Properties

Label 2175.2.f.b.724.4
Level $2175$
Weight $2$
Character 2175.724
Analytic conductor $17.367$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(724,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.724");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 724.4
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 2175.724
Dual form 2175.2.f.b.724.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61803 q^{2} +1.00000 q^{3} +0.618034 q^{4} +1.61803 q^{6} +4.23607i q^{7} -2.23607 q^{8} +1.00000 q^{9} -2.23607i q^{11} +0.618034 q^{12} -1.00000i q^{13} +6.85410i q^{14} -4.85410 q^{16} +3.00000 q^{17} +1.61803 q^{18} +7.70820i q^{19} +4.23607i q^{21} -3.61803i q^{22} +1.23607i q^{23} -2.23607 q^{24} -1.61803i q^{26} +1.00000 q^{27} +2.61803i q^{28} +(4.47214 + 3.00000i) q^{29} +7.23607i q^{31} -3.38197 q^{32} -2.23607i q^{33} +4.85410 q^{34} +0.618034 q^{36} -4.76393 q^{37} +12.4721i q^{38} -1.00000i q^{39} +4.47214i q^{41} +6.85410i q^{42} -0.472136 q^{43} -1.38197i q^{44} +2.00000i q^{46} +10.2361 q^{47} -4.85410 q^{48} -10.9443 q^{49} +3.00000 q^{51} -0.618034i q^{52} +6.76393i q^{53} +1.61803 q^{54} -9.47214i q^{56} +7.70820i q^{57} +(7.23607 + 4.85410i) q^{58} -8.94427 q^{59} -2.76393i q^{61} +11.7082i q^{62} +4.23607i q^{63} +4.23607 q^{64} -3.61803i q^{66} -4.70820i q^{67} +1.85410 q^{68} +1.23607i q^{69} +4.76393 q^{71} -2.23607 q^{72} -7.70820 q^{73} -7.70820 q^{74} +4.76393i q^{76} +9.47214 q^{77} -1.61803i q^{78} -2.29180i q^{79} +1.00000 q^{81} +7.23607i q^{82} -6.00000i q^{83} +2.61803i q^{84} -0.763932 q^{86} +(4.47214 + 3.00000i) q^{87} +5.00000i q^{88} -0.0557281i q^{89} +4.23607 q^{91} +0.763932i q^{92} +7.23607i q^{93} +16.5623 q^{94} -3.38197 q^{96} -18.1803 q^{97} -17.7082 q^{98} -2.23607i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 4 q^{3} - 2 q^{4} + 2 q^{6} + 4 q^{9} - 2 q^{12} - 6 q^{16} + 12 q^{17} + 2 q^{18} + 4 q^{27} - 18 q^{32} + 6 q^{34} - 2 q^{36} - 28 q^{37} + 16 q^{43} + 32 q^{47} - 6 q^{48} - 8 q^{49}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.14412 0.572061 0.820211i \(-0.306144\pi\)
0.572061 + 0.820211i \(0.306144\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.618034 0.309017
\(5\) 0 0
\(6\) 1.61803 0.660560
\(7\) 4.23607i 1.60108i 0.599277 + 0.800542i \(0.295455\pi\)
−0.599277 + 0.800542i \(0.704545\pi\)
\(8\) −2.23607 −0.790569
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.23607i 0.674200i −0.941469 0.337100i \(-0.890554\pi\)
0.941469 0.337100i \(-0.109446\pi\)
\(12\) 0.618034 0.178411
\(13\) 1.00000i 0.277350i −0.990338 0.138675i \(-0.955716\pi\)
0.990338 0.138675i \(-0.0442844\pi\)
\(14\) 6.85410i 1.83184i
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 1.61803 0.381374
\(19\) 7.70820i 1.76838i 0.467124 + 0.884192i \(0.345290\pi\)
−0.467124 + 0.884192i \(0.654710\pi\)
\(20\) 0 0
\(21\) 4.23607i 0.924386i
\(22\) 3.61803i 0.771367i
\(23\) 1.23607i 0.257738i 0.991662 + 0.128869i \(0.0411347\pi\)
−0.991662 + 0.128869i \(0.958865\pi\)
\(24\) −2.23607 −0.456435
\(25\) 0 0
\(26\) 1.61803i 0.317323i
\(27\) 1.00000 0.192450
\(28\) 2.61803i 0.494762i
\(29\) 4.47214 + 3.00000i 0.830455 + 0.557086i
\(30\) 0 0
\(31\) 7.23607i 1.29964i 0.760090 + 0.649818i \(0.225155\pi\)
−0.760090 + 0.649818i \(0.774845\pi\)
\(32\) −3.38197 −0.597853
\(33\) 2.23607i 0.389249i
\(34\) 4.85410 0.832472
\(35\) 0 0
\(36\) 0.618034 0.103006
\(37\) −4.76393 −0.783186 −0.391593 0.920139i \(-0.628076\pi\)
−0.391593 + 0.920139i \(0.628076\pi\)
\(38\) 12.4721i 2.02325i
\(39\) 1.00000i 0.160128i
\(40\) 0 0
\(41\) 4.47214i 0.698430i 0.937043 + 0.349215i \(0.113552\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 6.85410i 1.05761i
\(43\) −0.472136 −0.0720001 −0.0360000 0.999352i \(-0.511462\pi\)
−0.0360000 + 0.999352i \(0.511462\pi\)
\(44\) 1.38197i 0.208339i
\(45\) 0 0
\(46\) 2.00000i 0.294884i
\(47\) 10.2361 1.49308 0.746542 0.665338i \(-0.231713\pi\)
0.746542 + 0.665338i \(0.231713\pi\)
\(48\) −4.85410 −0.700629
\(49\) −10.9443 −1.56347
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) 0.618034i 0.0857059i
\(53\) 6.76393i 0.929098i 0.885548 + 0.464549i \(0.153783\pi\)
−0.885548 + 0.464549i \(0.846217\pi\)
\(54\) 1.61803 0.220187
\(55\) 0 0
\(56\) 9.47214i 1.26577i
\(57\) 7.70820i 1.02098i
\(58\) 7.23607 + 4.85410i 0.950142 + 0.637375i
\(59\) −8.94427 −1.16445 −0.582223 0.813029i \(-0.697817\pi\)
−0.582223 + 0.813029i \(0.697817\pi\)
\(60\) 0 0
\(61\) 2.76393i 0.353885i −0.984221 0.176943i \(-0.943379\pi\)
0.984221 0.176943i \(-0.0566207\pi\)
\(62\) 11.7082i 1.48694i
\(63\) 4.23607i 0.533694i
\(64\) 4.23607 0.529508
\(65\) 0 0
\(66\) 3.61803i 0.445349i
\(67\) 4.70820i 0.575199i −0.957751 0.287599i \(-0.907143\pi\)
0.957751 0.287599i \(-0.0928571\pi\)
\(68\) 1.85410 0.224843
\(69\) 1.23607i 0.148805i
\(70\) 0 0
\(71\) 4.76393 0.565375 0.282687 0.959212i \(-0.408774\pi\)
0.282687 + 0.959212i \(0.408774\pi\)
\(72\) −2.23607 −0.263523
\(73\) −7.70820 −0.902177 −0.451089 0.892479i \(-0.648964\pi\)
−0.451089 + 0.892479i \(0.648964\pi\)
\(74\) −7.70820 −0.896061
\(75\) 0 0
\(76\) 4.76393i 0.546460i
\(77\) 9.47214 1.07945
\(78\) 1.61803i 0.183206i
\(79\) 2.29180i 0.257847i −0.991655 0.128924i \(-0.958848\pi\)
0.991655 0.128924i \(-0.0411522\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 7.23607i 0.799090i
\(83\) 6.00000i 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) 2.61803i 0.285651i
\(85\) 0 0
\(86\) −0.763932 −0.0823769
\(87\) 4.47214 + 3.00000i 0.479463 + 0.321634i
\(88\) 5.00000i 0.533002i
\(89\) 0.0557281i 0.00590717i −0.999996 0.00295358i \(-0.999060\pi\)
0.999996 0.00295358i \(-0.000940156\pi\)
\(90\) 0 0
\(91\) 4.23607 0.444061
\(92\) 0.763932i 0.0796454i
\(93\) 7.23607i 0.750345i
\(94\) 16.5623 1.70827
\(95\) 0 0
\(96\) −3.38197 −0.345170
\(97\) −18.1803 −1.84593 −0.922967 0.384879i \(-0.874243\pi\)
−0.922967 + 0.384879i \(0.874243\pi\)
\(98\) −17.7082 −1.78880
\(99\) 2.23607i 0.224733i
\(100\) 0 0
\(101\) 3.94427i 0.392470i 0.980557 + 0.196235i \(0.0628715\pi\)
−0.980557 + 0.196235i \(0.937129\pi\)
\(102\) 4.85410 0.480628
\(103\) 19.4164i 1.91316i −0.291477 0.956578i \(-0.594147\pi\)
0.291477 0.956578i \(-0.405853\pi\)
\(104\) 2.23607i 0.219265i
\(105\) 0 0
\(106\) 10.9443i 1.06300i
\(107\) 0.763932i 0.0738521i −0.999318 0.0369260i \(-0.988243\pi\)
0.999318 0.0369260i \(-0.0117566\pi\)
\(108\) 0.618034 0.0594703
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) −4.76393 −0.452172
\(112\) 20.5623i 1.94296i
\(113\) 4.52786 0.425946 0.212973 0.977058i \(-0.431685\pi\)
0.212973 + 0.977058i \(0.431685\pi\)
\(114\) 12.4721i 1.16812i
\(115\) 0 0
\(116\) 2.76393 + 1.85410i 0.256625 + 0.172149i
\(117\) 1.00000i 0.0924500i
\(118\) −14.4721 −1.33227
\(119\) 12.7082i 1.16496i
\(120\) 0 0
\(121\) 6.00000 0.545455
\(122\) 4.47214i 0.404888i
\(123\) 4.47214i 0.403239i
\(124\) 4.47214i 0.401610i
\(125\) 0 0
\(126\) 6.85410i 0.610612i
\(127\) 12.4721 1.10672 0.553362 0.832941i \(-0.313345\pi\)
0.553362 + 0.832941i \(0.313345\pi\)
\(128\) 13.6180 1.20368
\(129\) −0.472136 −0.0415693
\(130\) 0 0
\(131\) 12.2361i 1.06907i −0.845146 0.534535i \(-0.820487\pi\)
0.845146 0.534535i \(-0.179513\pi\)
\(132\) 1.38197i 0.120285i
\(133\) −32.6525 −2.83133
\(134\) 7.61803i 0.658098i
\(135\) 0 0
\(136\) −6.70820 −0.575224
\(137\) 3.52786 0.301406 0.150703 0.988579i \(-0.451846\pi\)
0.150703 + 0.988579i \(0.451846\pi\)
\(138\) 2.00000i 0.170251i
\(139\) 6.70820 0.568982 0.284491 0.958679i \(-0.408175\pi\)
0.284491 + 0.958679i \(0.408175\pi\)
\(140\) 0 0
\(141\) 10.2361 0.862032
\(142\) 7.70820 0.646858
\(143\) −2.23607 −0.186989
\(144\) −4.85410 −0.404508
\(145\) 0 0
\(146\) −12.4721 −1.03220
\(147\) −10.9443 −0.902668
\(148\) −2.94427 −0.242018
\(149\) 5.52786 0.452860 0.226430 0.974027i \(-0.427295\pi\)
0.226430 + 0.974027i \(0.427295\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 17.2361i 1.39803i
\(153\) 3.00000 0.242536
\(154\) 15.3262 1.23502
\(155\) 0 0
\(156\) 0.618034i 0.0494823i
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 3.70820i 0.295009i
\(159\) 6.76393i 0.536415i
\(160\) 0 0
\(161\) −5.23607 −0.412660
\(162\) 1.61803 0.127125
\(163\) 7.41641 0.580898 0.290449 0.956890i \(-0.406195\pi\)
0.290449 + 0.956890i \(0.406195\pi\)
\(164\) 2.76393i 0.215827i
\(165\) 0 0
\(166\) 9.70820i 0.753503i
\(167\) 15.8885i 1.22949i −0.788725 0.614746i \(-0.789258\pi\)
0.788725 0.614746i \(-0.210742\pi\)
\(168\) 9.47214i 0.730791i
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 7.70820i 0.589461i
\(172\) −0.291796 −0.0222492
\(173\) 6.00000i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 7.23607 + 4.85410i 0.548565 + 0.367989i
\(175\) 0 0
\(176\) 10.8541i 0.818159i
\(177\) −8.94427 −0.672293
\(178\) 0.0901699i 0.00675852i
\(179\) 17.2361 1.28828 0.644142 0.764906i \(-0.277215\pi\)
0.644142 + 0.764906i \(0.277215\pi\)
\(180\) 0 0
\(181\) 20.4164 1.51754 0.758770 0.651359i \(-0.225801\pi\)
0.758770 + 0.651359i \(0.225801\pi\)
\(182\) 6.85410 0.508060
\(183\) 2.76393i 0.204316i
\(184\) 2.76393i 0.203760i
\(185\) 0 0
\(186\) 11.7082i 0.858487i
\(187\) 6.70820i 0.490552i
\(188\) 6.32624 0.461388
\(189\) 4.23607i 0.308129i
\(190\) 0 0
\(191\) 8.94427i 0.647185i −0.946197 0.323592i \(-0.895109\pi\)
0.946197 0.323592i \(-0.104891\pi\)
\(192\) 4.23607 0.305712
\(193\) 17.4164 1.25366 0.626830 0.779156i \(-0.284352\pi\)
0.626830 + 0.779156i \(0.284352\pi\)
\(194\) −29.4164 −2.11198
\(195\) 0 0
\(196\) −6.76393 −0.483138
\(197\) 3.70820i 0.264199i 0.991236 + 0.132099i \(0.0421718\pi\)
−0.991236 + 0.132099i \(0.957828\pi\)
\(198\) 3.61803i 0.257122i
\(199\) 20.1246 1.42660 0.713298 0.700861i \(-0.247201\pi\)
0.713298 + 0.700861i \(0.247201\pi\)
\(200\) 0 0
\(201\) 4.70820i 0.332091i
\(202\) 6.38197i 0.449034i
\(203\) −12.7082 + 18.9443i −0.891941 + 1.32963i
\(204\) 1.85410 0.129813
\(205\) 0 0
\(206\) 31.4164i 2.18888i
\(207\) 1.23607i 0.0859127i
\(208\) 4.85410i 0.336571i
\(209\) 17.2361 1.19224
\(210\) 0 0
\(211\) 10.0000i 0.688428i −0.938891 0.344214i \(-0.888145\pi\)
0.938891 0.344214i \(-0.111855\pi\)
\(212\) 4.18034i 0.287107i
\(213\) 4.76393 0.326419
\(214\) 1.23607i 0.0844959i
\(215\) 0 0
\(216\) −2.23607 −0.152145
\(217\) −30.6525 −2.08083
\(218\) −8.09017 −0.547935
\(219\) −7.70820 −0.520872
\(220\) 0 0
\(221\) 3.00000i 0.201802i
\(222\) −7.70820 −0.517341
\(223\) 12.7082i 0.851004i −0.904957 0.425502i \(-0.860097\pi\)
0.904957 0.425502i \(-0.139903\pi\)
\(224\) 14.3262i 0.957212i
\(225\) 0 0
\(226\) 7.32624 0.487334
\(227\) 9.05573i 0.601050i −0.953774 0.300525i \(-0.902838\pi\)
0.953774 0.300525i \(-0.0971618\pi\)
\(228\) 4.76393i 0.315499i
\(229\) 22.1803i 1.46572i 0.680380 + 0.732859i \(0.261815\pi\)
−0.680380 + 0.732859i \(0.738185\pi\)
\(230\) 0 0
\(231\) 9.47214 0.623221
\(232\) −10.0000 6.70820i −0.656532 0.440415i
\(233\) 10.4721i 0.686052i −0.939326 0.343026i \(-0.888548\pi\)
0.939326 0.343026i \(-0.111452\pi\)
\(234\) 1.61803i 0.105774i
\(235\) 0 0
\(236\) −5.52786 −0.359833
\(237\) 2.29180i 0.148868i
\(238\) 20.5623i 1.33286i
\(239\) −26.1803 −1.69347 −0.846733 0.532019i \(-0.821434\pi\)
−0.846733 + 0.532019i \(0.821434\pi\)
\(240\) 0 0
\(241\) −3.00000 −0.193247 −0.0966235 0.995321i \(-0.530804\pi\)
−0.0966235 + 0.995321i \(0.530804\pi\)
\(242\) 9.70820 0.624067
\(243\) 1.00000 0.0641500
\(244\) 1.70820i 0.109357i
\(245\) 0 0
\(246\) 7.23607i 0.461355i
\(247\) 7.70820 0.490461
\(248\) 16.1803i 1.02745i
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) 12.2361i 0.772334i 0.922429 + 0.386167i \(0.126201\pi\)
−0.922429 + 0.386167i \(0.873799\pi\)
\(252\) 2.61803i 0.164921i
\(253\) 2.76393 0.173767
\(254\) 20.1803 1.26623
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) 26.4721i 1.65129i 0.564193 + 0.825643i \(0.309188\pi\)
−0.564193 + 0.825643i \(0.690812\pi\)
\(258\) −0.763932 −0.0475603
\(259\) 20.1803i 1.25395i
\(260\) 0 0
\(261\) 4.47214 + 3.00000i 0.276818 + 0.185695i
\(262\) 19.7984i 1.22315i
\(263\) −4.94427 −0.304877 −0.152438 0.988313i \(-0.548713\pi\)
−0.152438 + 0.988313i \(0.548713\pi\)
\(264\) 5.00000i 0.307729i
\(265\) 0 0
\(266\) −52.8328 −3.23939
\(267\) 0.0557281i 0.00341050i
\(268\) 2.90983i 0.177746i
\(269\) 21.3607i 1.30238i −0.758913 0.651192i \(-0.774269\pi\)
0.758913 0.651192i \(-0.225731\pi\)
\(270\) 0 0
\(271\) 23.4164i 1.42245i 0.702967 + 0.711223i \(0.251858\pi\)
−0.702967 + 0.711223i \(0.748142\pi\)
\(272\) −14.5623 −0.882969
\(273\) 4.23607 0.256378
\(274\) 5.70820 0.344845
\(275\) 0 0
\(276\) 0.763932i 0.0459833i
\(277\) 6.41641i 0.385525i −0.981245 0.192762i \(-0.938255\pi\)
0.981245 0.192762i \(-0.0617446\pi\)
\(278\) 10.8541 0.650986
\(279\) 7.23607i 0.433212i
\(280\) 0 0
\(281\) −1.41641 −0.0844958 −0.0422479 0.999107i \(-0.513452\pi\)
−0.0422479 + 0.999107i \(0.513452\pi\)
\(282\) 16.5623 0.986271
\(283\) 13.8885i 0.825588i −0.910824 0.412794i \(-0.864553\pi\)
0.910824 0.412794i \(-0.135447\pi\)
\(284\) 2.94427 0.174710
\(285\) 0 0
\(286\) −3.61803 −0.213939
\(287\) −18.9443 −1.11825
\(288\) −3.38197 −0.199284
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −18.1803 −1.06575
\(292\) −4.76393 −0.278788
\(293\) −29.9443 −1.74936 −0.874682 0.484698i \(-0.838929\pi\)
−0.874682 + 0.484698i \(0.838929\pi\)
\(294\) −17.7082 −1.03276
\(295\) 0 0
\(296\) 10.6525 0.619163
\(297\) 2.23607i 0.129750i
\(298\) 8.94427 0.518128
\(299\) 1.23607 0.0714837
\(300\) 0 0
\(301\) 2.00000i 0.115278i
\(302\) 19.4164 1.11729
\(303\) 3.94427i 0.226593i
\(304\) 37.4164i 2.14598i
\(305\) 0 0
\(306\) 4.85410 0.277491
\(307\) −28.1803 −1.60834 −0.804168 0.594401i \(-0.797389\pi\)
−0.804168 + 0.594401i \(0.797389\pi\)
\(308\) 5.85410 0.333568
\(309\) 19.4164i 1.10456i
\(310\) 0 0
\(311\) 15.6525i 0.887570i 0.896133 + 0.443785i \(0.146365\pi\)
−0.896133 + 0.443785i \(0.853635\pi\)
\(312\) 2.23607i 0.126592i
\(313\) 5.47214i 0.309303i −0.987969 0.154652i \(-0.950574\pi\)
0.987969 0.154652i \(-0.0494255\pi\)
\(314\) −3.23607 −0.182622
\(315\) 0 0
\(316\) 1.41641i 0.0796792i
\(317\) −23.8328 −1.33858 −0.669292 0.742999i \(-0.733403\pi\)
−0.669292 + 0.742999i \(0.733403\pi\)
\(318\) 10.9443i 0.613724i
\(319\) 6.70820 10.0000i 0.375587 0.559893i
\(320\) 0 0
\(321\) 0.763932i 0.0426385i
\(322\) −8.47214 −0.472134
\(323\) 23.1246i 1.28669i
\(324\) 0.618034 0.0343352
\(325\) 0 0
\(326\) 12.0000 0.664619
\(327\) −5.00000 −0.276501
\(328\) 10.0000i 0.552158i
\(329\) 43.3607i 2.39055i
\(330\) 0 0
\(331\) 8.29180i 0.455758i 0.973689 + 0.227879i \(0.0731791\pi\)
−0.973689 + 0.227879i \(0.926821\pi\)
\(332\) 3.70820i 0.203514i
\(333\) −4.76393 −0.261062
\(334\) 25.7082i 1.40669i
\(335\) 0 0
\(336\) 20.5623i 1.12177i
\(337\) −19.2361 −1.04786 −0.523928 0.851763i \(-0.675534\pi\)
−0.523928 + 0.851763i \(0.675534\pi\)
\(338\) 19.4164 1.05611
\(339\) 4.52786 0.245920
\(340\) 0 0
\(341\) 16.1803 0.876215
\(342\) 12.4721i 0.674416i
\(343\) 16.7082i 0.902158i
\(344\) 1.05573 0.0569210
\(345\) 0 0
\(346\) 9.70820i 0.521916i
\(347\) 22.6525i 1.21605i 0.793918 + 0.608024i \(0.208038\pi\)
−0.793918 + 0.608024i \(0.791962\pi\)
\(348\) 2.76393 + 1.85410i 0.148162 + 0.0993903i
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 1.00000i 0.0533761i
\(352\) 7.56231i 0.403072i
\(353\) 4.65248i 0.247626i 0.992306 + 0.123813i \(0.0395123\pi\)
−0.992306 + 0.123813i \(0.960488\pi\)
\(354\) −14.4721 −0.769185
\(355\) 0 0
\(356\) 0.0344419i 0.00182541i
\(357\) 12.7082i 0.672589i
\(358\) 27.8885 1.47396
\(359\) 25.3050i 1.33554i −0.744366 0.667772i \(-0.767248\pi\)
0.744366 0.667772i \(-0.232752\pi\)
\(360\) 0 0
\(361\) −40.4164 −2.12718
\(362\) 33.0344 1.73625
\(363\) 6.00000 0.314918
\(364\) 2.61803 0.137222
\(365\) 0 0
\(366\) 4.47214i 0.233762i
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 4.47214i 0.232810i
\(370\) 0 0
\(371\) −28.6525 −1.48756
\(372\) 4.47214i 0.231869i
\(373\) 3.88854i 0.201341i −0.994920 0.100671i \(-0.967901\pi\)
0.994920 0.100671i \(-0.0320988\pi\)
\(374\) 10.8541i 0.561252i
\(375\) 0 0
\(376\) −22.8885 −1.18039
\(377\) 3.00000 4.47214i 0.154508 0.230327i
\(378\) 6.85410i 0.352537i
\(379\) 14.2918i 0.734120i 0.930197 + 0.367060i \(0.119636\pi\)
−0.930197 + 0.367060i \(0.880364\pi\)
\(380\) 0 0
\(381\) 12.4721 0.638967
\(382\) 14.4721i 0.740459i
\(383\) 5.34752i 0.273246i −0.990623 0.136623i \(-0.956375\pi\)
0.990623 0.136623i \(-0.0436248\pi\)
\(384\) 13.6180 0.694942
\(385\) 0 0
\(386\) 28.1803 1.43434
\(387\) −0.472136 −0.0240000
\(388\) −11.2361 −0.570425
\(389\) 13.4721i 0.683064i −0.939870 0.341532i \(-0.889054\pi\)
0.939870 0.341532i \(-0.110946\pi\)
\(390\) 0 0
\(391\) 3.70820i 0.187532i
\(392\) 24.4721 1.23603
\(393\) 12.2361i 0.617228i
\(394\) 6.00000i 0.302276i
\(395\) 0 0
\(396\) 1.38197i 0.0694464i
\(397\) 6.94427i 0.348523i −0.984699 0.174262i \(-0.944246\pi\)
0.984699 0.174262i \(-0.0557538\pi\)
\(398\) 32.5623 1.63220
\(399\) −32.6525 −1.63467
\(400\) 0 0
\(401\) 33.7082 1.68331 0.841654 0.540018i \(-0.181582\pi\)
0.841654 + 0.540018i \(0.181582\pi\)
\(402\) 7.61803i 0.379953i
\(403\) 7.23607 0.360454
\(404\) 2.43769i 0.121280i
\(405\) 0 0
\(406\) −20.5623 + 30.6525i −1.02049 + 1.52126i
\(407\) 10.6525i 0.528024i
\(408\) −6.70820 −0.332106
\(409\) 10.5836i 0.523325i −0.965159 0.261662i \(-0.915729\pi\)
0.965159 0.261662i \(-0.0842707\pi\)
\(410\) 0 0
\(411\) 3.52786 0.174017
\(412\) 12.0000i 0.591198i
\(413\) 37.8885i 1.86437i
\(414\) 2.00000i 0.0982946i
\(415\) 0 0
\(416\) 3.38197i 0.165815i
\(417\) 6.70820 0.328502
\(418\) 27.8885 1.36407
\(419\) −3.81966 −0.186603 −0.0933013 0.995638i \(-0.529742\pi\)
−0.0933013 + 0.995638i \(0.529742\pi\)
\(420\) 0 0
\(421\) 20.0000i 0.974740i −0.873195 0.487370i \(-0.837956\pi\)
0.873195 0.487370i \(-0.162044\pi\)
\(422\) 16.1803i 0.787647i
\(423\) 10.2361 0.497695
\(424\) 15.1246i 0.734516i
\(425\) 0 0
\(426\) 7.70820 0.373464
\(427\) 11.7082 0.566600
\(428\) 0.472136i 0.0228216i
\(429\) −2.23607 −0.107958
\(430\) 0 0
\(431\) 14.3607 0.691730 0.345865 0.938284i \(-0.387586\pi\)
0.345865 + 0.938284i \(0.387586\pi\)
\(432\) −4.85410 −0.233543
\(433\) −14.2918 −0.686820 −0.343410 0.939186i \(-0.611582\pi\)
−0.343410 + 0.939186i \(0.611582\pi\)
\(434\) −49.5967 −2.38072
\(435\) 0 0
\(436\) −3.09017 −0.147992
\(437\) −9.52786 −0.455780
\(438\) −12.4721 −0.595942
\(439\) −13.2918 −0.634383 −0.317191 0.948362i \(-0.602740\pi\)
−0.317191 + 0.948362i \(0.602740\pi\)
\(440\) 0 0
\(441\) −10.9443 −0.521156
\(442\) 4.85410i 0.230886i
\(443\) 9.65248 0.458603 0.229301 0.973355i \(-0.426356\pi\)
0.229301 + 0.973355i \(0.426356\pi\)
\(444\) −2.94427 −0.139729
\(445\) 0 0
\(446\) 20.5623i 0.973653i
\(447\) 5.52786 0.261459
\(448\) 17.9443i 0.847787i
\(449\) 18.8885i 0.891405i 0.895181 + 0.445703i \(0.147046\pi\)
−0.895181 + 0.445703i \(0.852954\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 2.79837 0.131624
\(453\) 12.0000 0.563809
\(454\) 14.6525i 0.687675i
\(455\) 0 0
\(456\) 17.2361i 0.807153i
\(457\) 6.41641i 0.300147i −0.988675 0.150073i \(-0.952049\pi\)
0.988675 0.150073i \(-0.0479510\pi\)
\(458\) 35.8885i 1.67696i
\(459\) 3.00000 0.140028
\(460\) 0 0
\(461\) 18.9443i 0.882323i 0.897428 + 0.441161i \(0.145433\pi\)
−0.897428 + 0.441161i \(0.854567\pi\)
\(462\) 15.3262 0.713041
\(463\) 0.708204i 0.0329130i 0.999865 + 0.0164565i \(0.00523851\pi\)
−0.999865 + 0.0164565i \(0.994761\pi\)
\(464\) −21.7082 14.5623i −1.00778 0.676038i
\(465\) 0 0
\(466\) 16.9443i 0.784928i
\(467\) 13.5279 0.625995 0.312997 0.949754i \(-0.398667\pi\)
0.312997 + 0.949754i \(0.398667\pi\)
\(468\) 0.618034i 0.0285686i
\(469\) 19.9443 0.920941
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 20.0000 0.920575
\(473\) 1.05573i 0.0485424i
\(474\) 3.70820i 0.170323i
\(475\) 0 0
\(476\) 7.85410i 0.359992i
\(477\) 6.76393i 0.309699i
\(478\) −42.3607 −1.93753
\(479\) 10.4721i 0.478484i 0.970960 + 0.239242i \(0.0768989\pi\)
−0.970960 + 0.239242i \(0.923101\pi\)
\(480\) 0 0
\(481\) 4.76393i 0.217217i
\(482\) −4.85410 −0.221098
\(483\) −5.23607 −0.238249
\(484\) 3.70820 0.168555
\(485\) 0 0
\(486\) 1.61803 0.0733955
\(487\) 20.3607i 0.922630i −0.887236 0.461315i \(-0.847378\pi\)
0.887236 0.461315i \(-0.152622\pi\)
\(488\) 6.18034i 0.279771i
\(489\) 7.41641 0.335382
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 2.76393i 0.124608i
\(493\) 13.4164 + 9.00000i 0.604245 + 0.405340i
\(494\) 12.4721 0.561148
\(495\) 0 0
\(496\) 35.1246i 1.57714i
\(497\) 20.1803i 0.905212i
\(498\) 9.70820i 0.435035i
\(499\) −21.1803 −0.948162 −0.474081 0.880481i \(-0.657220\pi\)
−0.474081 + 0.880481i \(0.657220\pi\)
\(500\) 0 0
\(501\) 15.8885i 0.709848i
\(502\) 19.7984i 0.883645i
\(503\) 25.1803 1.12274 0.561368 0.827566i \(-0.310275\pi\)
0.561368 + 0.827566i \(0.310275\pi\)
\(504\) 9.47214i 0.421922i
\(505\) 0 0
\(506\) 4.47214 0.198811
\(507\) 12.0000 0.532939
\(508\) 7.70820 0.341996
\(509\) 26.8328 1.18934 0.594672 0.803969i \(-0.297282\pi\)
0.594672 + 0.803969i \(0.297282\pi\)
\(510\) 0 0
\(511\) 32.6525i 1.44446i
\(512\) −5.29180 −0.233867
\(513\) 7.70820i 0.340326i
\(514\) 42.8328i 1.88927i
\(515\) 0 0
\(516\) −0.291796 −0.0128456
\(517\) 22.8885i 1.00664i
\(518\) 32.6525i 1.43467i
\(519\) 6.00000i 0.263371i
\(520\) 0 0
\(521\) −3.52786 −0.154559 −0.0772793 0.997009i \(-0.524623\pi\)
−0.0772793 + 0.997009i \(0.524623\pi\)
\(522\) 7.23607 + 4.85410i 0.316714 + 0.212458i
\(523\) 33.0689i 1.44600i 0.690847 + 0.723001i \(0.257238\pi\)
−0.690847 + 0.723001i \(0.742762\pi\)
\(524\) 7.56231i 0.330361i
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 21.7082i 0.945624i
\(528\) 10.8541i 0.472364i
\(529\) 21.4721 0.933571
\(530\) 0 0
\(531\) −8.94427 −0.388148
\(532\) −20.1803 −0.874929
\(533\) 4.47214 0.193710
\(534\) 0.0901699i 0.00390204i
\(535\) 0 0
\(536\) 10.5279i 0.454734i
\(537\) 17.2361 0.743791
\(538\) 34.5623i 1.49009i
\(539\) 24.4721i 1.05409i
\(540\) 0 0
\(541\) 10.6525i 0.457986i 0.973428 + 0.228993i \(0.0735432\pi\)
−0.973428 + 0.228993i \(0.926457\pi\)
\(542\) 37.8885i 1.62745i
\(543\) 20.4164 0.876152
\(544\) −10.1459 −0.435002
\(545\) 0 0
\(546\) 6.85410 0.293328
\(547\) 6.34752i 0.271401i 0.990750 + 0.135700i \(0.0433284\pi\)
−0.990750 + 0.135700i \(0.956672\pi\)
\(548\) 2.18034 0.0931395
\(549\) 2.76393i 0.117962i
\(550\) 0 0
\(551\) −23.1246 + 34.4721i −0.985142 + 1.46856i
\(552\) 2.76393i 0.117641i
\(553\) 9.70820 0.412835
\(554\) 10.3820i 0.441087i
\(555\) 0 0
\(556\) 4.14590 0.175825
\(557\) 16.4721i 0.697947i 0.937133 + 0.348973i \(0.113470\pi\)
−0.937133 + 0.348973i \(0.886530\pi\)
\(558\) 11.7082i 0.495648i
\(559\) 0.472136i 0.0199692i
\(560\) 0 0
\(561\) 6.70820i 0.283221i
\(562\) −2.29180 −0.0966736
\(563\) 13.0689 0.550788 0.275394 0.961331i \(-0.411192\pi\)
0.275394 + 0.961331i \(0.411192\pi\)
\(564\) 6.32624 0.266383
\(565\) 0 0
\(566\) 22.4721i 0.944574i
\(567\) 4.23607i 0.177898i
\(568\) −10.6525 −0.446968
\(569\) 21.0000i 0.880366i 0.897908 + 0.440183i \(0.145086\pi\)
−0.897908 + 0.440183i \(0.854914\pi\)
\(570\) 0 0
\(571\) 18.8328 0.788129 0.394064 0.919083i \(-0.371069\pi\)
0.394064 + 0.919083i \(0.371069\pi\)
\(572\) −1.38197 −0.0577829
\(573\) 8.94427i 0.373652i
\(574\) −30.6525 −1.27941
\(575\) 0 0
\(576\) 4.23607 0.176503
\(577\) 24.8328 1.03380 0.516902 0.856045i \(-0.327085\pi\)
0.516902 + 0.856045i \(0.327085\pi\)
\(578\) −12.9443 −0.538411
\(579\) 17.4164 0.723801
\(580\) 0 0
\(581\) 25.4164 1.05445
\(582\) −29.4164 −1.21935
\(583\) 15.1246 0.626397
\(584\) 17.2361 0.713234
\(585\) 0 0
\(586\) −48.4508 −2.00149
\(587\) 0.944272i 0.0389743i 0.999810 + 0.0194871i \(0.00620334\pi\)
−0.999810 + 0.0194871i \(0.993797\pi\)
\(588\) −6.76393 −0.278940
\(589\) −55.7771 −2.29825
\(590\) 0 0
\(591\) 3.70820i 0.152535i
\(592\) 23.1246 0.950416
\(593\) 40.1803i 1.65001i 0.565126 + 0.825004i \(0.308827\pi\)
−0.565126 + 0.825004i \(0.691173\pi\)
\(594\) 3.61803i 0.148450i
\(595\) 0 0
\(596\) 3.41641 0.139942
\(597\) 20.1246 0.823646
\(598\) 2.00000 0.0817861
\(599\) 1.76393i 0.0720723i −0.999350 0.0360362i \(-0.988527\pi\)
0.999350 0.0360362i \(-0.0114731\pi\)
\(600\) 0 0
\(601\) 18.5410i 0.756304i 0.925744 + 0.378152i \(0.123440\pi\)
−0.925744 + 0.378152i \(0.876560\pi\)
\(602\) 3.23607i 0.131892i
\(603\) 4.70820i 0.191733i
\(604\) 7.41641 0.301769
\(605\) 0 0
\(606\) 6.38197i 0.259250i
\(607\) −25.4164 −1.03162 −0.515810 0.856703i \(-0.672509\pi\)
−0.515810 + 0.856703i \(0.672509\pi\)
\(608\) 26.0689i 1.05723i
\(609\) −12.7082 + 18.9443i −0.514962 + 0.767661i
\(610\) 0 0
\(611\) 10.2361i 0.414107i
\(612\) 1.85410 0.0749476
\(613\) 24.4164i 0.986169i −0.869981 0.493085i \(-0.835869\pi\)
0.869981 0.493085i \(-0.164131\pi\)
\(614\) −45.5967 −1.84013
\(615\) 0 0
\(616\) −21.1803 −0.853380
\(617\) −19.8885 −0.800683 −0.400341 0.916366i \(-0.631108\pi\)
−0.400341 + 0.916366i \(0.631108\pi\)
\(618\) 31.4164i 1.26375i
\(619\) 32.5410i 1.30793i −0.756523 0.653967i \(-0.773104\pi\)
0.756523 0.653967i \(-0.226896\pi\)
\(620\) 0 0
\(621\) 1.23607i 0.0496017i
\(622\) 25.3262i 1.01549i
\(623\) 0.236068 0.00945786
\(624\) 4.85410i 0.194320i
\(625\) 0 0
\(626\) 8.85410i 0.353881i
\(627\) 17.2361 0.688342
\(628\) −1.23607 −0.0493245
\(629\) −14.2918 −0.569851
\(630\) 0 0
\(631\) 28.7082 1.14286 0.571428 0.820652i \(-0.306390\pi\)
0.571428 + 0.820652i \(0.306390\pi\)
\(632\) 5.12461i 0.203846i
\(633\) 10.0000i 0.397464i
\(634\) −38.5623 −1.53150
\(635\) 0 0
\(636\) 4.18034i 0.165761i
\(637\) 10.9443i 0.433628i
\(638\) 10.8541 16.1803i 0.429718 0.640586i
\(639\) 4.76393 0.188458
\(640\) 0 0
\(641\) 19.4721i 0.769103i 0.923104 + 0.384552i \(0.125644\pi\)
−0.923104 + 0.384552i \(0.874356\pi\)
\(642\) 1.23607i 0.0487837i
\(643\) 0.708204i 0.0279288i 0.999902 + 0.0139644i \(0.00444516\pi\)
−0.999902 + 0.0139644i \(0.995555\pi\)
\(644\) −3.23607 −0.127519
\(645\) 0 0
\(646\) 37.4164i 1.47213i
\(647\) 17.5967i 0.691800i −0.938271 0.345900i \(-0.887574\pi\)
0.938271 0.345900i \(-0.112426\pi\)
\(648\) −2.23607 −0.0878410
\(649\) 20.0000i 0.785069i
\(650\) 0 0
\(651\) −30.6525 −1.20137
\(652\) 4.58359 0.179507
\(653\) −32.3050 −1.26419 −0.632095 0.774891i \(-0.717805\pi\)
−0.632095 + 0.774891i \(0.717805\pi\)
\(654\) −8.09017 −0.316351
\(655\) 0 0
\(656\) 21.7082i 0.847563i
\(657\) −7.70820 −0.300726
\(658\) 70.1591i 2.73508i
\(659\) 26.2361i 1.02201i −0.859577 0.511006i \(-0.829273\pi\)
0.859577 0.511006i \(-0.170727\pi\)
\(660\) 0 0
\(661\) −29.8328 −1.16036 −0.580181 0.814488i \(-0.697018\pi\)
−0.580181 + 0.814488i \(0.697018\pi\)
\(662\) 13.4164i 0.521443i
\(663\) 3.00000i 0.116510i
\(664\) 13.4164i 0.520658i
\(665\) 0 0
\(666\) −7.70820 −0.298687
\(667\) −3.70820 + 5.52786i −0.143582 + 0.214040i
\(668\) 9.81966i 0.379934i
\(669\) 12.7082i 0.491328i
\(670\) 0 0
\(671\) −6.18034 −0.238589
\(672\) 14.3262i 0.552647i
\(673\) 4.41641i 0.170240i −0.996371 0.0851200i \(-0.972873\pi\)
0.996371 0.0851200i \(-0.0271274\pi\)
\(674\) −31.1246 −1.19888
\(675\) 0 0
\(676\) 7.41641 0.285246
\(677\) −18.0557 −0.693938 −0.346969 0.937877i \(-0.612789\pi\)
−0.346969 + 0.937877i \(0.612789\pi\)
\(678\) 7.32624 0.281362
\(679\) 77.0132i 2.95549i
\(680\) 0 0
\(681\) 9.05573i 0.347016i
\(682\) 26.1803 1.00250
\(683\) 32.9443i 1.26058i 0.776361 + 0.630289i \(0.217064\pi\)
−0.776361 + 0.630289i \(0.782936\pi\)
\(684\) 4.76393i 0.182153i
\(685\) 0 0
\(686\) 27.0344i 1.03218i
\(687\) 22.1803i 0.846233i
\(688\) 2.29180 0.0873739
\(689\) 6.76393 0.257685
\(690\) 0 0
\(691\) −30.2361 −1.15023 −0.575117 0.818071i \(-0.695044\pi\)
−0.575117 + 0.818071i \(0.695044\pi\)
\(692\) 3.70820i 0.140965i
\(693\) 9.47214 0.359817
\(694\) 36.6525i 1.39131i
\(695\) 0 0
\(696\) −10.0000 6.70820i −0.379049 0.254274i
\(697\) 13.4164i 0.508183i
\(698\) −16.1803 −0.612435
\(699\) 10.4721i 0.396093i
\(700\) 0 0
\(701\) 8.18034 0.308967 0.154484 0.987995i \(-0.450629\pi\)
0.154484 + 0.987995i \(0.450629\pi\)
\(702\) 1.61803i 0.0610688i
\(703\) 36.7214i 1.38497i
\(704\) 9.47214i 0.356995i
\(705\) 0 0
\(706\) 7.52786i 0.283315i
\(707\) −16.7082 −0.628377
\(708\) −5.52786 −0.207750
\(709\) 13.4164 0.503864 0.251932 0.967745i \(-0.418934\pi\)
0.251932 + 0.967745i \(0.418934\pi\)
\(710\) 0 0
\(711\) 2.29180i 0.0859491i
\(712\) 0.124612i 0.00467002i
\(713\) −8.94427 −0.334966
\(714\) 20.5623i 0.769525i
\(715\) 0 0
\(716\) 10.6525 0.398102
\(717\) −26.1803 −0.977723
\(718\) 40.9443i 1.52803i
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 82.2492 3.06312
\(722\) −65.3951 −2.43375
\(723\) −3.00000 −0.111571
\(724\) 12.6180 0.468946
\(725\) 0 0
\(726\) 9.70820 0.360305
\(727\) −5.81966 −0.215839 −0.107920 0.994160i \(-0.534419\pi\)
−0.107920 + 0.994160i \(0.534419\pi\)
\(728\) −9.47214 −0.351061
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −1.41641 −0.0523877
\(732\) 1.70820i 0.0631370i
\(733\) 8.47214 0.312925 0.156463 0.987684i \(-0.449991\pi\)
0.156463 + 0.987684i \(0.449991\pi\)
\(734\) 29.1246 1.07501
\(735\) 0 0
\(736\) 4.18034i 0.154089i
\(737\) −10.5279 −0.387799
\(738\) 7.23607i 0.266363i
\(739\) 12.1803i 0.448061i 0.974582 + 0.224031i \(0.0719215\pi\)
−0.974582 + 0.224031i \(0.928078\pi\)
\(740\) 0 0
\(741\) 7.70820 0.283168
\(742\) −46.3607 −1.70195
\(743\) 43.0689 1.58004 0.790022 0.613078i \(-0.210069\pi\)
0.790022 + 0.613078i \(0.210069\pi\)
\(744\) 16.1803i 0.593200i
\(745\) 0 0
\(746\) 6.29180i 0.230359i
\(747\) 6.00000i 0.219529i
\(748\) 4.14590i 0.151589i
\(749\) 3.23607 0.118243
\(750\) 0 0
\(751\) 26.8328i 0.979143i −0.871963 0.489572i \(-0.837153\pi\)
0.871963 0.489572i \(-0.162847\pi\)
\(752\) −49.6869 −1.81190
\(753\) 12.2361i 0.445907i
\(754\) 4.85410 7.23607i 0.176776 0.263522i
\(755\) 0 0
\(756\) 2.61803i 0.0952170i
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 23.1246i 0.839924i
\(759\) 2.76393 0.100324
\(760\) 0 0
\(761\) 2.65248 0.0961522 0.0480761 0.998844i \(-0.484691\pi\)
0.0480761 + 0.998844i \(0.484691\pi\)
\(762\) 20.1803 0.731057
\(763\) 21.1803i 0.766780i
\(764\) 5.52786i 0.199991i
\(765\) 0 0
\(766\) 8.65248i 0.312627i
\(767\) 8.94427i 0.322959i
\(768\) 13.5623 0.489388
\(769\) 40.1803i 1.44894i −0.689306 0.724470i \(-0.742085\pi\)
0.689306 0.724470i \(-0.257915\pi\)
\(770\) 0 0
\(771\) 26.4721i 0.953371i
\(772\) 10.7639 0.387402
\(773\) 31.8885 1.14695 0.573476 0.819223i \(-0.305595\pi\)
0.573476 + 0.819223i \(0.305595\pi\)
\(774\) −0.763932 −0.0274590
\(775\) 0 0
\(776\) 40.6525 1.45934
\(777\) 20.1803i 0.723966i
\(778\) 21.7984i 0.781510i
\(779\) −34.4721 −1.23509
\(780\) 0 0
\(781\) 10.6525i 0.381176i
\(782\) 6.00000i 0.214560i
\(783\) 4.47214 + 3.00000i 0.159821 + 0.107211i
\(784\) 53.1246 1.89731
\(785\) 0 0
\(786\) 19.7984i 0.706185i
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 2.29180i 0.0816419i
\(789\) −4.94427 −0.176021
\(790\) 0 0
\(791\) 19.1803i 0.681974i
\(792\) 5.00000i 0.177667i
\(793\) −2.76393 −0.0981501
\(794\) 11.2361i 0.398753i
\(795\) 0 0
\(796\) 12.4377 0.440842
\(797\) 44.8328 1.58806 0.794030 0.607879i \(-0.207979\pi\)
0.794030 + 0.607879i \(0.207979\pi\)
\(798\) −52.8328 −1.87026
\(799\) 30.7082 1.08638
\(800\) 0 0
\(801\) 0.0557281i 0.00196906i
\(802\) 54.5410 1.92591
\(803\) 17.2361i 0.608248i
\(804\) 2.90983i 0.102622i
\(805\) 0 0
\(806\) 11.7082 0.412404
\(807\) 21.3607i 0.751932i
\(808\) 8.81966i 0.310275i
\(809\) 43.3607i 1.52448i 0.647294 + 0.762240i \(0.275900\pi\)
−0.647294 + 0.762240i \(0.724100\pi\)
\(810\) 0 0
\(811\) 46.5967 1.63623 0.818117 0.575052i \(-0.195018\pi\)
0.818117 + 0.575052i \(0.195018\pi\)
\(812\) −7.85410 + 11.7082i −0.275625 + 0.410877i
\(813\) 23.4164i 0.821249i
\(814\) 17.2361i 0.604124i
\(815\) 0 0
\(816\) −14.5623 −0.509783
\(817\) 3.63932i 0.127324i
\(818\) 17.1246i 0.598748i
\(819\) 4.23607 0.148020
\(820\) 0 0
\(821\) −12.4721 −0.435281 −0.217640 0.976029i \(-0.569836\pi\)
−0.217640 + 0.976029i \(0.569836\pi\)
\(822\) 5.70820 0.199096
\(823\) 26.3607 0.918876 0.459438 0.888210i \(-0.348051\pi\)
0.459438 + 0.888210i \(0.348051\pi\)
\(824\) 43.4164i 1.51248i
\(825\) 0 0
\(826\) 61.3050i 2.13307i
\(827\) −29.8885 −1.03933 −0.519663 0.854371i \(-0.673943\pi\)
−0.519663 + 0.854371i \(0.673943\pi\)
\(828\) 0.763932i 0.0265485i
\(829\) 27.3050i 0.948340i 0.880433 + 0.474170i \(0.157252\pi\)
−0.880433 + 0.474170i \(0.842748\pi\)
\(830\) 0 0
\(831\) 6.41641i 0.222583i
\(832\) 4.23607i 0.146859i
\(833\) −32.8328 −1.13759
\(834\) 10.8541 0.375847
\(835\) 0 0
\(836\) 10.6525 0.368424
\(837\) 7.23607i 0.250115i
\(838\) −6.18034 −0.213496
\(839\) 0.708204i 0.0244499i −0.999925 0.0122250i \(-0.996109\pi\)
0.999925 0.0122250i \(-0.00389142\pi\)
\(840\) 0 0
\(841\) 11.0000 + 26.8328i 0.379310 + 0.925270i
\(842\) 32.3607i 1.11522i
\(843\) −1.41641 −0.0487837
\(844\) 6.18034i 0.212736i
\(845\) 0 0
\(846\) 16.5623 0.569424
\(847\) 25.4164i 0.873318i
\(848\) 32.8328i 1.12748i
\(849\) 13.8885i 0.476654i
\(850\) 0 0
\(851\) 5.88854i 0.201857i
\(852\) 2.94427 0.100869
\(853\) −45.1935 −1.54740 −0.773698 0.633555i \(-0.781595\pi\)
−0.773698 + 0.633555i \(0.781595\pi\)
\(854\) 18.9443 0.648260
\(855\) 0 0
\(856\) 1.70820i 0.0583852i
\(857\) 37.5967i 1.28428i −0.766587 0.642140i \(-0.778047\pi\)
0.766587 0.642140i \(-0.221953\pi\)
\(858\) −3.61803 −0.123518
\(859\) 36.3607i 1.24061i −0.784361 0.620305i \(-0.787009\pi\)
0.784361 0.620305i \(-0.212991\pi\)
\(860\) 0 0
\(861\) −18.9443 −0.645619
\(862\) 23.2361 0.791424
\(863\) 46.6525i 1.58807i −0.607873 0.794034i \(-0.707977\pi\)
0.607873 0.794034i \(-0.292023\pi\)
\(864\) −3.38197 −0.115057
\(865\) 0 0
\(866\) −23.1246 −0.785806
\(867\) −8.00000 −0.271694
\(868\) −18.9443 −0.643010
\(869\) −5.12461 −0.173841
\(870\) 0 0
\(871\) −4.70820 −0.159531
\(872\) 11.1803 0.378614
\(873\) −18.1803 −0.615311
\(874\) −15.4164 −0.521468
\(875\) 0 0
\(876\) −4.76393 −0.160958
\(877\) 32.4721i 1.09651i −0.836312 0.548253i \(-0.815293\pi\)
0.836312 0.548253i \(-0.184707\pi\)
\(878\) −21.5066 −0.725812
\(879\) −29.9443 −1.01000
\(880\) 0 0
\(881\) 55.2492i 1.86139i 0.365792 + 0.930697i \(0.380798\pi\)
−0.365792 + 0.930697i \(0.619202\pi\)
\(882\) −17.7082 −0.596266
\(883\) 34.2492i 1.15258i 0.817246 + 0.576289i \(0.195500\pi\)
−0.817246 + 0.576289i \(0.804500\pi\)
\(884\) 1.85410i 0.0623602i
\(885\) 0 0
\(886\) 15.6180 0.524698
\(887\) 17.0689 0.573117 0.286559 0.958063i \(-0.407489\pi\)
0.286559 + 0.958063i \(0.407489\pi\)
\(888\) 10.6525 0.357474
\(889\) 52.8328i 1.77196i
\(890\) 0 0
\(891\) 2.23607i 0.0749111i
\(892\) 7.85410i 0.262975i
\(893\) 78.9017i 2.64034i
\(894\) 8.94427 0.299141
\(895\) 0 0
\(896\) 57.6869i 1.92718i
\(897\) 1.23607 0.0412711
\(898\) 30.5623i 1.01988i
\(899\) −21.7082 + 32.3607i −0.724009 + 1.07929i
\(900\) 0 0
\(901\) 20.2918i 0.676018i
\(902\) 16.1803 0.538746
\(903\) 2.00000i 0.0665558i
\(904\) −10.1246 −0.336740
\(905\) 0 0
\(906\) 19.4164 0.645067
\(907\) −26.4721 −0.878993 −0.439496 0.898244i \(-0.644843\pi\)
−0.439496 + 0.898244i \(0.644843\pi\)
\(908\) 5.59675i 0.185735i
\(909\) 3.94427i 0.130823i
\(910\) 0 0
\(911\) 51.1803i 1.69568i 0.530252 + 0.847840i \(0.322097\pi\)
−0.530252 + 0.847840i \(0.677903\pi\)
\(912\) 37.4164i 1.23898i
\(913\) −13.4164 −0.444018
\(914\) 10.3820i 0.343405i
\(915\) 0 0
\(916\) 13.7082i 0.452932i
\(917\) 51.8328 1.71167
\(918\) 4.85410 0.160209
\(919\) 25.6525 0.846197 0.423099 0.906084i \(-0.360942\pi\)
0.423099 + 0.906084i \(0.360942\pi\)
\(920\) 0 0
\(921\) −28.1803 −0.928574
\(922\) 30.6525i 1.00949i
\(923\) 4.76393i 0.156807i
\(924\) 5.85410 0.192586
\(925\) 0 0
\(926\) 1.14590i 0.0376565i
\(927\) 19.4164i 0.637719i
\(928\) −15.1246 10.1459i −0.496490 0.333055i
\(929\) 32.3607 1.06172 0.530860 0.847460i \(-0.321869\pi\)
0.530860 + 0.847460i \(0.321869\pi\)
\(930\) 0 0
\(931\) 84.3607i 2.76481i
\(932\) 6.47214i 0.212002i
\(933\) 15.6525i 0.512439i
\(934\) 21.8885 0.716215
\(935\) 0 0
\(936\) 2.23607i 0.0730882i
\(937\) 33.0000i 1.07806i −0.842286 0.539032i \(-0.818790\pi\)
0.842286 0.539032i \(-0.181210\pi\)
\(938\) 32.2705 1.05367
\(939\) 5.47214i 0.178576i
\(940\) 0 0
\(941\) −44.8328 −1.46151 −0.730754 0.682641i \(-0.760831\pi\)
−0.730754 + 0.682641i \(0.760831\pi\)
\(942\) −3.23607 −0.105437
\(943\) −5.52786 −0.180012
\(944\) 43.4164 1.41308
\(945\) 0 0
\(946\) 1.70820i 0.0555385i
\(947\) 16.8197 0.546566 0.273283 0.961934i \(-0.411891\pi\)
0.273283 + 0.961934i \(0.411891\pi\)
\(948\) 1.41641i 0.0460028i
\(949\) 7.70820i 0.250219i
\(950\) 0 0
\(951\) −23.8328 −0.772832
\(952\) 28.4164i 0.920981i
\(953\) 59.6656i 1.93276i −0.257119 0.966380i \(-0.582773\pi\)
0.257119 0.966380i \(-0.417227\pi\)
\(954\) 10.9443i 0.354334i
\(955\) 0 0
\(956\) −16.1803 −0.523310
\(957\) 6.70820 10.0000i 0.216845 0.323254i
\(958\) 16.9443i 0.547445i
\(959\) 14.9443i 0.482576i
\(960\) 0 0
\(961\) −21.3607 −0.689054
\(962\) 7.70820i 0.248522i
\(963\) 0.763932i 0.0246174i
\(964\) −1.85410 −0.0597166
\(965\) 0 0
\(966\) −8.47214 −0.272587
\(967\) −27.1246 −0.872269 −0.436134 0.899882i \(-0.643653\pi\)
−0.436134 + 0.899882i \(0.643653\pi\)
\(968\) −13.4164 −0.431220
\(969\) 23.1246i 0.742870i
\(970\) 0 0
\(971\) 16.5836i 0.532193i −0.963946 0.266096i \(-0.914266\pi\)
0.963946 0.266096i \(-0.0857340\pi\)
\(972\) 0.618034 0.0198234
\(973\) 28.4164i 0.910988i
\(974\) 32.9443i 1.05560i
\(975\) 0 0
\(976\) 13.4164i 0.429449i
\(977\) 51.0132i 1.63206i −0.578013 0.816028i \(-0.696172\pi\)
0.578013 0.816028i \(-0.303828\pi\)
\(978\) 12.0000 0.383718
\(979\) −0.124612 −0.00398261
\(980\) 0 0
\(981\) −5.00000 −0.159638
\(982\) 0 0
\(983\) −13.8885 −0.442976 −0.221488 0.975163i \(-0.571091\pi\)
−0.221488 + 0.975163i \(0.571091\pi\)
\(984\) 10.0000i 0.318788i
\(985\) 0 0
\(986\) 21.7082 + 14.5623i 0.691330 + 0.463758i
\(987\) 43.3607i 1.38019i
\(988\) 4.76393 0.151561
\(989\) 0.583592i 0.0185572i
\(990\) 0 0
\(991\) −21.2918 −0.676356 −0.338178 0.941082i \(-0.609811\pi\)
−0.338178 + 0.941082i \(0.609811\pi\)
\(992\) 24.4721i 0.776991i
\(993\) 8.29180i 0.263132i
\(994\) 32.6525i 1.03567i
\(995\) 0 0
\(996\) 3.70820i 0.117499i
\(997\) 24.5836 0.778570 0.389285 0.921117i \(-0.372722\pi\)
0.389285 + 0.921117i \(0.372722\pi\)
\(998\) −34.2705 −1.08481
\(999\) −4.76393 −0.150724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.f.b.724.4 4
5.2 odd 4 87.2.c.a.28.4 yes 4
5.3 odd 4 2175.2.d.e.376.1 4
5.4 even 2 2175.2.f.a.724.1 4
15.2 even 4 261.2.c.b.28.1 4
20.7 even 4 1392.2.o.i.289.4 4
29.28 even 2 2175.2.f.a.724.2 4
60.47 odd 4 4176.2.o.l.289.1 4
145.12 even 4 2523.2.a.d.1.1 2
145.17 even 4 2523.2.a.e.1.2 2
145.28 odd 4 2175.2.d.e.376.4 4
145.57 odd 4 87.2.c.a.28.1 4
145.144 even 2 inner 2175.2.f.b.724.3 4
435.17 odd 4 7569.2.a.f.1.1 2
435.302 odd 4 7569.2.a.n.1.2 2
435.347 even 4 261.2.c.b.28.4 4
580.347 even 4 1392.2.o.i.289.2 4
1740.347 odd 4 4176.2.o.l.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.c.a.28.1 4 145.57 odd 4
87.2.c.a.28.4 yes 4 5.2 odd 4
261.2.c.b.28.1 4 15.2 even 4
261.2.c.b.28.4 4 435.347 even 4
1392.2.o.i.289.2 4 580.347 even 4
1392.2.o.i.289.4 4 20.7 even 4
2175.2.d.e.376.1 4 5.3 odd 4
2175.2.d.e.376.4 4 145.28 odd 4
2175.2.f.a.724.1 4 5.4 even 2
2175.2.f.a.724.2 4 29.28 even 2
2175.2.f.b.724.3 4 145.144 even 2 inner
2175.2.f.b.724.4 4 1.1 even 1 trivial
2523.2.a.d.1.1 2 145.12 even 4
2523.2.a.e.1.2 2 145.17 even 4
4176.2.o.l.289.1 4 60.47 odd 4
4176.2.o.l.289.2 4 1740.347 odd 4
7569.2.a.f.1.1 2 435.17 odd 4
7569.2.a.n.1.2 2 435.302 odd 4