Properties

Label 220.2.g.a.219.6
Level $220$
Weight $2$
Character 220.219
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(219,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.219");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2342560000.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{4} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 219.6
Root \(0.664066 + 1.24861i\) of defining polynomial
Character \(\chi\) \(=\) 220.219
Dual form 220.2.g.a.219.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.664066 + 1.24861i) q^{2} +(-1.11803 + 1.65831i) q^{4} -2.23607 q^{5} +3.08672i q^{7} +(-2.81303 - 0.294756i) q^{8} -3.00000 q^{9} +(-1.48490 - 2.79197i) q^{10} +3.31662i q^{11} +6.95418 q^{13} +(-3.85410 + 2.04979i) q^{14} +(-1.50000 - 3.70810i) q^{16} +1.64166 q^{17} +(-1.99220 - 3.74582i) q^{18} +(2.50000 - 3.70810i) q^{20} +(-4.14116 + 2.20246i) q^{22} +5.00000 q^{25} +(4.61803 + 8.68304i) q^{26} +(-5.11875 - 3.45106i) q^{28} -6.63325i q^{31} +(3.63386 - 4.33533i) q^{32} +(1.09017 + 2.04979i) q^{34} -6.90212i q^{35} +(3.35410 - 4.97494i) q^{36} +(6.29012 + 0.659094i) q^{40} +13.0756i q^{43} +(-5.50000 - 3.70810i) q^{44} +6.70820 q^{45} -2.52786 q^{49} +(3.32033 + 6.24303i) q^{50} +(-7.77501 + 11.5322i) q^{52} -7.41620i q^{55} +(0.909830 - 8.68304i) q^{56} +14.8324i q^{59} +(8.28232 - 4.40491i) q^{62} -9.26017i q^{63} +(7.82624 + 1.65831i) q^{64} -15.5500 q^{65} +(-1.83543 + 2.72239i) q^{68} +(8.61803 - 4.58346i) q^{70} -14.8324i q^{71} +(8.43908 + 0.884268i) q^{72} +12.2667 q^{73} -10.2375 q^{77} +(3.35410 + 8.29156i) q^{80} +9.00000 q^{81} +0.728677i q^{83} -3.67086 q^{85} +(-16.3262 + 8.68304i) q^{86} +(0.977595 - 9.32975i) q^{88} -13.4164 q^{89} +(4.45469 + 8.37590i) q^{90} +21.4656i q^{91} +(-1.67867 - 3.15631i) q^{98} -9.94987i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} - 4 q^{14} - 12 q^{16} + 20 q^{20} + 40 q^{25} + 28 q^{26} - 36 q^{34} - 44 q^{44} - 56 q^{49} + 52 q^{56} + 60 q^{70} + 72 q^{81} - 68 q^{86}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.664066 + 1.24861i 0.469565 + 0.882898i
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −1.11803 + 1.65831i −0.559017 + 0.829156i
\(5\) −2.23607 −1.00000
\(6\) 0 0
\(7\) 3.08672i 1.16667i 0.812231 + 0.583336i \(0.198253\pi\)
−0.812231 + 0.583336i \(0.801747\pi\)
\(8\) −2.81303 0.294756i −0.994555 0.104212i
\(9\) −3.00000 −1.00000
\(10\) −1.48490 2.79197i −0.469565 0.882898i
\(11\) 3.31662i 1.00000i
\(12\) 0 0
\(13\) 6.95418 1.92874 0.964372 0.264550i \(-0.0852236\pi\)
0.964372 + 0.264550i \(0.0852236\pi\)
\(14\) −3.85410 + 2.04979i −1.03005 + 0.547829i
\(15\) 0 0
\(16\) −1.50000 3.70810i −0.375000 0.927025i
\(17\) 1.64166 0.398161 0.199081 0.979983i \(-0.436204\pi\)
0.199081 + 0.979983i \(0.436204\pi\)
\(18\) −1.99220 3.74582i −0.469565 0.882898i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 2.50000 3.70810i 0.559017 0.829156i
\(21\) 0 0
\(22\) −4.14116 + 2.20246i −0.882898 + 0.469565i
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 4.61803 + 8.68304i 0.905671 + 1.70288i
\(27\) 0 0
\(28\) −5.11875 3.45106i −0.967353 0.652189i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 6.63325i 1.19137i −0.803219 0.595683i \(-0.796881\pi\)
0.803219 0.595683i \(-0.203119\pi\)
\(32\) 3.63386 4.33533i 0.642381 0.766385i
\(33\) 0 0
\(34\) 1.09017 + 2.04979i 0.186963 + 0.351536i
\(35\) 6.90212i 1.16667i
\(36\) 3.35410 4.97494i 0.559017 0.829156i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 6.29012 + 0.659094i 0.994555 + 0.104212i
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 13.0756i 1.99401i 0.0773627 + 0.997003i \(0.475350\pi\)
−0.0773627 + 0.997003i \(0.524650\pi\)
\(44\) −5.50000 3.70810i −0.829156 0.559017i
\(45\) 6.70820 1.00000
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −2.52786 −0.361123
\(50\) 3.32033 + 6.24303i 0.469565 + 0.882898i
\(51\) 0 0
\(52\) −7.77501 + 11.5322i −1.07820 + 1.59923i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 7.41620i 1.00000i
\(56\) 0.909830 8.68304i 0.121581 1.16032i
\(57\) 0 0
\(58\) 0 0
\(59\) 14.8324i 1.93101i 0.260378 + 0.965507i \(0.416153\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 8.28232 4.40491i 1.05186 0.559424i
\(63\) 9.26017i 1.16667i
\(64\) 7.82624 + 1.65831i 0.978280 + 0.207289i
\(65\) −15.5500 −1.92874
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) −1.83543 + 2.72239i −0.222579 + 0.330138i
\(69\) 0 0
\(70\) 8.61803 4.58346i 1.03005 0.547829i
\(71\) 14.8324i 1.76028i −0.474713 0.880141i \(-0.657448\pi\)
0.474713 0.880141i \(-0.342552\pi\)
\(72\) 8.43908 + 0.884268i 0.994555 + 0.104212i
\(73\) 12.2667 1.43571 0.717855 0.696193i \(-0.245124\pi\)
0.717855 + 0.696193i \(0.245124\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.2375 −1.16667
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 3.35410 + 8.29156i 0.375000 + 0.927025i
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0.728677i 0.0799827i 0.999200 + 0.0399913i \(0.0127330\pi\)
−0.999200 + 0.0399913i \(0.987267\pi\)
\(84\) 0 0
\(85\) −3.67086 −0.398161
\(86\) −16.3262 + 8.68304i −1.76050 + 0.936316i
\(87\) 0 0
\(88\) 0.977595 9.32975i 0.104212 0.994555i
\(89\) −13.4164 −1.42214 −0.711068 0.703123i \(-0.751788\pi\)
−0.711068 + 0.703123i \(0.751788\pi\)
\(90\) 4.45469 + 8.37590i 0.469565 + 0.882898i
\(91\) 21.4656i 2.25021i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −1.67867 3.15631i −0.169571 0.318835i
\(99\) 9.94987i 1.00000i
\(100\) −5.59017 + 8.29156i −0.559017 + 0.829156i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −19.5623 2.04979i −1.91824 0.200998i
\(105\) 0 0
\(106\) 0 0
\(107\) 19.2490i 1.86087i −0.366453 0.930436i \(-0.619428\pi\)
0.366453 0.930436i \(-0.380572\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 9.25991 4.92484i 0.882898 0.469565i
\(111\) 0 0
\(112\) 11.4459 4.63009i 1.08153 0.437502i
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −20.8626 −1.92874
\(118\) −18.5198 + 9.84968i −1.70489 + 0.906737i
\(119\) 5.06735i 0.464523i
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 11.0000 + 7.41620i 0.987829 + 0.665994i
\(125\) −11.1803 −1.00000
\(126\) 11.5623 6.14936i 1.03005 0.547829i
\(127\) 16.8910i 1.49883i −0.662100 0.749416i \(-0.730334\pi\)
0.662100 0.749416i \(-0.269666\pi\)
\(128\) 3.12656 + 10.8731i 0.276351 + 0.961057i
\(129\) 0 0
\(130\) −10.3262 19.4159i −0.905671 1.70288i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −4.61803 0.483889i −0.395993 0.0414931i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 11.4459 + 7.71681i 0.967353 + 0.652189i
\(141\) 0 0
\(142\) 18.5198 9.84968i 1.55415 0.826567i
\(143\) 23.0644i 1.92874i
\(144\) 4.50000 + 11.1243i 0.375000 + 0.927025i
\(145\) 0 0
\(146\) 8.14590 + 15.3163i 0.674159 + 1.26758i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −4.92498 −0.398161
\(154\) −6.79837 12.7826i −0.547829 1.03005i
\(155\) 14.8324i 1.19137i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −8.12555 + 9.69409i −0.642381 + 0.766385i
\(161\) 0 0
\(162\) 5.97659 + 11.2375i 0.469565 + 0.882898i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.909830 + 0.483889i −0.0706165 + 0.0375571i
\(167\) 10.7175i 0.829347i 0.909970 + 0.414673i \(0.136104\pi\)
−0.909970 + 0.414673i \(0.863896\pi\)
\(168\) 0 0
\(169\) 35.3607 2.72005
\(170\) −2.43769 4.58346i −0.186963 0.351536i
\(171\) 0 0
\(172\) −21.6834 14.6189i −1.65334 1.11468i
\(173\) 24.1459 1.83578 0.917888 0.396839i \(-0.129893\pi\)
0.917888 + 0.396839i \(0.129893\pi\)
\(174\) 0 0
\(175\) 15.4336i 1.16667i
\(176\) 12.2984 4.97494i 0.927025 0.375000i
\(177\) 0 0
\(178\) −8.90937 16.7518i −0.667786 1.25560i
\(179\) 19.8997i 1.48738i −0.668526 0.743689i \(-0.733075\pi\)
0.668526 0.743689i \(-0.266925\pi\)
\(180\) −7.50000 + 11.1243i −0.559017 + 0.829156i
\(181\) −4.47214 −0.332411 −0.166206 0.986091i \(-0.553152\pi\)
−0.166206 + 0.986091i \(0.553152\pi\)
\(182\) −26.8021 + 14.2546i −1.98671 + 1.05662i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.44477i 0.398161i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.63325i 0.479965i −0.970777 0.239983i \(-0.922858\pi\)
0.970777 0.239983i \(-0.0771417\pi\)
\(192\) 0 0
\(193\) 18.8333 1.35565 0.677827 0.735221i \(-0.262922\pi\)
0.677827 + 0.735221i \(0.262922\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.82624 4.19199i 0.201874 0.299428i
\(197\) 17.5792 1.25247 0.626234 0.779635i \(-0.284595\pi\)
0.626234 + 0.779635i \(0.284595\pi\)
\(198\) 12.4235 6.60737i 0.882898 0.469565i
\(199\) 14.8324i 1.05144i −0.850657 0.525720i \(-0.823796\pi\)
0.850657 0.525720i \(-0.176204\pi\)
\(200\) −14.0651 1.47378i −0.994555 0.104212i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −10.4313 25.7868i −0.723279 1.78799i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 24.0344 12.7826i 1.64296 0.873801i
\(215\) 29.2379i 1.99401i
\(216\) 0 0
\(217\) 20.4750 1.38993
\(218\) 0 0
\(219\) 0 0
\(220\) 12.2984 + 8.29156i 0.829156 + 0.559017i
\(221\) 11.4164 0.767951
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 13.3820 + 11.2167i 0.894120 + 0.749448i
\(225\) −15.0000 −1.00000
\(226\) 0 0
\(227\) 25.4225i 1.68735i 0.536855 + 0.843674i \(0.319612\pi\)
−0.536855 + 0.843674i \(0.680388\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −26.1751 −1.71479 −0.857393 0.514662i \(-0.827917\pi\)
−0.857393 + 0.514662i \(0.827917\pi\)
\(234\) −13.8541 26.0491i −0.905671 1.70288i
\(235\) 0 0
\(236\) −24.5967 16.5831i −1.60111 1.07947i
\(237\) 0 0
\(238\) −6.32713 + 3.36505i −0.410127 + 0.218124i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −7.30472 13.7347i −0.469565 0.882898i
\(243\) 0 0
\(244\) 0 0
\(245\) 5.65248 0.361123
\(246\) 0 0
\(247\) 0 0
\(248\) −1.95519 + 18.6595i −0.124155 + 1.18488i
\(249\) 0 0
\(250\) −7.42448 13.9598i −0.469565 0.882898i
\(251\) 14.8324i 0.936213i 0.883672 + 0.468106i \(0.155064\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 15.3563 + 10.3532i 0.967353 + 0.652189i
\(253\) 0 0
\(254\) 21.0902 11.2167i 1.32331 0.703799i
\(255\) 0 0
\(256\) −11.5000 + 11.1243i −0.718750 + 0.695269i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 17.3855 25.7868i 1.07820 1.59923i
\(261\) 0 0
\(262\) 0 0
\(263\) 4.54408i 0.280200i −0.990137 0.140100i \(-0.955258\pi\)
0.990137 0.140100i \(-0.0447424\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.0000 0.853595 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) −2.46249 6.08744i −0.149310 0.369105i
\(273\) 0 0
\(274\) 0 0
\(275\) 16.5831i 1.00000i
\(276\) 0 0
\(277\) 13.5208 0.812388 0.406194 0.913787i \(-0.366856\pi\)
0.406194 + 0.913787i \(0.366856\pi\)
\(278\) 0 0
\(279\) 19.8997i 1.19137i
\(280\) −2.03444 + 19.4159i −0.121581 + 1.16032i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 26.8798i 1.59784i −0.601438 0.798920i \(-0.705405\pi\)
0.601438 0.798920i \(-0.294595\pi\)
\(284\) 24.5967 + 16.5831i 1.45955 + 0.984027i
\(285\) 0 0
\(286\) −28.7984 + 15.3163i −1.70288 + 0.905671i
\(287\) 0 0
\(288\) −10.9016 + 13.0060i −0.642381 + 0.766385i
\(289\) −14.3050 −0.841468
\(290\) 0 0
\(291\) 0 0
\(292\) −13.7146 + 20.3420i −0.802586 + 1.19043i
\(293\) 0.387543 0.0226405 0.0113203 0.999936i \(-0.496397\pi\)
0.0113203 + 0.999936i \(0.496397\pi\)
\(294\) 0 0
\(295\) 33.1662i 1.93101i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −40.3607 −2.32635
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −3.27051 6.14936i −0.186963 0.351536i
\(307\) 33.0533i 1.88645i 0.332155 + 0.943225i \(0.392224\pi\)
−0.332155 + 0.943225i \(0.607776\pi\)
\(308\) 11.4459 16.9770i 0.652189 0.967353i
\(309\) 0 0
\(310\) −18.5198 + 9.84968i −1.05186 + 0.559424i
\(311\) 14.8324i 0.841068i −0.907277 0.420534i \(-0.861843\pi\)
0.907277 0.420534i \(-0.138157\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 20.7064i 1.16667i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −17.5000 3.70810i −0.978280 0.207289i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −10.0623 + 14.9248i −0.559017 + 0.829156i
\(325\) 34.7709 1.92874
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.63325i 0.364596i 0.983243 + 0.182298i \(0.0583536\pi\)
−0.983243 + 0.182298i \(0.941646\pi\)
\(332\) −1.20837 0.814685i −0.0663181 0.0447117i
\(333\) 0 0
\(334\) −13.3820 + 7.11714i −0.732229 + 0.389432i
\(335\) 0 0
\(336\) 0 0
\(337\) −32.7417 −1.78356 −0.891778 0.452474i \(-0.850541\pi\)
−0.891778 + 0.452474i \(0.850541\pi\)
\(338\) 23.4818 + 44.1516i 1.27724 + 2.40153i
\(339\) 0 0
\(340\) 4.10415 6.08744i 0.222579 0.330138i
\(341\) 22.0000 1.19137
\(342\) 0 0
\(343\) 13.8042i 0.745359i
\(344\) 3.85410 36.7819i 0.207799 1.98315i
\(345\) 0 0
\(346\) 16.0344 + 30.1487i 0.862017 + 1.62080i
\(347\) 11.6182i 0.623699i −0.950132 0.311849i \(-0.899052\pi\)
0.950132 0.311849i \(-0.100948\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −19.2705 + 10.2489i −1.03005 + 0.547829i
\(351\) 0 0
\(352\) 14.3787 + 12.0521i 0.766385 + 0.642381i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 33.1662i 1.76028i
\(356\) 15.0000 22.2486i 0.794998 1.17917i
\(357\) 0 0
\(358\) 24.8469 13.2147i 1.31320 0.698421i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) −18.8704 1.97728i −0.994555 0.104212i
\(361\) −19.0000 −1.00000
\(362\) −2.96979 5.58394i −0.156089 0.293485i
\(363\) 0 0
\(364\) −35.5967 23.9993i −1.86578 1.25791i
\(365\) −27.4292 −1.43571
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −38.0542 −1.97037 −0.985187 0.171484i \(-0.945144\pi\)
−0.985187 + 0.171484i \(0.945144\pi\)
\(374\) −6.79837 + 3.61568i −0.351536 + 0.186963i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 14.8324i 0.761889i 0.924598 + 0.380945i \(0.124401\pi\)
−0.924598 + 0.380945i \(0.875599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 8.28232 4.40491i 0.423760 0.225375i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 22.8918 1.16667
\(386\) 12.5066 + 23.5154i 0.636568 + 1.19690i
\(387\) 39.2267i 1.99401i
\(388\) 0 0
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.11095 + 0.745103i 0.359157 + 0.0376334i
\(393\) 0 0
\(394\) 11.6738 + 21.9495i 0.588116 + 1.10580i
\(395\) 0 0
\(396\) 16.5000 + 11.1243i 0.829156 + 0.559017i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 18.5198 9.84968i 0.928315 0.493720i
\(399\) 0 0
\(400\) −7.50000 18.5405i −0.375000 0.927025i
\(401\) 4.47214 0.223328 0.111664 0.993746i \(-0.464382\pi\)
0.111664 + 0.993746i \(0.464382\pi\)
\(402\) 0 0
\(403\) 46.1288i 2.29784i
\(404\) 0 0
\(405\) −20.1246 −1.00000
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −45.7835 −2.25286
\(414\) 0 0
\(415\) 1.62937i 0.0799827i
\(416\) 25.2705 30.1487i 1.23899 1.47816i
\(417\) 0 0
\(418\) 0 0
\(419\) 19.8997i 0.972166i −0.873913 0.486083i \(-0.838425\pi\)
0.873913 0.486083i \(-0.161575\pi\)
\(420\) 0 0
\(421\) 31.3050 1.52571 0.762855 0.646570i \(-0.223797\pi\)
0.762855 + 0.646570i \(0.223797\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.20830 0.398161
\(426\) 0 0
\(427\) 0 0
\(428\) 31.9209 + 21.5211i 1.54295 + 1.04026i
\(429\) 0 0
\(430\) 36.5066 19.4159i 1.76050 0.936316i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 13.5967 + 25.5652i 0.652665 + 1.22717i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −2.18597 + 20.8620i −0.104212 + 0.994555i
\(441\) 7.58359 0.361123
\(442\) 7.58124 + 14.2546i 0.360603 + 0.678022i
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 30.0000 1.42214
\(446\) 0 0
\(447\) 0 0
\(448\) −5.11875 + 24.1574i −0.241838 + 1.14133i
\(449\) 40.2492 1.89948 0.949739 0.313042i \(-0.101348\pi\)
0.949739 + 0.313042i \(0.101348\pi\)
\(450\) −9.96098 18.7291i −0.469565 0.882898i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −31.7426 + 16.8822i −1.48976 + 0.792320i
\(455\) 47.9986i 2.25021i
\(456\) 0 0
\(457\) −22.1167 −1.03457 −0.517287 0.855812i \(-0.673058\pi\)
−0.517287 + 0.855812i \(0.673058\pi\)
\(458\) 3.98439 + 7.49164i 0.186178 + 0.350061i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −17.3820 32.6824i −0.805204 1.51398i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 23.3250 34.5966i 1.07820 1.59923i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 4.37194 41.7239i 0.201235 1.92050i
\(473\) −43.3668 −1.99401
\(474\) 0 0
\(475\) 0 0
\(476\) −8.40325 5.66547i −0.385162 0.259676i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 12.2984 18.2414i 0.559017 0.829156i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 3.75361 + 7.05772i 0.169571 + 0.318835i
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 22.2486i 1.00000i
\(496\) −24.5967 + 9.94987i −1.10443 + 0.446763i
\(497\) 45.7835 2.05367
\(498\) 0 0
\(499\) 44.4972i 1.99197i −0.0895323 0.995984i \(-0.528537\pi\)
0.0895323 0.995984i \(-0.471463\pi\)
\(500\) 12.5000 18.5405i 0.559017 0.829156i
\(501\) 0 0
\(502\) −18.5198 + 9.84968i −0.826580 + 0.439613i
\(503\) 36.8687i 1.64389i −0.569565 0.821946i \(-0.692888\pi\)
0.569565 0.821946i \(-0.307112\pi\)
\(504\) −2.72949 + 26.0491i −0.121581 + 1.16032i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 28.0105 + 18.8847i 1.24277 + 0.837872i
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) 37.8639i 1.67500i
\(512\) −21.5266 6.97171i −0.951351 0.308109i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 43.7426 + 4.58346i 1.91824 + 0.200998i
\(521\) 22.3607 0.979639 0.489820 0.871824i \(-0.337063\pi\)
0.489820 + 0.871824i \(0.337063\pi\)
\(522\) 0 0
\(523\) 45.4002i 1.98521i 0.121387 + 0.992605i \(0.461266\pi\)
−0.121387 + 0.992605i \(0.538734\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 5.67376 3.01756i 0.247388 0.131572i
\(527\) 10.8895i 0.474356i
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 44.4972i 1.93101i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 43.0421i 1.86087i
\(536\) 0 0
\(537\) 0 0
\(538\) 9.29692 + 17.4805i 0.400819 + 0.753637i
\(539\) 8.38398i 0.361123i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 5.96556 7.11714i 0.255771 0.305145i
\(545\) 0 0
\(546\) 0 0
\(547\) 8.35948i 0.357425i 0.983901 + 0.178713i \(0.0571933\pi\)
−0.983901 + 0.178713i \(0.942807\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −20.7058 + 11.0123i −0.882898 + 0.469565i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 8.97871 + 16.8822i 0.381469 + 0.717255i
\(555\) 0 0
\(556\) 0 0
\(557\) 41.3376 1.75153 0.875764 0.482739i \(-0.160358\pi\)
0.875764 + 0.482739i \(0.160358\pi\)
\(558\) −24.8469 + 13.2147i −1.05186 + 0.559424i
\(559\) 90.9299i 3.84593i
\(560\) −25.5938 + 10.3532i −1.08153 + 0.437502i
\(561\) 0 0
\(562\) 0 0
\(563\) 17.7917i 0.749829i 0.927059 + 0.374915i \(0.122328\pi\)
−0.927059 + 0.374915i \(0.877672\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 33.5623 17.8500i 1.41073 0.750290i
\(567\) 27.7805i 1.16667i
\(568\) −4.37194 + 41.7239i −0.183442 + 1.75070i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) −38.2480 25.7868i −1.59923 1.07820i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −23.4787 4.97494i −0.978280 0.207289i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −9.49943 17.8612i −0.395124 0.742930i
\(579\) 0 0
\(580\) 0 0
\(581\) −2.24922 −0.0933135
\(582\) 0 0
\(583\) 0 0
\(584\) −34.5066 3.61568i −1.42789 0.149618i
\(585\) 46.6501 1.92874
\(586\) 0.257354 + 0.483889i 0.0106312 + 0.0199893i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 41.4116 22.0246i 1.70489 0.906737i
\(591\) 0 0
\(592\) 0 0
\(593\) 36.0250 1.47937 0.739686 0.672953i \(-0.234974\pi\)
0.739686 + 0.672953i \(0.234974\pi\)
\(594\) 0 0
\(595\) 11.3309i 0.464523i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.8997i 0.813082i 0.913633 + 0.406541i \(0.133265\pi\)
−0.913633 + 0.406541i \(0.866735\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −26.8021 50.3946i −1.09237 2.05393i
\(603\) 0 0
\(604\) 0 0
\(605\) 24.5967 1.00000
\(606\) 0 0
\(607\) 24.5218i 0.995308i −0.867376 0.497654i \(-0.834195\pi\)
0.867376 0.497654i \(-0.165805\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 5.50630 8.16716i 0.222579 0.330138i
\(613\) −16.8041 −0.678713 −0.339357 0.940658i \(-0.610209\pi\)
−0.339357 + 0.940658i \(0.610209\pi\)
\(614\) −41.2705 + 21.9495i −1.66554 + 0.885811i
\(615\) 0 0
\(616\) 28.7984 + 3.01756i 1.16032 + 0.121581i
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 46.4327i 1.86629i −0.359501 0.933145i \(-0.617053\pi\)
0.359501 0.933145i \(-0.382947\pi\)
\(620\) −24.5967 16.5831i −0.987829 0.665994i
\(621\) 0 0
\(622\) 18.5198 9.84968i 0.742577 0.394936i
\(623\) 41.4127i 1.65917i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −25.8541 + 13.7504i −1.03005 + 0.547829i
\(631\) 14.8324i 0.590468i −0.955425 0.295234i \(-0.904602\pi\)
0.955425 0.295234i \(-0.0953977\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 37.7694i 1.49883i
\(636\) 0 0
\(637\) −17.5792 −0.696515
\(638\) 0 0
\(639\) 44.4972i 1.76028i
\(640\) −6.99119 24.3130i −0.276351 0.961057i
\(641\) −31.3050 −1.23647 −0.618236 0.785993i \(-0.712152\pi\)
−0.618236 + 0.785993i \(0.712152\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −25.3172 2.65280i −0.994555 0.104212i
\(649\) −49.1935 −1.93101
\(650\) 23.0902 + 43.4152i 0.905671 + 1.70288i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −36.8001 −1.43571
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −42.0000 −1.63361 −0.816805 0.576913i \(-0.804257\pi\)
−0.816805 + 0.576913i \(0.804257\pi\)
\(662\) −8.28232 + 4.40491i −0.321901 + 0.171202i
\(663\) 0 0
\(664\) 0.214782 2.04979i 0.00833515 0.0795472i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −17.7730 11.9826i −0.687658 0.463619i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −19.6084 −0.755850 −0.377925 0.925836i \(-0.623362\pi\)
−0.377925 + 0.925836i \(0.623362\pi\)
\(674\) −21.7426 40.8815i −0.837495 1.57470i
\(675\) 0 0
\(676\) −39.5344 + 58.6391i −1.52056 + 2.25535i
\(677\) 51.9626 1.99709 0.998543 0.0539677i \(-0.0171868\pi\)
0.998543 + 0.0539677i \(0.0171868\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 10.3262 + 1.08201i 0.395993 + 0.0414931i
\(681\) 0 0
\(682\) 14.6094 + 27.4693i 0.559424 + 1.05186i
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −17.2361 + 9.16693i −0.658076 + 0.349995i
\(687\) 0 0
\(688\) 48.4855 19.6134i 1.84849 0.747752i
\(689\) 0 0
\(690\) 0 0
\(691\) 44.4972i 1.69275i −0.532585 0.846376i \(-0.678779\pi\)
0.532585 0.846376i \(-0.321221\pi\)
\(692\) −26.9959 + 40.0414i −1.02623 + 1.52215i
\(693\) 30.7125 1.16667
\(694\) 14.5066 7.71526i 0.550662 0.292867i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −25.5938 17.2553i −0.967353 0.652189i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −5.50000 + 25.9567i −0.207289 + 0.978280i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −4.47214 −0.167955 −0.0839773 0.996468i \(-0.526762\pi\)
−0.0839773 + 0.996468i \(0.526762\pi\)
\(710\) −41.4116 + 22.0246i −1.55415 + 0.826567i
\(711\) 0 0
\(712\) 37.7407 + 3.95457i 1.41439 + 0.148204i
\(713\) 0 0
\(714\) 0 0
\(715\) 51.5736i 1.92874i
\(716\) 33.0000 + 22.2486i 1.23327 + 0.831469i
\(717\) 0 0
\(718\) 0 0
\(719\) 46.4327i 1.73165i 0.500348 + 0.865825i \(0.333206\pi\)
−0.500348 + 0.865825i \(0.666794\pi\)
\(720\) −10.0623 24.8747i −0.375000 0.927025i
\(721\) 0 0
\(722\) −12.6172 23.7235i −0.469565 0.882898i
\(723\) 0 0
\(724\) 5.00000 7.41620i 0.185824 0.275621i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 6.32713 60.3834i 0.234499 2.23796i
\(729\) −27.0000 −1.00000
\(730\) −18.2148 34.2483i −0.674159 1.26758i
\(731\) 21.4656i 0.793936i
\(732\) 0 0
\(733\) 45.3960 1.67674 0.838369 0.545103i \(-0.183509\pi\)
0.838369 + 0.545103i \(0.183509\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.3483i 0.673135i 0.941659 + 0.336567i \(0.109266\pi\)
−0.941659 + 0.336567i \(0.890734\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −25.2705 47.5148i −0.925219 1.73964i
\(747\) 2.18603i 0.0799827i
\(748\) −9.02913 6.08744i −0.330138 0.222579i
\(749\) 59.4164 2.17103
\(750\) 0 0
\(751\) 44.4972i 1.62373i 0.583848 + 0.811863i \(0.301546\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −18.5198 + 9.84968i −0.672670 + 0.357757i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 11.0000 + 7.41620i 0.397966 + 0.268309i
\(765\) 11.0126 0.398161
\(766\) 0 0
\(767\) 103.147i 3.72443i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 15.2016 + 28.5828i 0.547829 + 1.03005i
\(771\) 0 0
\(772\) −21.0563 + 31.2316i −0.757834 + 1.12405i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 48.9787 26.0491i 1.76050 0.936316i
\(775\) 33.1662i 1.19137i
\(776\) 0 0
\(777\) 0 0
\(778\) −17.2657 32.4638i −0.619005 1.16388i
\(779\) 0 0
\(780\) 0 0
\(781\) 49.1935 1.76028
\(782\) 0 0
\(783\) 0 0
\(784\) 3.79180 + 9.37357i 0.135421 + 0.334770i
\(785\) 0 0
\(786\) 0 0
\(787\) 46.8575i 1.67029i −0.550030 0.835145i \(-0.685384\pi\)
0.550030 0.835145i \(-0.314616\pi\)
\(788\) −19.6542 + 29.1519i −0.700151 + 1.03849i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −2.93278 + 27.9893i −0.104212 + 0.994555i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 24.5967 + 16.5831i 0.871809 + 0.587773i
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 18.1693 21.6766i 0.642381 0.766385i
\(801\) 40.2492 1.42214
\(802\) 2.96979 + 5.58394i 0.104867 + 0.197176i
\(803\) 40.6841i 1.43571i
\(804\) 0 0
\(805\) 0 0
\(806\) 57.5967 30.6326i 2.02876 1.07899i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −13.3641 25.1277i −0.469565 0.882898i
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 64.3969i 2.25021i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −30.4033 57.1656i −1.05786 1.98904i
\(827\) 53.0310i 1.84407i 0.387110 + 0.922034i \(0.373473\pi\)
−0.387110 + 0.922034i \(0.626527\pi\)
\(828\) 0 0
\(829\) −22.3607 −0.776619 −0.388309 0.921529i \(-0.626941\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(830\) 2.03444 1.08201i 0.0706165 0.0375571i
\(831\) 0 0
\(832\) 54.4251 + 11.5322i 1.88685 + 0.399807i
\(833\) −4.14989 −0.143785
\(834\) 0 0
\(835\) 23.9651i 0.829347i
\(836\) 0 0
\(837\) 0 0
\(838\) 24.8469 13.2147i 0.858324 0.456496i
\(839\) 14.8324i 0.512071i −0.966667 0.256036i \(-0.917584\pi\)
0.966667 0.256036i \(-0.0824164\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 20.7885 + 39.0876i 0.716420 + 1.34705i
\(843\) 0 0
\(844\) 0 0
\(845\) −79.0689 −2.72005
\(846\) 0 0
\(847\) 33.9540i 1.16667i
\(848\) 0 0
\(849\) 0 0
\(850\) 5.45085 + 10.2489i 0.186963 + 0.351536i
\(851\) 0 0
\(852\) 0 0
\(853\) −55.2459 −1.89158 −0.945792 0.324772i \(-0.894712\pi\)
−0.945792 + 0.324772i \(0.894712\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5.67376 + 54.1480i −0.193925 + 1.85074i
\(857\) 25.4000 0.867647 0.433824 0.900998i \(-0.357164\pi\)
0.433824 + 0.900998i \(0.357164\pi\)
\(858\) 0 0
\(859\) 46.4327i 1.58426i −0.610349 0.792132i \(-0.708971\pi\)
0.610349 0.792132i \(-0.291029\pi\)
\(860\) 48.4855 + 32.6889i 1.65334 + 1.11468i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −53.9918 −1.83578
\(866\) 0 0
\(867\) 0 0
\(868\) −22.8918 + 33.9540i −0.776997 + 1.15247i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 34.5106i 1.16667i
\(876\) 0 0
\(877\) −44.6209 −1.50674 −0.753370 0.657597i \(-0.771573\pi\)
−0.753370 + 0.657597i \(0.771573\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −27.5000 + 11.1243i −0.927025 + 0.375000i
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 5.03600 + 9.46892i 0.169571 + 0.318835i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) −12.7639 + 18.9320i −0.429297 + 0.636751i
\(885\) 0 0
\(886\) 0 0
\(887\) 13.9763i 0.469277i −0.972083 0.234639i \(-0.924609\pi\)
0.972083 0.234639i \(-0.0753906\pi\)
\(888\) 0 0
\(889\) 52.1378 1.74864
\(890\) 19.9220 + 37.4582i 0.667786 + 1.25560i
\(891\) 29.8496i 1.00000i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 44.4972i 1.48738i
\(896\) −33.5623 + 9.65081i −1.12124 + 0.322411i
\(897\) 0 0
\(898\) 26.7281 + 50.2554i 0.891929 + 1.67705i
\(899\) 0 0
\(900\) 16.7705 24.8747i 0.559017 0.829156i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) −42.1584 28.4232i −1.39908 0.943256i
\(909\) 0 0
\(910\) 59.9314 31.8742i 1.98671 1.05662i
\(911\) 59.6992i 1.97792i −0.148168 0.988962i \(-0.547338\pi\)
0.148168 0.988962i \(-0.452662\pi\)
\(912\) 0 0
\(913\) −2.41675 −0.0799827
\(914\) −14.6869 27.6150i −0.485800 0.913423i
\(915\) 0 0
\(916\) −6.70820 + 9.94987i −0.221645 + 0.328753i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 103.147i 3.39513i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14.0000 −0.459325 −0.229663 0.973270i \(-0.573762\pi\)
−0.229663 + 0.973270i \(0.573762\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 29.2646 43.4065i 0.958595 1.42183i
\(933\) 0 0
\(934\) 0 0
\(935\) 12.1749i 0.398161i
\(936\) 58.6869 + 6.14936i 1.91824 + 0.200998i
\(937\) −60.5585 −1.97836 −0.989179 0.146712i \(-0.953131\pi\)
−0.989179 + 0.146712i \(0.953131\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 55.0000 22.2486i 1.79010 0.724130i
\(945\) 0 0
\(946\) −28.7984 54.1480i −0.936316 1.76050i
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 85.3050 2.76912
\(950\) 0 0
\(951\) 0 0
\(952\) 1.49363 14.2546i 0.0484089 0.461994i
\(953\) 33.5168 1.08572 0.542858 0.839825i \(-0.317342\pi\)
0.542858 + 0.839825i \(0.317342\pi\)
\(954\) 0 0
\(955\) 14.8324i 0.479965i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −13.0000 −0.419355
\(962\) 0 0
\(963\) 57.7471i 1.86087i
\(964\) 0 0
\(965\) −42.1126 −1.35565
\(966\) 0 0
\(967\) 61.5625i 1.97972i −0.142063 0.989858i \(-0.545374\pi\)
0.142063 0.989858i \(-0.454626\pi\)
\(968\) 30.9433 + 3.24231i 0.994555 + 0.104212i
\(969\) 0 0
\(970\) 0 0
\(971\) 59.6992i 1.91584i 0.287035 + 0.957920i \(0.407330\pi\)
−0.287035 + 0.957920i \(0.592670\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 44.4972i 1.42214i
\(980\) −6.31966 + 9.37357i −0.201874 + 0.299428i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −39.3084 −1.25247
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −27.7797 + 14.7745i −0.882898 + 0.469565i
\(991\) 6.63325i 0.210712i −0.994435 0.105356i \(-0.966402\pi\)
0.994435 0.105356i \(-0.0335982\pi\)
\(992\) −28.7573 24.1043i −0.913046 0.765312i
\(993\) 0 0
\(994\) 30.4033 + 57.1656i 0.964333 + 1.81318i
\(995\) 33.1662i 1.05144i
\(996\) 0 0
\(997\) −24.9210 −0.789255 −0.394627 0.918841i \(-0.629126\pi\)
−0.394627 + 0.918841i \(0.629126\pi\)
\(998\) 55.5595 29.5490i 1.75870 0.935359i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.g.a.219.6 yes 8
4.3 odd 2 inner 220.2.g.a.219.5 yes 8
5.4 even 2 inner 220.2.g.a.219.3 8
11.10 odd 2 inner 220.2.g.a.219.3 8
20.19 odd 2 inner 220.2.g.a.219.4 yes 8
44.43 even 2 inner 220.2.g.a.219.4 yes 8
55.54 odd 2 CM 220.2.g.a.219.6 yes 8
220.219 even 2 inner 220.2.g.a.219.5 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.g.a.219.3 8 5.4 even 2 inner
220.2.g.a.219.3 8 11.10 odd 2 inner
220.2.g.a.219.4 yes 8 20.19 odd 2 inner
220.2.g.a.219.4 yes 8 44.43 even 2 inner
220.2.g.a.219.5 yes 8 4.3 odd 2 inner
220.2.g.a.219.5 yes 8 220.219 even 2 inner
220.2.g.a.219.6 yes 8 1.1 even 1 trivial
220.2.g.a.219.6 yes 8 55.54 odd 2 CM