Properties

Label 675.3.c.p.26.1
Level $675$
Weight $3$
Character 675.26
Analytic conductor $18.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,3,Mod(26,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.26");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 675.26
Dual form 675.3.c.p.26.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61803i q^{2} -2.85410 q^{4} +9.70820 q^{7} -3.00000i q^{8} +14.1803i q^{11} +5.70820 q^{13} -25.4164i q^{14} -19.2705 q^{16} +5.94427i q^{17} +32.4164 q^{19} +37.1246 q^{22} -1.58359i q^{23} -14.9443i q^{26} -27.7082 q^{28} +2.06888i q^{29} +49.2492 q^{31} +38.4508i q^{32} +15.5623 q^{34} +26.5836 q^{37} -84.8673i q^{38} +65.2361i q^{41} -49.3738 q^{43} -40.4721i q^{44} -4.14590 q^{46} -70.1378i q^{47} +45.2492 q^{49} -16.2918 q^{52} -28.6393i q^{53} -29.1246i q^{56} +5.41641 q^{58} -95.2361i q^{59} +19.0000 q^{61} -128.936i q^{62} +23.5836 q^{64} -107.666 q^{67} -16.9656i q^{68} -75.2624i q^{71} +96.7902 q^{73} -69.5967i q^{74} -92.5197 q^{76} +137.666i q^{77} -101.833 q^{79} +170.790 q^{82} +44.6656i q^{83} +129.262i q^{86} +42.5410 q^{88} -56.2918i q^{89} +55.4164 q^{91} +4.51973i q^{92} -183.623 q^{94} -132.584 q^{97} -118.464i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 12 q^{7} - 4 q^{13} - 10 q^{16} + 76 q^{19} + 68 q^{22} - 84 q^{28} + 36 q^{31} + 22 q^{34} + 160 q^{37} + 44 q^{43} - 30 q^{46} + 20 q^{49} - 92 q^{52} - 32 q^{58} + 76 q^{61} + 148 q^{64}+ \cdots - 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.61803i − 1.30902i −0.756055 0.654508i \(-0.772876\pi\)
0.756055 0.654508i \(-0.227124\pi\)
\(3\) 0 0
\(4\) −2.85410 −0.713525
\(5\) 0 0
\(6\) 0 0
\(7\) 9.70820 1.38689 0.693443 0.720511i \(-0.256093\pi\)
0.693443 + 0.720511i \(0.256093\pi\)
\(8\) − 3.00000i − 0.375000i
\(9\) 0 0
\(10\) 0 0
\(11\) 14.1803i 1.28912i 0.764553 + 0.644561i \(0.222960\pi\)
−0.764553 + 0.644561i \(0.777040\pi\)
\(12\) 0 0
\(13\) 5.70820 0.439093 0.219546 0.975602i \(-0.429542\pi\)
0.219546 + 0.975602i \(0.429542\pi\)
\(14\) − 25.4164i − 1.81546i
\(15\) 0 0
\(16\) −19.2705 −1.20441
\(17\) 5.94427i 0.349663i 0.984598 + 0.174832i \(0.0559381\pi\)
−0.984598 + 0.174832i \(0.944062\pi\)
\(18\) 0 0
\(19\) 32.4164 1.70613 0.853063 0.521807i \(-0.174742\pi\)
0.853063 + 0.521807i \(0.174742\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 37.1246 1.68748
\(23\) − 1.58359i − 0.0688518i −0.999407 0.0344259i \(-0.989040\pi\)
0.999407 0.0344259i \(-0.0109603\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 14.9443i − 0.574780i
\(27\) 0 0
\(28\) −27.7082 −0.989579
\(29\) 2.06888i 0.0713408i 0.999364 + 0.0356704i \(0.0113567\pi\)
−0.999364 + 0.0356704i \(0.988643\pi\)
\(30\) 0 0
\(31\) 49.2492 1.58868 0.794342 0.607470i \(-0.207816\pi\)
0.794342 + 0.607470i \(0.207816\pi\)
\(32\) 38.4508i 1.20159i
\(33\) 0 0
\(34\) 15.5623 0.457715
\(35\) 0 0
\(36\) 0 0
\(37\) 26.5836 0.718475 0.359238 0.933246i \(-0.383037\pi\)
0.359238 + 0.933246i \(0.383037\pi\)
\(38\) − 84.8673i − 2.23335i
\(39\) 0 0
\(40\) 0 0
\(41\) 65.2361i 1.59112i 0.605872 + 0.795562i \(0.292824\pi\)
−0.605872 + 0.795562i \(0.707176\pi\)
\(42\) 0 0
\(43\) −49.3738 −1.14823 −0.574114 0.818775i \(-0.694654\pi\)
−0.574114 + 0.818775i \(0.694654\pi\)
\(44\) − 40.4721i − 0.919821i
\(45\) 0 0
\(46\) −4.14590 −0.0901282
\(47\) − 70.1378i − 1.49229i −0.665782 0.746146i \(-0.731902\pi\)
0.665782 0.746146i \(-0.268098\pi\)
\(48\) 0 0
\(49\) 45.2492 0.923454
\(50\) 0 0
\(51\) 0 0
\(52\) −16.2918 −0.313304
\(53\) − 28.6393i − 0.540365i −0.962809 0.270182i \(-0.912916\pi\)
0.962809 0.270182i \(-0.0870840\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 29.1246i − 0.520082i
\(57\) 0 0
\(58\) 5.41641 0.0933863
\(59\) − 95.2361i − 1.61417i −0.590435 0.807085i \(-0.701044\pi\)
0.590435 0.807085i \(-0.298956\pi\)
\(60\) 0 0
\(61\) 19.0000 0.311475 0.155738 0.987798i \(-0.450225\pi\)
0.155738 + 0.987798i \(0.450225\pi\)
\(62\) − 128.936i − 2.07962i
\(63\) 0 0
\(64\) 23.5836 0.368494
\(65\) 0 0
\(66\) 0 0
\(67\) −107.666 −1.60695 −0.803475 0.595339i \(-0.797018\pi\)
−0.803475 + 0.595339i \(0.797018\pi\)
\(68\) − 16.9656i − 0.249494i
\(69\) 0 0
\(70\) 0 0
\(71\) − 75.2624i − 1.06003i −0.847987 0.530017i \(-0.822186\pi\)
0.847987 0.530017i \(-0.177814\pi\)
\(72\) 0 0
\(73\) 96.7902 1.32589 0.662947 0.748666i \(-0.269306\pi\)
0.662947 + 0.748666i \(0.269306\pi\)
\(74\) − 69.5967i − 0.940497i
\(75\) 0 0
\(76\) −92.5197 −1.21736
\(77\) 137.666i 1.78787i
\(78\) 0 0
\(79\) −101.833 −1.28902 −0.644511 0.764595i \(-0.722939\pi\)
−0.644511 + 0.764595i \(0.722939\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 170.790 2.08281
\(83\) 44.6656i 0.538140i 0.963121 + 0.269070i \(0.0867163\pi\)
−0.963121 + 0.269070i \(0.913284\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 129.262i 1.50305i
\(87\) 0 0
\(88\) 42.5410 0.483421
\(89\) − 56.2918i − 0.632492i −0.948677 0.316246i \(-0.897577\pi\)
0.948677 0.316246i \(-0.102423\pi\)
\(90\) 0 0
\(91\) 55.4164 0.608972
\(92\) 4.51973i 0.0491275i
\(93\) 0 0
\(94\) −183.623 −1.95344
\(95\) 0 0
\(96\) 0 0
\(97\) −132.584 −1.36684 −0.683421 0.730025i \(-0.739508\pi\)
−0.683421 + 0.730025i \(0.739508\pi\)
\(98\) − 118.464i − 1.20882i
\(99\) 0 0
\(100\) 0 0
\(101\) 24.0000i 0.237624i 0.992917 + 0.118812i \(0.0379085\pi\)
−0.992917 + 0.118812i \(0.962091\pi\)
\(102\) 0 0
\(103\) 78.8328 0.765367 0.382684 0.923879i \(-0.375000\pi\)
0.382684 + 0.923879i \(0.375000\pi\)
\(104\) − 17.1246i − 0.164660i
\(105\) 0 0
\(106\) −74.9787 −0.707346
\(107\) 59.6656i 0.557623i 0.960346 + 0.278811i \(0.0899404\pi\)
−0.960346 + 0.278811i \(0.910060\pi\)
\(108\) 0 0
\(109\) −22.9149 −0.210228 −0.105114 0.994460i \(-0.533521\pi\)
−0.105114 + 0.994460i \(0.533521\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −187.082 −1.67038
\(113\) − 128.387i − 1.13617i −0.822971 0.568084i \(-0.807685\pi\)
0.822971 0.568084i \(-0.192315\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 5.90481i − 0.0509035i
\(117\) 0 0
\(118\) −249.331 −2.11298
\(119\) 57.7082i 0.484943i
\(120\) 0 0
\(121\) −80.0820 −0.661835
\(122\) − 49.7426i − 0.407727i
\(123\) 0 0
\(124\) −140.562 −1.13357
\(125\) 0 0
\(126\) 0 0
\(127\) −40.7477 −0.320848 −0.160424 0.987048i \(-0.551286\pi\)
−0.160424 + 0.987048i \(0.551286\pi\)
\(128\) 92.0608i 0.719225i
\(129\) 0 0
\(130\) 0 0
\(131\) 260.164i 1.98599i 0.118176 + 0.992993i \(0.462295\pi\)
−0.118176 + 0.992993i \(0.537705\pi\)
\(132\) 0 0
\(133\) 314.705 2.36620
\(134\) 281.872i 2.10352i
\(135\) 0 0
\(136\) 17.8328 0.131124
\(137\) 164.331i 1.19950i 0.800188 + 0.599749i \(0.204733\pi\)
−0.800188 + 0.599749i \(0.795267\pi\)
\(138\) 0 0
\(139\) 34.4984 0.248190 0.124095 0.992270i \(-0.460397\pi\)
0.124095 + 0.992270i \(0.460397\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −197.039 −1.38760
\(143\) 80.9443i 0.566044i
\(144\) 0 0
\(145\) 0 0
\(146\) − 253.400i − 1.73562i
\(147\) 0 0
\(148\) −75.8723 −0.512651
\(149\) − 38.1803i − 0.256244i −0.991758 0.128122i \(-0.959105\pi\)
0.991758 0.128122i \(-0.0408949\pi\)
\(150\) 0 0
\(151\) 182.997 1.21190 0.605950 0.795503i \(-0.292793\pi\)
0.605950 + 0.795503i \(0.292793\pi\)
\(152\) − 97.2492i − 0.639798i
\(153\) 0 0
\(154\) 360.413 2.34035
\(155\) 0 0
\(156\) 0 0
\(157\) 144.705 0.921689 0.460844 0.887481i \(-0.347547\pi\)
0.460844 + 0.887481i \(0.347547\pi\)
\(158\) 266.602i 1.68735i
\(159\) 0 0
\(160\) 0 0
\(161\) − 15.3738i − 0.0954897i
\(162\) 0 0
\(163\) −16.8328 −0.103269 −0.0516344 0.998666i \(-0.516443\pi\)
−0.0516344 + 0.998666i \(0.516443\pi\)
\(164\) − 186.190i − 1.13531i
\(165\) 0 0
\(166\) 116.936 0.704435
\(167\) − 36.5805i − 0.219045i −0.993984 0.109522i \(-0.965068\pi\)
0.993984 0.109522i \(-0.0349321\pi\)
\(168\) 0 0
\(169\) −136.416 −0.807198
\(170\) 0 0
\(171\) 0 0
\(172\) 140.918 0.819290
\(173\) − 32.3313i − 0.186886i −0.995625 0.0934430i \(-0.970213\pi\)
0.995625 0.0934430i \(-0.0297873\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 273.262i − 1.55263i
\(177\) 0 0
\(178\) −147.374 −0.827943
\(179\) − 136.774i − 0.764100i −0.924142 0.382050i \(-0.875218\pi\)
0.924142 0.382050i \(-0.124782\pi\)
\(180\) 0 0
\(181\) 45.9180 0.253690 0.126845 0.991923i \(-0.459515\pi\)
0.126845 + 0.991923i \(0.459515\pi\)
\(182\) − 145.082i − 0.797154i
\(183\) 0 0
\(184\) −4.75078 −0.0258194
\(185\) 0 0
\(186\) 0 0
\(187\) −84.2918 −0.450758
\(188\) 200.180i 1.06479i
\(189\) 0 0
\(190\) 0 0
\(191\) − 68.3870i − 0.358047i −0.983845 0.179024i \(-0.942706\pi\)
0.983845 0.179024i \(-0.0572938\pi\)
\(192\) 0 0
\(193\) −77.7082 −0.402633 −0.201317 0.979526i \(-0.564522\pi\)
−0.201317 + 0.979526i \(0.564522\pi\)
\(194\) 347.108i 1.78922i
\(195\) 0 0
\(196\) −129.146 −0.658908
\(197\) − 103.997i − 0.527903i −0.964536 0.263952i \(-0.914974\pi\)
0.964536 0.263952i \(-0.0850259\pi\)
\(198\) 0 0
\(199\) 239.751 1.20478 0.602389 0.798203i \(-0.294216\pi\)
0.602389 + 0.798203i \(0.294216\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 62.8328 0.311054
\(203\) 20.0851i 0.0989416i
\(204\) 0 0
\(205\) 0 0
\(206\) − 206.387i − 1.00188i
\(207\) 0 0
\(208\) −110.000 −0.528846
\(209\) 459.676i 2.19941i
\(210\) 0 0
\(211\) −10.1672 −0.0481857 −0.0240929 0.999710i \(-0.507670\pi\)
−0.0240929 + 0.999710i \(0.507670\pi\)
\(212\) 81.7395i 0.385564i
\(213\) 0 0
\(214\) 156.207 0.729938
\(215\) 0 0
\(216\) 0 0
\(217\) 478.122 2.20332
\(218\) 59.9919i 0.275192i
\(219\) 0 0
\(220\) 0 0
\(221\) 33.9311i 0.153534i
\(222\) 0 0
\(223\) −72.2492 −0.323988 −0.161994 0.986792i \(-0.551792\pi\)
−0.161994 + 0.986792i \(0.551792\pi\)
\(224\) 373.289i 1.66647i
\(225\) 0 0
\(226\) −336.122 −1.48726
\(227\) 26.4752i 0.116631i 0.998298 + 0.0583155i \(0.0185729\pi\)
−0.998298 + 0.0583155i \(0.981427\pi\)
\(228\) 0 0
\(229\) −280.495 −1.22487 −0.612435 0.790521i \(-0.709810\pi\)
−0.612435 + 0.790521i \(0.709810\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.20665 0.0267528
\(233\) 115.082i 0.493914i 0.969026 + 0.246957i \(0.0794307\pi\)
−0.969026 + 0.246957i \(0.920569\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 271.813i 1.15175i
\(237\) 0 0
\(238\) 151.082 0.634798
\(239\) 147.390i 0.616695i 0.951274 + 0.308347i \(0.0997759\pi\)
−0.951274 + 0.308347i \(0.900224\pi\)
\(240\) 0 0
\(241\) −62.5805 −0.259670 −0.129835 0.991536i \(-0.541445\pi\)
−0.129835 + 0.991536i \(0.541445\pi\)
\(242\) 209.658i 0.866353i
\(243\) 0 0
\(244\) −54.2279 −0.222246
\(245\) 0 0
\(246\) 0 0
\(247\) 185.039 0.749148
\(248\) − 147.748i − 0.595757i
\(249\) 0 0
\(250\) 0 0
\(251\) 309.580i 1.23339i 0.787203 + 0.616694i \(0.211528\pi\)
−0.787203 + 0.616694i \(0.788472\pi\)
\(252\) 0 0
\(253\) 22.4559 0.0887584
\(254\) 106.679i 0.419995i
\(255\) 0 0
\(256\) 335.353 1.30997
\(257\) 75.7477i 0.294738i 0.989082 + 0.147369i \(0.0470805\pi\)
−0.989082 + 0.147369i \(0.952920\pi\)
\(258\) 0 0
\(259\) 258.079 0.996444
\(260\) 0 0
\(261\) 0 0
\(262\) 681.118 2.59969
\(263\) 367.974i 1.39914i 0.714564 + 0.699570i \(0.246625\pi\)
−0.714564 + 0.699570i \(0.753375\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 823.909i − 3.09740i
\(267\) 0 0
\(268\) 307.289 1.14660
\(269\) − 279.358i − 1.03850i −0.854621 0.519252i \(-0.826211\pi\)
0.854621 0.519252i \(-0.173789\pi\)
\(270\) 0 0
\(271\) 62.4164 0.230319 0.115159 0.993347i \(-0.463262\pi\)
0.115159 + 0.993347i \(0.463262\pi\)
\(272\) − 114.549i − 0.421137i
\(273\) 0 0
\(274\) 430.225 1.57016
\(275\) 0 0
\(276\) 0 0
\(277\) −26.6262 −0.0961233 −0.0480617 0.998844i \(-0.515304\pi\)
−0.0480617 + 0.998844i \(0.515304\pi\)
\(278\) − 90.3181i − 0.324885i
\(279\) 0 0
\(280\) 0 0
\(281\) 412.869i 1.46929i 0.678454 + 0.734643i \(0.262650\pi\)
−0.678454 + 0.734643i \(0.737350\pi\)
\(282\) 0 0
\(283\) −104.292 −0.368522 −0.184261 0.982877i \(-0.558989\pi\)
−0.184261 + 0.982877i \(0.558989\pi\)
\(284\) 214.807i 0.756361i
\(285\) 0 0
\(286\) 211.915 0.740961
\(287\) 633.325i 2.20671i
\(288\) 0 0
\(289\) 253.666 0.877736
\(290\) 0 0
\(291\) 0 0
\(292\) −276.249 −0.946059
\(293\) 311.243i 1.06226i 0.847289 + 0.531131i \(0.178233\pi\)
−0.847289 + 0.531131i \(0.821767\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 79.7508i − 0.269428i
\(297\) 0 0
\(298\) −99.9574 −0.335428
\(299\) − 9.03947i − 0.0302323i
\(300\) 0 0
\(301\) −479.331 −1.59246
\(302\) − 479.092i − 1.58640i
\(303\) 0 0
\(304\) −624.681 −2.05487
\(305\) 0 0
\(306\) 0 0
\(307\) −454.158 −1.47934 −0.739671 0.672969i \(-0.765019\pi\)
−0.739671 + 0.672969i \(0.765019\pi\)
\(308\) − 392.912i − 1.27569i
\(309\) 0 0
\(310\) 0 0
\(311\) − 211.957i − 0.681535i −0.940148 0.340768i \(-0.889313\pi\)
0.940148 0.340768i \(-0.110687\pi\)
\(312\) 0 0
\(313\) −284.827 −0.909989 −0.454995 0.890494i \(-0.650359\pi\)
−0.454995 + 0.890494i \(0.650359\pi\)
\(314\) − 378.843i − 1.20651i
\(315\) 0 0
\(316\) 290.641 0.919751
\(317\) 252.056i 0.795128i 0.917574 + 0.397564i \(0.130144\pi\)
−0.917574 + 0.397564i \(0.869856\pi\)
\(318\) 0 0
\(319\) −29.3375 −0.0919670
\(320\) 0 0
\(321\) 0 0
\(322\) −40.2492 −0.124998
\(323\) 192.692i 0.596569i
\(324\) 0 0
\(325\) 0 0
\(326\) 44.0689i 0.135181i
\(327\) 0 0
\(328\) 195.708 0.596671
\(329\) − 680.912i − 2.06964i
\(330\) 0 0
\(331\) −177.915 −0.537507 −0.268754 0.963209i \(-0.586612\pi\)
−0.268754 + 0.963209i \(0.586612\pi\)
\(332\) − 127.480i − 0.383977i
\(333\) 0 0
\(334\) −95.7690 −0.286733
\(335\) 0 0
\(336\) 0 0
\(337\) −462.450 −1.37225 −0.686127 0.727482i \(-0.740691\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(338\) 357.143i 1.05664i
\(339\) 0 0
\(340\) 0 0
\(341\) 698.371i 2.04801i
\(342\) 0 0
\(343\) −36.4133 −0.106161
\(344\) 148.122i 0.430586i
\(345\) 0 0
\(346\) −84.6443 −0.244637
\(347\) − 493.384i − 1.42186i −0.703265 0.710928i \(-0.748275\pi\)
0.703265 0.710928i \(-0.251725\pi\)
\(348\) 0 0
\(349\) 62.0820 0.177885 0.0889427 0.996037i \(-0.471651\pi\)
0.0889427 + 0.996037i \(0.471651\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −545.246 −1.54899
\(353\) − 123.836i − 0.350810i −0.984496 0.175405i \(-0.943877\pi\)
0.984496 0.175405i \(-0.0561235\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 160.663i 0.451299i
\(357\) 0 0
\(358\) −358.079 −1.00022
\(359\) 243.994i 0.679648i 0.940489 + 0.339824i \(0.110368\pi\)
−0.940489 + 0.339824i \(0.889632\pi\)
\(360\) 0 0
\(361\) 689.823 1.91087
\(362\) − 120.215i − 0.332085i
\(363\) 0 0
\(364\) −158.164 −0.434517
\(365\) 0 0
\(366\) 0 0
\(367\) 236.371 0.644062 0.322031 0.946729i \(-0.395634\pi\)
0.322031 + 0.946729i \(0.395634\pi\)
\(368\) 30.5166i 0.0829256i
\(369\) 0 0
\(370\) 0 0
\(371\) − 278.036i − 0.749424i
\(372\) 0 0
\(373\) −301.167 −0.807419 −0.403709 0.914887i \(-0.632279\pi\)
−0.403709 + 0.914887i \(0.632279\pi\)
\(374\) 220.679i 0.590050i
\(375\) 0 0
\(376\) −210.413 −0.559610
\(377\) 11.8096i 0.0313252i
\(378\) 0 0
\(379\) −102.003 −0.269137 −0.134569 0.990904i \(-0.542965\pi\)
−0.134569 + 0.990904i \(0.542965\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −179.039 −0.468690
\(383\) − 705.158i − 1.84114i −0.390574 0.920572i \(-0.627723\pi\)
0.390574 0.920572i \(-0.372277\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 203.443i 0.527054i
\(387\) 0 0
\(388\) 378.407 0.975276
\(389\) − 346.043i − 0.889570i −0.895637 0.444785i \(-0.853280\pi\)
0.895637 0.444785i \(-0.146720\pi\)
\(390\) 0 0
\(391\) 9.41330 0.0240749
\(392\) − 135.748i − 0.346295i
\(393\) 0 0
\(394\) −272.267 −0.691034
\(395\) 0 0
\(396\) 0 0
\(397\) −172.128 −0.433571 −0.216786 0.976219i \(-0.569557\pi\)
−0.216786 + 0.976219i \(0.569557\pi\)
\(398\) − 627.676i − 1.57707i
\(399\) 0 0
\(400\) 0 0
\(401\) − 436.407i − 1.08830i −0.838989 0.544148i \(-0.816853\pi\)
0.838989 0.544148i \(-0.183147\pi\)
\(402\) 0 0
\(403\) 281.125 0.697580
\(404\) − 68.4984i − 0.169551i
\(405\) 0 0
\(406\) 52.5836 0.129516
\(407\) 376.964i 0.926202i
\(408\) 0 0
\(409\) −353.663 −0.864701 −0.432350 0.901706i \(-0.642316\pi\)
−0.432350 + 0.901706i \(0.642316\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −224.997 −0.546109
\(413\) − 924.571i − 2.23867i
\(414\) 0 0
\(415\) 0 0
\(416\) 219.485i 0.527609i
\(417\) 0 0
\(418\) 1203.45 2.87906
\(419\) 503.060i 1.20062i 0.799768 + 0.600310i \(0.204956\pi\)
−0.799768 + 0.600310i \(0.795044\pi\)
\(420\) 0 0
\(421\) −448.745 −1.06590 −0.532951 0.846146i \(-0.678917\pi\)
−0.532951 + 0.846146i \(0.678917\pi\)
\(422\) 26.6180i 0.0630759i
\(423\) 0 0
\(424\) −85.9180 −0.202637
\(425\) 0 0
\(426\) 0 0
\(427\) 184.456 0.431981
\(428\) − 170.292i − 0.397878i
\(429\) 0 0
\(430\) 0 0
\(431\) − 263.204i − 0.610681i −0.952243 0.305341i \(-0.901230\pi\)
0.952243 0.305341i \(-0.0987703\pi\)
\(432\) 0 0
\(433\) −155.702 −0.359589 −0.179794 0.983704i \(-0.557543\pi\)
−0.179794 + 0.983704i \(0.557543\pi\)
\(434\) − 1251.74i − 2.88419i
\(435\) 0 0
\(436\) 65.4013 0.150003
\(437\) − 51.3344i − 0.117470i
\(438\) 0 0
\(439\) 44.0031 0.100235 0.0501174 0.998743i \(-0.484040\pi\)
0.0501174 + 0.998743i \(0.484040\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 88.8328 0.200979
\(443\) 842.902i 1.90271i 0.308090 + 0.951357i \(0.400310\pi\)
−0.308090 + 0.951357i \(0.599690\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 189.151i 0.424105i
\(447\) 0 0
\(448\) 228.954 0.511059
\(449\) − 505.656i − 1.12618i −0.826395 0.563091i \(-0.809612\pi\)
0.826395 0.563091i \(-0.190388\pi\)
\(450\) 0 0
\(451\) −925.070 −2.05115
\(452\) 366.430i 0.810685i
\(453\) 0 0
\(454\) 69.3131 0.152672
\(455\) 0 0
\(456\) 0 0
\(457\) −414.577 −0.907172 −0.453586 0.891213i \(-0.649855\pi\)
−0.453586 + 0.891213i \(0.649855\pi\)
\(458\) 734.346i 1.60338i
\(459\) 0 0
\(460\) 0 0
\(461\) − 103.909i − 0.225398i −0.993629 0.112699i \(-0.964050\pi\)
0.993629 0.112699i \(-0.0359496\pi\)
\(462\) 0 0
\(463\) −814.997 −1.76025 −0.880126 0.474740i \(-0.842542\pi\)
−0.880126 + 0.474740i \(0.842542\pi\)
\(464\) − 39.8684i − 0.0859234i
\(465\) 0 0
\(466\) 301.289 0.646542
\(467\) 32.8096i 0.0702561i 0.999383 + 0.0351281i \(0.0111839\pi\)
−0.999383 + 0.0351281i \(0.988816\pi\)
\(468\) 0 0
\(469\) −1045.24 −2.22866
\(470\) 0 0
\(471\) 0 0
\(472\) −285.708 −0.605314
\(473\) − 700.138i − 1.48021i
\(474\) 0 0
\(475\) 0 0
\(476\) − 164.705i − 0.346019i
\(477\) 0 0
\(478\) 385.872 0.807264
\(479\) 574.456i 1.19928i 0.800269 + 0.599641i \(0.204690\pi\)
−0.800269 + 0.599641i \(0.795310\pi\)
\(480\) 0 0
\(481\) 151.745 0.315477
\(482\) 163.838i 0.339913i
\(483\) 0 0
\(484\) 228.562 0.472236
\(485\) 0 0
\(486\) 0 0
\(487\) −189.131 −0.388359 −0.194179 0.980966i \(-0.562204\pi\)
−0.194179 + 0.980966i \(0.562204\pi\)
\(488\) − 57.0000i − 0.116803i
\(489\) 0 0
\(490\) 0 0
\(491\) 453.437i 0.923496i 0.887011 + 0.461748i \(0.152778\pi\)
−0.887011 + 0.461748i \(0.847222\pi\)
\(492\) 0 0
\(493\) −12.2980 −0.0249452
\(494\) − 484.440i − 0.980647i
\(495\) 0 0
\(496\) −949.058 −1.91342
\(497\) − 730.663i − 1.47015i
\(498\) 0 0
\(499\) 100.088 0.200578 0.100289 0.994958i \(-0.468023\pi\)
0.100289 + 0.994958i \(0.468023\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 810.492 1.61453
\(503\) − 564.692i − 1.12265i −0.827596 0.561324i \(-0.810292\pi\)
0.827596 0.561324i \(-0.189708\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 58.7902i − 0.116186i
\(507\) 0 0
\(508\) 116.298 0.228933
\(509\) − 839.522i − 1.64935i −0.565603 0.824677i \(-0.691357\pi\)
0.565603 0.824677i \(-0.308643\pi\)
\(510\) 0 0
\(511\) 939.659 1.83886
\(512\) − 509.721i − 0.995550i
\(513\) 0 0
\(514\) 198.310 0.385817
\(515\) 0 0
\(516\) 0 0
\(517\) 994.577 1.92375
\(518\) − 675.659i − 1.30436i
\(519\) 0 0
\(520\) 0 0
\(521\) 380.227i 0.729802i 0.931046 + 0.364901i \(0.118897\pi\)
−0.931046 + 0.364901i \(0.881103\pi\)
\(522\) 0 0
\(523\) 194.207 0.371332 0.185666 0.982613i \(-0.440556\pi\)
0.185666 + 0.982613i \(0.440556\pi\)
\(524\) − 742.535i − 1.41705i
\(525\) 0 0
\(526\) 963.368 1.83150
\(527\) 292.751i 0.555504i
\(528\) 0 0
\(529\) 526.492 0.995259
\(530\) 0 0
\(531\) 0 0
\(532\) −898.200 −1.68835
\(533\) 372.381i 0.698651i
\(534\) 0 0
\(535\) 0 0
\(536\) 322.997i 0.602606i
\(537\) 0 0
\(538\) −731.368 −1.35942
\(539\) 641.649i 1.19044i
\(540\) 0 0
\(541\) 159.836 0.295445 0.147723 0.989029i \(-0.452806\pi\)
0.147723 + 0.989029i \(0.452806\pi\)
\(542\) − 163.408i − 0.301491i
\(543\) 0 0
\(544\) −228.562 −0.420151
\(545\) 0 0
\(546\) 0 0
\(547\) 647.295 1.18335 0.591677 0.806175i \(-0.298466\pi\)
0.591677 + 0.806175i \(0.298466\pi\)
\(548\) − 469.018i − 0.855873i
\(549\) 0 0
\(550\) 0 0
\(551\) 67.0658i 0.121716i
\(552\) 0 0
\(553\) −988.614 −1.78773
\(554\) 69.7082i 0.125827i
\(555\) 0 0
\(556\) −98.4621 −0.177090
\(557\) − 901.161i − 1.61788i −0.587889 0.808942i \(-0.700041\pi\)
0.587889 0.808942i \(-0.299959\pi\)
\(558\) 0 0
\(559\) −281.836 −0.504179
\(560\) 0 0
\(561\) 0 0
\(562\) 1080.91 1.92332
\(563\) 529.003i 0.939615i 0.882769 + 0.469807i \(0.155677\pi\)
−0.882769 + 0.469807i \(0.844323\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 273.039i 0.482402i
\(567\) 0 0
\(568\) −225.787 −0.397513
\(569\) − 493.623i − 0.867527i −0.901027 0.433764i \(-0.857185\pi\)
0.901027 0.433764i \(-0.142815\pi\)
\(570\) 0 0
\(571\) −760.246 −1.33143 −0.665715 0.746206i \(-0.731873\pi\)
−0.665715 + 0.746206i \(0.731873\pi\)
\(572\) − 231.023i − 0.403887i
\(573\) 0 0
\(574\) 1658.07 2.88862
\(575\) 0 0
\(576\) 0 0
\(577\) 38.4559 0.0666480 0.0333240 0.999445i \(-0.489391\pi\)
0.0333240 + 0.999445i \(0.489391\pi\)
\(578\) − 664.105i − 1.14897i
\(579\) 0 0
\(580\) 0 0
\(581\) 433.623i 0.746339i
\(582\) 0 0
\(583\) 406.115 0.696596
\(584\) − 290.371i − 0.497210i
\(585\) 0 0
\(586\) 814.845 1.39052
\(587\) 548.489i 0.934394i 0.884153 + 0.467197i \(0.154736\pi\)
−0.884153 + 0.467197i \(0.845264\pi\)
\(588\) 0 0
\(589\) 1596.48 2.71050
\(590\) 0 0
\(591\) 0 0
\(592\) −512.279 −0.865337
\(593\) 9.97058i 0.0168138i 0.999965 + 0.00840690i \(0.00267603\pi\)
−0.999965 + 0.00840690i \(0.997324\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 108.971i 0.182837i
\(597\) 0 0
\(598\) −23.6656 −0.0395746
\(599\) − 507.755i − 0.847670i −0.905739 0.423835i \(-0.860684\pi\)
0.905739 0.423835i \(-0.139316\pi\)
\(600\) 0 0
\(601\) −680.416 −1.13214 −0.566070 0.824357i \(-0.691537\pi\)
−0.566070 + 0.824357i \(0.691537\pi\)
\(602\) 1254.91i 2.08456i
\(603\) 0 0
\(604\) −522.292 −0.864722
\(605\) 0 0
\(606\) 0 0
\(607\) 305.374 0.503087 0.251544 0.967846i \(-0.419062\pi\)
0.251544 + 0.967846i \(0.419062\pi\)
\(608\) 1246.44i 2.05006i
\(609\) 0 0
\(610\) 0 0
\(611\) − 400.361i − 0.655255i
\(612\) 0 0
\(613\) 876.584 1.42999 0.714995 0.699130i \(-0.246429\pi\)
0.714995 + 0.699130i \(0.246429\pi\)
\(614\) 1189.00i 1.93648i
\(615\) 0 0
\(616\) 412.997 0.670450
\(617\) 740.489i 1.20014i 0.799946 + 0.600072i \(0.204862\pi\)
−0.799946 + 0.600072i \(0.795138\pi\)
\(618\) 0 0
\(619\) −309.902 −0.500650 −0.250325 0.968162i \(-0.580537\pi\)
−0.250325 + 0.968162i \(0.580537\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −554.912 −0.892141
\(623\) − 546.492i − 0.877195i
\(624\) 0 0
\(625\) 0 0
\(626\) 745.686i 1.19119i
\(627\) 0 0
\(628\) −413.003 −0.657648
\(629\) 158.020i 0.251224i
\(630\) 0 0
\(631\) −324.830 −0.514786 −0.257393 0.966307i \(-0.582863\pi\)
−0.257393 + 0.966307i \(0.582863\pi\)
\(632\) 305.498i 0.483384i
\(633\) 0 0
\(634\) 659.890 1.04084
\(635\) 0 0
\(636\) 0 0
\(637\) 258.292 0.405482
\(638\) 76.8065i 0.120386i
\(639\) 0 0
\(640\) 0 0
\(641\) − 951.246i − 1.48400i −0.670398 0.742002i \(-0.733877\pi\)
0.670398 0.742002i \(-0.266123\pi\)
\(642\) 0 0
\(643\) −835.289 −1.29905 −0.649525 0.760341i \(-0.725032\pi\)
−0.649525 + 0.760341i \(0.725032\pi\)
\(644\) 43.8785i 0.0681343i
\(645\) 0 0
\(646\) 504.474 0.780920
\(647\) − 247.393i − 0.382370i −0.981554 0.191185i \(-0.938767\pi\)
0.981554 0.191185i \(-0.0612330\pi\)
\(648\) 0 0
\(649\) 1350.48 2.08086
\(650\) 0 0
\(651\) 0 0
\(652\) 48.0426 0.0736849
\(653\) 228.293i 0.349606i 0.984603 + 0.174803i \(0.0559288\pi\)
−0.984603 + 0.174803i \(0.944071\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 1257.13i − 1.91636i
\(657\) 0 0
\(658\) −1782.65 −2.70919
\(659\) 907.512i 1.37710i 0.725187 + 0.688552i \(0.241753\pi\)
−0.725187 + 0.688552i \(0.758247\pi\)
\(660\) 0 0
\(661\) −468.152 −0.708248 −0.354124 0.935199i \(-0.615221\pi\)
−0.354124 + 0.935199i \(0.615221\pi\)
\(662\) 465.787i 0.703606i
\(663\) 0 0
\(664\) 133.997 0.201803
\(665\) 0 0
\(666\) 0 0
\(667\) 3.27627 0.00491195
\(668\) 104.404i 0.156294i
\(669\) 0 0
\(670\) 0 0
\(671\) 269.426i 0.401530i
\(672\) 0 0
\(673\) 195.629 0.290682 0.145341 0.989382i \(-0.453572\pi\)
0.145341 + 0.989382i \(0.453572\pi\)
\(674\) 1210.71i 1.79630i
\(675\) 0 0
\(676\) 389.346 0.575956
\(677\) − 114.158i − 0.168623i −0.996439 0.0843116i \(-0.973131\pi\)
0.996439 0.0843116i \(-0.0268691\pi\)
\(678\) 0 0
\(679\) −1287.15 −1.89565
\(680\) 0 0
\(681\) 0 0
\(682\) 1828.36 2.68088
\(683\) 1240.50i 1.81625i 0.418705 + 0.908123i \(0.362484\pi\)
−0.418705 + 0.908123i \(0.637516\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 95.3313i 0.138967i
\(687\) 0 0
\(688\) 951.459 1.38293
\(689\) − 163.479i − 0.237270i
\(690\) 0 0
\(691\) 487.669 0.705743 0.352872 0.935672i \(-0.385205\pi\)
0.352872 + 0.935672i \(0.385205\pi\)
\(692\) 92.2767i 0.133348i
\(693\) 0 0
\(694\) −1291.70 −1.86123
\(695\) 0 0
\(696\) 0 0
\(697\) −387.781 −0.556357
\(698\) − 162.533i − 0.232855i
\(699\) 0 0
\(700\) 0 0
\(701\) − 925.384i − 1.32009i −0.751226 0.660046i \(-0.770537\pi\)
0.751226 0.660046i \(-0.229463\pi\)
\(702\) 0 0
\(703\) 861.745 1.22581
\(704\) 334.423i 0.475033i
\(705\) 0 0
\(706\) −324.207 −0.459216
\(707\) 232.997i 0.329557i
\(708\) 0 0
\(709\) −616.322 −0.869283 −0.434642 0.900603i \(-0.643125\pi\)
−0.434642 + 0.900603i \(0.643125\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −168.875 −0.237185
\(713\) − 77.9907i − 0.109384i
\(714\) 0 0
\(715\) 0 0
\(716\) 390.367i 0.545205i
\(717\) 0 0
\(718\) 638.784 0.889671
\(719\) − 404.067i − 0.561984i −0.959710 0.280992i \(-0.909337\pi\)
0.959710 0.280992i \(-0.0906634\pi\)
\(720\) 0 0
\(721\) 765.325 1.06148
\(722\) − 1805.98i − 2.50136i
\(723\) 0 0
\(724\) −131.055 −0.181015
\(725\) 0 0
\(726\) 0 0
\(727\) 834.991 1.14854 0.574271 0.818665i \(-0.305285\pi\)
0.574271 + 0.818665i \(0.305285\pi\)
\(728\) − 166.249i − 0.228364i
\(729\) 0 0
\(730\) 0 0
\(731\) − 293.492i − 0.401493i
\(732\) 0 0
\(733\) 678.480 0.925620 0.462810 0.886457i \(-0.346841\pi\)
0.462810 + 0.886457i \(0.346841\pi\)
\(734\) − 618.827i − 0.843088i
\(735\) 0 0
\(736\) 60.8905 0.0827316
\(737\) − 1526.74i − 2.07155i
\(738\) 0 0
\(739\) −284.580 −0.385089 −0.192544 0.981288i \(-0.561674\pi\)
−0.192544 + 0.981288i \(0.561674\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −727.909 −0.981009
\(743\) 489.947i 0.659418i 0.944083 + 0.329709i \(0.106951\pi\)
−0.944083 + 0.329709i \(0.893049\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 788.466i 1.05692i
\(747\) 0 0
\(748\) 240.577 0.321628
\(749\) 579.246i 0.773359i
\(750\) 0 0
\(751\) −1180.49 −1.57189 −0.785945 0.618297i \(-0.787823\pi\)
−0.785945 + 0.618297i \(0.787823\pi\)
\(752\) 1351.59i 1.79733i
\(753\) 0 0
\(754\) 30.9180 0.0410053
\(755\) 0 0
\(756\) 0 0
\(757\) −358.255 −0.473257 −0.236628 0.971600i \(-0.576042\pi\)
−0.236628 + 0.971600i \(0.576042\pi\)
\(758\) 267.048i 0.352306i
\(759\) 0 0
\(760\) 0 0
\(761\) − 428.115i − 0.562569i −0.959624 0.281285i \(-0.909239\pi\)
0.959624 0.281285i \(-0.0907605\pi\)
\(762\) 0 0
\(763\) −222.462 −0.291562
\(764\) 195.183i 0.255476i
\(765\) 0 0
\(766\) −1846.13 −2.41009
\(767\) − 543.627i − 0.708770i
\(768\) 0 0
\(769\) 421.656 0.548318 0.274159 0.961684i \(-0.411601\pi\)
0.274159 + 0.961684i \(0.411601\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 221.787 0.287289
\(773\) − 792.246i − 1.02490i −0.858718 0.512449i \(-0.828738\pi\)
0.858718 0.512449i \(-0.171262\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 397.751i 0.512565i
\(777\) 0 0
\(778\) −905.951 −1.16446
\(779\) 2114.72i 2.71466i
\(780\) 0 0
\(781\) 1067.25 1.36651
\(782\) − 24.6443i − 0.0315145i
\(783\) 0 0
\(784\) −871.976 −1.11221
\(785\) 0 0
\(786\) 0 0
\(787\) −218.456 −0.277581 −0.138790 0.990322i \(-0.544321\pi\)
−0.138790 + 0.990322i \(0.544321\pi\)
\(788\) 296.818i 0.376672i
\(789\) 0 0
\(790\) 0 0
\(791\) − 1246.41i − 1.57574i
\(792\) 0 0
\(793\) 108.456 0.136767
\(794\) 450.636i 0.567552i
\(795\) 0 0
\(796\) −684.273 −0.859640
\(797\) − 78.5341i − 0.0985371i −0.998786 0.0492686i \(-0.984311\pi\)
0.998786 0.0492686i \(-0.0156890\pi\)
\(798\) 0 0
\(799\) 416.918 0.521800
\(800\) 0 0
\(801\) 0 0
\(802\) −1142.53 −1.42460
\(803\) 1372.52i 1.70924i
\(804\) 0 0
\(805\) 0 0
\(806\) − 735.994i − 0.913144i
\(807\) 0 0
\(808\) 72.0000 0.0891089
\(809\) 922.233i 1.13997i 0.821656 + 0.569983i \(0.193050\pi\)
−0.821656 + 0.569983i \(0.806950\pi\)
\(810\) 0 0
\(811\) 1199.82 1.47944 0.739719 0.672916i \(-0.234959\pi\)
0.739719 + 0.672916i \(0.234959\pi\)
\(812\) − 57.3251i − 0.0705974i
\(813\) 0 0
\(814\) 986.906 1.21241
\(815\) 0 0
\(816\) 0 0
\(817\) −1600.52 −1.95902
\(818\) 925.901i 1.13191i
\(819\) 0 0
\(820\) 0 0
\(821\) 460.663i 0.561099i 0.959840 + 0.280550i \(0.0905167\pi\)
−0.959840 + 0.280550i \(0.909483\pi\)
\(822\) 0 0
\(823\) 1375.20 1.67096 0.835478 0.549523i \(-0.185191\pi\)
0.835478 + 0.549523i \(0.185191\pi\)
\(824\) − 236.498i − 0.287013i
\(825\) 0 0
\(826\) −2420.56 −2.93046
\(827\) − 497.800i − 0.601935i −0.953634 0.300968i \(-0.902690\pi\)
0.953634 0.300968i \(-0.0973096\pi\)
\(828\) 0 0
\(829\) −1339.24 −1.61549 −0.807744 0.589533i \(-0.799312\pi\)
−0.807744 + 0.589533i \(0.799312\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 134.620 0.161803
\(833\) 268.974i 0.322898i
\(834\) 0 0
\(835\) 0 0
\(836\) − 1311.96i − 1.56933i
\(837\) 0 0
\(838\) 1317.03 1.57163
\(839\) 297.613i 0.354723i 0.984146 + 0.177362i \(0.0567563\pi\)
−0.984146 + 0.177362i \(0.943244\pi\)
\(840\) 0 0
\(841\) 836.720 0.994910
\(842\) 1174.83i 1.39528i
\(843\) 0 0
\(844\) 29.0182 0.0343817
\(845\) 0 0
\(846\) 0 0
\(847\) −777.453 −0.917890
\(848\) 551.894i 0.650819i
\(849\) 0 0
\(850\) 0 0
\(851\) − 42.0976i − 0.0494684i
\(852\) 0 0
\(853\) −887.647 −1.04062 −0.520309 0.853978i \(-0.674183\pi\)
−0.520309 + 0.853978i \(0.674183\pi\)
\(854\) − 482.912i − 0.565470i
\(855\) 0 0
\(856\) 178.997 0.209109
\(857\) − 623.977i − 0.728094i −0.931381 0.364047i \(-0.881395\pi\)
0.931381 0.364047i \(-0.118605\pi\)
\(858\) 0 0
\(859\) −1015.24 −1.18189 −0.590945 0.806712i \(-0.701245\pi\)
−0.590945 + 0.806712i \(0.701245\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −689.076 −0.799392
\(863\) 1480.72i 1.71578i 0.513833 + 0.857890i \(0.328225\pi\)
−0.513833 + 0.857890i \(0.671775\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 407.633i 0.470708i
\(867\) 0 0
\(868\) −1364.61 −1.57213
\(869\) − 1444.02i − 1.66171i
\(870\) 0 0
\(871\) −614.577 −0.705600
\(872\) 68.7446i 0.0788355i
\(873\) 0 0
\(874\) −134.395 −0.153770
\(875\) 0 0
\(876\) 0 0
\(877\) 253.957 0.289575 0.144788 0.989463i \(-0.453750\pi\)
0.144788 + 0.989463i \(0.453750\pi\)
\(878\) − 115.202i − 0.131209i
\(879\) 0 0
\(880\) 0 0
\(881\) 490.502i 0.556756i 0.960472 + 0.278378i \(0.0897968\pi\)
−0.960472 + 0.278378i \(0.910203\pi\)
\(882\) 0 0
\(883\) 881.878 0.998730 0.499365 0.866392i \(-0.333567\pi\)
0.499365 + 0.866392i \(0.333567\pi\)
\(884\) − 96.8429i − 0.109551i
\(885\) 0 0
\(886\) 2206.75 2.49069
\(887\) − 267.827i − 0.301947i −0.988538 0.150973i \(-0.951759\pi\)
0.988538 0.150973i \(-0.0482407\pi\)
\(888\) 0 0
\(889\) −395.587 −0.444979
\(890\) 0 0
\(891\) 0 0
\(892\) 206.207 0.231173
\(893\) − 2273.61i − 2.54604i
\(894\) 0 0
\(895\) 0 0
\(896\) 893.745i 0.997483i
\(897\) 0 0
\(898\) −1323.82 −1.47419
\(899\) 101.891i 0.113338i
\(900\) 0 0
\(901\) 170.240 0.188946
\(902\) 2421.86i 2.68499i
\(903\) 0 0
\(904\) −385.161 −0.426063
\(905\) 0 0
\(906\) 0 0
\(907\) −493.240 −0.543815 −0.271907 0.962323i \(-0.587654\pi\)
−0.271907 + 0.962323i \(0.587654\pi\)
\(908\) − 75.5630i − 0.0832192i
\(909\) 0 0
\(910\) 0 0
\(911\) − 1798.73i − 1.97445i −0.159328 0.987226i \(-0.550933\pi\)
0.159328 0.987226i \(-0.449067\pi\)
\(912\) 0 0
\(913\) −633.374 −0.693728
\(914\) 1085.38i 1.18750i
\(915\) 0 0
\(916\) 800.562 0.873976
\(917\) 2525.73i 2.75434i
\(918\) 0 0
\(919\) −338.000 −0.367791 −0.183896 0.982946i \(-0.558871\pi\)
−0.183896 + 0.982946i \(0.558871\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −272.036 −0.295050
\(923\) − 429.613i − 0.465453i
\(924\) 0 0
\(925\) 0 0
\(926\) 2133.69i 2.30420i
\(927\) 0 0
\(928\) −79.5503 −0.0857223
\(929\) − 1205.17i − 1.29728i −0.761096 0.648639i \(-0.775339\pi\)
0.761096 0.648639i \(-0.224661\pi\)
\(930\) 0 0
\(931\) 1466.82 1.57553
\(932\) − 328.456i − 0.352420i
\(933\) 0 0
\(934\) 85.8967 0.0919665
\(935\) 0 0
\(936\) 0 0
\(937\) −1187.65 −1.26750 −0.633750 0.773538i \(-0.718485\pi\)
−0.633750 + 0.773538i \(0.718485\pi\)
\(938\) 2736.47i 2.91735i
\(939\) 0 0
\(940\) 0 0
\(941\) 1037.42i 1.10247i 0.834350 + 0.551235i \(0.185843\pi\)
−0.834350 + 0.551235i \(0.814157\pi\)
\(942\) 0 0
\(943\) 103.307 0.109552
\(944\) 1835.25i 1.94412i
\(945\) 0 0
\(946\) −1832.98 −1.93762
\(947\) − 304.180i − 0.321203i −0.987019 0.160602i \(-0.948657\pi\)
0.987019 0.160602i \(-0.0513435\pi\)
\(948\) 0 0
\(949\) 552.498 0.582190
\(950\) 0 0
\(951\) 0 0
\(952\) 173.125 0.181854
\(953\) − 1308.97i − 1.37353i −0.726881 0.686763i \(-0.759031\pi\)
0.726881 0.686763i \(-0.240969\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 420.666i − 0.440028i
\(957\) 0 0
\(958\) 1503.95 1.56988
\(959\) 1595.36i 1.66357i
\(960\) 0 0
\(961\) 1464.49 1.52392
\(962\) − 397.272i − 0.412965i
\(963\) 0 0
\(964\) 178.611 0.185281
\(965\) 0 0
\(966\) 0 0
\(967\) −769.489 −0.795749 −0.397874 0.917440i \(-0.630252\pi\)
−0.397874 + 0.917440i \(0.630252\pi\)
\(968\) 240.246i 0.248188i
\(969\) 0 0
\(970\) 0 0
\(971\) − 73.4164i − 0.0756091i −0.999285 0.0378045i \(-0.987964\pi\)
0.999285 0.0378045i \(-0.0120364\pi\)
\(972\) 0 0
\(973\) 334.918 0.344212
\(974\) 495.151i 0.508369i
\(975\) 0 0
\(976\) −366.140 −0.375143
\(977\) − 865.384i − 0.885756i −0.896582 0.442878i \(-0.853957\pi\)
0.896582 0.442878i \(-0.146043\pi\)
\(978\) 0 0
\(979\) 798.237 0.815359
\(980\) 0 0
\(981\) 0 0
\(982\) 1187.11 1.20887
\(983\) − 1728.98i − 1.75888i −0.476013 0.879438i \(-0.657919\pi\)
0.476013 0.879438i \(-0.342081\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 32.1966i 0.0326538i
\(987\) 0 0
\(988\) −528.122 −0.534536
\(989\) 78.1880i 0.0790577i
\(990\) 0 0
\(991\) 445.675 0.449722 0.224861 0.974391i \(-0.427807\pi\)
0.224861 + 0.974391i \(0.427807\pi\)
\(992\) 1893.67i 1.90895i
\(993\) 0 0
\(994\) −1912.90 −1.92445
\(995\) 0 0
\(996\) 0 0
\(997\) −78.2253 −0.0784607 −0.0392303 0.999230i \(-0.512491\pi\)
−0.0392303 + 0.999230i \(0.512491\pi\)
\(998\) − 262.034i − 0.262560i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.c.p.26.1 4
3.2 odd 2 inner 675.3.c.p.26.4 4
5.2 odd 4 675.3.d.i.674.4 4
5.3 odd 4 675.3.d.e.674.1 4
5.4 even 2 135.3.c.c.26.4 yes 4
15.2 even 4 675.3.d.e.674.2 4
15.8 even 4 675.3.d.i.674.3 4
15.14 odd 2 135.3.c.c.26.1 4
20.19 odd 2 2160.3.l.g.161.4 4
45.4 even 6 405.3.i.c.26.1 8
45.14 odd 6 405.3.i.c.26.4 8
45.29 odd 6 405.3.i.c.296.1 8
45.34 even 6 405.3.i.c.296.4 8
60.59 even 2 2160.3.l.g.161.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.c.c.26.1 4 15.14 odd 2
135.3.c.c.26.4 yes 4 5.4 even 2
405.3.i.c.26.1 8 45.4 even 6
405.3.i.c.26.4 8 45.14 odd 6
405.3.i.c.296.1 8 45.29 odd 6
405.3.i.c.296.4 8 45.34 even 6
675.3.c.p.26.1 4 1.1 even 1 trivial
675.3.c.p.26.4 4 3.2 odd 2 inner
675.3.d.e.674.1 4 5.3 odd 4
675.3.d.e.674.2 4 15.2 even 4
675.3.d.i.674.3 4 15.8 even 4
675.3.d.i.674.4 4 5.2 odd 4
2160.3.l.g.161.2 4 60.59 even 2
2160.3.l.g.161.4 4 20.19 odd 2