Properties

Label 220.2.u.a.17.4
Level $220$
Weight $2$
Character 220.17
Analytic conductor $1.757$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(13,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 15, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.u (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.4
Character \(\chi\) \(=\) 220.17
Dual form 220.2.u.a.13.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.194131 - 0.0307474i) q^{3} +(1.80035 + 1.32618i) q^{5} +(-0.509098 + 3.21432i) q^{7} +(-2.81643 + 0.915113i) q^{9} +(2.95000 + 1.51575i) q^{11} +(2.41910 - 4.74775i) q^{13} +(0.390280 + 0.202097i) q^{15} +(-1.82128 - 3.57446i) q^{17} +(4.43615 + 3.22305i) q^{19} +0.639653i q^{21} +(-2.60297 + 2.60297i) q^{23} +(1.48249 + 4.77517i) q^{25} +(-1.04400 + 0.531947i) q^{27} +(3.79815 - 2.75952i) q^{29} +(-2.52450 - 7.76962i) q^{31} +(0.619293 + 0.203550i) q^{33} +(-5.17932 + 5.11173i) q^{35} +(-11.1573 - 1.76715i) q^{37} +(0.323642 - 0.996068i) q^{39} +(5.80437 - 7.98904i) q^{41} +(-5.17742 - 5.17742i) q^{43} +(-6.28415 - 2.08757i) q^{45} +(-0.104856 - 0.662035i) q^{47} +(-3.41527 - 1.10969i) q^{49} +(-0.463472 - 0.637915i) q^{51} +(5.66778 + 2.88788i) q^{53} +(3.30087 + 6.64111i) q^{55} +(0.960296 + 0.489295i) q^{57} +(4.44597 + 6.11936i) q^{59} +(-7.85138 - 2.55107i) q^{61} +(-1.50763 - 9.51878i) q^{63} +(10.6516 - 5.33943i) q^{65} +(-7.99503 - 7.99503i) q^{67} +(-0.425284 + 0.585353i) q^{69} +(-3.11574 + 9.58925i) q^{71} +(-1.12278 - 0.177831i) q^{73} +(0.434622 + 0.881427i) q^{75} +(-6.37394 + 8.71058i) q^{77} +(1.14340 + 3.51903i) q^{79} +(7.00107 - 5.08658i) q^{81} +(-1.67047 + 0.851148i) q^{83} +(1.46145 - 8.85060i) q^{85} +(0.652493 - 0.652493i) q^{87} +1.02792i q^{89} +(14.0292 + 10.1928i) q^{91} +(-0.728981 - 1.43071i) q^{93} +(3.71226 + 11.6857i) q^{95} +(1.52904 - 3.00091i) q^{97} +(-9.69555 - 1.56941i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{3} + 4 q^{5} + 10 q^{7} - 16 q^{15} + 10 q^{17} + 16 q^{23} - 26 q^{25} - 10 q^{27} + 16 q^{31} + 28 q^{33} - 34 q^{37} - 20 q^{41} - 56 q^{45} - 2 q^{47} - 80 q^{51} + 6 q^{53} - 18 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.194131 0.0307474i 0.112082 0.0177520i −0.100142 0.994973i \(-0.531930\pi\)
0.212223 + 0.977221i \(0.431930\pi\)
\(4\) 0 0
\(5\) 1.80035 + 1.32618i 0.805139 + 0.593086i
\(6\) 0 0
\(7\) −0.509098 + 3.21432i −0.192421 + 1.21490i 0.682592 + 0.730799i \(0.260852\pi\)
−0.875013 + 0.484099i \(0.839148\pi\)
\(8\) 0 0
\(9\) −2.81643 + 0.915113i −0.938809 + 0.305038i
\(10\) 0 0
\(11\) 2.95000 + 1.51575i 0.889459 + 0.457015i
\(12\) 0 0
\(13\) 2.41910 4.74775i 0.670938 1.31679i −0.264872 0.964284i \(-0.585330\pi\)
0.935810 0.352506i \(-0.114670\pi\)
\(14\) 0 0
\(15\) 0.390280 + 0.202097i 0.100770 + 0.0521813i
\(16\) 0 0
\(17\) −1.82128 3.57446i −0.441724 0.866933i −0.999322 0.0368214i \(-0.988277\pi\)
0.557597 0.830111i \(-0.311723\pi\)
\(18\) 0 0
\(19\) 4.43615 + 3.22305i 1.01772 + 0.739418i 0.965815 0.259233i \(-0.0834699\pi\)
0.0519075 + 0.998652i \(0.483470\pi\)
\(20\) 0 0
\(21\) 0.639653i 0.139584i
\(22\) 0 0
\(23\) −2.60297 + 2.60297i −0.542757 + 0.542757i −0.924336 0.381579i \(-0.875380\pi\)
0.381579 + 0.924336i \(0.375380\pi\)
\(24\) 0 0
\(25\) 1.48249 + 4.77517i 0.296498 + 0.955033i
\(26\) 0 0
\(27\) −1.04400 + 0.531947i −0.200919 + 0.102373i
\(28\) 0 0
\(29\) 3.79815 2.75952i 0.705299 0.512430i −0.176354 0.984327i \(-0.556430\pi\)
0.881654 + 0.471897i \(0.156430\pi\)
\(30\) 0 0
\(31\) −2.52450 7.76962i −0.453414 1.39547i −0.872987 0.487744i \(-0.837820\pi\)
0.419573 0.907722i \(-0.362180\pi\)
\(32\) 0 0
\(33\) 0.619293 + 0.203550i 0.107805 + 0.0354334i
\(34\) 0 0
\(35\) −5.17932 + 5.11173i −0.875465 + 0.864040i
\(36\) 0 0
\(37\) −11.1573 1.76715i −1.83426 0.290518i −0.859063 0.511870i \(-0.828953\pi\)
−0.975194 + 0.221353i \(0.928953\pi\)
\(38\) 0 0
\(39\) 0.323642 0.996068i 0.0518242 0.159499i
\(40\) 0 0
\(41\) 5.80437 7.98904i 0.906491 1.24768i −0.0618598 0.998085i \(-0.519703\pi\)
0.968351 0.249593i \(-0.0802968\pi\)
\(42\) 0 0
\(43\) −5.17742 5.17742i −0.789549 0.789549i 0.191871 0.981420i \(-0.438544\pi\)
−0.981420 + 0.191871i \(0.938544\pi\)
\(44\) 0 0
\(45\) −6.28415 2.08757i −0.936786 0.311197i
\(46\) 0 0
\(47\) −0.104856 0.662035i −0.0152948 0.0965678i 0.978860 0.204531i \(-0.0655670\pi\)
−0.994155 + 0.107964i \(0.965567\pi\)
\(48\) 0 0
\(49\) −3.41527 1.10969i −0.487895 0.158527i
\(50\) 0 0
\(51\) −0.463472 0.637915i −0.0648991 0.0893259i
\(52\) 0 0
\(53\) 5.66778 + 2.88788i 0.778530 + 0.396681i 0.797638 0.603137i \(-0.206083\pi\)
−0.0191079 + 0.999817i \(0.506083\pi\)
\(54\) 0 0
\(55\) 3.30087 + 6.64111i 0.445089 + 0.895486i
\(56\) 0 0
\(57\) 0.960296 + 0.489295i 0.127194 + 0.0648087i
\(58\) 0 0
\(59\) 4.44597 + 6.11936i 0.578817 + 0.796673i 0.993565 0.113263i \(-0.0361304\pi\)
−0.414748 + 0.909936i \(0.636130\pi\)
\(60\) 0 0
\(61\) −7.85138 2.55107i −1.00527 0.326631i −0.240298 0.970699i \(-0.577245\pi\)
−0.764968 + 0.644068i \(0.777245\pi\)
\(62\) 0 0
\(63\) −1.50763 9.51878i −0.189943 1.19925i
\(64\) 0 0
\(65\) 10.6516 5.33943i 1.32117 0.662275i
\(66\) 0 0
\(67\) −7.99503 7.99503i −0.976748 0.976748i 0.0229875 0.999736i \(-0.492682\pi\)
−0.999736 + 0.0229875i \(0.992682\pi\)
\(68\) 0 0
\(69\) −0.425284 + 0.585353i −0.0511982 + 0.0704682i
\(70\) 0 0
\(71\) −3.11574 + 9.58925i −0.369770 + 1.13803i 0.577170 + 0.816624i \(0.304157\pi\)
−0.946940 + 0.321410i \(0.895843\pi\)
\(72\) 0 0
\(73\) −1.12278 0.177831i −0.131412 0.0208136i 0.0903820 0.995907i \(-0.471191\pi\)
−0.221794 + 0.975094i \(0.571191\pi\)
\(74\) 0 0
\(75\) 0.434622 + 0.881427i 0.0501858 + 0.101778i
\(76\) 0 0
\(77\) −6.37394 + 8.71058i −0.726378 + 0.992662i
\(78\) 0 0
\(79\) 1.14340 + 3.51903i 0.128643 + 0.395922i 0.994547 0.104288i \(-0.0332563\pi\)
−0.865904 + 0.500210i \(0.833256\pi\)
\(80\) 0 0
\(81\) 7.00107 5.08658i 0.777897 0.565175i
\(82\) 0 0
\(83\) −1.67047 + 0.851148i −0.183358 + 0.0934256i −0.543260 0.839565i \(-0.682810\pi\)
0.359902 + 0.932990i \(0.382810\pi\)
\(84\) 0 0
\(85\) 1.46145 8.85060i 0.158516 0.959982i
\(86\) 0 0
\(87\) 0.652493 0.652493i 0.0699546 0.0699546i
\(88\) 0 0
\(89\) 1.02792i 0.108959i 0.998515 + 0.0544795i \(0.0173500\pi\)
−0.998515 + 0.0544795i \(0.982650\pi\)
\(90\) 0 0
\(91\) 14.0292 + 10.1928i 1.47066 + 1.06850i
\(92\) 0 0
\(93\) −0.728981 1.43071i −0.0755918 0.148357i
\(94\) 0 0
\(95\) 3.71226 + 11.6857i 0.380869 + 1.19893i
\(96\) 0 0
\(97\) 1.52904 3.00091i 0.155250 0.304696i −0.800260 0.599653i \(-0.795305\pi\)
0.955511 + 0.294957i \(0.0953053\pi\)
\(98\) 0 0
\(99\) −9.69555 1.56941i −0.974439 0.157732i
\(100\) 0 0
\(101\) 0.104950 0.0341002i 0.0104429 0.00339310i −0.303791 0.952739i \(-0.598252\pi\)
0.314234 + 0.949346i \(0.398252\pi\)
\(102\) 0 0
\(103\) 0.0161183 0.101767i 0.00158818 0.0100274i −0.986882 0.161446i \(-0.948384\pi\)
0.988470 + 0.151419i \(0.0483842\pi\)
\(104\) 0 0
\(105\) −0.848296 + 1.15160i −0.0827852 + 0.112384i
\(106\) 0 0
\(107\) 15.7562 2.49553i 1.52321 0.241252i 0.661999 0.749505i \(-0.269708\pi\)
0.861208 + 0.508252i \(0.169708\pi\)
\(108\) 0 0
\(109\) −0.774585 −0.0741918 −0.0370959 0.999312i \(-0.511811\pi\)
−0.0370959 + 0.999312i \(0.511811\pi\)
\(110\) 0 0
\(111\) −2.22033 −0.210744
\(112\) 0 0
\(113\) 8.69124 1.37656i 0.817603 0.129496i 0.266395 0.963864i \(-0.414167\pi\)
0.551207 + 0.834368i \(0.314167\pi\)
\(114\) 0 0
\(115\) −8.13826 + 1.23424i −0.758897 + 0.115093i
\(116\) 0 0
\(117\) −2.46849 + 15.5855i −0.228212 + 1.44088i
\(118\) 0 0
\(119\) 12.4166 4.03441i 1.13823 0.369834i
\(120\) 0 0
\(121\) 6.40501 + 8.94292i 0.582274 + 0.812993i
\(122\) 0 0
\(123\) 0.881169 1.72939i 0.0794523 0.155934i
\(124\) 0 0
\(125\) −3.66373 + 10.5630i −0.327694 + 0.944784i
\(126\) 0 0
\(127\) 1.86542 + 3.66110i 0.165529 + 0.324870i 0.958840 0.283948i \(-0.0916442\pi\)
−0.793310 + 0.608817i \(0.791644\pi\)
\(128\) 0 0
\(129\) −1.16429 0.845907i −0.102510 0.0744780i
\(130\) 0 0
\(131\) 8.42076i 0.735725i −0.929880 0.367863i \(-0.880090\pi\)
0.929880 0.367863i \(-0.119910\pi\)
\(132\) 0 0
\(133\) −12.6183 + 12.6183i −1.09415 + 1.09415i
\(134\) 0 0
\(135\) −2.58503 0.426850i −0.222484 0.0367374i
\(136\) 0 0
\(137\) 3.28044 1.67147i 0.280267 0.142803i −0.308207 0.951319i \(-0.599729\pi\)
0.588474 + 0.808516i \(0.299729\pi\)
\(138\) 0 0
\(139\) 2.79197 2.02848i 0.236811 0.172054i −0.463050 0.886332i \(-0.653245\pi\)
0.699862 + 0.714279i \(0.253245\pi\)
\(140\) 0 0
\(141\) −0.0407117 0.125298i −0.00342854 0.0105520i
\(142\) 0 0
\(143\) 14.3327 10.3391i 1.19856 0.864601i
\(144\) 0 0
\(145\) 10.4976 + 0.0689452i 0.871779 + 0.00572559i
\(146\) 0 0
\(147\) −0.697130 0.110415i −0.0574983 0.00910684i
\(148\) 0 0
\(149\) −1.65385 + 5.09001i −0.135488 + 0.416990i −0.995666 0.0930049i \(-0.970353\pi\)
0.860177 + 0.509995i \(0.170353\pi\)
\(150\) 0 0
\(151\) 2.65450 3.65361i 0.216020 0.297326i −0.687231 0.726439i \(-0.741174\pi\)
0.903251 + 0.429113i \(0.141174\pi\)
\(152\) 0 0
\(153\) 8.40052 + 8.40052i 0.679142 + 0.679142i
\(154\) 0 0
\(155\) 5.75894 17.3360i 0.462569 1.39246i
\(156\) 0 0
\(157\) 0.910804 + 5.75059i 0.0726901 + 0.458947i 0.997006 + 0.0773197i \(0.0246362\pi\)
−0.924316 + 0.381627i \(0.875364\pi\)
\(158\) 0 0
\(159\) 1.18909 + 0.386359i 0.0943009 + 0.0306402i
\(160\) 0 0
\(161\) −7.04161 9.69195i −0.554957 0.763832i
\(162\) 0 0
\(163\) −11.0851 5.64816i −0.868255 0.442398i −0.0376700 0.999290i \(-0.511994\pi\)
−0.830585 + 0.556892i \(0.811994\pi\)
\(164\) 0 0
\(165\) 0.844998 + 1.18775i 0.0657830 + 0.0924665i
\(166\) 0 0
\(167\) −5.59615 2.85138i −0.433043 0.220646i 0.223861 0.974621i \(-0.428134\pi\)
−0.656903 + 0.753975i \(0.728134\pi\)
\(168\) 0 0
\(169\) −9.04789 12.4534i −0.695992 0.957950i
\(170\) 0 0
\(171\) −15.4435 5.01791i −1.18100 0.383729i
\(172\) 0 0
\(173\) 2.37792 + 15.0136i 0.180790 + 1.14146i 0.896493 + 0.443058i \(0.146106\pi\)
−0.715703 + 0.698405i \(0.753894\pi\)
\(174\) 0 0
\(175\) −16.1036 + 2.33417i −1.21732 + 0.176447i
\(176\) 0 0
\(177\) 1.05126 + 1.05126i 0.0790173 + 0.0790173i
\(178\) 0 0
\(179\) −4.23571 + 5.82995i −0.316592 + 0.435751i −0.937423 0.348193i \(-0.886795\pi\)
0.620831 + 0.783944i \(0.286795\pi\)
\(180\) 0 0
\(181\) −3.59279 + 11.0575i −0.267050 + 0.821896i 0.724164 + 0.689628i \(0.242226\pi\)
−0.991214 + 0.132268i \(0.957774\pi\)
\(182\) 0 0
\(183\) −1.60264 0.253833i −0.118470 0.0187639i
\(184\) 0 0
\(185\) −17.7435 17.9781i −1.30453 1.32178i
\(186\) 0 0
\(187\) 0.0452105 13.3052i 0.00330612 0.972976i
\(188\) 0 0
\(189\) −1.17835 3.62658i −0.0857121 0.263795i
\(190\) 0 0
\(191\) −13.0699 + 9.49582i −0.945703 + 0.687094i −0.949787 0.312898i \(-0.898700\pi\)
0.00408349 + 0.999992i \(0.498700\pi\)
\(192\) 0 0
\(193\) −7.18138 + 3.65910i −0.516927 + 0.263388i −0.692934 0.721001i \(-0.743682\pi\)
0.176006 + 0.984389i \(0.443682\pi\)
\(194\) 0 0
\(195\) 1.90363 1.36406i 0.136322 0.0976824i
\(196\) 0 0
\(197\) 7.99806 7.99806i 0.569838 0.569838i −0.362245 0.932083i \(-0.617990\pi\)
0.932083 + 0.362245i \(0.117990\pi\)
\(198\) 0 0
\(199\) 7.97776i 0.565529i −0.959189 0.282764i \(-0.908749\pi\)
0.959189 0.282764i \(-0.0912514\pi\)
\(200\) 0 0
\(201\) −1.79791 1.30626i −0.126815 0.0921365i
\(202\) 0 0
\(203\) 6.93634 + 13.6133i 0.486836 + 0.955469i
\(204\) 0 0
\(205\) 21.0448 6.68538i 1.46983 0.466927i
\(206\) 0 0
\(207\) 4.94907 9.71309i 0.343984 0.675107i
\(208\) 0 0
\(209\) 8.20131 + 16.2321i 0.567296 + 1.12280i
\(210\) 0 0
\(211\) 4.86478 1.58066i 0.334905 0.108817i −0.136737 0.990607i \(-0.543661\pi\)
0.471642 + 0.881790i \(0.343661\pi\)
\(212\) 0 0
\(213\) −0.310018 + 1.95737i −0.0212421 + 0.134117i
\(214\) 0 0
\(215\) −2.45495 16.1873i −0.167427 1.10397i
\(216\) 0 0
\(217\) 26.2593 4.15906i 1.78259 0.282335i
\(218\) 0 0
\(219\) −0.223435 −0.0150984
\(220\) 0 0
\(221\) −21.3765 −1.43794
\(222\) 0 0
\(223\) −9.55172 + 1.51284i −0.639631 + 0.101308i −0.467822 0.883823i \(-0.654961\pi\)
−0.171809 + 0.985130i \(0.554961\pi\)
\(224\) 0 0
\(225\) −8.54515 12.0923i −0.569677 0.806151i
\(226\) 0 0
\(227\) −1.91526 + 12.0925i −0.127120 + 0.802607i 0.838927 + 0.544243i \(0.183183\pi\)
−0.966048 + 0.258363i \(0.916817\pi\)
\(228\) 0 0
\(229\) −9.71729 + 3.15734i −0.642137 + 0.208643i −0.611944 0.790901i \(-0.709612\pi\)
−0.0301930 + 0.999544i \(0.509612\pi\)
\(230\) 0 0
\(231\) −0.969554 + 1.88698i −0.0637920 + 0.124154i
\(232\) 0 0
\(233\) −0.650378 + 1.27644i −0.0426077 + 0.0836222i −0.911329 0.411679i \(-0.864942\pi\)
0.868721 + 0.495301i \(0.164942\pi\)
\(234\) 0 0
\(235\) 0.689201 1.33095i 0.0449585 0.0868217i
\(236\) 0 0
\(237\) 0.330171 + 0.647998i 0.0214469 + 0.0420920i
\(238\) 0 0
\(239\) −22.4095 16.2815i −1.44955 1.05316i −0.985936 0.167125i \(-0.946552\pi\)
−0.463617 0.886036i \(-0.653448\pi\)
\(240\) 0 0
\(241\) 6.65481i 0.428674i 0.976760 + 0.214337i \(0.0687591\pi\)
−0.976760 + 0.214337i \(0.931241\pi\)
\(242\) 0 0
\(243\) 3.68831 3.68831i 0.236605 0.236605i
\(244\) 0 0
\(245\) −4.67701 6.52708i −0.298804 0.417000i
\(246\) 0 0
\(247\) 26.0337 13.2648i 1.65649 0.844022i
\(248\) 0 0
\(249\) −0.298120 + 0.216597i −0.0188926 + 0.0137263i
\(250\) 0 0
\(251\) 7.36460 + 22.6659i 0.464849 + 1.43066i 0.859172 + 0.511687i \(0.170979\pi\)
−0.394323 + 0.918972i \(0.629021\pi\)
\(252\) 0 0
\(253\) −11.6242 + 3.73332i −0.730808 + 0.234712i
\(254\) 0 0
\(255\) 0.0115796 1.76311i 0.000725143 0.110411i
\(256\) 0 0
\(257\) 4.32895 + 0.685639i 0.270033 + 0.0427690i 0.289982 0.957032i \(-0.406351\pi\)
−0.0199496 + 0.999801i \(0.506351\pi\)
\(258\) 0 0
\(259\) 11.3604 34.9636i 0.705899 2.17253i
\(260\) 0 0
\(261\) −8.17195 + 11.2477i −0.505831 + 0.696217i
\(262\) 0 0
\(263\) −12.6404 12.6404i −0.779442 0.779442i 0.200294 0.979736i \(-0.435810\pi\)
−0.979736 + 0.200294i \(0.935810\pi\)
\(264\) 0 0
\(265\) 6.37412 + 12.7157i 0.391559 + 0.781119i
\(266\) 0 0
\(267\) 0.0316058 + 0.199551i 0.00193424 + 0.0122123i
\(268\) 0 0
\(269\) −19.6421 6.38211i −1.19760 0.389124i −0.358723 0.933444i \(-0.616788\pi\)
−0.838878 + 0.544320i \(0.816788\pi\)
\(270\) 0 0
\(271\) −3.67960 5.06454i −0.223520 0.307649i 0.682499 0.730887i \(-0.260893\pi\)
−0.906018 + 0.423238i \(0.860893\pi\)
\(272\) 0 0
\(273\) 3.03692 + 1.54739i 0.183802 + 0.0936520i
\(274\) 0 0
\(275\) −2.86460 + 16.3338i −0.172742 + 0.984967i
\(276\) 0 0
\(277\) −20.8758 10.6368i −1.25431 0.639102i −0.304672 0.952457i \(-0.598547\pi\)
−0.949636 + 0.313356i \(0.898547\pi\)
\(278\) 0 0
\(279\) 14.2202 + 19.5724i 0.851339 + 1.17177i
\(280\) 0 0
\(281\) 9.65989 + 3.13869i 0.576261 + 0.187238i 0.582625 0.812741i \(-0.302026\pi\)
−0.00636405 + 0.999980i \(0.502026\pi\)
\(282\) 0 0
\(283\) 2.06021 + 13.0076i 0.122467 + 0.773225i 0.970111 + 0.242660i \(0.0780200\pi\)
−0.847645 + 0.530564i \(0.821980\pi\)
\(284\) 0 0
\(285\) 1.07997 + 2.15443i 0.0639720 + 0.127617i
\(286\) 0 0
\(287\) 22.7243 + 22.7243i 1.34137 + 1.34137i
\(288\) 0 0
\(289\) 0.532661 0.733145i 0.0313330 0.0431262i
\(290\) 0 0
\(291\) 0.204564 0.629584i 0.0119918 0.0369069i
\(292\) 0 0
\(293\) −7.75437 1.22817i −0.453015 0.0717506i −0.0742424 0.997240i \(-0.523654\pi\)
−0.378773 + 0.925490i \(0.623654\pi\)
\(294\) 0 0
\(295\) −0.111080 + 16.9131i −0.00646735 + 0.984720i
\(296\) 0 0
\(297\) −3.88611 0.0132048i −0.225495 0.000766221i
\(298\) 0 0
\(299\) 6.06141 + 18.6551i 0.350541 + 1.07885i
\(300\) 0 0
\(301\) 19.2777 14.0061i 1.11115 0.807296i
\(302\) 0 0
\(303\) 0.0193255 0.00984686i 0.00111022 0.000565687i
\(304\) 0 0
\(305\) −10.7520 15.0052i −0.615659 0.859193i
\(306\) 0 0
\(307\) −6.65300 + 6.65300i −0.379707 + 0.379707i −0.870996 0.491289i \(-0.836526\pi\)
0.491289 + 0.870996i \(0.336526\pi\)
\(308\) 0 0
\(309\) 0.0202518i 0.00115208i
\(310\) 0 0
\(311\) 6.20361 + 4.50719i 0.351774 + 0.255579i 0.749613 0.661876i \(-0.230240\pi\)
−0.397839 + 0.917455i \(0.630240\pi\)
\(312\) 0 0
\(313\) 14.3750 + 28.2126i 0.812526 + 1.59467i 0.803941 + 0.594709i \(0.202733\pi\)
0.00858451 + 0.999963i \(0.497267\pi\)
\(314\) 0 0
\(315\) 9.90937 19.1365i 0.558330 1.07822i
\(316\) 0 0
\(317\) −3.88557 + 7.62587i −0.218236 + 0.428311i −0.974005 0.226526i \(-0.927263\pi\)
0.755769 + 0.654838i \(0.227263\pi\)
\(318\) 0 0
\(319\) 15.3873 2.38354i 0.861523 0.133453i
\(320\) 0 0
\(321\) 2.98204 0.968923i 0.166441 0.0540800i
\(322\) 0 0
\(323\) 3.44120 21.7269i 0.191473 1.20892i
\(324\) 0 0
\(325\) 26.2576 + 4.51310i 1.45651 + 0.250342i
\(326\) 0 0
\(327\) −0.150371 + 0.0238165i −0.00831555 + 0.00131705i
\(328\) 0 0
\(329\) 2.18137 0.120263
\(330\) 0 0
\(331\) −16.9166 −0.929820 −0.464910 0.885358i \(-0.653913\pi\)
−0.464910 + 0.885358i \(0.653913\pi\)
\(332\) 0 0
\(333\) 33.0410 5.23318i 1.81064 0.286777i
\(334\) 0 0
\(335\) −3.79097 24.9967i −0.207123 1.36571i
\(336\) 0 0
\(337\) −2.68338 + 16.9422i −0.146173 + 0.922901i 0.800178 + 0.599762i \(0.204738\pi\)
−0.946352 + 0.323139i \(0.895262\pi\)
\(338\) 0 0
\(339\) 1.64492 0.534466i 0.0893396 0.0290282i
\(340\) 0 0
\(341\) 4.32951 26.7469i 0.234456 1.44843i
\(342\) 0 0
\(343\) −5.03663 + 9.88494i −0.271952 + 0.533736i
\(344\) 0 0
\(345\) −1.54194 + 0.489835i −0.0830153 + 0.0263718i
\(346\) 0 0
\(347\) 11.4038 + 22.3812i 0.612187 + 1.20149i 0.964122 + 0.265461i \(0.0855240\pi\)
−0.351934 + 0.936025i \(0.614476\pi\)
\(348\) 0 0
\(349\) 4.91014 + 3.56743i 0.262834 + 0.190960i 0.711395 0.702792i \(-0.248064\pi\)
−0.448562 + 0.893752i \(0.648064\pi\)
\(350\) 0 0
\(351\) 6.24351i 0.333254i
\(352\) 0 0
\(353\) 17.8379 17.8379i 0.949413 0.949413i −0.0493677 0.998781i \(-0.515721\pi\)
0.998781 + 0.0493677i \(0.0157206\pi\)
\(354\) 0 0
\(355\) −18.3265 + 13.1319i −0.972668 + 0.696971i
\(356\) 0 0
\(357\) 2.28641 1.16499i 0.121010 0.0616576i
\(358\) 0 0
\(359\) −7.65250 + 5.55987i −0.403883 + 0.293439i −0.771121 0.636689i \(-0.780304\pi\)
0.367237 + 0.930127i \(0.380304\pi\)
\(360\) 0 0
\(361\) 3.42003 + 10.5258i 0.180002 + 0.553989i
\(362\) 0 0
\(363\) 1.51838 + 1.53916i 0.0796945 + 0.0807852i
\(364\) 0 0
\(365\) −1.78556 1.80917i −0.0934605 0.0946963i
\(366\) 0 0
\(367\) −17.3544 2.74867i −0.905895 0.143480i −0.313932 0.949445i \(-0.601647\pi\)
−0.591962 + 0.805966i \(0.701647\pi\)
\(368\) 0 0
\(369\) −9.03673 + 27.8122i −0.470434 + 1.44785i
\(370\) 0 0
\(371\) −12.1680 + 16.7478i −0.631732 + 0.869505i
\(372\) 0 0
\(373\) 10.6232 + 10.6232i 0.550050 + 0.550050i 0.926455 0.376405i \(-0.122840\pi\)
−0.376405 + 0.926455i \(0.622840\pi\)
\(374\) 0 0
\(375\) −0.386461 + 2.16326i −0.0199568 + 0.111710i
\(376\) 0 0
\(377\) −3.91340 24.7082i −0.201550 1.27254i
\(378\) 0 0
\(379\) −0.421294 0.136887i −0.0216404 0.00703139i 0.298177 0.954511i \(-0.403621\pi\)
−0.319817 + 0.947479i \(0.603621\pi\)
\(380\) 0 0
\(381\) 0.474706 + 0.653377i 0.0243199 + 0.0334735i
\(382\) 0 0
\(383\) 12.2989 + 6.26658i 0.628442 + 0.320207i 0.739044 0.673658i \(-0.235278\pi\)
−0.110602 + 0.993865i \(0.535278\pi\)
\(384\) 0 0
\(385\) −23.0271 + 7.22906i −1.17357 + 0.368427i
\(386\) 0 0
\(387\) 19.3197 + 9.84390i 0.982078 + 0.500394i
\(388\) 0 0
\(389\) −10.4451 14.3765i −0.529588 0.728915i 0.457480 0.889220i \(-0.348752\pi\)
−0.987068 + 0.160305i \(0.948752\pi\)
\(390\) 0 0
\(391\) 14.0449 + 4.56348i 0.710283 + 0.230785i
\(392\) 0 0
\(393\) −0.258916 1.63473i −0.0130606 0.0824614i
\(394\) 0 0
\(395\) −2.60835 + 7.85183i −0.131240 + 0.395069i
\(396\) 0 0
\(397\) 21.6616 + 21.6616i 1.08717 + 1.08717i 0.995819 + 0.0913478i \(0.0291175\pi\)
0.0913478 + 0.995819i \(0.470883\pi\)
\(398\) 0 0
\(399\) −2.06164 + 2.83760i −0.103211 + 0.142058i
\(400\) 0 0
\(401\) 1.10249 3.39310i 0.0550555 0.169444i −0.919748 0.392510i \(-0.871607\pi\)
0.974803 + 0.223067i \(0.0716068\pi\)
\(402\) 0 0
\(403\) −42.9953 6.80978i −2.14175 0.339219i
\(404\) 0 0
\(405\) 19.3501 + 0.127085i 0.961513 + 0.00631493i
\(406\) 0 0
\(407\) −30.2356 22.1248i −1.49872 1.09669i
\(408\) 0 0
\(409\) −7.83663 24.1187i −0.387497 1.19259i −0.934653 0.355561i \(-0.884290\pi\)
0.547156 0.837030i \(-0.315710\pi\)
\(410\) 0 0
\(411\) 0.585443 0.425349i 0.0288778 0.0209809i
\(412\) 0 0
\(413\) −21.9330 + 11.1754i −1.07925 + 0.549907i
\(414\) 0 0
\(415\) −4.13620 0.682986i −0.203038 0.0335265i
\(416\) 0 0
\(417\) 0.479638 0.479638i 0.0234880 0.0234880i
\(418\) 0 0
\(419\) 18.4358i 0.900648i −0.892865 0.450324i \(-0.851308\pi\)
0.892865 0.450324i \(-0.148692\pi\)
\(420\) 0 0
\(421\) −21.0494 15.2933i −1.02589 0.745351i −0.0584058 0.998293i \(-0.518602\pi\)
−0.967481 + 0.252942i \(0.918602\pi\)
\(422\) 0 0
\(423\) 0.901157 + 1.76862i 0.0438157 + 0.0859932i
\(424\) 0 0
\(425\) 14.3686 13.9960i 0.696979 0.678906i
\(426\) 0 0
\(427\) 12.1971 23.9381i 0.590258 1.15845i
\(428\) 0 0
\(429\) 2.46453 2.44784i 0.118989 0.118183i
\(430\) 0 0
\(431\) 8.15236 2.64886i 0.392685 0.127591i −0.106018 0.994364i \(-0.533810\pi\)
0.498703 + 0.866773i \(0.333810\pi\)
\(432\) 0 0
\(433\) 3.37639 21.3177i 0.162259 1.02446i −0.763351 0.645983i \(-0.776447\pi\)
0.925610 0.378478i \(-0.123553\pi\)
\(434\) 0 0
\(435\) 2.04004 0.309390i 0.0978122 0.0148341i
\(436\) 0 0
\(437\) −19.9367 + 3.15766i −0.953700 + 0.151051i
\(438\) 0 0
\(439\) 12.2003 0.582288 0.291144 0.956679i \(-0.405964\pi\)
0.291144 + 0.956679i \(0.405964\pi\)
\(440\) 0 0
\(441\) 10.6343 0.506397
\(442\) 0 0
\(443\) −10.9493 + 1.73420i −0.520218 + 0.0823944i −0.411021 0.911626i \(-0.634828\pi\)
−0.109197 + 0.994020i \(0.534828\pi\)
\(444\) 0 0
\(445\) −1.36320 + 1.85061i −0.0646221 + 0.0877272i
\(446\) 0 0
\(447\) −0.164559 + 1.03898i −0.00778336 + 0.0491422i
\(448\) 0 0
\(449\) −8.90862 + 2.89459i −0.420424 + 0.136604i −0.511586 0.859232i \(-0.670942\pi\)
0.0911622 + 0.995836i \(0.470942\pi\)
\(450\) 0 0
\(451\) 29.2323 14.7697i 1.37649 0.695478i
\(452\) 0 0
\(453\) 0.402983 0.790899i 0.0189338 0.0371597i
\(454\) 0 0
\(455\) 11.7399 + 36.9559i 0.550377 + 1.73252i
\(456\) 0 0
\(457\) −5.96901 11.7148i −0.279218 0.547997i 0.708222 0.705990i \(-0.249498\pi\)
−0.987440 + 0.157993i \(0.949498\pi\)
\(458\) 0 0
\(459\) 3.80284 + 2.76293i 0.177502 + 0.128962i
\(460\) 0 0
\(461\) 12.4764i 0.581084i −0.956862 0.290542i \(-0.906164\pi\)
0.956862 0.290542i \(-0.0938355\pi\)
\(462\) 0 0
\(463\) 0.334220 0.334220i 0.0155325 0.0155325i −0.699298 0.714830i \(-0.746504\pi\)
0.714830 + 0.699298i \(0.246504\pi\)
\(464\) 0 0
\(465\) 0.584956 3.54253i 0.0271267 0.164281i
\(466\) 0 0
\(467\) −0.919938 + 0.468732i −0.0425697 + 0.0216903i −0.475146 0.879907i \(-0.657605\pi\)
0.432576 + 0.901597i \(0.357605\pi\)
\(468\) 0 0
\(469\) 29.7688 21.6283i 1.37460 0.998703i
\(470\) 0 0
\(471\) 0.353631 + 1.08836i 0.0162945 + 0.0501492i
\(472\) 0 0
\(473\) −7.42572 23.1211i −0.341435 1.06311i
\(474\) 0 0
\(475\) −8.81405 + 25.9615i −0.404416 + 1.19120i
\(476\) 0 0
\(477\) −18.6056 2.94684i −0.851894 0.134927i
\(478\) 0 0
\(479\) −12.2212 + 37.6130i −0.558401 + 1.71858i 0.128388 + 0.991724i \(0.459020\pi\)
−0.686789 + 0.726857i \(0.740980\pi\)
\(480\) 0 0
\(481\) −35.3807 + 48.6974i −1.61322 + 2.22041i
\(482\) 0 0
\(483\) −1.66500 1.66500i −0.0757601 0.0757601i
\(484\) 0 0
\(485\) 6.73254 3.37489i 0.305709 0.153246i
\(486\) 0 0
\(487\) −5.73768 36.2263i −0.259999 1.64157i −0.679399 0.733769i \(-0.737759\pi\)
0.419400 0.907802i \(-0.362241\pi\)
\(488\) 0 0
\(489\) −2.32564 0.755646i −0.105169 0.0341715i
\(490\) 0 0
\(491\) −24.5974 33.8554i −1.11006 1.52787i −0.821322 0.570465i \(-0.806763\pi\)
−0.288742 0.957407i \(-0.593237\pi\)
\(492\) 0 0
\(493\) −16.7813 8.55048i −0.755790 0.385094i
\(494\) 0 0
\(495\) −15.3740 15.6835i −0.691011 0.704922i
\(496\) 0 0
\(497\) −29.2367 14.8968i −1.31144 0.668214i
\(498\) 0 0
\(499\) 25.8822 + 35.6238i 1.15865 + 1.59474i 0.716109 + 0.697989i \(0.245921\pi\)
0.442537 + 0.896750i \(0.354079\pi\)
\(500\) 0 0
\(501\) −1.17406 0.381475i −0.0524531 0.0170431i
\(502\) 0 0
\(503\) 3.05893 + 19.3133i 0.136391 + 0.861137i 0.957093 + 0.289781i \(0.0935825\pi\)
−0.820702 + 0.571356i \(0.806417\pi\)
\(504\) 0 0
\(505\) 0.234169 + 0.0777901i 0.0104204 + 0.00346161i
\(506\) 0 0
\(507\) −2.13939 2.13939i −0.0950135 0.0950135i
\(508\) 0 0
\(509\) 2.50898 3.45331i 0.111208 0.153065i −0.749785 0.661682i \(-0.769843\pi\)
0.860993 + 0.508617i \(0.169843\pi\)
\(510\) 0 0
\(511\) 1.14321 3.51845i 0.0505728 0.155647i
\(512\) 0 0
\(513\) −6.34585 1.00508i −0.280176 0.0443756i
\(514\) 0 0
\(515\) 0.163980 0.161840i 0.00722582 0.00713152i
\(516\) 0 0
\(517\) 0.694154 2.11194i 0.0305288 0.0928830i
\(518\) 0 0
\(519\) 0.923258 + 2.84149i 0.0405265 + 0.124728i
\(520\) 0 0
\(521\) 7.92382 5.75699i 0.347149 0.252218i −0.400523 0.916287i \(-0.631172\pi\)
0.747672 + 0.664068i \(0.231172\pi\)
\(522\) 0 0
\(523\) 26.5041 13.5045i 1.15894 0.590511i 0.234607 0.972090i \(-0.424620\pi\)
0.924336 + 0.381580i \(0.124620\pi\)
\(524\) 0 0
\(525\) −3.05445 + 0.948281i −0.133307 + 0.0413864i
\(526\) 0 0
\(527\) −23.1744 + 23.1744i −1.00949 + 1.00949i
\(528\) 0 0
\(529\) 9.44908i 0.410830i
\(530\) 0 0
\(531\) −18.1217 13.1662i −0.786414 0.571363i
\(532\) 0 0
\(533\) −23.8886 46.8840i −1.03473 2.03077i
\(534\) 0 0
\(535\) 31.6761 + 16.4027i 1.36948 + 0.709151i
\(536\) 0 0
\(537\) −0.643028 + 1.26201i −0.0277487 + 0.0544599i
\(538\) 0 0
\(539\) −8.39303 8.45026i −0.361513 0.363979i
\(540\) 0 0
\(541\) 37.2531 12.1043i 1.60164 0.520404i 0.634126 0.773230i \(-0.281360\pi\)
0.967512 + 0.252826i \(0.0813601\pi\)
\(542\) 0 0
\(543\) −0.357485 + 2.25707i −0.0153412 + 0.0968602i
\(544\) 0 0
\(545\) −1.39452 1.02724i −0.0597347 0.0440021i
\(546\) 0 0
\(547\) −38.7467 + 6.13688i −1.65669 + 0.262394i −0.913545 0.406737i \(-0.866667\pi\)
−0.743144 + 0.669131i \(0.766667\pi\)
\(548\) 0 0
\(549\) 24.4474 1.04339
\(550\) 0 0
\(551\) 25.7432 1.09670
\(552\) 0 0
\(553\) −11.8934 + 1.88373i −0.505759 + 0.0801043i
\(554\) 0 0
\(555\) −3.99736 2.94455i −0.169678 0.124989i
\(556\) 0 0
\(557\) −3.12546 + 19.7334i −0.132430 + 0.836131i 0.828631 + 0.559795i \(0.189120\pi\)
−0.961061 + 0.276336i \(0.910880\pi\)
\(558\) 0 0
\(559\) −37.1058 + 12.0564i −1.56941 + 0.509931i
\(560\) 0 0
\(561\) −0.400325 2.58436i −0.0169017 0.109112i
\(562\) 0 0
\(563\) 13.3788 26.2573i 0.563848 1.10661i −0.416462 0.909153i \(-0.636730\pi\)
0.980311 0.197462i \(-0.0632699\pi\)
\(564\) 0 0
\(565\) 17.4728 + 9.04787i 0.735086 + 0.380647i
\(566\) 0 0
\(567\) 12.7856 + 25.0932i 0.536947 + 1.05382i
\(568\) 0 0
\(569\) −12.5719 9.13401i −0.527041 0.382918i 0.292209 0.956355i \(-0.405610\pi\)
−0.819250 + 0.573437i \(0.805610\pi\)
\(570\) 0 0
\(571\) 0.662428i 0.0277217i −0.999904 0.0138609i \(-0.995588\pi\)
0.999904 0.0138609i \(-0.00441219\pi\)
\(572\) 0 0
\(573\) −2.24530 + 2.24530i −0.0937988 + 0.0937988i
\(574\) 0 0
\(575\) −16.2885 8.57074i −0.679278 0.357425i
\(576\) 0 0
\(577\) 34.6459 17.6530i 1.44233 0.734903i 0.454543 0.890725i \(-0.349803\pi\)
0.987785 + 0.155822i \(0.0498026\pi\)
\(578\) 0 0
\(579\) −1.28162 + 0.931154i −0.0532625 + 0.0386974i
\(580\) 0 0
\(581\) −1.88543 5.80275i −0.0782207 0.240739i
\(582\) 0 0
\(583\) 12.3427 + 17.1102i 0.511181 + 0.708632i
\(584\) 0 0
\(585\) −25.1133 + 24.7855i −1.03831 + 1.02476i
\(586\) 0 0
\(587\) −2.37146 0.375602i −0.0978805 0.0155027i 0.107302 0.994226i \(-0.465779\pi\)
−0.205183 + 0.978724i \(0.565779\pi\)
\(588\) 0 0
\(589\) 13.8428 42.6038i 0.570383 1.75546i
\(590\) 0 0
\(591\) 1.30675 1.79859i 0.0537527 0.0739842i
\(592\) 0 0
\(593\) 31.9523 + 31.9523i 1.31213 + 1.31213i 0.919846 + 0.392280i \(0.128313\pi\)
0.392280 + 0.919846i \(0.371687\pi\)
\(594\) 0 0
\(595\) 27.7046 + 9.20337i 1.13578 + 0.377301i
\(596\) 0 0
\(597\) −0.245295 1.54873i −0.0100393 0.0633855i
\(598\) 0 0
\(599\) 15.0927 + 4.90391i 0.616670 + 0.200368i 0.600661 0.799504i \(-0.294904\pi\)
0.0160087 + 0.999872i \(0.494904\pi\)
\(600\) 0 0
\(601\) −4.48148 6.16823i −0.182803 0.251607i 0.707774 0.706439i \(-0.249699\pi\)
−0.890578 + 0.454831i \(0.849699\pi\)
\(602\) 0 0
\(603\) 29.8338 + 15.2011i 1.21493 + 0.619035i
\(604\) 0 0
\(605\) −0.328688 + 24.5946i −0.0133631 + 0.999911i
\(606\) 0 0
\(607\) −15.8982 8.10055i −0.645289 0.328791i 0.100536 0.994933i \(-0.467944\pi\)
−0.745825 + 0.666142i \(0.767944\pi\)
\(608\) 0 0
\(609\) 1.76514 + 2.42950i 0.0715269 + 0.0984484i
\(610\) 0 0
\(611\) −3.39684 1.10370i −0.137421 0.0446509i
\(612\) 0 0
\(613\) −0.210333 1.32799i −0.00849527 0.0536370i 0.983077 0.183195i \(-0.0586441\pi\)
−0.991572 + 0.129558i \(0.958644\pi\)
\(614\) 0 0
\(615\) 3.87989 1.94491i 0.156452 0.0784265i
\(616\) 0 0
\(617\) 2.91978 + 2.91978i 0.117546 + 0.117546i 0.763433 0.645887i \(-0.223512\pi\)
−0.645887 + 0.763433i \(0.723512\pi\)
\(618\) 0 0
\(619\) −3.15329 + 4.34013i −0.126741 + 0.174445i −0.867672 0.497137i \(-0.834385\pi\)
0.740931 + 0.671582i \(0.234385\pi\)
\(620\) 0 0
\(621\) 1.33287 4.10216i 0.0534863 0.164614i
\(622\) 0 0
\(623\) −3.30405 0.523311i −0.132374 0.0209660i
\(624\) 0 0
\(625\) −20.6044 + 14.1583i −0.824177 + 0.566332i
\(626\) 0 0
\(627\) 2.09123 + 2.89899i 0.0835155 + 0.115774i
\(628\) 0 0
\(629\) 14.0040 + 43.0999i 0.558376 + 1.71851i
\(630\) 0 0
\(631\) 28.0962 20.4131i 1.11849 0.812631i 0.134511 0.990912i \(-0.457054\pi\)
0.983980 + 0.178281i \(0.0570535\pi\)
\(632\) 0 0
\(633\) 0.895805 0.456435i 0.0356050 0.0181417i
\(634\) 0 0
\(635\) −1.49687 + 9.06513i −0.0594014 + 0.359739i
\(636\) 0 0
\(637\) −13.5304 + 13.5304i −0.536093 + 0.536093i
\(638\) 0 0
\(639\) 29.8587i 1.18119i
\(640\) 0 0
\(641\) 37.5802 + 27.3036i 1.48433 + 1.07843i 0.976130 + 0.217189i \(0.0696888\pi\)
0.508200 + 0.861239i \(0.330311\pi\)
\(642\) 0 0
\(643\) 12.1697 + 23.8844i 0.479927 + 0.941911i 0.996332 + 0.0855661i \(0.0272699\pi\)
−0.516405 + 0.856344i \(0.672730\pi\)
\(644\) 0 0
\(645\) −0.974302 3.06699i −0.0383631 0.120762i
\(646\) 0 0
\(647\) −3.58002 + 7.02618i −0.140745 + 0.276228i −0.950610 0.310389i \(-0.899541\pi\)
0.809865 + 0.586617i \(0.199541\pi\)
\(648\) 0 0
\(649\) 3.84022 + 24.7911i 0.150742 + 0.973136i
\(650\) 0 0
\(651\) 4.96987 1.61481i 0.194784 0.0632893i
\(652\) 0 0
\(653\) 2.98154 18.8247i 0.116677 0.736668i −0.858099 0.513483i \(-0.828355\pi\)
0.974776 0.223185i \(-0.0716452\pi\)
\(654\) 0 0
\(655\) 11.1674 15.1603i 0.436348 0.592361i
\(656\) 0 0
\(657\) 3.32497 0.526624i 0.129720 0.0205456i
\(658\) 0 0
\(659\) −42.2869 −1.64726 −0.823632 0.567125i \(-0.808056\pi\)
−0.823632 + 0.567125i \(0.808056\pi\)
\(660\) 0 0
\(661\) 25.4299 0.989109 0.494555 0.869147i \(-0.335331\pi\)
0.494555 + 0.869147i \(0.335331\pi\)
\(662\) 0 0
\(663\) −4.14984 + 0.657271i −0.161167 + 0.0255263i
\(664\) 0 0
\(665\) −39.4516 + 5.98319i −1.52987 + 0.232018i
\(666\) 0 0
\(667\) −2.70353 + 17.0694i −0.104681 + 0.660931i
\(668\) 0 0
\(669\) −1.80777 + 0.587381i −0.0698925 + 0.0227095i
\(670\) 0 0
\(671\) −19.2948 19.4264i −0.744868 0.749947i
\(672\) 0 0
\(673\) 9.74788 19.1313i 0.375753 0.737457i −0.623253 0.782020i \(-0.714189\pi\)
0.999007 + 0.0445627i \(0.0141894\pi\)
\(674\) 0 0
\(675\) −4.08786 4.19669i −0.157342 0.161531i
\(676\) 0 0
\(677\) 19.4189 + 38.1118i 0.746330 + 1.46475i 0.880625 + 0.473813i \(0.157123\pi\)
−0.134296 + 0.990941i \(0.542877\pi\)
\(678\) 0 0
\(679\) 8.86744 + 6.44257i 0.340301 + 0.247243i
\(680\) 0 0
\(681\) 2.40642i 0.0922142i
\(682\) 0 0
\(683\) −7.18559 + 7.18559i −0.274949 + 0.274949i −0.831089 0.556140i \(-0.812282\pi\)
0.556140 + 0.831089i \(0.312282\pi\)
\(684\) 0 0
\(685\) 8.12260 + 1.34123i 0.310348 + 0.0512459i
\(686\) 0 0
\(687\) −1.78935 + 0.911720i −0.0682680 + 0.0347843i
\(688\) 0 0
\(689\) 27.4219 19.9232i 1.04469 0.759012i
\(690\) 0 0
\(691\) 5.61862 + 17.2923i 0.213742 + 0.657831i 0.999240 + 0.0389674i \(0.0124068\pi\)
−0.785498 + 0.618864i \(0.787593\pi\)
\(692\) 0 0
\(693\) 9.98058 30.3656i 0.379131 1.15349i
\(694\) 0 0
\(695\) 7.71664 + 0.0506806i 0.292709 + 0.00192242i
\(696\) 0 0
\(697\) −39.1278 6.19724i −1.48207 0.234737i
\(698\) 0 0
\(699\) −0.0870116 + 0.267794i −0.00329108 + 0.0101289i
\(700\) 0 0
\(701\) 6.05920 8.33978i 0.228853 0.314989i −0.679112 0.734034i \(-0.737635\pi\)
0.907965 + 0.419045i \(0.137635\pi\)
\(702\) 0 0
\(703\) −43.8000 43.8000i −1.65195 1.65195i
\(704\) 0 0
\(705\) 0.0928723 0.279570i 0.00349777 0.0105292i
\(706\) 0 0
\(707\) 0.0561793 + 0.354702i 0.00211284 + 0.0133400i
\(708\) 0 0
\(709\) 31.6001 + 10.2675i 1.18677 + 0.385604i 0.834877 0.550437i \(-0.185539\pi\)
0.351891 + 0.936041i \(0.385539\pi\)
\(710\) 0 0
\(711\) −6.44062 8.86476i −0.241542 0.332454i
\(712\) 0 0
\(713\) 26.7953 + 13.6529i 1.00349 + 0.511305i
\(714\) 0 0
\(715\) 39.5154 + 0.393806i 1.47779 + 0.0147275i
\(716\) 0 0
\(717\) −4.85101 2.47171i −0.181164 0.0923077i
\(718\) 0 0
\(719\) −14.2160 19.5667i −0.530169 0.729715i 0.456987 0.889473i \(-0.348928\pi\)
−0.987156 + 0.159758i \(0.948928\pi\)
\(720\) 0 0
\(721\) 0.318906 + 0.103619i 0.0118767 + 0.00385896i
\(722\) 0 0
\(723\) 0.204618 + 1.29191i 0.00760983 + 0.0480466i
\(724\) 0 0
\(725\) 18.8079 + 14.0459i 0.698508 + 0.521650i
\(726\) 0 0
\(727\) −0.348445 0.348445i −0.0129231 0.0129231i 0.700616 0.713539i \(-0.252909\pi\)
−0.713539 + 0.700616i \(0.752909\pi\)
\(728\) 0 0
\(729\) −14.6571 + 20.1738i −0.542856 + 0.747178i
\(730\) 0 0
\(731\) −9.07694 + 27.9360i −0.335723 + 1.03325i
\(732\) 0 0
\(733\) −40.2060 6.36801i −1.48504 0.235208i −0.639366 0.768902i \(-0.720803\pi\)
−0.845677 + 0.533694i \(0.820803\pi\)
\(734\) 0 0
\(735\) −1.10865 1.12330i −0.0408930 0.0414337i
\(736\) 0 0
\(737\) −11.4669 35.7038i −0.422388 1.31517i
\(738\) 0 0
\(739\) −3.05832 9.41255i −0.112502 0.346246i 0.878916 0.476977i \(-0.158268\pi\)
−0.991418 + 0.130731i \(0.958268\pi\)
\(740\) 0 0
\(741\) 4.64610 3.37559i 0.170679 0.124005i
\(742\) 0 0
\(743\) 24.1015 12.2803i 0.884198 0.450521i 0.0479352 0.998850i \(-0.484736\pi\)
0.836263 + 0.548329i \(0.184736\pi\)
\(744\) 0 0
\(745\) −9.72777 + 6.97049i −0.356398 + 0.255379i
\(746\) 0 0
\(747\) 3.92587 3.92587i 0.143640 0.143640i
\(748\) 0 0
\(749\) 51.9159i 1.89696i
\(750\) 0 0
\(751\) 4.69796 + 3.41327i 0.171431 + 0.124552i 0.670192 0.742187i \(-0.266212\pi\)
−0.498761 + 0.866739i \(0.666212\pi\)
\(752\) 0 0
\(753\) 2.12662 + 4.17372i 0.0774982 + 0.152099i
\(754\) 0 0
\(755\) 9.62437 3.05741i 0.350267 0.111271i
\(756\) 0 0
\(757\) −16.2935 + 31.9778i −0.592197 + 1.16225i 0.379316 + 0.925267i \(0.376159\pi\)
−0.971513 + 0.236985i \(0.923841\pi\)
\(758\) 0 0
\(759\) −2.14184 + 1.08217i −0.0777437 + 0.0392802i
\(760\) 0 0
\(761\) −18.4521 + 5.99545i −0.668888 + 0.217335i −0.623724 0.781645i \(-0.714381\pi\)
−0.0451642 + 0.998980i \(0.514381\pi\)
\(762\) 0 0
\(763\) 0.394340 2.48976i 0.0142761 0.0901354i
\(764\) 0 0
\(765\) 3.98324 + 26.2645i 0.144014 + 0.949594i
\(766\) 0 0
\(767\) 39.8085 6.30504i 1.43740 0.227662i
\(768\) 0 0
\(769\) −23.1799 −0.835887 −0.417944 0.908473i \(-0.637249\pi\)
−0.417944 + 0.908473i \(0.637249\pi\)
\(770\) 0 0
\(771\) 0.861467 0.0310250
\(772\) 0 0
\(773\) −23.3930 + 3.70509i −0.841389 + 0.133263i −0.562229 0.826982i \(-0.690056\pi\)
−0.279160 + 0.960245i \(0.590056\pi\)
\(774\) 0 0
\(775\) 33.3587 23.5733i 1.19828 0.846779i
\(776\) 0 0
\(777\) 1.13036 7.13683i 0.0405516 0.256033i
\(778\) 0 0
\(779\) 51.4981 16.7328i 1.84511 0.599513i
\(780\) 0 0
\(781\) −23.7263 + 23.5656i −0.848994 + 0.843244i
\(782\) 0 0
\(783\) −2.49737 + 4.90137i −0.0892488 + 0.175161i
\(784\) 0 0
\(785\) −5.98656 + 11.5609i −0.213669 + 0.412628i
\(786\) 0 0
\(787\) −18.3836 36.0798i −0.655304 1.28611i −0.944398 0.328806i \(-0.893354\pi\)
0.289094 0.957301i \(-0.406646\pi\)
\(788\) 0 0
\(789\) −2.84256 2.06524i −0.101198 0.0735246i
\(790\) 0 0
\(791\) 28.6372i 1.01822i
\(792\) 0 0
\(793\) −31.1051 + 31.1051i −1.10458 + 1.10458i
\(794\) 0 0
\(795\) 1.62839 + 2.27253i 0.0577531 + 0.0805982i
\(796\) 0 0
\(797\) 43.3942 22.1104i 1.53710 0.783192i 0.538855 0.842399i \(-0.318857\pi\)
0.998246 + 0.0592071i \(0.0188572\pi\)
\(798\) 0 0
\(799\) −2.17544 + 1.58055i −0.0769617 + 0.0559159i
\(800\) 0 0
\(801\) −0.940661 2.89506i −0.0332366 0.102292i
\(802\) 0 0
\(803\) −3.04266 2.22646i −0.107373 0.0785700i
\(804\) 0 0
\(805\) 0.175931 26.7873i 0.00620075 0.944128i
\(806\) 0 0
\(807\) −4.00938 0.635024i −0.141137 0.0223539i
\(808\) 0 0
\(809\) 8.36499 25.7448i 0.294097 0.905138i −0.689426 0.724356i \(-0.742137\pi\)
0.983523 0.180782i \(-0.0578628\pi\)
\(810\) 0 0
\(811\) −5.42770 + 7.47059i −0.190592 + 0.262328i −0.893610 0.448845i \(-0.851836\pi\)
0.703017 + 0.711173i \(0.251836\pi\)
\(812\) 0 0
\(813\) −0.870047 0.870047i −0.0305139 0.0305139i
\(814\) 0 0
\(815\) −12.4666 24.8695i −0.436686 0.871141i
\(816\) 0 0
\(817\) −6.28072 39.6549i −0.219734 1.38735i
\(818\) 0 0
\(819\) −48.8399 15.8690i −1.70660 0.554509i
\(820\) 0 0
\(821\) −18.4645 25.4142i −0.644416 0.886962i 0.354426 0.935084i \(-0.384676\pi\)
−0.998841 + 0.0481218i \(0.984676\pi\)
\(822\) 0 0
\(823\) −19.0482 9.70553i −0.663977 0.338313i 0.0893109 0.996004i \(-0.471534\pi\)
−0.753288 + 0.657690i \(0.771534\pi\)
\(824\) 0 0
\(825\) −0.0538862 + 3.25899i −0.00187608 + 0.113463i
\(826\) 0 0
\(827\) 3.45645 + 1.76115i 0.120193 + 0.0612412i 0.513053 0.858357i \(-0.328514\pi\)
−0.392860 + 0.919598i \(0.628514\pi\)
\(828\) 0 0
\(829\) −3.49646 4.81246i −0.121437 0.167144i 0.743970 0.668213i \(-0.232940\pi\)
−0.865407 + 0.501069i \(0.832940\pi\)
\(830\) 0 0
\(831\) −4.37971 1.42305i −0.151930 0.0493652i
\(832\) 0 0
\(833\) 2.25361 + 14.2288i 0.0780831 + 0.492997i
\(834\) 0 0
\(835\) −6.29356 12.5550i −0.217797 0.434482i
\(836\) 0 0
\(837\) 6.76862 + 6.76862i 0.233958 + 0.233958i
\(838\) 0 0
\(839\) 19.8076 27.2628i 0.683834 0.941217i −0.316138 0.948713i \(-0.602386\pi\)
0.999972 + 0.00749608i \(0.00238610\pi\)
\(840\) 0 0
\(841\) −2.15047 + 6.61847i −0.0741542 + 0.228223i
\(842\) 0 0
\(843\) 1.97179 + 0.312301i 0.0679122 + 0.0107562i
\(844\) 0 0
\(845\) 0.226057 34.4195i 0.00777659 1.18407i
\(846\) 0 0
\(847\) −32.0062 + 16.0349i −1.09975 + 0.550966i
\(848\) 0 0
\(849\) 0.799902 + 2.46185i 0.0274526 + 0.0844904i
\(850\) 0 0
\(851\) 33.6421 24.4424i 1.15324 0.837875i
\(852\) 0 0
\(853\) −19.0672 + 9.71522i −0.652848 + 0.332643i −0.748851 0.662738i \(-0.769394\pi\)
0.0960029 + 0.995381i \(0.469394\pi\)
\(854\) 0 0
\(855\) −21.1491 29.5149i −0.723283 1.00939i
\(856\) 0 0
\(857\) 18.6774 18.6774i 0.638008 0.638008i −0.312056 0.950064i \(-0.601018\pi\)
0.950064 + 0.312056i \(0.101018\pi\)
\(858\) 0 0
\(859\) 6.24532i 0.213088i 0.994308 + 0.106544i \(0.0339784\pi\)
−0.994308 + 0.106544i \(0.966022\pi\)
\(860\) 0 0
\(861\) 5.11021 + 3.71279i 0.174156 + 0.126531i
\(862\) 0 0
\(863\) 7.97514 + 15.6521i 0.271477 + 0.532804i 0.985987 0.166822i \(-0.0533504\pi\)
−0.714510 + 0.699625i \(0.753350\pi\)
\(864\) 0 0
\(865\) −15.6297 + 30.1832i −0.531424 + 1.02626i
\(866\) 0 0
\(867\) 0.0808639 0.158704i 0.00274628 0.00538989i
\(868\) 0 0
\(869\) −1.96093 + 12.1143i −0.0665200 + 0.410948i
\(870\) 0 0
\(871\) −57.2992 + 18.6176i −1.94151 + 0.630835i
\(872\) 0 0
\(873\) −1.56026 + 9.85108i −0.0528068 + 0.333409i
\(874\) 0 0
\(875\) −32.0877 17.1540i −1.08476 0.579911i
\(876\) 0 0
\(877\) 49.6327 7.86105i 1.67598 0.265449i 0.755188 0.655509i \(-0.227546\pi\)
0.920789 + 0.390060i \(0.127546\pi\)
\(878\) 0 0
\(879\) −1.54313 −0.0520485
\(880\) 0 0
\(881\) −48.4041 −1.63077 −0.815387 0.578916i \(-0.803476\pi\)
−0.815387 + 0.578916i \(0.803476\pi\)
\(882\) 0 0
\(883\) 37.8161 5.98949i 1.27261 0.201562i 0.516662 0.856189i \(-0.327174\pi\)
0.755952 + 0.654627i \(0.227174\pi\)
\(884\) 0 0
\(885\) 0.498470 + 3.28678i 0.0167559 + 0.110484i
\(886\) 0 0
\(887\) −6.88389 + 43.4632i −0.231138 + 1.45935i 0.550090 + 0.835105i \(0.314593\pi\)
−0.781228 + 0.624245i \(0.785407\pi\)
\(888\) 0 0
\(889\) −12.7176 + 4.13220i −0.426535 + 0.138590i
\(890\) 0 0
\(891\) 28.3631 4.39354i 0.950201 0.147189i
\(892\) 0 0
\(893\) 1.66862 3.27484i 0.0558381 0.109588i
\(894\) 0 0
\(895\) −15.3573 + 4.87862i −0.513338 + 0.163074i
\(896\) 0 0
\(897\) 1.75031 + 3.43517i 0.0584410 + 0.114697i
\(898\) 0 0
\(899\) −31.0289 22.5438i −1.03487 0.751878i
\(900\) 0 0
\(901\) 25.5189i 0.850157i
\(902\) 0 0
\(903\) 3.31175 3.31175i 0.110208 0.110208i
\(904\) 0 0
\(905\) −21.1325 + 15.1426i −0.702467 + 0.503357i
\(906\) 0 0
\(907\) −9.58372 + 4.88315i −0.318222 + 0.162142i −0.605804 0.795614i \(-0.707149\pi\)
0.287582 + 0.957756i \(0.407149\pi\)
\(908\) 0 0
\(909\) −0.264378 + 0.192082i −0.00876886 + 0.00637095i
\(910\) 0 0
\(911\) −5.83452 17.9568i −0.193306 0.594936i −0.999992 0.00395526i \(-0.998741\pi\)
0.806686 0.590981i \(-0.201259\pi\)
\(912\) 0 0
\(913\) −6.21802 0.0211285i −0.205786 0.000699252i
\(914\) 0 0
\(915\) −2.54867 2.58237i −0.0842566 0.0853707i
\(916\) 0 0
\(917\) 27.0670 + 4.28699i 0.893831 + 0.141569i
\(918\) 0 0
\(919\) 5.20310 16.0135i 0.171634 0.528236i −0.827829 0.560980i \(-0.810424\pi\)
0.999464 + 0.0327436i \(0.0104245\pi\)
\(920\) 0 0
\(921\) −1.08699 + 1.49612i −0.0358177 + 0.0492988i
\(922\) 0 0
\(923\) 37.9901 + 37.9901i 1.25046 + 1.25046i
\(924\) 0 0
\(925\) −8.10224 55.8980i −0.266400 1.83791i
\(926\) 0 0
\(927\) 0.0477322 + 0.301370i 0.00156773 + 0.00989827i
\(928\) 0 0
\(929\) −14.0294 4.55842i −0.460289 0.149557i 0.0696882 0.997569i \(-0.477800\pi\)
−0.529977 + 0.848012i \(0.677800\pi\)
\(930\) 0 0
\(931\) −11.5740 15.9303i −0.379324 0.522095i
\(932\) 0 0
\(933\) 1.34290 + 0.684241i 0.0439646 + 0.0224011i
\(934\) 0 0
\(935\) 17.7265 23.8941i 0.579720 0.781420i
\(936\) 0 0
\(937\) 35.4761 + 18.0760i 1.15895 + 0.590517i 0.924339 0.381571i \(-0.124617\pi\)
0.234615 + 0.972088i \(0.424617\pi\)
\(938\) 0 0
\(939\) 3.65811 + 5.03496i 0.119378 + 0.164310i
\(940\) 0 0
\(941\) −22.5807 7.33691i −0.736110 0.239177i −0.0831160 0.996540i \(-0.526487\pi\)
−0.652994 + 0.757363i \(0.726487\pi\)
\(942\) 0 0
\(943\) 5.68661 + 35.9039i 0.185182 + 1.16919i
\(944\) 0 0
\(945\) 2.68806 8.09179i 0.0874427 0.263226i
\(946\) 0 0
\(947\) −22.9342 22.9342i −0.745261 0.745261i 0.228324 0.973585i \(-0.426675\pi\)
−0.973585 + 0.228324i \(0.926675\pi\)
\(948\) 0 0
\(949\) −3.56042 + 4.90050i −0.115576 + 0.159077i
\(950\) 0 0
\(951\) −0.519836 + 1.59989i −0.0168568 + 0.0518800i
\(952\) 0 0
\(953\) 31.6499 + 5.01286i 1.02524 + 0.162382i 0.646336 0.763053i \(-0.276300\pi\)
0.378906 + 0.925435i \(0.376300\pi\)
\(954\) 0 0
\(955\) −36.1235 0.237248i −1.16893 0.00767717i
\(956\) 0 0
\(957\) 2.91387 0.935839i 0.0941920 0.0302514i
\(958\) 0 0
\(959\) 3.70256 + 11.3953i 0.119562 + 0.367974i
\(960\) 0 0
\(961\) −28.9144 + 21.0075i −0.932722 + 0.677662i
\(962\) 0 0
\(963\) −42.0925 + 21.4472i −1.35641 + 0.691126i
\(964\) 0 0
\(965\) −17.7816 2.93617i −0.572410 0.0945185i
\(966\) 0 0
\(967\) 20.9981 20.9981i 0.675253 0.675253i −0.283669 0.958922i \(-0.591552\pi\)
0.958922 + 0.283669i \(0.0915518\pi\)
\(968\) 0 0
\(969\) 4.32368i 0.138897i
\(970\) 0 0
\(971\) 0.106113 + 0.0770954i 0.00340532 + 0.00247411i 0.589487 0.807778i \(-0.299330\pi\)
−0.586081 + 0.810252i \(0.699330\pi\)
\(972\) 0 0
\(973\) 5.09880 + 10.0070i 0.163460 + 0.320808i
\(974\) 0 0
\(975\) 5.23619 + 0.0687824i 0.167692 + 0.00220280i
\(976\) 0 0
\(977\) 7.34581 14.4170i 0.235013 0.461240i −0.743137 0.669140i \(-0.766663\pi\)
0.978150 + 0.207900i \(0.0666628\pi\)
\(978\) 0 0
\(979\) −1.55807 + 3.03236i −0.0497960 + 0.0969146i
\(980\) 0 0
\(981\) 2.18156 0.708833i 0.0696519 0.0226313i
\(982\) 0 0
\(983\) −6.35207 + 40.1054i −0.202600 + 1.27916i 0.651338 + 0.758788i \(0.274208\pi\)
−0.853937 + 0.520376i \(0.825792\pi\)
\(984\) 0 0
\(985\) 25.0061 3.79241i 0.796762 0.120836i
\(986\) 0 0
\(987\) 0.423473 0.0670716i 0.0134793 0.00213491i
\(988\) 0 0
\(989\) 26.9533 0.857066
\(990\) 0 0
\(991\) 23.5944 0.749502 0.374751 0.927126i \(-0.377728\pi\)
0.374751 + 0.927126i \(0.377728\pi\)
\(992\) 0 0
\(993\) −3.28404 + 0.520141i −0.104216 + 0.0165062i
\(994\) 0 0
\(995\) 10.5800 14.3627i 0.335407 0.455329i
\(996\) 0 0
\(997\) −0.510741 + 3.22469i −0.0161753 + 0.102127i −0.994455 0.105162i \(-0.966464\pi\)
0.978280 + 0.207289i \(0.0664640\pi\)
\(998\) 0 0
\(999\) 12.5884 4.09020i 0.398278 0.129408i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.u.a.17.4 yes 48
4.3 odd 2 880.2.cm.b.17.3 48
5.3 odd 4 inner 220.2.u.a.193.4 yes 48
11.2 odd 10 inner 220.2.u.a.57.4 yes 48
20.3 even 4 880.2.cm.b.193.3 48
44.35 even 10 880.2.cm.b.497.3 48
55.13 even 20 inner 220.2.u.a.13.4 48
220.123 odd 20 880.2.cm.b.673.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.u.a.13.4 48 55.13 even 20 inner
220.2.u.a.17.4 yes 48 1.1 even 1 trivial
220.2.u.a.57.4 yes 48 11.2 odd 10 inner
220.2.u.a.193.4 yes 48 5.3 odd 4 inner
880.2.cm.b.17.3 48 4.3 odd 2
880.2.cm.b.193.3 48 20.3 even 4
880.2.cm.b.497.3 48 44.35 even 10
880.2.cm.b.673.3 48 220.123 odd 20