Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [22,14,Mod(3,22)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(22, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([8]))
N = Newforms(chi, 14, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("22.3");
S:= CuspForms(chi, 14);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 22 = 2 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 22.c (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(23.5908043694\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −51.7771 | + | 37.6183i | −675.486 | − | 2078.93i | 1265.73 | − | 3895.53i | −36563.1 | − | 26564.6i | 113181. | + | 82230.5i | −161776. | + | 497897.i | 81007.0 | + | 249314.i | −2.57584e6 | + | 1.87146e6i | 2.89245e6 | ||
3.2 | −51.7771 | + | 37.6183i | −630.449 | − | 1940.32i | 1265.73 | − | 3895.53i | 52985.6 | + | 38496.3i | 105634. | + | 76747.8i | 86177.6 | − | 265227.i | 81007.0 | + | 249314.i | −2.07755e6 | + | 1.50943e6i | −4.19160e6 | ||
3.3 | −51.7771 | + | 37.6183i | −365.266 | − | 1124.17i | 1265.73 | − | 3895.53i | −21575.3 | − | 15675.4i | 61201.8 | + | 44465.7i | 145958. | − | 449212.i | 81007.0 | + | 249314.i | 159488. | − | 115875.i | 1.70679e6 | ||
3.4 | −51.7771 | + | 37.6183i | 41.6348 | + | 128.139i | 1265.73 | − | 3895.53i | 2573.60 | + | 1869.83i | −6976.08 | − | 5068.42i | −27076.8 | + | 83333.8i | 81007.0 | + | 249314.i | 1.27515e6 | − | 926449.i | −203593. | ||
3.5 | −51.7771 | + | 37.6183i | 226.298 | + | 696.474i | 1265.73 | − | 3895.53i | 39506.7 | + | 28703.3i | −37917.2 | − | 27548.5i | −100433. | + | 309100.i | 81007.0 | + | 249314.i | 855969. | − | 621898.i | −3.12531e6 | ||
3.6 | −51.7771 | + | 37.6183i | 412.870 | + | 1270.68i | 1265.73 | − | 3895.53i | −41240.7 | − | 29963.1i | −69178.0 | − | 50260.8i | 25390.0 | − | 78142.3i | 81007.0 | + | 249314.i | −154338. | + | 112133.i | 3.26248e6 | ||
3.7 | −51.7771 | + | 37.6183i | 751.070 | + | 2311.56i | 1265.73 | − | 3895.53i | 25138.8 | + | 18264.4i | −125845. | − | 91431.7i | 81934.7 | − | 252169.i | 81007.0 | + | 249314.i | −3.48935e6 | + | 2.53516e6i | −1.98869e6 | ||
5.1 | 19.7771 | + | 60.8676i | −2003.44 | − | 1455.58i | −3313.73 | + | 2407.57i | 12586.7 | − | 38738.0i | 48975.7 | − | 150732.i | 345957. | − | 251352.i | −212079. | − | 154084.i | 1.40237e6 | + | 4.31604e6i | 2.60682e6 | ||
5.2 | 19.7771 | + | 60.8676i | −1229.94 | − | 893.604i | −3313.73 | + | 2407.57i | −7708.37 | + | 23723.9i | 30066.9 | − | 92536.4i | −267598. | + | 194422.i | −212079. | − | 154084.i | 221552. | + | 681866.i | −1.59647e6 | ||
5.3 | 19.7771 | + | 60.8676i | −501.424 | − | 364.306i | −3313.73 | + | 2407.57i | 17458.1 | − | 53730.4i | 12257.7 | − | 37725.4i | −385628. | + | 280175.i | −212079. | − | 154084.i | −373966. | − | 1.15095e6i | 3.61571e6 | ||
5.4 | 19.7771 | + | 60.8676i | −306.982 | − | 223.036i | −3313.73 | + | 2407.57i | −5178.33 | + | 15937.3i | 7504.43 | − | 23096.3i | 291527. | − | 211807.i | −212079. | − | 154084.i | −448180. | − | 1.37936e6i | −1.07248e6 | ||
5.5 | 19.7771 | + | 60.8676i | 697.531 | + | 506.786i | −3313.73 | + | 2407.57i | 7802.80 | − | 24014.5i | −17051.7 | + | 52479.8i | 9628.39 | − | 6995.43i | −212079. | − | 154084.i | −262955. | − | 809293.i | 1.61602e6 | ||
5.6 | 19.7771 | + | 60.8676i | 1193.16 | + | 866.884i | −3313.73 | + | 2407.57i | −16233.3 | + | 49960.9i | −29167.9 | + | 89769.5i | −203084. | + | 147550.i | −212079. | − | 154084.i | 179478. | + | 552378.i | −3.36205e6 | ||
5.7 | 19.7771 | + | 60.8676i | 1766.42 | + | 1283.38i | −3313.73 | + | 2407.57i | 6223.79 | − | 19154.8i | −43181.5 | + | 132899.i | 339891. | − | 246945.i | −212079. | − | 154084.i | 980497. | + | 3.01766e6i | 1.28900e6 | ||
9.1 | 19.7771 | − | 60.8676i | −2003.44 | + | 1455.58i | −3313.73 | − | 2407.57i | 12586.7 | + | 38738.0i | 48975.7 | + | 150732.i | 345957. | + | 251352.i | −212079. | + | 154084.i | 1.40237e6 | − | 4.31604e6i | 2.60682e6 | ||
9.2 | 19.7771 | − | 60.8676i | −1229.94 | + | 893.604i | −3313.73 | − | 2407.57i | −7708.37 | − | 23723.9i | 30066.9 | + | 92536.4i | −267598. | − | 194422.i | −212079. | + | 154084.i | 221552. | − | 681866.i | −1.59647e6 | ||
9.3 | 19.7771 | − | 60.8676i | −501.424 | + | 364.306i | −3313.73 | − | 2407.57i | 17458.1 | + | 53730.4i | 12257.7 | + | 37725.4i | −385628. | − | 280175.i | −212079. | + | 154084.i | −373966. | + | 1.15095e6i | 3.61571e6 | ||
9.4 | 19.7771 | − | 60.8676i | −306.982 | + | 223.036i | −3313.73 | − | 2407.57i | −5178.33 | − | 15937.3i | 7504.43 | + | 23096.3i | 291527. | + | 211807.i | −212079. | + | 154084.i | −448180. | + | 1.37936e6i | −1.07248e6 | ||
9.5 | 19.7771 | − | 60.8676i | 697.531 | − | 506.786i | −3313.73 | − | 2407.57i | 7802.80 | + | 24014.5i | −17051.7 | − | 52479.8i | 9628.39 | + | 6995.43i | −212079. | + | 154084.i | −262955. | + | 809293.i | 1.61602e6 | ||
9.6 | 19.7771 | − | 60.8676i | 1193.16 | − | 866.884i | −3313.73 | − | 2407.57i | −16233.3 | − | 49960.9i | −29167.9 | − | 89769.5i | −203084. | − | 147550.i | −212079. | + | 154084.i | 179478. | − | 552378.i | −3.36205e6 | ||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 22.14.c.b | ✓ | 28 |
11.c | even | 5 | 1 | inner | 22.14.c.b | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
22.14.c.b | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
22.14.c.b | ✓ | 28 | 11.c | even | 5 | 1 | inner |