Properties

Label 2175.2.d.e.376.1
Level $2175$
Weight $2$
Character 2175.376
Analytic conductor $17.367$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(376,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.376");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 87)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 376.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 2175.376
Dual form 2175.2.d.e.376.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803i q^{2} +1.00000i q^{3} -0.618034 q^{4} +1.61803 q^{6} +4.23607 q^{7} -2.23607i q^{8} -1.00000 q^{9} -2.23607i q^{11} -0.618034i q^{12} +1.00000 q^{13} -6.85410i q^{14} -4.85410 q^{16} -3.00000i q^{17} +1.61803i q^{18} -7.70820i q^{19} +4.23607i q^{21} -3.61803 q^{22} -1.23607 q^{23} +2.23607 q^{24} -1.61803i q^{26} -1.00000i q^{27} -2.61803 q^{28} +(-4.47214 - 3.00000i) q^{29} +7.23607i q^{31} +3.38197i q^{32} +2.23607 q^{33} -4.85410 q^{34} +0.618034 q^{36} +4.76393i q^{37} -12.4721 q^{38} +1.00000i q^{39} +4.47214i q^{41} +6.85410 q^{42} -0.472136i q^{43} +1.38197i q^{44} +2.00000i q^{46} -10.2361i q^{47} -4.85410i q^{48} +10.9443 q^{49} +3.00000 q^{51} -0.618034 q^{52} -6.76393 q^{53} -1.61803 q^{54} -9.47214i q^{56} +7.70820 q^{57} +(-4.85410 + 7.23607i) q^{58} +8.94427 q^{59} -2.76393i q^{61} +11.7082 q^{62} -4.23607 q^{63} -4.23607 q^{64} -3.61803i q^{66} -4.70820 q^{67} +1.85410i q^{68} -1.23607i q^{69} +4.76393 q^{71} +2.23607i q^{72} -7.70820i q^{73} +7.70820 q^{74} +4.76393i q^{76} -9.47214i q^{77} +1.61803 q^{78} +2.29180i q^{79} +1.00000 q^{81} +7.23607 q^{82} +6.00000 q^{83} -2.61803i q^{84} -0.763932 q^{86} +(3.00000 - 4.47214i) q^{87} -5.00000 q^{88} +0.0557281i q^{89} +4.23607 q^{91} +0.763932 q^{92} -7.23607 q^{93} -16.5623 q^{94} -3.38197 q^{96} +18.1803i q^{97} -17.7082i q^{98} +2.23607i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{6} + 8 q^{7} - 4 q^{9} + 4 q^{13} - 6 q^{16} - 10 q^{22} + 4 q^{23} - 6 q^{28} - 6 q^{34} - 2 q^{36} - 32 q^{38} + 14 q^{42} + 8 q^{49} + 12 q^{51} + 2 q^{52} - 36 q^{53} - 2 q^{54}+ \cdots - 18 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803i 1.14412i −0.820211 0.572061i \(-0.806144\pi\)
0.820211 0.572061i \(-0.193856\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −0.618034 −0.309017
\(5\) 0 0
\(6\) 1.61803 0.660560
\(7\) 4.23607 1.60108 0.800542 0.599277i \(-0.204545\pi\)
0.800542 + 0.599277i \(0.204545\pi\)
\(8\) 2.23607i 0.790569i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.23607i 0.674200i −0.941469 0.337100i \(-0.890554\pi\)
0.941469 0.337100i \(-0.109446\pi\)
\(12\) 0.618034i 0.178411i
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 6.85410i 1.83184i
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 1.61803i 0.381374i
\(19\) 7.70820i 1.76838i −0.467124 0.884192i \(-0.654710\pi\)
0.467124 0.884192i \(-0.345290\pi\)
\(20\) 0 0
\(21\) 4.23607i 0.924386i
\(22\) −3.61803 −0.771367
\(23\) −1.23607 −0.257738 −0.128869 0.991662i \(-0.541135\pi\)
−0.128869 + 0.991662i \(0.541135\pi\)
\(24\) 2.23607 0.456435
\(25\) 0 0
\(26\) 1.61803i 0.317323i
\(27\) 1.00000i 0.192450i
\(28\) −2.61803 −0.494762
\(29\) −4.47214 3.00000i −0.830455 0.557086i
\(30\) 0 0
\(31\) 7.23607i 1.29964i 0.760090 + 0.649818i \(0.225155\pi\)
−0.760090 + 0.649818i \(0.774845\pi\)
\(32\) 3.38197i 0.597853i
\(33\) 2.23607 0.389249
\(34\) −4.85410 −0.832472
\(35\) 0 0
\(36\) 0.618034 0.103006
\(37\) 4.76393i 0.783186i 0.920139 + 0.391593i \(0.128076\pi\)
−0.920139 + 0.391593i \(0.871924\pi\)
\(38\) −12.4721 −2.02325
\(39\) 1.00000i 0.160128i
\(40\) 0 0
\(41\) 4.47214i 0.698430i 0.937043 + 0.349215i \(0.113552\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 6.85410 1.05761
\(43\) 0.472136i 0.0720001i −0.999352 0.0360000i \(-0.988538\pi\)
0.999352 0.0360000i \(-0.0114616\pi\)
\(44\) 1.38197i 0.208339i
\(45\) 0 0
\(46\) 2.00000i 0.294884i
\(47\) 10.2361i 1.49308i −0.665338 0.746542i \(-0.731713\pi\)
0.665338 0.746542i \(-0.268287\pi\)
\(48\) 4.85410i 0.700629i
\(49\) 10.9443 1.56347
\(50\) 0 0
\(51\) 3.00000 0.420084
\(52\) −0.618034 −0.0857059
\(53\) −6.76393 −0.929098 −0.464549 0.885548i \(-0.653783\pi\)
−0.464549 + 0.885548i \(0.653783\pi\)
\(54\) −1.61803 −0.220187
\(55\) 0 0
\(56\) 9.47214i 1.26577i
\(57\) 7.70820 1.02098
\(58\) −4.85410 + 7.23607i −0.637375 + 0.950142i
\(59\) 8.94427 1.16445 0.582223 0.813029i \(-0.302183\pi\)
0.582223 + 0.813029i \(0.302183\pi\)
\(60\) 0 0
\(61\) 2.76393i 0.353885i −0.984221 0.176943i \(-0.943379\pi\)
0.984221 0.176943i \(-0.0566207\pi\)
\(62\) 11.7082 1.48694
\(63\) −4.23607 −0.533694
\(64\) −4.23607 −0.529508
\(65\) 0 0
\(66\) 3.61803i 0.445349i
\(67\) −4.70820 −0.575199 −0.287599 0.957751i \(-0.592857\pi\)
−0.287599 + 0.957751i \(0.592857\pi\)
\(68\) 1.85410i 0.224843i
\(69\) 1.23607i 0.148805i
\(70\) 0 0
\(71\) 4.76393 0.565375 0.282687 0.959212i \(-0.408774\pi\)
0.282687 + 0.959212i \(0.408774\pi\)
\(72\) 2.23607i 0.263523i
\(73\) 7.70820i 0.902177i −0.892479 0.451089i \(-0.851036\pi\)
0.892479 0.451089i \(-0.148964\pi\)
\(74\) 7.70820 0.896061
\(75\) 0 0
\(76\) 4.76393i 0.546460i
\(77\) 9.47214i 1.07945i
\(78\) 1.61803 0.183206
\(79\) 2.29180i 0.257847i 0.991655 + 0.128924i \(0.0411522\pi\)
−0.991655 + 0.128924i \(0.958848\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 7.23607 0.799090
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 2.61803i 0.285651i
\(85\) 0 0
\(86\) −0.763932 −0.0823769
\(87\) 3.00000 4.47214i 0.321634 0.479463i
\(88\) −5.00000 −0.533002
\(89\) 0.0557281i 0.00590717i 0.999996 + 0.00295358i \(0.000940156\pi\)
−0.999996 + 0.00295358i \(0.999060\pi\)
\(90\) 0 0
\(91\) 4.23607 0.444061
\(92\) 0.763932 0.0796454
\(93\) −7.23607 −0.750345
\(94\) −16.5623 −1.70827
\(95\) 0 0
\(96\) −3.38197 −0.345170
\(97\) 18.1803i 1.84593i 0.384879 + 0.922967i \(0.374243\pi\)
−0.384879 + 0.922967i \(0.625757\pi\)
\(98\) 17.7082i 1.78880i
\(99\) 2.23607i 0.224733i
\(100\) 0 0
\(101\) 3.94427i 0.392470i 0.980557 + 0.196235i \(0.0628715\pi\)
−0.980557 + 0.196235i \(0.937129\pi\)
\(102\) 4.85410i 0.480628i
\(103\) 19.4164 1.91316 0.956578 0.291477i \(-0.0941468\pi\)
0.956578 + 0.291477i \(0.0941468\pi\)
\(104\) 2.23607i 0.219265i
\(105\) 0 0
\(106\) 10.9443i 1.06300i
\(107\) −0.763932 −0.0738521 −0.0369260 0.999318i \(-0.511757\pi\)
−0.0369260 + 0.999318i \(0.511757\pi\)
\(108\) 0.618034i 0.0594703i
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) 0 0
\(111\) −4.76393 −0.452172
\(112\) −20.5623 −1.94296
\(113\) 4.52786i 0.425946i 0.977058 + 0.212973i \(0.0683146\pi\)
−0.977058 + 0.212973i \(0.931685\pi\)
\(114\) 12.4721i 1.16812i
\(115\) 0 0
\(116\) 2.76393 + 1.85410i 0.256625 + 0.172149i
\(117\) −1.00000 −0.0924500
\(118\) 14.4721i 1.33227i
\(119\) 12.7082i 1.16496i
\(120\) 0 0
\(121\) 6.00000 0.545455
\(122\) −4.47214 −0.404888
\(123\) −4.47214 −0.403239
\(124\) 4.47214i 0.401610i
\(125\) 0 0
\(126\) 6.85410i 0.610612i
\(127\) 12.4721i 1.10672i −0.832941 0.553362i \(-0.813345\pi\)
0.832941 0.553362i \(-0.186655\pi\)
\(128\) 13.6180i 1.20368i
\(129\) 0.472136 0.0415693
\(130\) 0 0
\(131\) 12.2361i 1.06907i −0.845146 0.534535i \(-0.820487\pi\)
0.845146 0.534535i \(-0.179513\pi\)
\(132\) −1.38197 −0.120285
\(133\) 32.6525i 2.83133i
\(134\) 7.61803i 0.658098i
\(135\) 0 0
\(136\) −6.70820 −0.575224
\(137\) 3.52786i 0.301406i −0.988579 0.150703i \(-0.951846\pi\)
0.988579 0.150703i \(-0.0481537\pi\)
\(138\) −2.00000 −0.170251
\(139\) −6.70820 −0.568982 −0.284491 0.958679i \(-0.591825\pi\)
−0.284491 + 0.958679i \(0.591825\pi\)
\(140\) 0 0
\(141\) 10.2361 0.862032
\(142\) 7.70820i 0.646858i
\(143\) 2.23607i 0.186989i
\(144\) 4.85410 0.404508
\(145\) 0 0
\(146\) −12.4721 −1.03220
\(147\) 10.9443i 0.902668i
\(148\) 2.94427i 0.242018i
\(149\) −5.52786 −0.452860 −0.226430 0.974027i \(-0.572705\pi\)
−0.226430 + 0.974027i \(0.572705\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) −17.2361 −1.39803
\(153\) 3.00000i 0.242536i
\(154\) −15.3262 −1.23502
\(155\) 0 0
\(156\) 0.618034i 0.0494823i
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 3.70820 0.295009
\(159\) 6.76393i 0.536415i
\(160\) 0 0
\(161\) −5.23607 −0.412660
\(162\) 1.61803i 0.127125i
\(163\) 7.41641i 0.580898i 0.956890 + 0.290449i \(0.0938046\pi\)
−0.956890 + 0.290449i \(0.906195\pi\)
\(164\) 2.76393i 0.215827i
\(165\) 0 0
\(166\) 9.70820i 0.753503i
\(167\) −15.8885 −1.22949 −0.614746 0.788725i \(-0.710742\pi\)
−0.614746 + 0.788725i \(0.710742\pi\)
\(168\) 9.47214 0.730791
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 7.70820i 0.589461i
\(172\) 0.291796i 0.0222492i
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −7.23607 4.85410i −0.548565 0.367989i
\(175\) 0 0
\(176\) 10.8541i 0.818159i
\(177\) 8.94427i 0.672293i
\(178\) 0.0901699 0.00675852
\(179\) −17.2361 −1.28828 −0.644142 0.764906i \(-0.722785\pi\)
−0.644142 + 0.764906i \(0.722785\pi\)
\(180\) 0 0
\(181\) 20.4164 1.51754 0.758770 0.651359i \(-0.225801\pi\)
0.758770 + 0.651359i \(0.225801\pi\)
\(182\) 6.85410i 0.508060i
\(183\) 2.76393 0.204316
\(184\) 2.76393i 0.203760i
\(185\) 0 0
\(186\) 11.7082i 0.858487i
\(187\) −6.70820 −0.490552
\(188\) 6.32624i 0.461388i
\(189\) 4.23607i 0.308129i
\(190\) 0 0
\(191\) 8.94427i 0.647185i −0.946197 0.323592i \(-0.895109\pi\)
0.946197 0.323592i \(-0.104891\pi\)
\(192\) 4.23607i 0.305712i
\(193\) 17.4164i 1.25366i 0.779156 + 0.626830i \(0.215648\pi\)
−0.779156 + 0.626830i \(0.784352\pi\)
\(194\) 29.4164 2.11198
\(195\) 0 0
\(196\) −6.76393 −0.483138
\(197\) 3.70820 0.264199 0.132099 0.991236i \(-0.457828\pi\)
0.132099 + 0.991236i \(0.457828\pi\)
\(198\) 3.61803 0.257122
\(199\) −20.1246 −1.42660 −0.713298 0.700861i \(-0.752799\pi\)
−0.713298 + 0.700861i \(0.752799\pi\)
\(200\) 0 0
\(201\) 4.70820i 0.332091i
\(202\) 6.38197 0.449034
\(203\) −18.9443 12.7082i −1.32963 0.891941i
\(204\) −1.85410 −0.129813
\(205\) 0 0
\(206\) 31.4164i 2.18888i
\(207\) 1.23607 0.0859127
\(208\) −4.85410 −0.336571
\(209\) −17.2361 −1.19224
\(210\) 0 0
\(211\) 10.0000i 0.688428i −0.938891 0.344214i \(-0.888145\pi\)
0.938891 0.344214i \(-0.111855\pi\)
\(212\) 4.18034 0.287107
\(213\) 4.76393i 0.326419i
\(214\) 1.23607i 0.0844959i
\(215\) 0 0
\(216\) −2.23607 −0.152145
\(217\) 30.6525i 2.08083i
\(218\) 8.09017i 0.547935i
\(219\) 7.70820 0.520872
\(220\) 0 0
\(221\) 3.00000i 0.201802i
\(222\) 7.70820i 0.517341i
\(223\) 12.7082 0.851004 0.425502 0.904957i \(-0.360097\pi\)
0.425502 + 0.904957i \(0.360097\pi\)
\(224\) 14.3262i 0.957212i
\(225\) 0 0
\(226\) 7.32624 0.487334
\(227\) −9.05573 −0.601050 −0.300525 0.953774i \(-0.597162\pi\)
−0.300525 + 0.953774i \(0.597162\pi\)
\(228\) −4.76393 −0.315499
\(229\) 22.1803i 1.46572i −0.680380 0.732859i \(-0.738185\pi\)
0.680380 0.732859i \(-0.261815\pi\)
\(230\) 0 0
\(231\) 9.47214 0.623221
\(232\) −6.70820 + 10.0000i −0.440415 + 0.656532i
\(233\) 10.4721 0.686052 0.343026 0.939326i \(-0.388548\pi\)
0.343026 + 0.939326i \(0.388548\pi\)
\(234\) 1.61803i 0.105774i
\(235\) 0 0
\(236\) −5.52786 −0.359833
\(237\) −2.29180 −0.148868
\(238\) −20.5623 −1.33286
\(239\) 26.1803 1.69347 0.846733 0.532019i \(-0.178566\pi\)
0.846733 + 0.532019i \(0.178566\pi\)
\(240\) 0 0
\(241\) −3.00000 −0.193247 −0.0966235 0.995321i \(-0.530804\pi\)
−0.0966235 + 0.995321i \(0.530804\pi\)
\(242\) 9.70820i 0.624067i
\(243\) 1.00000i 0.0641500i
\(244\) 1.70820i 0.109357i
\(245\) 0 0
\(246\) 7.23607i 0.461355i
\(247\) 7.70820i 0.490461i
\(248\) 16.1803 1.02745
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) 12.2361i 0.772334i 0.922429 + 0.386167i \(0.126201\pi\)
−0.922429 + 0.386167i \(0.873799\pi\)
\(252\) 2.61803 0.164921
\(253\) 2.76393i 0.173767i
\(254\) −20.1803 −1.26623
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) 26.4721 1.65129 0.825643 0.564193i \(-0.190812\pi\)
0.825643 + 0.564193i \(0.190812\pi\)
\(258\) 0.763932i 0.0475603i
\(259\) 20.1803i 1.25395i
\(260\) 0 0
\(261\) 4.47214 + 3.00000i 0.276818 + 0.185695i
\(262\) −19.7984 −1.22315
\(263\) 4.94427i 0.304877i −0.988313 0.152438i \(-0.951287\pi\)
0.988313 0.152438i \(-0.0487126\pi\)
\(264\) 5.00000i 0.307729i
\(265\) 0 0
\(266\) −52.8328 −3.23939
\(267\) −0.0557281 −0.00341050
\(268\) 2.90983 0.177746
\(269\) 21.3607i 1.30238i 0.758913 + 0.651192i \(0.225731\pi\)
−0.758913 + 0.651192i \(0.774269\pi\)
\(270\) 0 0
\(271\) 23.4164i 1.42245i 0.702967 + 0.711223i \(0.251858\pi\)
−0.702967 + 0.711223i \(0.748142\pi\)
\(272\) 14.5623i 0.882969i
\(273\) 4.23607i 0.256378i
\(274\) −5.70820 −0.344845
\(275\) 0 0
\(276\) 0.763932i 0.0459833i
\(277\) −6.41641 −0.385525 −0.192762 0.981245i \(-0.561745\pi\)
−0.192762 + 0.981245i \(0.561745\pi\)
\(278\) 10.8541i 0.650986i
\(279\) 7.23607i 0.433212i
\(280\) 0 0
\(281\) −1.41641 −0.0844958 −0.0422479 0.999107i \(-0.513452\pi\)
−0.0422479 + 0.999107i \(0.513452\pi\)
\(282\) 16.5623i 0.986271i
\(283\) 13.8885 0.825588 0.412794 0.910824i \(-0.364553\pi\)
0.412794 + 0.910824i \(0.364553\pi\)
\(284\) −2.94427 −0.174710
\(285\) 0 0
\(286\) −3.61803 −0.213939
\(287\) 18.9443i 1.11825i
\(288\) 3.38197i 0.199284i
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −18.1803 −1.06575
\(292\) 4.76393i 0.278788i
\(293\) 29.9443i 1.74936i −0.484698 0.874682i \(-0.661071\pi\)
0.484698 0.874682i \(-0.338929\pi\)
\(294\) 17.7082 1.03276
\(295\) 0 0
\(296\) 10.6525 0.619163
\(297\) −2.23607 −0.129750
\(298\) 8.94427i 0.518128i
\(299\) −1.23607 −0.0714837
\(300\) 0 0
\(301\) 2.00000i 0.115278i
\(302\) 19.4164i 1.11729i
\(303\) −3.94427 −0.226593
\(304\) 37.4164i 2.14598i
\(305\) 0 0
\(306\) 4.85410 0.277491
\(307\) 28.1803i 1.60834i 0.594401 + 0.804168i \(0.297389\pi\)
−0.594401 + 0.804168i \(0.702611\pi\)
\(308\) 5.85410i 0.333568i
\(309\) 19.4164i 1.10456i
\(310\) 0 0
\(311\) 15.6525i 0.887570i 0.896133 + 0.443785i \(0.146365\pi\)
−0.896133 + 0.443785i \(0.853635\pi\)
\(312\) 2.23607 0.126592
\(313\) 5.47214 0.309303 0.154652 0.987969i \(-0.450574\pi\)
0.154652 + 0.987969i \(0.450574\pi\)
\(314\) 3.23607 0.182622
\(315\) 0 0
\(316\) 1.41641i 0.0796792i
\(317\) 23.8328i 1.33858i 0.742999 + 0.669292i \(0.233403\pi\)
−0.742999 + 0.669292i \(0.766597\pi\)
\(318\) −10.9443 −0.613724
\(319\) −6.70820 + 10.0000i −0.375587 + 0.559893i
\(320\) 0 0
\(321\) 0.763932i 0.0426385i
\(322\) 8.47214i 0.472134i
\(323\) −23.1246 −1.28669
\(324\) −0.618034 −0.0343352
\(325\) 0 0
\(326\) 12.0000 0.664619
\(327\) 5.00000i 0.276501i
\(328\) 10.0000 0.552158
\(329\) 43.3607i 2.39055i
\(330\) 0 0
\(331\) 8.29180i 0.455758i 0.973689 + 0.227879i \(0.0731791\pi\)
−0.973689 + 0.227879i \(0.926821\pi\)
\(332\) −3.70820 −0.203514
\(333\) 4.76393i 0.261062i
\(334\) 25.7082i 1.40669i
\(335\) 0 0
\(336\) 20.5623i 1.12177i
\(337\) 19.2361i 1.04786i 0.851763 + 0.523928i \(0.175534\pi\)
−0.851763 + 0.523928i \(0.824466\pi\)
\(338\) 19.4164i 1.05611i
\(339\) −4.52786 −0.245920
\(340\) 0 0
\(341\) 16.1803 0.876215
\(342\) 12.4721 0.674416
\(343\) 16.7082 0.902158
\(344\) −1.05573 −0.0569210
\(345\) 0 0
\(346\) 9.70820i 0.521916i
\(347\) 22.6525 1.21605 0.608024 0.793918i \(-0.291962\pi\)
0.608024 + 0.793918i \(0.291962\pi\)
\(348\) −1.85410 + 2.76393i −0.0993903 + 0.148162i
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 1.00000i 0.0533761i
\(352\) 7.56231 0.403072
\(353\) −4.65248 −0.247626 −0.123813 0.992306i \(-0.539512\pi\)
−0.123813 + 0.992306i \(0.539512\pi\)
\(354\) 14.4721 0.769185
\(355\) 0 0
\(356\) 0.0344419i 0.00182541i
\(357\) 12.7082 0.672589
\(358\) 27.8885i 1.47396i
\(359\) 25.3050i 1.33554i 0.744366 + 0.667772i \(0.232752\pi\)
−0.744366 + 0.667772i \(0.767248\pi\)
\(360\) 0 0
\(361\) −40.4164 −2.12718
\(362\) 33.0344i 1.73625i
\(363\) 6.00000i 0.314918i
\(364\) −2.61803 −0.137222
\(365\) 0 0
\(366\) 4.47214i 0.233762i
\(367\) 18.0000i 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) 6.00000 0.312772
\(369\) 4.47214i 0.232810i
\(370\) 0 0
\(371\) −28.6525 −1.48756
\(372\) 4.47214 0.231869
\(373\) 3.88854 0.201341 0.100671 0.994920i \(-0.467901\pi\)
0.100671 + 0.994920i \(0.467901\pi\)
\(374\) 10.8541i 0.561252i
\(375\) 0 0
\(376\) −22.8885 −1.18039
\(377\) −4.47214 3.00000i −0.230327 0.154508i
\(378\) −6.85410 −0.352537
\(379\) 14.2918i 0.734120i −0.930197 0.367060i \(-0.880364\pi\)
0.930197 0.367060i \(-0.119636\pi\)
\(380\) 0 0
\(381\) 12.4721 0.638967
\(382\) −14.4721 −0.740459
\(383\) 5.34752 0.273246 0.136623 0.990623i \(-0.456375\pi\)
0.136623 + 0.990623i \(0.456375\pi\)
\(384\) −13.6180 −0.694942
\(385\) 0 0
\(386\) 28.1803 1.43434
\(387\) 0.472136i 0.0240000i
\(388\) 11.2361i 0.570425i
\(389\) 13.4721i 0.683064i 0.939870 + 0.341532i \(0.110946\pi\)
−0.939870 + 0.341532i \(0.889054\pi\)
\(390\) 0 0
\(391\) 3.70820i 0.187532i
\(392\) 24.4721i 1.23603i
\(393\) 12.2361 0.617228
\(394\) 6.00000i 0.302276i
\(395\) 0 0
\(396\) 1.38197i 0.0694464i
\(397\) −6.94427 −0.348523 −0.174262 0.984699i \(-0.555754\pi\)
−0.174262 + 0.984699i \(0.555754\pi\)
\(398\) 32.5623i 1.63220i
\(399\) 32.6525 1.63467
\(400\) 0 0
\(401\) 33.7082 1.68331 0.841654 0.540018i \(-0.181582\pi\)
0.841654 + 0.540018i \(0.181582\pi\)
\(402\) −7.61803 −0.379953
\(403\) 7.23607i 0.360454i
\(404\) 2.43769i 0.121280i
\(405\) 0 0
\(406\) −20.5623 + 30.6525i −1.02049 + 1.52126i
\(407\) 10.6525 0.528024
\(408\) 6.70820i 0.332106i
\(409\) 10.5836i 0.523325i 0.965159 + 0.261662i \(0.0842707\pi\)
−0.965159 + 0.261662i \(0.915729\pi\)
\(410\) 0 0
\(411\) 3.52786 0.174017
\(412\) −12.0000 −0.591198
\(413\) 37.8885 1.86437
\(414\) 2.00000i 0.0982946i
\(415\) 0 0
\(416\) 3.38197i 0.165815i
\(417\) 6.70820i 0.328502i
\(418\) 27.8885i 1.36407i
\(419\) 3.81966 0.186603 0.0933013 0.995638i \(-0.470258\pi\)
0.0933013 + 0.995638i \(0.470258\pi\)
\(420\) 0 0
\(421\) 20.0000i 0.974740i −0.873195 0.487370i \(-0.837956\pi\)
0.873195 0.487370i \(-0.162044\pi\)
\(422\) −16.1803 −0.787647
\(423\) 10.2361i 0.497695i
\(424\) 15.1246i 0.734516i
\(425\) 0 0
\(426\) 7.70820 0.373464
\(427\) 11.7082i 0.566600i
\(428\) 0.472136 0.0228216
\(429\) 2.23607 0.107958
\(430\) 0 0
\(431\) 14.3607 0.691730 0.345865 0.938284i \(-0.387586\pi\)
0.345865 + 0.938284i \(0.387586\pi\)
\(432\) 4.85410i 0.233543i
\(433\) 14.2918i 0.686820i −0.939186 0.343410i \(-0.888418\pi\)
0.939186 0.343410i \(-0.111582\pi\)
\(434\) 49.5967 2.38072
\(435\) 0 0
\(436\) −3.09017 −0.147992
\(437\) 9.52786i 0.455780i
\(438\) 12.4721i 0.595942i
\(439\) 13.2918 0.634383 0.317191 0.948362i \(-0.397260\pi\)
0.317191 + 0.948362i \(0.397260\pi\)
\(440\) 0 0
\(441\) −10.9443 −0.521156
\(442\) −4.85410 −0.230886
\(443\) 9.65248i 0.458603i 0.973355 + 0.229301i \(0.0736442\pi\)
−0.973355 + 0.229301i \(0.926356\pi\)
\(444\) 2.94427 0.139729
\(445\) 0 0
\(446\) 20.5623i 0.973653i
\(447\) 5.52786i 0.261459i
\(448\) −17.9443 −0.847787
\(449\) 18.8885i 0.891405i −0.895181 0.445703i \(-0.852954\pi\)
0.895181 0.445703i \(-0.147046\pi\)
\(450\) 0 0
\(451\) 10.0000 0.470882
\(452\) 2.79837i 0.131624i
\(453\) 12.0000i 0.563809i
\(454\) 14.6525i 0.687675i
\(455\) 0 0
\(456\) 17.2361i 0.807153i
\(457\) −6.41641 −0.300147 −0.150073 0.988675i \(-0.547951\pi\)
−0.150073 + 0.988675i \(0.547951\pi\)
\(458\) −35.8885 −1.67696
\(459\) −3.00000 −0.140028
\(460\) 0 0
\(461\) 18.9443i 0.882323i 0.897428 + 0.441161i \(0.145433\pi\)
−0.897428 + 0.441161i \(0.854567\pi\)
\(462\) 15.3262i 0.713041i
\(463\) −0.708204 −0.0329130 −0.0164565 0.999865i \(-0.505239\pi\)
−0.0164565 + 0.999865i \(0.505239\pi\)
\(464\) 21.7082 + 14.5623i 1.00778 + 0.676038i
\(465\) 0 0
\(466\) 16.9443i 0.784928i
\(467\) 13.5279i 0.625995i −0.949754 0.312997i \(-0.898667\pi\)
0.949754 0.312997i \(-0.101333\pi\)
\(468\) 0.618034 0.0285686
\(469\) −19.9443 −0.920941
\(470\) 0 0
\(471\) −2.00000 −0.0921551
\(472\) 20.0000i 0.920575i
\(473\) −1.05573 −0.0485424
\(474\) 3.70820i 0.170323i
\(475\) 0 0
\(476\) 7.85410i 0.359992i
\(477\) 6.76393 0.309699
\(478\) 42.3607i 1.93753i
\(479\) 10.4721i 0.478484i −0.970960 0.239242i \(-0.923101\pi\)
0.970960 0.239242i \(-0.0768989\pi\)
\(480\) 0 0
\(481\) 4.76393i 0.217217i
\(482\) 4.85410i 0.221098i
\(483\) 5.23607i 0.238249i
\(484\) −3.70820 −0.168555
\(485\) 0 0
\(486\) 1.61803 0.0733955
\(487\) −20.3607 −0.922630 −0.461315 0.887236i \(-0.652622\pi\)
−0.461315 + 0.887236i \(0.652622\pi\)
\(488\) −6.18034 −0.279771
\(489\) −7.41641 −0.335382
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 2.76393 0.124608
\(493\) −9.00000 + 13.4164i −0.405340 + 0.604245i
\(494\) −12.4721 −0.561148
\(495\) 0 0
\(496\) 35.1246i 1.57714i
\(497\) 20.1803 0.905212
\(498\) 9.70820 0.435035
\(499\) 21.1803 0.948162 0.474081 0.880481i \(-0.342780\pi\)
0.474081 + 0.880481i \(0.342780\pi\)
\(500\) 0 0
\(501\) 15.8885i 0.709848i
\(502\) 19.7984 0.883645
\(503\) 25.1803i 1.12274i 0.827566 + 0.561368i \(0.189725\pi\)
−0.827566 + 0.561368i \(0.810275\pi\)
\(504\) 9.47214i 0.421922i
\(505\) 0 0
\(506\) 4.47214 0.198811
\(507\) 12.0000i 0.532939i
\(508\) 7.70820i 0.341996i
\(509\) −26.8328 −1.18934 −0.594672 0.803969i \(-0.702718\pi\)
−0.594672 + 0.803969i \(0.702718\pi\)
\(510\) 0 0
\(511\) 32.6525i 1.44446i
\(512\) 5.29180i 0.233867i
\(513\) −7.70820 −0.340326
\(514\) 42.8328i 1.88927i
\(515\) 0 0
\(516\) −0.291796 −0.0128456
\(517\) −22.8885 −1.00664
\(518\) 32.6525 1.43467
\(519\) 6.00000i 0.263371i
\(520\) 0 0
\(521\) −3.52786 −0.154559 −0.0772793 0.997009i \(-0.524623\pi\)
−0.0772793 + 0.997009i \(0.524623\pi\)
\(522\) 4.85410 7.23607i 0.212458 0.316714i
\(523\) −33.0689 −1.44600 −0.723001 0.690847i \(-0.757238\pi\)
−0.723001 + 0.690847i \(0.757238\pi\)
\(524\) 7.56231i 0.330361i
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 21.7082 0.945624
\(528\) −10.8541 −0.472364
\(529\) −21.4721 −0.933571
\(530\) 0 0
\(531\) −8.94427 −0.388148
\(532\) 20.1803i 0.874929i
\(533\) 4.47214i 0.193710i
\(534\) 0.0901699i 0.00390204i
\(535\) 0 0
\(536\) 10.5279i 0.454734i
\(537\) 17.2361i 0.743791i
\(538\) 34.5623 1.49009
\(539\) 24.4721i 1.05409i
\(540\) 0 0
\(541\) 10.6525i 0.457986i 0.973428 + 0.228993i \(0.0735432\pi\)
−0.973428 + 0.228993i \(0.926457\pi\)
\(542\) 37.8885 1.62745
\(543\) 20.4164i 0.876152i
\(544\) 10.1459 0.435002
\(545\) 0 0
\(546\) 6.85410 0.293328
\(547\) 6.34752 0.271401 0.135700 0.990750i \(-0.456672\pi\)
0.135700 + 0.990750i \(0.456672\pi\)
\(548\) 2.18034i 0.0931395i
\(549\) 2.76393i 0.117962i
\(550\) 0 0
\(551\) −23.1246 + 34.4721i −0.985142 + 1.46856i
\(552\) −2.76393 −0.117641
\(553\) 9.70820i 0.412835i
\(554\) 10.3820i 0.441087i
\(555\) 0 0
\(556\) 4.14590 0.175825
\(557\) 16.4721 0.697947 0.348973 0.937133i \(-0.386530\pi\)
0.348973 + 0.937133i \(0.386530\pi\)
\(558\) −11.7082 −0.495648
\(559\) 0.472136i 0.0199692i
\(560\) 0 0
\(561\) 6.70820i 0.283221i
\(562\) 2.29180i 0.0966736i
\(563\) 13.0689i 0.550788i 0.961331 + 0.275394i \(0.0888083\pi\)
−0.961331 + 0.275394i \(0.911192\pi\)
\(564\) −6.32624 −0.266383
\(565\) 0 0
\(566\) 22.4721i 0.944574i
\(567\) 4.23607 0.177898
\(568\) 10.6525i 0.446968i
\(569\) 21.0000i 0.880366i −0.897908 0.440183i \(-0.854914\pi\)
0.897908 0.440183i \(-0.145086\pi\)
\(570\) 0 0
\(571\) 18.8328 0.788129 0.394064 0.919083i \(-0.371069\pi\)
0.394064 + 0.919083i \(0.371069\pi\)
\(572\) 1.38197i 0.0577829i
\(573\) 8.94427 0.373652
\(574\) 30.6525 1.27941
\(575\) 0 0
\(576\) 4.23607 0.176503
\(577\) 24.8328i 1.03380i −0.856045 0.516902i \(-0.827085\pi\)
0.856045 0.516902i \(-0.172915\pi\)
\(578\) 12.9443i 0.538411i
\(579\) −17.4164 −0.723801
\(580\) 0 0
\(581\) 25.4164 1.05445
\(582\) 29.4164i 1.21935i
\(583\) 15.1246i 0.626397i
\(584\) −17.2361 −0.713234
\(585\) 0 0
\(586\) −48.4508 −2.00149
\(587\) 0.944272 0.0389743 0.0194871 0.999810i \(-0.493797\pi\)
0.0194871 + 0.999810i \(0.493797\pi\)
\(588\) 6.76393i 0.278940i
\(589\) 55.7771 2.29825
\(590\) 0 0
\(591\) 3.70820i 0.152535i
\(592\) 23.1246i 0.950416i
\(593\) −40.1803 −1.65001 −0.825004 0.565126i \(-0.808827\pi\)
−0.825004 + 0.565126i \(0.808827\pi\)
\(594\) 3.61803i 0.148450i
\(595\) 0 0
\(596\) 3.41641 0.139942
\(597\) 20.1246i 0.823646i
\(598\) 2.00000i 0.0817861i
\(599\) 1.76393i 0.0720723i 0.999350 + 0.0360362i \(0.0114731\pi\)
−0.999350 + 0.0360362i \(0.988527\pi\)
\(600\) 0 0
\(601\) 18.5410i 0.756304i 0.925744 + 0.378152i \(0.123440\pi\)
−0.925744 + 0.378152i \(0.876560\pi\)
\(602\) −3.23607 −0.131892
\(603\) 4.70820 0.191733
\(604\) −7.41641 −0.301769
\(605\) 0 0
\(606\) 6.38197i 0.259250i
\(607\) 25.4164i 1.03162i 0.856703 + 0.515810i \(0.172509\pi\)
−0.856703 + 0.515810i \(0.827491\pi\)
\(608\) 26.0689 1.05723
\(609\) 12.7082 18.9443i 0.514962 0.767661i
\(610\) 0 0
\(611\) 10.2361i 0.414107i
\(612\) 1.85410i 0.0749476i
\(613\) 24.4164 0.986169 0.493085 0.869981i \(-0.335869\pi\)
0.493085 + 0.869981i \(0.335869\pi\)
\(614\) 45.5967 1.84013
\(615\) 0 0
\(616\) −21.1803 −0.853380
\(617\) 19.8885i 0.800683i 0.916366 + 0.400341i \(0.131108\pi\)
−0.916366 + 0.400341i \(0.868892\pi\)
\(618\) 31.4164 1.26375
\(619\) 32.5410i 1.30793i 0.756523 + 0.653967i \(0.226896\pi\)
−0.756523 + 0.653967i \(0.773104\pi\)
\(620\) 0 0
\(621\) 1.23607i 0.0496017i
\(622\) 25.3262 1.01549
\(623\) 0.236068i 0.00945786i
\(624\) 4.85410i 0.194320i
\(625\) 0 0
\(626\) 8.85410i 0.353881i
\(627\) 17.2361i 0.688342i
\(628\) 1.23607i 0.0493245i
\(629\) 14.2918 0.569851
\(630\) 0 0
\(631\) 28.7082 1.14286 0.571428 0.820652i \(-0.306390\pi\)
0.571428 + 0.820652i \(0.306390\pi\)
\(632\) 5.12461 0.203846
\(633\) 10.0000 0.397464
\(634\) 38.5623 1.53150
\(635\) 0 0
\(636\) 4.18034i 0.165761i
\(637\) 10.9443 0.433628
\(638\) 16.1803 + 10.8541i 0.640586 + 0.429718i
\(639\) −4.76393 −0.188458
\(640\) 0 0
\(641\) 19.4721i 0.769103i 0.923104 + 0.384552i \(0.125644\pi\)
−0.923104 + 0.384552i \(0.874356\pi\)
\(642\) −1.23607 −0.0487837
\(643\) −0.708204 −0.0279288 −0.0139644 0.999902i \(-0.504445\pi\)
−0.0139644 + 0.999902i \(0.504445\pi\)
\(644\) 3.23607 0.127519
\(645\) 0 0
\(646\) 37.4164i 1.47213i
\(647\) −17.5967 −0.691800 −0.345900 0.938271i \(-0.612426\pi\)
−0.345900 + 0.938271i \(0.612426\pi\)
\(648\) 2.23607i 0.0878410i
\(649\) 20.0000i 0.785069i
\(650\) 0 0
\(651\) −30.6525 −1.20137
\(652\) 4.58359i 0.179507i
\(653\) 32.3050i 1.26419i −0.774891 0.632095i \(-0.782195\pi\)
0.774891 0.632095i \(-0.217805\pi\)
\(654\) 8.09017 0.316351
\(655\) 0 0
\(656\) 21.7082i 0.847563i
\(657\) 7.70820i 0.300726i
\(658\) −70.1591 −2.73508
\(659\) 26.2361i 1.02201i 0.859577 + 0.511006i \(0.170727\pi\)
−0.859577 + 0.511006i \(0.829273\pi\)
\(660\) 0 0
\(661\) −29.8328 −1.16036 −0.580181 0.814488i \(-0.697018\pi\)
−0.580181 + 0.814488i \(0.697018\pi\)
\(662\) 13.4164 0.521443
\(663\) 3.00000 0.116510
\(664\) 13.4164i 0.520658i
\(665\) 0 0
\(666\) −7.70820 −0.298687
\(667\) 5.52786 + 3.70820i 0.214040 + 0.143582i
\(668\) 9.81966 0.379934
\(669\) 12.7082i 0.491328i
\(670\) 0 0
\(671\) −6.18034 −0.238589
\(672\) −14.3262 −0.552647
\(673\) 4.41641 0.170240 0.0851200 0.996371i \(-0.472873\pi\)
0.0851200 + 0.996371i \(0.472873\pi\)
\(674\) 31.1246 1.19888
\(675\) 0 0
\(676\) 7.41641 0.285246
\(677\) 18.0557i 0.693938i 0.937877 + 0.346969i \(0.112789\pi\)
−0.937877 + 0.346969i \(0.887211\pi\)
\(678\) 7.32624i 0.281362i
\(679\) 77.0132i 2.95549i
\(680\) 0 0
\(681\) 9.05573i 0.347016i
\(682\) 26.1803i 1.00250i
\(683\) −32.9443 −1.26058 −0.630289 0.776361i \(-0.717064\pi\)
−0.630289 + 0.776361i \(0.717064\pi\)
\(684\) 4.76393i 0.182153i
\(685\) 0 0
\(686\) 27.0344i 1.03218i
\(687\) 22.1803 0.846233
\(688\) 2.29180i 0.0873739i
\(689\) −6.76393 −0.257685
\(690\) 0 0
\(691\) −30.2361 −1.15023 −0.575117 0.818071i \(-0.695044\pi\)
−0.575117 + 0.818071i \(0.695044\pi\)
\(692\) −3.70820 −0.140965
\(693\) 9.47214i 0.359817i
\(694\) 36.6525i 1.39131i
\(695\) 0 0
\(696\) −10.0000 6.70820i −0.379049 0.254274i
\(697\) 13.4164 0.508183
\(698\) 16.1803i 0.612435i
\(699\) 10.4721i 0.396093i
\(700\) 0 0
\(701\) 8.18034 0.308967 0.154484 0.987995i \(-0.450629\pi\)
0.154484 + 0.987995i \(0.450629\pi\)
\(702\) −1.61803 −0.0610688
\(703\) 36.7214 1.38497
\(704\) 9.47214i 0.356995i
\(705\) 0 0
\(706\) 7.52786i 0.283315i
\(707\) 16.7082i 0.628377i
\(708\) 5.52786i 0.207750i
\(709\) −13.4164 −0.503864 −0.251932 0.967745i \(-0.581066\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(710\) 0 0
\(711\) 2.29180i 0.0859491i
\(712\) 0.124612 0.00467002
\(713\) 8.94427i 0.334966i
\(714\) 20.5623i 0.769525i
\(715\) 0 0
\(716\) 10.6525 0.398102
\(717\) 26.1803i 0.977723i
\(718\) 40.9443 1.52803
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 82.2492 3.06312
\(722\) 65.3951i 2.43375i
\(723\) 3.00000i 0.111571i
\(724\) −12.6180 −0.468946
\(725\) 0 0
\(726\) 9.70820 0.360305
\(727\) 5.81966i 0.215839i 0.994160 + 0.107920i \(0.0344189\pi\)
−0.994160 + 0.107920i \(0.965581\pi\)
\(728\) 9.47214i 0.351061i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −1.41641 −0.0523877
\(732\) −1.70820 −0.0631370
\(733\) 8.47214i 0.312925i 0.987684 + 0.156463i \(0.0500091\pi\)
−0.987684 + 0.156463i \(0.949991\pi\)
\(734\) −29.1246 −1.07501
\(735\) 0 0
\(736\) 4.18034i 0.154089i
\(737\) 10.5279i 0.387799i
\(738\) −7.23607 −0.266363
\(739\) 12.1803i 0.448061i −0.974582 0.224031i \(-0.928078\pi\)
0.974582 0.224031i \(-0.0719215\pi\)
\(740\) 0 0
\(741\) 7.70820 0.283168
\(742\) 46.3607i 1.70195i
\(743\) 43.0689i 1.58004i 0.613078 + 0.790022i \(0.289931\pi\)
−0.613078 + 0.790022i \(0.710069\pi\)
\(744\) 16.1803i 0.593200i
\(745\) 0 0
\(746\) 6.29180i 0.230359i
\(747\) −6.00000 −0.219529
\(748\) 4.14590 0.151589
\(749\) −3.23607 −0.118243
\(750\) 0 0
\(751\) 26.8328i 0.979143i −0.871963 0.489572i \(-0.837153\pi\)
0.871963 0.489572i \(-0.162847\pi\)
\(752\) 49.6869i 1.81190i
\(753\) −12.2361 −0.445907
\(754\) −4.85410 + 7.23607i −0.176776 + 0.263522i
\(755\) 0 0
\(756\) 2.61803i 0.0952170i
\(757\) 38.0000i 1.38113i −0.723269 0.690567i \(-0.757361\pi\)
0.723269 0.690567i \(-0.242639\pi\)
\(758\) −23.1246 −0.839924
\(759\) −2.76393 −0.100324
\(760\) 0 0
\(761\) 2.65248 0.0961522 0.0480761 0.998844i \(-0.484691\pi\)
0.0480761 + 0.998844i \(0.484691\pi\)
\(762\) 20.1803i 0.731057i
\(763\) 21.1803 0.766780
\(764\) 5.52786i 0.199991i
\(765\) 0 0
\(766\) 8.65248i 0.312627i
\(767\) 8.94427 0.322959
\(768\) 13.5623i 0.489388i
\(769\) 40.1803i 1.44894i 0.689306 + 0.724470i \(0.257915\pi\)
−0.689306 + 0.724470i \(0.742085\pi\)
\(770\) 0 0
\(771\) 26.4721i 0.953371i
\(772\) 10.7639i 0.387402i
\(773\) 31.8885i 1.14695i 0.819223 + 0.573476i \(0.194405\pi\)
−0.819223 + 0.573476i \(0.805595\pi\)
\(774\) 0.763932 0.0274590
\(775\) 0 0
\(776\) 40.6525 1.45934
\(777\) −20.1803 −0.723966
\(778\) 21.7984 0.781510
\(779\) 34.4721 1.23509
\(780\) 0 0
\(781\) 10.6525i 0.381176i
\(782\) 6.00000 0.214560
\(783\) −3.00000 + 4.47214i −0.107211 + 0.159821i
\(784\) −53.1246 −1.89731
\(785\) 0 0
\(786\) 19.7984i 0.706185i
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) −2.29180 −0.0816419
\(789\) 4.94427 0.176021
\(790\) 0 0
\(791\) 19.1803i 0.681974i
\(792\) 5.00000 0.177667
\(793\) 2.76393i 0.0981501i
\(794\) 11.2361i 0.398753i
\(795\) 0 0
\(796\) 12.4377 0.440842
\(797\) 44.8328i 1.58806i −0.607879 0.794030i \(-0.707979\pi\)
0.607879 0.794030i \(-0.292021\pi\)
\(798\) 52.8328i 1.87026i
\(799\) −30.7082 −1.08638
\(800\) 0 0
\(801\) 0.0557281i 0.00196906i
\(802\) 54.5410i 1.92591i
\(803\) −17.2361 −0.608248
\(804\) 2.90983i 0.102622i
\(805\) 0 0
\(806\) 11.7082 0.412404
\(807\) −21.3607 −0.751932
\(808\) 8.81966 0.310275
\(809\) 43.3607i 1.52448i −0.647294 0.762240i \(-0.724100\pi\)
0.647294 0.762240i \(-0.275900\pi\)
\(810\) 0 0
\(811\) 46.5967 1.63623 0.818117 0.575052i \(-0.195018\pi\)
0.818117 + 0.575052i \(0.195018\pi\)
\(812\) 11.7082 + 7.85410i 0.410877 + 0.275625i
\(813\) −23.4164 −0.821249
\(814\) 17.2361i 0.604124i
\(815\) 0 0
\(816\) −14.5623 −0.509783
\(817\) −3.63932 −0.127324
\(818\) 17.1246 0.598748
\(819\) −4.23607 −0.148020
\(820\) 0 0
\(821\) −12.4721 −0.435281 −0.217640 0.976029i \(-0.569836\pi\)
−0.217640 + 0.976029i \(0.569836\pi\)
\(822\) 5.70820i 0.199096i
\(823\) 26.3607i 0.918876i 0.888210 + 0.459438i \(0.151949\pi\)
−0.888210 + 0.459438i \(0.848051\pi\)
\(824\) 43.4164i 1.51248i
\(825\) 0 0
\(826\) 61.3050i 2.13307i
\(827\) 29.8885i 1.03933i 0.854371 + 0.519663i \(0.173943\pi\)
−0.854371 + 0.519663i \(0.826057\pi\)
\(828\) −0.763932 −0.0265485
\(829\) 27.3050i 0.948340i −0.880433 0.474170i \(-0.842748\pi\)
0.880433 0.474170i \(-0.157252\pi\)
\(830\) 0 0
\(831\) 6.41641i 0.222583i
\(832\) −4.23607 −0.146859
\(833\) 32.8328i 1.13759i
\(834\) −10.8541 −0.375847
\(835\) 0 0
\(836\) 10.6525 0.368424
\(837\) 7.23607 0.250115
\(838\) 6.18034i 0.213496i
\(839\) 0.708204i 0.0244499i 0.999925 + 0.0122250i \(0.00389142\pi\)
−0.999925 + 0.0122250i \(0.996109\pi\)
\(840\) 0 0
\(841\) 11.0000 + 26.8328i 0.379310 + 0.925270i
\(842\) −32.3607 −1.11522
\(843\) 1.41641i 0.0487837i
\(844\) 6.18034i 0.212736i
\(845\) 0 0
\(846\) 16.5623 0.569424
\(847\) 25.4164 0.873318
\(848\) 32.8328 1.12748
\(849\) 13.8885i 0.476654i
\(850\) 0 0
\(851\) 5.88854i 0.201857i
\(852\) 2.94427i 0.100869i
\(853\) 45.1935i 1.54740i −0.633555 0.773698i \(-0.718405\pi\)
0.633555 0.773698i \(-0.281595\pi\)
\(854\) −18.9443 −0.648260
\(855\) 0 0
\(856\) 1.70820i 0.0583852i
\(857\) −37.5967 −1.28428 −0.642140 0.766587i \(-0.721953\pi\)
−0.642140 + 0.766587i \(0.721953\pi\)
\(858\) 3.61803i 0.123518i
\(859\) 36.3607i 1.24061i 0.784361 + 0.620305i \(0.212991\pi\)
−0.784361 + 0.620305i \(0.787009\pi\)
\(860\) 0 0
\(861\) −18.9443 −0.645619
\(862\) 23.2361i 0.791424i
\(863\) 46.6525 1.58807 0.794034 0.607873i \(-0.207977\pi\)
0.794034 + 0.607873i \(0.207977\pi\)
\(864\) 3.38197 0.115057
\(865\) 0 0
\(866\) −23.1246 −0.785806
\(867\) 8.00000i 0.271694i
\(868\) 18.9443i 0.643010i
\(869\) 5.12461 0.173841
\(870\) 0 0
\(871\) −4.70820 −0.159531
\(872\) 11.1803i 0.378614i
\(873\) 18.1803i 0.615311i
\(874\) 15.4164 0.521468
\(875\) 0 0
\(876\) −4.76393 −0.160958
\(877\) −32.4721 −1.09651 −0.548253 0.836312i \(-0.684707\pi\)
−0.548253 + 0.836312i \(0.684707\pi\)
\(878\) 21.5066i 0.725812i
\(879\) 29.9443 1.01000
\(880\) 0 0
\(881\) 55.2492i 1.86139i 0.365792 + 0.930697i \(0.380798\pi\)
−0.365792 + 0.930697i \(0.619202\pi\)
\(882\) 17.7082i 0.596266i
\(883\) −34.2492 −1.15258 −0.576289 0.817246i \(-0.695500\pi\)
−0.576289 + 0.817246i \(0.695500\pi\)
\(884\) 1.85410i 0.0623602i
\(885\) 0 0
\(886\) 15.6180 0.524698
\(887\) 17.0689i 0.573117i −0.958063 0.286559i \(-0.907489\pi\)
0.958063 0.286559i \(-0.0925113\pi\)
\(888\) 10.6525i 0.357474i
\(889\) 52.8328i 1.77196i
\(890\) 0 0
\(891\) 2.23607i 0.0749111i
\(892\) −7.85410 −0.262975
\(893\) −78.9017 −2.64034
\(894\) −8.94427 −0.299141
\(895\) 0 0
\(896\) 57.6869i 1.92718i
\(897\) 1.23607i 0.0412711i
\(898\) −30.5623 −1.01988
\(899\) 21.7082 32.3607i 0.724009 1.07929i
\(900\) 0 0
\(901\) 20.2918i 0.676018i
\(902\) 16.1803i 0.538746i
\(903\) 2.00000 0.0665558
\(904\) 10.1246 0.336740
\(905\) 0 0
\(906\) 19.4164 0.645067
\(907\) 26.4721i 0.878993i 0.898244 + 0.439496i \(0.144843\pi\)
−0.898244 + 0.439496i \(0.855157\pi\)
\(908\) 5.59675 0.185735
\(909\) 3.94427i 0.130823i
\(910\) 0 0
\(911\) 51.1803i 1.69568i 0.530252 + 0.847840i \(0.322097\pi\)
−0.530252 + 0.847840i \(0.677903\pi\)
\(912\) −37.4164 −1.23898
\(913\) 13.4164i 0.444018i
\(914\) 10.3820i 0.343405i
\(915\) 0 0
\(916\) 13.7082i 0.452932i
\(917\) 51.8328i 1.71167i
\(918\) 4.85410i 0.160209i
\(919\) −25.6525 −0.846197 −0.423099 0.906084i \(-0.639058\pi\)
−0.423099 + 0.906084i \(0.639058\pi\)
\(920\) 0 0
\(921\) −28.1803 −0.928574
\(922\) 30.6525 1.00949
\(923\) 4.76393 0.156807
\(924\) −5.85410 −0.192586
\(925\) 0 0
\(926\) 1.14590i 0.0376565i
\(927\) −19.4164 −0.637719
\(928\) 10.1459 15.1246i 0.333055 0.496490i
\(929\) −32.3607 −1.06172 −0.530860 0.847460i \(-0.678131\pi\)
−0.530860 + 0.847460i \(0.678131\pi\)
\(930\) 0 0
\(931\) 84.3607i 2.76481i
\(932\) −6.47214 −0.212002
\(933\) −15.6525 −0.512439
\(934\) −21.8885 −0.716215
\(935\) 0 0
\(936\) 2.23607i 0.0730882i
\(937\) −33.0000 −1.07806 −0.539032 0.842286i \(-0.681210\pi\)
−0.539032 + 0.842286i \(0.681210\pi\)
\(938\) 32.2705i 1.05367i
\(939\) 5.47214i 0.178576i
\(940\) 0 0
\(941\) −44.8328 −1.46151 −0.730754 0.682641i \(-0.760831\pi\)
−0.730754 + 0.682641i \(0.760831\pi\)
\(942\) 3.23607i 0.105437i
\(943\) 5.52786i 0.180012i
\(944\) −43.4164 −1.41308
\(945\) 0 0
\(946\) 1.70820i 0.0555385i
\(947\) 16.8197i 0.546566i −0.961934 0.273283i \(-0.911891\pi\)
0.961934 0.273283i \(-0.0881095\pi\)
\(948\) 1.41641 0.0460028
\(949\) 7.70820i 0.250219i
\(950\) 0 0
\(951\) −23.8328 −0.772832
\(952\) −28.4164 −0.920981
\(953\) 59.6656 1.93276 0.966380 0.257119i \(-0.0827733\pi\)
0.966380 + 0.257119i \(0.0827733\pi\)
\(954\) 10.9443i 0.354334i
\(955\) 0 0
\(956\) −16.1803 −0.523310
\(957\) −10.0000 6.70820i −0.323254 0.216845i
\(958\) −16.9443 −0.547445
\(959\) 14.9443i 0.482576i
\(960\) 0 0
\(961\) −21.3607 −0.689054
\(962\) 7.70820 0.248522
\(963\) 0.763932 0.0246174
\(964\) 1.85410 0.0597166
\(965\) 0 0
\(966\) −8.47214 −0.272587
\(967\) 27.1246i 0.872269i 0.899882 + 0.436134i \(0.143653\pi\)
−0.899882 + 0.436134i \(0.856347\pi\)
\(968\) 13.4164i 0.431220i
\(969\) 23.1246i 0.742870i
\(970\) 0 0
\(971\) 16.5836i 0.532193i −0.963946 0.266096i \(-0.914266\pi\)
0.963946 0.266096i \(-0.0857340\pi\)
\(972\) 0.618034i 0.0198234i
\(973\) −28.4164 −0.910988
\(974\) 32.9443i 1.05560i
\(975\) 0 0
\(976\) 13.4164i 0.429449i
\(977\) −51.0132 −1.63206 −0.816028 0.578013i \(-0.803828\pi\)
−0.816028 + 0.578013i \(0.803828\pi\)
\(978\) 12.0000i 0.383718i
\(979\) 0.124612 0.00398261
\(980\) 0 0
\(981\) −5.00000 −0.159638
\(982\) 0 0
\(983\) 13.8885i 0.442976i −0.975163 0.221488i \(-0.928909\pi\)
0.975163 0.221488i \(-0.0710913\pi\)
\(984\) 10.0000i 0.318788i
\(985\) 0 0
\(986\) 21.7082 + 14.5623i 0.691330 + 0.463758i
\(987\) 43.3607 1.38019
\(988\) 4.76393i 0.151561i
\(989\) 0.583592i 0.0185572i
\(990\) 0 0
\(991\) −21.2918 −0.676356 −0.338178 0.941082i \(-0.609811\pi\)
−0.338178 + 0.941082i \(0.609811\pi\)
\(992\) −24.4721 −0.776991
\(993\) −8.29180 −0.263132
\(994\) 32.6525i 1.03567i
\(995\) 0 0
\(996\) 3.70820i 0.117499i
\(997\) 24.5836i 0.778570i −0.921117 0.389285i \(-0.872722\pi\)
0.921117 0.389285i \(-0.127278\pi\)
\(998\) 34.2705i 1.08481i
\(999\) 4.76393 0.150724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.d.e.376.1 4
5.2 odd 4 2175.2.f.b.724.4 4
5.3 odd 4 2175.2.f.a.724.1 4
5.4 even 2 87.2.c.a.28.4 yes 4
15.14 odd 2 261.2.c.b.28.1 4
20.19 odd 2 1392.2.o.i.289.4 4
29.28 even 2 inner 2175.2.d.e.376.4 4
60.59 even 2 4176.2.o.l.289.1 4
145.28 odd 4 2175.2.f.b.724.3 4
145.57 odd 4 2175.2.f.a.724.2 4
145.99 odd 4 2523.2.a.d.1.1 2
145.104 odd 4 2523.2.a.e.1.2 2
145.144 even 2 87.2.c.a.28.1 4
435.104 even 4 7569.2.a.f.1.1 2
435.389 even 4 7569.2.a.n.1.2 2
435.434 odd 2 261.2.c.b.28.4 4
580.579 odd 2 1392.2.o.i.289.2 4
1740.1739 even 2 4176.2.o.l.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.c.a.28.1 4 145.144 even 2
87.2.c.a.28.4 yes 4 5.4 even 2
261.2.c.b.28.1 4 15.14 odd 2
261.2.c.b.28.4 4 435.434 odd 2
1392.2.o.i.289.2 4 580.579 odd 2
1392.2.o.i.289.4 4 20.19 odd 2
2175.2.d.e.376.1 4 1.1 even 1 trivial
2175.2.d.e.376.4 4 29.28 even 2 inner
2175.2.f.a.724.1 4 5.3 odd 4
2175.2.f.a.724.2 4 145.57 odd 4
2175.2.f.b.724.3 4 145.28 odd 4
2175.2.f.b.724.4 4 5.2 odd 4
2523.2.a.d.1.1 2 145.99 odd 4
2523.2.a.e.1.2 2 145.104 odd 4
4176.2.o.l.289.1 4 60.59 even 2
4176.2.o.l.289.2 4 1740.1739 even 2
7569.2.a.f.1.1 2 435.104 even 4
7569.2.a.n.1.2 2 435.389 even 4