 2 inner 2160.3.l.g.161.2 4
4.3 odd 2 135.3.c.c.26.4 yes 4
12.11 even 2 135.3.c.c.26.1 4
20.3 even 4 675.3.d.i.674.4 4
20.7 even 4 675.3.d.e.674.1 4
20.19 odd 2 675.3.c.p.26.1 4
36.7 odd 6 405.3.i.c.296.4 8
36.11 even 6 405.3.i.c.296.1 8
36.23 even 6 405.3.i.c.26.4 8
36.31 odd 6 405.3.i.c.26.1 8
60.23 odd 4 675.3.d.e.674.2 4
60.47 odd 4 675.3.d.i.674.3 4
60.59 even 2 675.3.c.p.26.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.c.c.26.1 4 12.11 even 2
135.3.c.c.26.4 yes 4 4.3 odd 2
405.3.i.c.26.1 8 36.31 odd 6
405.3.i.c.26.4 8 36.23 even 6
405.3.i.c.296.1 8 36.11 even 6
405.3.i.c.296.4 8 36.7 odd 6
675.3.c.p.26.1 4 20.19 odd 2
675.3.c.p.26.4 4 60.59 even 2
675.3.d.e.674.1 4 20.7 even 4
675.3.d.e.674.2 4 60.23 odd 4
675.3.d.i.674.3 4 60.47 odd 4
675.3.d.i.674.4 4 20.3 even 4
2160.3.l.g.161.2 4 3.2 odd 2 inner
2160.3.l.g.161.4 4 1.1 even 1 trivial