Properties

Label 880.2.cm.b.497.3
Level $880$
Weight $2$
Character 880.497
Analytic conductor $7.027$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(17,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 497.3
Character \(\chi\) \(=\) 880.497
Dual form 880.2.cm.b.193.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0307474 + 0.194131i) q^{3} +(-2.23602 - 0.0146855i) q^{5} +(-3.21432 + 0.509098i) q^{7} +(2.81643 + 0.915113i) q^{9} +(-2.95000 + 1.51575i) q^{11} +(4.74775 - 2.41910i) q^{13} +(0.0716027 - 0.433630i) q^{15} +(-3.57446 - 1.82128i) q^{17} +(4.43615 - 3.22305i) q^{19} -0.639653i q^{21} +(2.60297 - 2.60297i) q^{23} +(4.99957 + 0.0656742i) q^{25} +(-0.531947 + 1.04400i) q^{27} +(-3.79815 - 2.75952i) q^{29} +(2.52450 - 7.76962i) q^{31} +(-0.203550 - 0.619293i) q^{33} +(7.19476 - 1.09115i) q^{35} +(-1.76715 - 11.1573i) q^{37} +(0.323642 + 0.996068i) q^{39} +(5.80437 + 7.98904i) q^{41} +(-5.17742 - 5.17742i) q^{43} +(-6.28415 - 2.08757i) q^{45} +(0.662035 + 0.104856i) q^{47} +(3.41527 - 1.10969i) q^{49} +(0.463472 - 0.637915i) q^{51} +(-2.88788 - 5.66778i) q^{53} +(6.61852 - 3.34592i) q^{55} +(0.489295 + 0.960296i) q^{57} +(4.44597 - 6.11936i) q^{59} +(-7.85138 + 2.55107i) q^{61} +(-9.51878 - 1.50763i) q^{63} +(-10.6516 + 5.33943i) q^{65} +(7.99503 + 7.99503i) q^{67} +(0.425284 + 0.585353i) q^{69} +(3.11574 + 9.58925i) q^{71} +(0.177831 + 1.12278i) q^{73} +(-0.166473 + 0.968554i) q^{75} +(8.71058 - 6.37394i) q^{77} +(1.14340 - 3.51903i) q^{79} +(7.00107 + 5.08658i) q^{81} +(0.851148 - 1.67047i) q^{83} +(7.96581 + 4.12490i) q^{85} +(0.652493 - 0.652493i) q^{87} +1.02792i q^{89} +(-14.0292 + 10.1928i) q^{91} +(1.43071 + 0.728981i) q^{93} +(-9.96665 + 7.14166i) q^{95} +(-3.00091 + 1.52904i) q^{97} +(-9.69555 + 1.56941i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{3} + 4 q^{5} - 10 q^{7} + 16 q^{15} + 10 q^{17} - 16 q^{23} - 26 q^{25} + 10 q^{27} - 16 q^{31} + 28 q^{33} - 34 q^{37} - 20 q^{41} - 56 q^{45} + 2 q^{47} + 80 q^{51} + 6 q^{53} + 18 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0307474 + 0.194131i −0.0177520 + 0.112082i −0.994973 0.100142i \(-0.968070\pi\)
0.977221 + 0.212223i \(0.0680704\pi\)
\(4\) 0 0
\(5\) −2.23602 0.0146855i −0.999978 0.00656756i
\(6\) 0 0
\(7\) −3.21432 + 0.509098i −1.21490 + 0.192421i −0.730799 0.682592i \(-0.760852\pi\)
−0.484099 + 0.875013i \(0.660852\pi\)
\(8\) 0 0
\(9\) 2.81643 + 0.915113i 0.938809 + 0.305038i
\(10\) 0 0
\(11\) −2.95000 + 1.51575i −0.889459 + 0.457015i
\(12\) 0 0
\(13\) 4.74775 2.41910i 1.31679 0.670938i 0.352506 0.935810i \(-0.385330\pi\)
0.964284 + 0.264872i \(0.0853297\pi\)
\(14\) 0 0
\(15\) 0.0716027 0.433630i 0.0184877 0.111963i
\(16\) 0 0
\(17\) −3.57446 1.82128i −0.866933 0.441724i −0.0368214 0.999322i \(-0.511723\pi\)
−0.830111 + 0.557597i \(0.811723\pi\)
\(18\) 0 0
\(19\) 4.43615 3.22305i 1.01772 0.739418i 0.0519075 0.998652i \(-0.483470\pi\)
0.965815 + 0.259233i \(0.0834699\pi\)
\(20\) 0 0
\(21\) 0.639653i 0.139584i
\(22\) 0 0
\(23\) 2.60297 2.60297i 0.542757 0.542757i −0.381579 0.924336i \(-0.624620\pi\)
0.924336 + 0.381579i \(0.124620\pi\)
\(24\) 0 0
\(25\) 4.99957 + 0.0656742i 0.999914 + 0.0131348i
\(26\) 0 0
\(27\) −0.531947 + 1.04400i −0.102373 + 0.200919i
\(28\) 0 0
\(29\) −3.79815 2.75952i −0.705299 0.512430i 0.176354 0.984327i \(-0.443570\pi\)
−0.881654 + 0.471897i \(0.843570\pi\)
\(30\) 0 0
\(31\) 2.52450 7.76962i 0.453414 1.39547i −0.419573 0.907722i \(-0.637820\pi\)
0.872987 0.487744i \(-0.162180\pi\)
\(32\) 0 0
\(33\) −0.203550 0.619293i −0.0354334 0.107805i
\(34\) 0 0
\(35\) 7.19476 1.09115i 1.21614 0.184438i
\(36\) 0 0
\(37\) −1.76715 11.1573i −0.290518 1.83426i −0.511870 0.859063i \(-0.671047\pi\)
0.221353 0.975194i \(-0.428953\pi\)
\(38\) 0 0
\(39\) 0.323642 + 0.996068i 0.0518242 + 0.159499i
\(40\) 0 0
\(41\) 5.80437 + 7.98904i 0.906491 + 1.24768i 0.968351 + 0.249593i \(0.0802968\pi\)
−0.0618598 + 0.998085i \(0.519703\pi\)
\(42\) 0 0
\(43\) −5.17742 5.17742i −0.789549 0.789549i 0.191871 0.981420i \(-0.438544\pi\)
−0.981420 + 0.191871i \(0.938544\pi\)
\(44\) 0 0
\(45\) −6.28415 2.08757i −0.936786 0.311197i
\(46\) 0 0
\(47\) 0.662035 + 0.104856i 0.0965678 + 0.0152948i 0.204531 0.978860i \(-0.434433\pi\)
−0.107964 + 0.994155i \(0.534433\pi\)
\(48\) 0 0
\(49\) 3.41527 1.10969i 0.487895 0.158527i
\(50\) 0 0
\(51\) 0.463472 0.637915i 0.0648991 0.0893259i
\(52\) 0 0
\(53\) −2.88788 5.66778i −0.396681 0.778530i 0.603137 0.797638i \(-0.293917\pi\)
−0.999817 + 0.0191079i \(0.993917\pi\)
\(54\) 0 0
\(55\) 6.61852 3.34592i 0.892441 0.451164i
\(56\) 0 0
\(57\) 0.489295 + 0.960296i 0.0648087 + 0.127194i
\(58\) 0 0
\(59\) 4.44597 6.11936i 0.578817 0.796673i −0.414748 0.909936i \(-0.636130\pi\)
0.993565 + 0.113263i \(0.0361304\pi\)
\(60\) 0 0
\(61\) −7.85138 + 2.55107i −1.00527 + 0.326631i −0.764968 0.644068i \(-0.777245\pi\)
−0.240298 + 0.970699i \(0.577245\pi\)
\(62\) 0 0
\(63\) −9.51878 1.50763i −1.19925 0.189943i
\(64\) 0 0
\(65\) −10.6516 + 5.33943i −1.32117 + 0.662275i
\(66\) 0 0
\(67\) 7.99503 + 7.99503i 0.976748 + 0.976748i 0.999736 0.0229875i \(-0.00731778\pi\)
−0.0229875 + 0.999736i \(0.507318\pi\)
\(68\) 0 0
\(69\) 0.425284 + 0.585353i 0.0511982 + 0.0704682i
\(70\) 0 0
\(71\) 3.11574 + 9.58925i 0.369770 + 1.13803i 0.946940 + 0.321410i \(0.104157\pi\)
−0.577170 + 0.816624i \(0.695843\pi\)
\(72\) 0 0
\(73\) 0.177831 + 1.12278i 0.0208136 + 0.131412i 0.995907 0.0903820i \(-0.0288088\pi\)
−0.975094 + 0.221794i \(0.928809\pi\)
\(74\) 0 0
\(75\) −0.166473 + 0.968554i −0.0192227 + 0.111839i
\(76\) 0 0
\(77\) 8.71058 6.37394i 0.992662 0.726378i
\(78\) 0 0
\(79\) 1.14340 3.51903i 0.128643 0.395922i −0.865904 0.500210i \(-0.833256\pi\)
0.994547 + 0.104288i \(0.0332563\pi\)
\(80\) 0 0
\(81\) 7.00107 + 5.08658i 0.777897 + 0.565175i
\(82\) 0 0
\(83\) 0.851148 1.67047i 0.0934256 0.183358i −0.839565 0.543260i \(-0.817190\pi\)
0.932990 + 0.359902i \(0.117190\pi\)
\(84\) 0 0
\(85\) 7.96581 + 4.12490i 0.864013 + 0.447408i
\(86\) 0 0
\(87\) 0.652493 0.652493i 0.0699546 0.0699546i
\(88\) 0 0
\(89\) 1.02792i 0.108959i 0.998515 + 0.0544795i \(0.0173500\pi\)
−0.998515 + 0.0544795i \(0.982650\pi\)
\(90\) 0 0
\(91\) −14.0292 + 10.1928i −1.47066 + 1.06850i
\(92\) 0 0
\(93\) 1.43071 + 0.728981i 0.148357 + 0.0755918i
\(94\) 0 0
\(95\) −9.96665 + 7.14166i −1.02256 + 0.732719i
\(96\) 0 0
\(97\) −3.00091 + 1.52904i −0.304696 + 0.155250i −0.599653 0.800260i \(-0.704695\pi\)
0.294957 + 0.955511i \(0.404695\pi\)
\(98\) 0 0
\(99\) −9.69555 + 1.56941i −0.974439 + 0.157732i
\(100\) 0 0
\(101\) 0.104950 + 0.0341002i 0.0104429 + 0.00339310i 0.314234 0.949346i \(-0.398252\pi\)
−0.303791 + 0.952739i \(0.598252\pi\)
\(102\) 0 0
\(103\) −0.101767 + 0.0161183i −0.0100274 + 0.00158818i −0.161446 0.986882i \(-0.551616\pi\)
0.151419 + 0.988470i \(0.451616\pi\)
\(104\) 0 0
\(105\) −0.00939364 + 1.43028i −0.000916725 + 0.139581i
\(106\) 0 0
\(107\) 2.49553 15.7562i 0.241252 1.52321i −0.508252 0.861208i \(-0.669708\pi\)
0.749505 0.661999i \(-0.230292\pi\)
\(108\) 0 0
\(109\) 0.774585 0.0741918 0.0370959 0.999312i \(-0.488189\pi\)
0.0370959 + 0.999312i \(0.488189\pi\)
\(110\) 0 0
\(111\) 2.22033 0.210744
\(112\) 0 0
\(113\) 1.37656 8.69124i 0.129496 0.817603i −0.834368 0.551207i \(-0.814167\pi\)
0.963864 0.266395i \(-0.0858327\pi\)
\(114\) 0 0
\(115\) −5.85852 + 5.78207i −0.546310 + 0.539181i
\(116\) 0 0
\(117\) 15.5855 2.46849i 1.44088 0.228212i
\(118\) 0 0
\(119\) 12.4166 + 4.03441i 1.13823 + 0.369834i
\(120\) 0 0
\(121\) 6.40501 8.94292i 0.582274 0.812993i
\(122\) 0 0
\(123\) −1.72939 + 0.881169i −0.155934 + 0.0794523i
\(124\) 0 0
\(125\) −11.1782 0.220270i −0.999806 0.0197015i
\(126\) 0 0
\(127\) −3.66110 1.86542i −0.324870 0.165529i 0.283948 0.958840i \(-0.408356\pi\)
−0.608817 + 0.793310i \(0.708356\pi\)
\(128\) 0 0
\(129\) 1.16429 0.845907i 0.102510 0.0744780i
\(130\) 0 0
\(131\) 8.42076i 0.735725i −0.929880 0.367863i \(-0.880090\pi\)
0.929880 0.367863i \(-0.119910\pi\)
\(132\) 0 0
\(133\) −12.6183 + 12.6183i −1.09415 + 1.09415i
\(134\) 0 0
\(135\) 1.20478 2.32660i 0.103691 0.200242i
\(136\) 0 0
\(137\) −1.67147 + 3.28044i −0.142803 + 0.280267i −0.951319 0.308207i \(-0.900271\pi\)
0.808516 + 0.588474i \(0.200271\pi\)
\(138\) 0 0
\(139\) 2.79197 + 2.02848i 0.236811 + 0.172054i 0.699862 0.714279i \(-0.253245\pi\)
−0.463050 + 0.886332i \(0.653245\pi\)
\(140\) 0 0
\(141\) −0.0407117 + 0.125298i −0.00342854 + 0.0105520i
\(142\) 0 0
\(143\) −10.3391 + 14.3327i −0.864601 + 1.19856i
\(144\) 0 0
\(145\) 8.45222 + 6.22612i 0.701919 + 0.517051i
\(146\) 0 0
\(147\) 0.110415 + 0.697130i 0.00910684 + 0.0574983i
\(148\) 0 0
\(149\) 1.65385 + 5.09001i 0.135488 + 0.416990i 0.995666 0.0930049i \(-0.0296472\pi\)
−0.860177 + 0.509995i \(0.829647\pi\)
\(150\) 0 0
\(151\) −2.65450 3.65361i −0.216020 0.297326i 0.687231 0.726439i \(-0.258826\pi\)
−0.903251 + 0.429113i \(0.858826\pi\)
\(152\) 0 0
\(153\) −8.40052 8.40052i −0.679142 0.679142i
\(154\) 0 0
\(155\) −5.75894 + 17.3360i −0.462569 + 1.39246i
\(156\) 0 0
\(157\) 5.75059 + 0.910804i 0.458947 + 0.0726901i 0.381627 0.924316i \(-0.375364\pi\)
0.0773197 + 0.997006i \(0.475364\pi\)
\(158\) 0 0
\(159\) 1.18909 0.386359i 0.0943009 0.0306402i
\(160\) 0 0
\(161\) −7.04161 + 9.69195i −0.554957 + 0.763832i
\(162\) 0 0
\(163\) −5.64816 11.0851i −0.442398 0.868255i −0.999290 0.0376700i \(-0.988006\pi\)
0.556892 0.830585i \(-0.311994\pi\)
\(164\) 0 0
\(165\) 0.446046 + 1.38774i 0.0347246 + 0.108035i
\(166\) 0 0
\(167\) 2.85138 + 5.59615i 0.220646 + 0.433043i 0.974621 0.223861i \(-0.0718660\pi\)
−0.753975 + 0.656903i \(0.771866\pi\)
\(168\) 0 0
\(169\) 9.04789 12.4534i 0.695992 0.957950i
\(170\) 0 0
\(171\) 15.4435 5.01791i 1.18100 0.383729i
\(172\) 0 0
\(173\) −15.0136 2.37792i −1.14146 0.180790i −0.443058 0.896493i \(-0.646106\pi\)
−0.698405 + 0.715703i \(0.746106\pi\)
\(174\) 0 0
\(175\) −16.1036 + 2.33417i −1.21732 + 0.176447i
\(176\) 0 0
\(177\) 1.05126 + 1.05126i 0.0790173 + 0.0790173i
\(178\) 0 0
\(179\) −4.23571 5.82995i −0.316592 0.435751i 0.620831 0.783944i \(-0.286795\pi\)
−0.937423 + 0.348193i \(0.886795\pi\)
\(180\) 0 0
\(181\) −3.59279 11.0575i −0.267050 0.821896i −0.991214 0.132268i \(-0.957774\pi\)
0.724164 0.689628i \(-0.242226\pi\)
\(182\) 0 0
\(183\) −0.253833 1.60264i −0.0187639 0.118470i
\(184\) 0 0
\(185\) 3.78753 + 24.9740i 0.278465 + 1.83612i
\(186\) 0 0
\(187\) 13.3052 0.0452105i 0.972976 0.00330612i
\(188\) 0 0
\(189\) 1.17835 3.62658i 0.0857121 0.263795i
\(190\) 0 0
\(191\) 13.0699 + 9.49582i 0.945703 + 0.687094i 0.949787 0.312898i \(-0.101300\pi\)
−0.00408349 + 0.999992i \(0.501300\pi\)
\(192\) 0 0
\(193\) −3.65910 + 7.18138i −0.263388 + 0.516927i −0.984389 0.176006i \(-0.943682\pi\)
0.721001 + 0.692934i \(0.243682\pi\)
\(194\) 0 0
\(195\) −0.709043 2.23198i −0.0507756 0.159836i
\(196\) 0 0
\(197\) −7.99806 + 7.99806i −0.569838 + 0.569838i −0.932083 0.362245i \(-0.882010\pi\)
0.362245 + 0.932083i \(0.382010\pi\)
\(198\) 0 0
\(199\) 7.97776i 0.565529i 0.959189 + 0.282764i \(0.0912514\pi\)
−0.959189 + 0.282764i \(0.908749\pi\)
\(200\) 0 0
\(201\) −1.79791 + 1.30626i −0.126815 + 0.0921365i
\(202\) 0 0
\(203\) 13.6133 + 6.93634i 0.955469 + 0.486836i
\(204\) 0 0
\(205\) −12.8614 17.9489i −0.898277 1.25360i
\(206\) 0 0
\(207\) 9.71309 4.94907i 0.675107 0.343984i
\(208\) 0 0
\(209\) −8.20131 + 16.2321i −0.567296 + 1.12280i
\(210\) 0 0
\(211\) −4.86478 1.58066i −0.334905 0.108817i 0.136737 0.990607i \(-0.456339\pi\)
−0.471642 + 0.881790i \(0.656339\pi\)
\(212\) 0 0
\(213\) −1.95737 + 0.310018i −0.134117 + 0.0212421i
\(214\) 0 0
\(215\) 11.5008 + 11.6528i 0.784346 + 0.794717i
\(216\) 0 0
\(217\) −4.15906 + 26.2593i −0.282335 + 1.78259i
\(218\) 0 0
\(219\) −0.223435 −0.0150984
\(220\) 0 0
\(221\) −21.3765 −1.43794
\(222\) 0 0
\(223\) 1.51284 9.55172i 0.101308 0.639631i −0.883823 0.467822i \(-0.845039\pi\)
0.985130 0.171809i \(-0.0549611\pi\)
\(224\) 0 0
\(225\) 14.0208 + 4.76014i 0.934722 + 0.317342i
\(226\) 0 0
\(227\) −12.0925 + 1.91526i −0.802607 + 0.127120i −0.544243 0.838927i \(-0.683183\pi\)
−0.258363 + 0.966048i \(0.583183\pi\)
\(228\) 0 0
\(229\) 9.71729 + 3.15734i 0.642137 + 0.208643i 0.611944 0.790901i \(-0.290388\pi\)
0.0301930 + 0.999544i \(0.490388\pi\)
\(230\) 0 0
\(231\) 0.969554 + 1.88698i 0.0637920 + 0.124154i
\(232\) 0 0
\(233\) −1.27644 + 0.650378i −0.0836222 + 0.0426077i −0.495301 0.868721i \(-0.664942\pi\)
0.411679 + 0.911329i \(0.364942\pi\)
\(234\) 0 0
\(235\) −1.47878 0.244183i −0.0964653 0.0159287i
\(236\) 0 0
\(237\) 0.647998 + 0.330171i 0.0420920 + 0.0214469i
\(238\) 0 0
\(239\) −22.4095 + 16.2815i −1.44955 + 1.05316i −0.463617 + 0.886036i \(0.653448\pi\)
−0.985936 + 0.167125i \(0.946552\pi\)
\(240\) 0 0
\(241\) 6.65481i 0.428674i −0.976760 0.214337i \(-0.931241\pi\)
0.976760 0.214337i \(-0.0687591\pi\)
\(242\) 0 0
\(243\) −3.68831 + 3.68831i −0.236605 + 0.236605i
\(244\) 0 0
\(245\) −7.65290 + 2.43113i −0.488926 + 0.155319i
\(246\) 0 0
\(247\) 13.2648 26.0337i 0.844022 1.65649i
\(248\) 0 0
\(249\) 0.298120 + 0.216597i 0.0188926 + 0.0137263i
\(250\) 0 0
\(251\) −7.36460 + 22.6659i −0.464849 + 1.43066i 0.394323 + 0.918972i \(0.370979\pi\)
−0.859172 + 0.511687i \(0.829021\pi\)
\(252\) 0 0
\(253\) −3.73332 + 11.6242i −0.234712 + 0.730808i
\(254\) 0 0
\(255\) −1.04570 + 1.41958i −0.0654843 + 0.0888977i
\(256\) 0 0
\(257\) 0.685639 + 4.32895i 0.0427690 + 0.270033i 0.999801 0.0199496i \(-0.00635059\pi\)
−0.957032 + 0.289982i \(0.906351\pi\)
\(258\) 0 0
\(259\) 11.3604 + 34.9636i 0.705899 + 2.17253i
\(260\) 0 0
\(261\) −8.17195 11.2477i −0.505831 0.696217i
\(262\) 0 0
\(263\) −12.6404 12.6404i −0.779442 0.779442i 0.200294 0.979736i \(-0.435810\pi\)
−0.979736 + 0.200294i \(0.935810\pi\)
\(264\) 0 0
\(265\) 6.37412 + 12.7157i 0.391559 + 0.781119i
\(266\) 0 0
\(267\) −0.199551 0.0316058i −0.0122123 0.00193424i
\(268\) 0 0
\(269\) 19.6421 6.38211i 1.19760 0.389124i 0.358723 0.933444i \(-0.383212\pi\)
0.838878 + 0.544320i \(0.183212\pi\)
\(270\) 0 0
\(271\) 3.67960 5.06454i 0.223520 0.307649i −0.682499 0.730887i \(-0.739107\pi\)
0.906018 + 0.423238i \(0.139107\pi\)
\(272\) 0 0
\(273\) −1.54739 3.03692i −0.0936520 0.183802i
\(274\) 0 0
\(275\) −14.8483 + 7.38435i −0.895385 + 0.445293i
\(276\) 0 0
\(277\) −10.6368 20.8758i −0.639102 1.25431i −0.952457 0.304672i \(-0.901453\pi\)
0.313356 0.949636i \(-0.398547\pi\)
\(278\) 0 0
\(279\) 14.2202 19.5724i 0.851339 1.17177i
\(280\) 0 0
\(281\) 9.65989 3.13869i 0.576261 0.187238i −0.00636405 0.999980i \(-0.502026\pi\)
0.582625 + 0.812741i \(0.302026\pi\)
\(282\) 0 0
\(283\) 13.0076 + 2.06021i 0.773225 + 0.122467i 0.530564 0.847645i \(-0.321980\pi\)
0.242660 + 0.970111i \(0.421980\pi\)
\(284\) 0 0
\(285\) −1.07997 2.15443i −0.0639720 0.127617i
\(286\) 0 0
\(287\) −22.7243 22.7243i −1.34137 1.34137i
\(288\) 0 0
\(289\) −0.532661 0.733145i −0.0313330 0.0431262i
\(290\) 0 0
\(291\) −0.204564 0.629584i −0.0119918 0.0369069i
\(292\) 0 0
\(293\) 1.22817 + 7.75437i 0.0717506 + 0.453015i 0.997240 + 0.0742424i \(0.0236539\pi\)
−0.925490 + 0.378773i \(0.876346\pi\)
\(294\) 0 0
\(295\) −10.0312 + 13.6177i −0.584036 + 0.792854i
\(296\) 0 0
\(297\) −0.0132048 3.88611i −0.000766221 0.225495i
\(298\) 0 0
\(299\) 6.06141 18.6551i 0.350541 1.07885i
\(300\) 0 0
\(301\) 19.2777 + 14.0061i 1.11115 + 0.807296i
\(302\) 0 0
\(303\) −0.00984686 + 0.0193255i −0.000565687 + 0.00111022i
\(304\) 0 0
\(305\) 17.5933 5.58894i 1.00739 0.320022i
\(306\) 0 0
\(307\) −6.65300 + 6.65300i −0.379707 + 0.379707i −0.870996 0.491289i \(-0.836526\pi\)
0.491289 + 0.870996i \(0.336526\pi\)
\(308\) 0 0
\(309\) 0.0202518i 0.00115208i
\(310\) 0 0
\(311\) −6.20361 + 4.50719i −0.351774 + 0.255579i −0.749613 0.661876i \(-0.769760\pi\)
0.397839 + 0.917455i \(0.369760\pi\)
\(312\) 0 0
\(313\) −28.2126 14.3750i −1.59467 0.812526i −0.999963 0.00858451i \(-0.997267\pi\)
−0.594709 0.803941i \(-0.702733\pi\)
\(314\) 0 0
\(315\) 21.2620 + 3.51087i 1.19798 + 0.197815i
\(316\) 0 0
\(317\) 7.62587 3.88557i 0.428311 0.218236i −0.226526 0.974005i \(-0.572737\pi\)
0.654838 + 0.755769i \(0.272737\pi\)
\(318\) 0 0
\(319\) 15.3873 + 2.38354i 0.861523 + 0.133453i
\(320\) 0 0
\(321\) 2.98204 + 0.968923i 0.166441 + 0.0540800i
\(322\) 0 0
\(323\) −21.7269 + 3.44120i −1.20892 + 0.191473i
\(324\) 0 0
\(325\) 23.8956 11.7827i 1.32549 0.653584i
\(326\) 0 0
\(327\) −0.0238165 + 0.150371i −0.00131705 + 0.00831555i
\(328\) 0 0
\(329\) −2.18137 −0.120263
\(330\) 0 0
\(331\) 16.9166 0.929820 0.464910 0.885358i \(-0.346087\pi\)
0.464910 + 0.885358i \(0.346087\pi\)
\(332\) 0 0
\(333\) 5.23318 33.0410i 0.286777 1.81064i
\(334\) 0 0
\(335\) −17.7596 17.9945i −0.970312 0.983142i
\(336\) 0 0
\(337\) 16.9422 2.68338i 0.922901 0.146173i 0.323139 0.946352i \(-0.395262\pi\)
0.599762 + 0.800178i \(0.295262\pi\)
\(338\) 0 0
\(339\) 1.64492 + 0.534466i 0.0893396 + 0.0290282i
\(340\) 0 0
\(341\) 4.32951 + 26.7469i 0.234456 + 1.44843i
\(342\) 0 0
\(343\) 9.88494 5.03663i 0.533736 0.271952i
\(344\) 0 0
\(345\) −0.942347 1.31511i −0.0507342 0.0708029i
\(346\) 0 0
\(347\) −22.3812 11.4038i −1.20149 0.612187i −0.265461 0.964122i \(-0.585524\pi\)
−0.936025 + 0.351934i \(0.885524\pi\)
\(348\) 0 0
\(349\) −4.91014 + 3.56743i −0.262834 + 0.190960i −0.711395 0.702792i \(-0.751936\pi\)
0.448562 + 0.893752i \(0.351936\pi\)
\(350\) 0 0
\(351\) 6.24351i 0.333254i
\(352\) 0 0
\(353\) 17.8379 17.8379i 0.949413 0.949413i −0.0493677 0.998781i \(-0.515721\pi\)
0.998781 + 0.0493677i \(0.0157206\pi\)
\(354\) 0 0
\(355\) −6.82602 21.4875i −0.362288 1.14044i
\(356\) 0 0
\(357\) −1.16499 + 2.28641i −0.0616576 + 0.121010i
\(358\) 0 0
\(359\) −7.65250 5.55987i −0.403883 0.293439i 0.367237 0.930127i \(-0.380304\pi\)
−0.771121 + 0.636689i \(0.780304\pi\)
\(360\) 0 0
\(361\) 3.42003 10.5258i 0.180002 0.553989i
\(362\) 0 0
\(363\) 1.53916 + 1.51838i 0.0807852 + 0.0796945i
\(364\) 0 0
\(365\) −0.381146 2.51318i −0.0199501 0.131546i
\(366\) 0 0
\(367\) 2.74867 + 17.3544i 0.143480 + 0.905895i 0.949445 + 0.313932i \(0.101647\pi\)
−0.805966 + 0.591962i \(0.798353\pi\)
\(368\) 0 0
\(369\) 9.03673 + 27.8122i 0.470434 + 1.44785i
\(370\) 0 0
\(371\) 12.1680 + 16.7478i 0.631732 + 0.869505i
\(372\) 0 0
\(373\) −10.6232 10.6232i −0.550050 0.550050i 0.376405 0.926455i \(-0.377160\pi\)
−0.926455 + 0.376405i \(0.877160\pi\)
\(374\) 0 0
\(375\) 0.386461 2.16326i 0.0199568 0.111710i
\(376\) 0 0
\(377\) −24.7082 3.91340i −1.27254 0.201550i
\(378\) 0 0
\(379\) −0.421294 + 0.136887i −0.0216404 + 0.00703139i −0.319817 0.947479i \(-0.603621\pi\)
0.298177 + 0.954511i \(0.403621\pi\)
\(380\) 0 0
\(381\) 0.474706 0.653377i 0.0243199 0.0334735i
\(382\) 0 0
\(383\) 6.26658 + 12.2989i 0.320207 + 0.628442i 0.993865 0.110602i \(-0.0352778\pi\)
−0.673658 + 0.739044i \(0.735278\pi\)
\(384\) 0 0
\(385\) −19.5706 + 14.1243i −0.997412 + 0.719843i
\(386\) 0 0
\(387\) −9.84390 19.3197i −0.500394 0.982078i
\(388\) 0 0
\(389\) 10.4451 14.3765i 0.529588 0.728915i −0.457480 0.889220i \(-0.651248\pi\)
0.987068 + 0.160305i \(0.0512478\pi\)
\(390\) 0 0
\(391\) −14.0449 + 4.56348i −0.710283 + 0.230785i
\(392\) 0 0
\(393\) 1.63473 + 0.258916i 0.0824614 + 0.0130606i
\(394\) 0 0
\(395\) −2.60835 + 7.85183i −0.131240 + 0.395069i
\(396\) 0 0
\(397\) 21.6616 + 21.6616i 1.08717 + 1.08717i 0.995819 + 0.0913478i \(0.0291175\pi\)
0.0913478 + 0.995819i \(0.470883\pi\)
\(398\) 0 0
\(399\) −2.06164 2.83760i −0.103211 0.142058i
\(400\) 0 0
\(401\) 1.10249 + 3.39310i 0.0550555 + 0.169444i 0.974803 0.223067i \(-0.0716068\pi\)
−0.919748 + 0.392510i \(0.871607\pi\)
\(402\) 0 0
\(403\) −6.80978 42.9953i −0.339219 2.14175i
\(404\) 0 0
\(405\) −15.5798 11.4765i −0.774168 0.570272i
\(406\) 0 0
\(407\) 22.1248 + 30.2356i 1.09669 + 1.49872i
\(408\) 0 0
\(409\) 7.83663 24.1187i 0.387497 1.19259i −0.547156 0.837030i \(-0.684290\pi\)
0.934653 0.355561i \(-0.115710\pi\)
\(410\) 0 0
\(411\) −0.585443 0.425349i −0.0288778 0.0209809i
\(412\) 0 0
\(413\) −11.1754 + 21.9330i −0.549907 + 1.07925i
\(414\) 0 0
\(415\) −1.92772 + 3.72271i −0.0946278 + 0.182741i
\(416\) 0 0
\(417\) −0.479638 + 0.479638i −0.0234880 + 0.0234880i
\(418\) 0 0
\(419\) 18.4358i 0.900648i 0.892865 + 0.450324i \(0.148692\pi\)
−0.892865 + 0.450324i \(0.851308\pi\)
\(420\) 0 0
\(421\) −21.0494 + 15.2933i −1.02589 + 0.745351i −0.967481 0.252942i \(-0.918602\pi\)
−0.0584058 + 0.998293i \(0.518602\pi\)
\(422\) 0 0
\(423\) 1.76862 + 0.901157i 0.0859932 + 0.0438157i
\(424\) 0 0
\(425\) −17.7511 9.34035i −0.861056 0.453073i
\(426\) 0 0
\(427\) 23.9381 12.1971i 1.15845 0.590258i
\(428\) 0 0
\(429\) −2.46453 2.44784i −0.118989 0.118183i
\(430\) 0 0
\(431\) −8.15236 2.64886i −0.392685 0.127591i 0.106018 0.994364i \(-0.466190\pi\)
−0.498703 + 0.866773i \(0.666190\pi\)
\(432\) 0 0
\(433\) 21.3177 3.37639i 1.02446 0.162259i 0.378478 0.925610i \(-0.376447\pi\)
0.645983 + 0.763351i \(0.276447\pi\)
\(434\) 0 0
\(435\) −1.46857 + 1.44940i −0.0704125 + 0.0694936i
\(436\) 0 0
\(437\) 3.15766 19.9367i 0.151051 0.953700i
\(438\) 0 0
\(439\) 12.2003 0.582288 0.291144 0.956679i \(-0.405964\pi\)
0.291144 + 0.956679i \(0.405964\pi\)
\(440\) 0 0
\(441\) 10.6343 0.506397
\(442\) 0 0
\(443\) 1.73420 10.9493i 0.0823944 0.520218i −0.911626 0.411021i \(-0.865172\pi\)
0.994020 0.109197i \(-0.0348278\pi\)
\(444\) 0 0
\(445\) 0.0150955 2.29844i 0.000715595 0.108957i
\(446\) 0 0
\(447\) −1.03898 + 0.164559i −0.0491422 + 0.00778336i
\(448\) 0 0
\(449\) 8.90862 + 2.89459i 0.420424 + 0.136604i 0.511586 0.859232i \(-0.329058\pi\)
−0.0911622 + 0.995836i \(0.529058\pi\)
\(450\) 0 0
\(451\) −29.2323 14.7697i −1.37649 0.695478i
\(452\) 0 0
\(453\) 0.790899 0.402983i 0.0371597 0.0189338i
\(454\) 0 0
\(455\) 31.5193 22.5853i 1.47765 1.05882i
\(456\) 0 0
\(457\) −11.7148 5.96901i −0.547997 0.279218i 0.157993 0.987440i \(-0.449498\pi\)
−0.705990 + 0.708222i \(0.749498\pi\)
\(458\) 0 0
\(459\) 3.80284 2.76293i 0.177502 0.128962i
\(460\) 0 0
\(461\) 12.4764i 0.581084i 0.956862 + 0.290542i \(0.0938355\pi\)
−0.956862 + 0.290542i \(0.906164\pi\)
\(462\) 0 0
\(463\) −0.334220 + 0.334220i −0.0155325 + 0.0155325i −0.714830 0.699298i \(-0.753496\pi\)
0.699298 + 0.714830i \(0.253496\pi\)
\(464\) 0 0
\(465\) −3.18838 1.65103i −0.147858 0.0765645i
\(466\) 0 0
\(467\) −0.468732 + 0.919938i −0.0216903 + 0.0425697i −0.901597 0.432576i \(-0.857605\pi\)
0.879907 + 0.475146i \(0.157605\pi\)
\(468\) 0 0
\(469\) −29.7688 21.6283i −1.37460 0.998703i
\(470\) 0 0
\(471\) −0.353631 + 1.08836i −0.0162945 + 0.0501492i
\(472\) 0 0
\(473\) 23.1211 + 7.42572i 1.06311 + 0.341435i
\(474\) 0 0
\(475\) 22.3905 15.8225i 1.02735 0.725987i
\(476\) 0 0
\(477\) −2.94684 18.6056i −0.134927 0.851894i
\(478\) 0 0
\(479\) −12.2212 37.6130i −0.558401 1.71858i −0.686789 0.726857i \(-0.740980\pi\)
0.128388 0.991724i \(-0.459020\pi\)
\(480\) 0 0
\(481\) −35.3807 48.6974i −1.61322 2.22041i
\(482\) 0 0
\(483\) −1.66500 1.66500i −0.0757601 0.0757601i
\(484\) 0 0
\(485\) 6.73254 3.37489i 0.305709 0.153246i
\(486\) 0 0
\(487\) 36.2263 + 5.73768i 1.64157 + 0.259999i 0.907802 0.419400i \(-0.137759\pi\)
0.733769 + 0.679399i \(0.237759\pi\)
\(488\) 0 0
\(489\) 2.32564 0.755646i 0.105169 0.0341715i
\(490\) 0 0
\(491\) 24.5974 33.8554i 1.11006 1.52787i 0.288742 0.957407i \(-0.406763\pi\)
0.821322 0.570465i \(-0.193237\pi\)
\(492\) 0 0
\(493\) 8.55048 + 16.7813i 0.385094 + 0.755790i
\(494\) 0 0
\(495\) 21.7025 3.36686i 0.975454 0.151329i
\(496\) 0 0
\(497\) −14.8968 29.2367i −0.668214 1.31144i
\(498\) 0 0
\(499\) 25.8822 35.6238i 1.15865 1.59474i 0.442537 0.896750i \(-0.354079\pi\)
0.716109 0.697989i \(-0.245921\pi\)
\(500\) 0 0
\(501\) −1.17406 + 0.381475i −0.0524531 + 0.0170431i
\(502\) 0 0
\(503\) 19.3133 + 3.05893i 0.861137 + 0.136391i 0.571356 0.820702i \(-0.306417\pi\)
0.289781 + 0.957093i \(0.406417\pi\)
\(504\) 0 0
\(505\) −0.234169 0.0777901i −0.0104204 0.00346161i
\(506\) 0 0
\(507\) 2.13939 + 2.13939i 0.0950135 + 0.0950135i
\(508\) 0 0
\(509\) −2.50898 3.45331i −0.111208 0.153065i 0.749785 0.661682i \(-0.230157\pi\)
−0.860993 + 0.508617i \(0.830157\pi\)
\(510\) 0 0
\(511\) −1.14321 3.51845i −0.0505728 0.155647i
\(512\) 0 0
\(513\) 1.00508 + 6.34585i 0.0443756 + 0.280176i
\(514\) 0 0
\(515\) 0.227790 0.0345464i 0.0100376 0.00152229i
\(516\) 0 0
\(517\) −2.11194 + 0.694154i −0.0928830 + 0.0305288i
\(518\) 0 0
\(519\) 0.923258 2.84149i 0.0405265 0.124728i
\(520\) 0 0
\(521\) 7.92382 + 5.75699i 0.347149 + 0.252218i 0.747672 0.664068i \(-0.231172\pi\)
−0.400523 + 0.916287i \(0.631172\pi\)
\(522\) 0 0
\(523\) −13.5045 + 26.5041i −0.590511 + 1.15894i 0.381580 + 0.924336i \(0.375380\pi\)
−0.972090 + 0.234607i \(0.924620\pi\)
\(524\) 0 0
\(525\) 0.0420087 3.19799i 0.00183341 0.139572i
\(526\) 0 0
\(527\) −23.1744 + 23.1744i −1.00949 + 1.00949i
\(528\) 0 0
\(529\) 9.44908i 0.410830i
\(530\) 0 0
\(531\) 18.1217 13.1662i 0.786414 0.571363i
\(532\) 0 0
\(533\) 46.8840 + 23.8886i 2.03077 + 1.03473i
\(534\) 0 0
\(535\) −5.81145 + 35.1945i −0.251251 + 1.52159i
\(536\) 0 0
\(537\) 1.26201 0.643028i 0.0544599 0.0277487i
\(538\) 0 0
\(539\) −8.39303 + 8.45026i −0.361513 + 0.363979i
\(540\) 0 0
\(541\) 37.2531 + 12.1043i 1.60164 + 0.520404i 0.967512 0.252826i \(-0.0813601\pi\)
0.634126 + 0.773230i \(0.281360\pi\)
\(542\) 0 0
\(543\) 2.25707 0.357485i 0.0968602 0.0153412i
\(544\) 0 0
\(545\) −1.73199 0.0113752i −0.0741902 0.000487259i
\(546\) 0 0
\(547\) −6.13688 + 38.7467i −0.262394 + 1.65669i 0.406737 + 0.913545i \(0.366667\pi\)
−0.669131 + 0.743144i \(0.733333\pi\)
\(548\) 0 0
\(549\) −24.4474 −1.04339
\(550\) 0 0
\(551\) −25.7432 −1.09670
\(552\) 0 0
\(553\) −1.88373 + 11.8934i −0.0801043 + 0.505759i
\(554\) 0 0
\(555\) −4.96469 0.0326066i −0.210739 0.00138407i
\(556\) 0 0
\(557\) 19.7334 3.12546i 0.836131 0.132430i 0.276336 0.961061i \(-0.410880\pi\)
0.559795 + 0.828631i \(0.310880\pi\)
\(558\) 0 0
\(559\) −37.1058 12.0564i −1.56941 0.509931i
\(560\) 0 0
\(561\) −0.400325 + 2.58436i −0.0169017 + 0.109112i
\(562\) 0 0
\(563\) −26.2573 + 13.3788i −1.10661 + 0.563848i −0.909153 0.416462i \(-0.863270\pi\)
−0.197462 + 0.980311i \(0.563270\pi\)
\(564\) 0 0
\(565\) −3.20564 + 19.4136i −0.134862 + 0.816735i
\(566\) 0 0
\(567\) −25.0932 12.7856i −1.05382 0.536947i
\(568\) 0 0
\(569\) 12.5719 9.13401i 0.527041 0.382918i −0.292209 0.956355i \(-0.594390\pi\)
0.819250 + 0.573437i \(0.194390\pi\)
\(570\) 0 0
\(571\) 0.662428i 0.0277217i −0.999904 0.0138609i \(-0.995588\pi\)
0.999904 0.0138609i \(-0.00441219\pi\)
\(572\) 0 0
\(573\) −2.24530 + 2.24530i −0.0937988 + 0.0937988i
\(574\) 0 0
\(575\) 13.1847 12.8428i 0.549839 0.535581i
\(576\) 0 0
\(577\) −17.6530 + 34.6459i −0.734903 + 1.44233i 0.155822 + 0.987785i \(0.450197\pi\)
−0.890725 + 0.454543i \(0.849803\pi\)
\(578\) 0 0
\(579\) −1.28162 0.931154i −0.0532625 0.0386974i
\(580\) 0 0
\(581\) −1.88543 + 5.80275i −0.0782207 + 0.240739i
\(582\) 0 0
\(583\) 17.1102 + 12.3427i 0.708632 + 0.511181i
\(584\) 0 0
\(585\) −34.8856 + 5.29072i −1.44234 + 0.218744i
\(586\) 0 0
\(587\) 0.375602 + 2.37146i 0.0155027 + 0.0978805i 0.994226 0.107302i \(-0.0342212\pi\)
−0.978724 + 0.205183i \(0.934221\pi\)
\(588\) 0 0
\(589\) −13.8428 42.6038i −0.570383 1.75546i
\(590\) 0 0
\(591\) −1.30675 1.79859i −0.0537527 0.0739842i
\(592\) 0 0
\(593\) −31.9523 31.9523i −1.31213 1.31213i −0.919846 0.392280i \(-0.871687\pi\)
−0.392280 0.919846i \(-0.628313\pi\)
\(594\) 0 0
\(595\) −27.7046 9.20337i −1.13578 0.377301i
\(596\) 0 0
\(597\) −1.54873 0.245295i −0.0633855 0.0100393i
\(598\) 0 0
\(599\) 15.0927 4.90391i 0.616670 0.200368i 0.0160087 0.999872i \(-0.494904\pi\)
0.600661 + 0.799504i \(0.294904\pi\)
\(600\) 0 0
\(601\) −4.48148 + 6.16823i −0.182803 + 0.251607i −0.890578 0.454831i \(-0.849699\pi\)
0.707774 + 0.706439i \(0.249699\pi\)
\(602\) 0 0
\(603\) 15.2011 + 29.8338i 0.619035 + 1.21493i
\(604\) 0 0
\(605\) −14.4531 + 19.9025i −0.587601 + 0.809151i
\(606\) 0 0
\(607\) 8.10055 + 15.8982i 0.328791 + 0.645289i 0.994933 0.100536i \(-0.0320557\pi\)
−0.666142 + 0.745825i \(0.732056\pi\)
\(608\) 0 0
\(609\) −1.76514 + 2.42950i −0.0715269 + 0.0984484i
\(610\) 0 0
\(611\) 3.39684 1.10370i 0.137421 0.0446509i
\(612\) 0 0
\(613\) 1.32799 + 0.210333i 0.0536370 + 0.00849527i 0.183195 0.983077i \(-0.441356\pi\)
−0.129558 + 0.991572i \(0.541356\pi\)
\(614\) 0 0
\(615\) 3.87989 1.94491i 0.156452 0.0784265i
\(616\) 0 0
\(617\) 2.91978 + 2.91978i 0.117546 + 0.117546i 0.763433 0.645887i \(-0.223512\pi\)
−0.645887 + 0.763433i \(0.723512\pi\)
\(618\) 0 0
\(619\) −3.15329 4.34013i −0.126741 0.174445i 0.740931 0.671582i \(-0.234385\pi\)
−0.867672 + 0.497137i \(0.834385\pi\)
\(620\) 0 0
\(621\) 1.33287 + 4.10216i 0.0534863 + 0.164614i
\(622\) 0 0
\(623\) −0.523311 3.30405i −0.0209660 0.132374i
\(624\) 0 0
\(625\) 24.9914 + 0.656685i 0.999655 + 0.0262674i
\(626\) 0 0
\(627\) −2.89899 2.09123i −0.115774 0.0835155i
\(628\) 0 0
\(629\) −14.0040 + 43.0999i −0.558376 + 1.71851i
\(630\) 0 0
\(631\) −28.0962 20.4131i −1.11849 0.812631i −0.134511 0.990912i \(-0.542946\pi\)
−0.983980 + 0.178281i \(0.942946\pi\)
\(632\) 0 0
\(633\) 0.456435 0.895805i 0.0181417 0.0356050i
\(634\) 0 0
\(635\) 8.15889 + 4.22489i 0.323776 + 0.167659i
\(636\) 0 0
\(637\) 13.5304 13.5304i 0.536093 0.536093i
\(638\) 0 0
\(639\) 29.8587i 1.18119i
\(640\) 0 0
\(641\) 37.5802 27.3036i 1.48433 1.07843i 0.508200 0.861239i \(-0.330311\pi\)
0.976130 0.217189i \(-0.0696888\pi\)
\(642\) 0 0
\(643\) 23.8844 + 12.1697i 0.941911 + 0.479927i 0.856344 0.516405i \(-0.172730\pi\)
0.0855661 + 0.996332i \(0.472730\pi\)
\(644\) 0 0
\(645\) −2.61580 + 1.87437i −0.102997 + 0.0738031i
\(646\) 0 0
\(647\) −7.02618 + 3.58002i −0.276228 + 0.140745i −0.586617 0.809865i \(-0.699541\pi\)
0.310389 + 0.950610i \(0.399541\pi\)
\(648\) 0 0
\(649\) −3.84022 + 24.7911i −0.150742 + 0.973136i
\(650\) 0 0
\(651\) −4.96987 1.61481i −0.194784 0.0632893i
\(652\) 0 0
\(653\) 18.8247 2.98154i 0.736668 0.116677i 0.223185 0.974776i \(-0.428355\pi\)
0.513483 + 0.858099i \(0.328355\pi\)
\(654\) 0 0
\(655\) −0.123663 + 18.8290i −0.00483192 + 0.735709i
\(656\) 0 0
\(657\) −0.526624 + 3.32497i −0.0205456 + 0.129720i
\(658\) 0 0
\(659\) −42.2869 −1.64726 −0.823632 0.567125i \(-0.808056\pi\)
−0.823632 + 0.567125i \(0.808056\pi\)
\(660\) 0 0
\(661\) 25.4299 0.989109 0.494555 0.869147i \(-0.335331\pi\)
0.494555 + 0.869147i \(0.335331\pi\)
\(662\) 0 0
\(663\) 0.657271 4.14984i 0.0255263 0.161167i
\(664\) 0 0
\(665\) 28.4002 28.0296i 1.10131 1.08694i
\(666\) 0 0
\(667\) −17.0694 + 2.70353i −0.660931 + 0.104681i
\(668\) 0 0
\(669\) 1.80777 + 0.587381i 0.0698925 + 0.0227095i
\(670\) 0 0
\(671\) 19.2948 19.4264i 0.744868 0.749947i
\(672\) 0 0
\(673\) 19.1313 9.74788i 0.737457 0.375753i −0.0445627 0.999007i \(-0.514189\pi\)
0.782020 + 0.623253i \(0.214189\pi\)
\(674\) 0 0
\(675\) −2.72807 + 5.18464i −0.105003 + 0.199557i
\(676\) 0 0
\(677\) 38.1118 + 19.4189i 1.46475 + 0.746330i 0.990941 0.134296i \(-0.0428771\pi\)
0.473813 + 0.880625i \(0.342877\pi\)
\(678\) 0 0
\(679\) 8.86744 6.44257i 0.340301 0.247243i
\(680\) 0 0
\(681\) 2.40642i 0.0922142i
\(682\) 0 0
\(683\) 7.18559 7.18559i 0.274949 0.274949i −0.556140 0.831089i \(-0.687718\pi\)
0.831089 + 0.556140i \(0.187718\pi\)
\(684\) 0 0
\(685\) 3.78561 7.31058i 0.144641 0.279323i
\(686\) 0 0
\(687\) −0.911720 + 1.78935i −0.0347843 + 0.0682680i
\(688\) 0 0
\(689\) −27.4219 19.9232i −1.04469 0.759012i
\(690\) 0 0
\(691\) −5.61862 + 17.2923i −0.213742 + 0.657831i 0.785498 + 0.618864i \(0.212407\pi\)
−0.999240 + 0.0389674i \(0.987593\pi\)
\(692\) 0 0
\(693\) 30.3656 9.98058i 1.15349 0.379131i
\(694\) 0 0
\(695\) −6.21310 4.57673i −0.235676 0.173605i
\(696\) 0 0
\(697\) −6.19724 39.1278i −0.234737 1.48207i
\(698\) 0 0
\(699\) −0.0870116 0.267794i −0.00329108 0.0101289i
\(700\) 0 0
\(701\) 6.05920 + 8.33978i 0.228853 + 0.314989i 0.907965 0.419045i \(-0.137635\pi\)
−0.679112 + 0.734034i \(0.737635\pi\)
\(702\) 0 0
\(703\) −43.8000 43.8000i −1.65195 1.65195i
\(704\) 0 0
\(705\) 0.0928723 0.279570i 0.00349777 0.0105292i
\(706\) 0 0
\(707\) −0.354702 0.0561793i −0.0133400 0.00211284i
\(708\) 0 0
\(709\) −31.6001 + 10.2675i −1.18677 + 0.385604i −0.834877 0.550437i \(-0.814461\pi\)
−0.351891 + 0.936041i \(0.614461\pi\)
\(710\) 0 0
\(711\) 6.44062 8.86476i 0.241542 0.332454i
\(712\) 0 0
\(713\) −13.6529 26.7953i −0.511305 1.00349i
\(714\) 0 0
\(715\) 23.3290 31.8965i 0.872454 1.19286i
\(716\) 0 0
\(717\) −2.47171 4.85101i −0.0923077 0.181164i
\(718\) 0 0
\(719\) −14.2160 + 19.5667i −0.530169 + 0.729715i −0.987156 0.159758i \(-0.948928\pi\)
0.456987 + 0.889473i \(0.348928\pi\)
\(720\) 0 0
\(721\) 0.318906 0.103619i 0.0118767 0.00385896i
\(722\) 0 0
\(723\) 1.29191 + 0.204618i 0.0480466 + 0.00760983i
\(724\) 0 0
\(725\) −18.8079 14.0459i −0.698508 0.521650i
\(726\) 0 0
\(727\) 0.348445 + 0.348445i 0.0129231 + 0.0129231i 0.713539 0.700616i \(-0.247091\pi\)
−0.700616 + 0.713539i \(0.747091\pi\)
\(728\) 0 0
\(729\) 14.6571 + 20.1738i 0.542856 + 0.747178i
\(730\) 0 0
\(731\) 9.07694 + 27.9360i 0.335723 + 1.03325i
\(732\) 0 0
\(733\) 6.36801 + 40.2060i 0.235208 + 1.48504i 0.768902 + 0.639366i \(0.220803\pi\)
−0.533694 + 0.845677i \(0.679197\pi\)
\(734\) 0 0
\(735\) −0.236651 1.56042i −0.00872902 0.0575569i
\(736\) 0 0
\(737\) −35.7038 11.4669i −1.31517 0.422388i
\(738\) 0 0
\(739\) −3.05832 + 9.41255i −0.112502 + 0.346246i −0.991418 0.130731i \(-0.958268\pi\)
0.878916 + 0.476977i \(0.158268\pi\)
\(740\) 0 0
\(741\) 4.64610 + 3.37559i 0.170679 + 0.124005i
\(742\) 0 0
\(743\) −12.2803 + 24.1015i −0.450521 + 0.884198i 0.548329 + 0.836263i \(0.315264\pi\)
−0.998850 + 0.0479352i \(0.984736\pi\)
\(744\) 0 0
\(745\) −3.62328 11.4057i −0.132747 0.417871i
\(746\) 0 0
\(747\) 3.92587 3.92587i 0.143640 0.143640i
\(748\) 0 0
\(749\) 51.9159i 1.89696i
\(750\) 0 0
\(751\) −4.69796 + 3.41327i −0.171431 + 0.124552i −0.670192 0.742187i \(-0.733788\pi\)
0.498761 + 0.866739i \(0.333788\pi\)
\(752\) 0 0
\(753\) −4.17372 2.12662i −0.152099 0.0774982i
\(754\) 0 0
\(755\) 5.88186 + 8.20852i 0.214063 + 0.298739i
\(756\) 0 0
\(757\) 31.9778 16.2935i 1.16225 0.592197i 0.236985 0.971513i \(-0.423841\pi\)
0.925267 + 0.379316i \(0.123841\pi\)
\(758\) 0 0
\(759\) −2.14184 1.08217i −0.0777437 0.0392802i
\(760\) 0 0
\(761\) −18.4521 5.99545i −0.668888 0.217335i −0.0451642 0.998980i \(-0.514381\pi\)
−0.623724 + 0.781645i \(0.714381\pi\)
\(762\) 0 0
\(763\) −2.48976 + 0.394340i −0.0901354 + 0.0142761i
\(764\) 0 0
\(765\) 18.6604 + 18.9071i 0.674667 + 0.683588i
\(766\) 0 0
\(767\) 6.30504 39.8085i 0.227662 1.43740i
\(768\) 0 0
\(769\) 23.1799 0.835887 0.417944 0.908473i \(-0.362751\pi\)
0.417944 + 0.908473i \(0.362751\pi\)
\(770\) 0 0
\(771\) −0.861467 −0.0310250
\(772\) 0 0
\(773\) −3.70509 + 23.3930i −0.133263 + 0.841389i 0.826982 + 0.562229i \(0.190056\pi\)
−0.960245 + 0.279160i \(0.909944\pi\)
\(774\) 0 0
\(775\) 13.1317 38.6790i 0.471704 1.38939i
\(776\) 0 0
\(777\) −7.13683 + 1.13036i −0.256033 + 0.0405516i
\(778\) 0 0
\(779\) 51.4981 + 16.7328i 1.84511 + 0.599513i
\(780\) 0 0
\(781\) −23.7263 23.5656i −0.848994 0.843244i
\(782\) 0 0
\(783\) 4.90137 2.49737i 0.175161 0.0892488i
\(784\) 0 0
\(785\) −12.8451 2.12103i −0.458460 0.0757027i
\(786\) 0 0
\(787\) 36.0798 + 18.3836i 1.28611 + 0.655304i 0.957301 0.289094i \(-0.0933539\pi\)
0.328806 + 0.944398i \(0.393354\pi\)
\(788\) 0 0
\(789\) 2.84256 2.06524i 0.101198 0.0735246i
\(790\) 0 0
\(791\) 28.6372i 1.01822i
\(792\) 0 0
\(793\) −31.1051 + 31.1051i −1.10458 + 1.10458i
\(794\) 0 0
\(795\) −2.66450 + 0.846443i −0.0945001 + 0.0300202i
\(796\) 0 0
\(797\) −22.1104 + 43.3942i −0.783192 + 1.53710i 0.0592071 + 0.998246i \(0.481143\pi\)
−0.842399 + 0.538855i \(0.818857\pi\)
\(798\) 0 0
\(799\) −2.17544 1.58055i −0.0769617 0.0559159i
\(800\) 0 0
\(801\) −0.940661 + 2.89506i −0.0332366 + 0.102292i
\(802\) 0 0
\(803\) −2.22646 3.04266i −0.0785700 0.107373i
\(804\) 0 0
\(805\) 15.8875 21.5680i 0.559961 0.760171i
\(806\) 0 0
\(807\) 0.635024 + 4.00938i 0.0223539 + 0.141137i
\(808\) 0 0
\(809\) −8.36499 25.7448i −0.294097 0.905138i −0.983523 0.180782i \(-0.942137\pi\)
0.689426 0.724356i \(-0.257863\pi\)
\(810\) 0 0
\(811\) 5.42770 + 7.47059i 0.190592 + 0.262328i 0.893610 0.448845i \(-0.148164\pi\)
−0.703017 + 0.711173i \(0.748164\pi\)
\(812\) 0 0
\(813\) 0.870047 + 0.870047i 0.0305139 + 0.0305139i
\(814\) 0 0
\(815\) 12.4666 + 24.8695i 0.436686 + 0.871141i
\(816\) 0 0
\(817\) −39.6549 6.28072i −1.38735 0.219734i
\(818\) 0 0
\(819\) −48.8399 + 15.8690i −1.70660 + 0.554509i
\(820\) 0 0
\(821\) −18.4645 + 25.4142i −0.644416 + 0.886962i −0.998841 0.0481218i \(-0.984676\pi\)
0.354426 + 0.935084i \(0.384676\pi\)
\(822\) 0 0
\(823\) −9.70553 19.0482i −0.338313 0.663977i 0.657690 0.753288i \(-0.271534\pi\)
−0.996004 + 0.0893109i \(0.971534\pi\)
\(824\) 0 0
\(825\) −0.976988 3.10957i −0.0340144 0.108261i
\(826\) 0 0
\(827\) −1.76115 3.45645i −0.0612412 0.120193i 0.858357 0.513053i \(-0.171486\pi\)
−0.919598 + 0.392860i \(0.871486\pi\)
\(828\) 0 0
\(829\) 3.49646 4.81246i 0.121437 0.167144i −0.743970 0.668213i \(-0.767060\pi\)
0.865407 + 0.501069i \(0.167060\pi\)
\(830\) 0 0
\(831\) 4.37971 1.42305i 0.151930 0.0493652i
\(832\) 0 0
\(833\) −14.2288 2.25361i −0.492997 0.0780831i
\(834\) 0 0
\(835\) −6.29356 12.5550i −0.217797 0.434482i
\(836\) 0 0
\(837\) 6.76862 + 6.76862i 0.233958 + 0.233958i
\(838\) 0 0
\(839\) 19.8076 + 27.2628i 0.683834 + 0.941217i 0.999972 0.00749608i \(-0.00238610\pi\)
−0.316138 + 0.948713i \(0.602386\pi\)
\(840\) 0 0
\(841\) −2.15047 6.61847i −0.0741542 0.228223i
\(842\) 0 0
\(843\) 0.312301 + 1.97179i 0.0107562 + 0.0679122i
\(844\) 0 0
\(845\) −20.4141 + 27.7131i −0.702268 + 0.953359i
\(846\) 0 0
\(847\) −16.0349 + 32.0062i −0.550966 + 1.09975i
\(848\) 0 0
\(849\) −0.799902 + 2.46185i −0.0274526 + 0.0844904i
\(850\) 0 0
\(851\) −33.6421 24.4424i −1.15324 0.837875i
\(852\) 0 0
\(853\) −9.71522 + 19.0672i −0.332643 + 0.652848i −0.995381 0.0960029i \(-0.969394\pi\)
0.662738 + 0.748851i \(0.269394\pi\)
\(854\) 0 0
\(855\) −34.6058 + 10.9934i −1.18349 + 0.375965i
\(856\) 0 0
\(857\) −18.6774 + 18.6774i −0.638008 + 0.638008i −0.950064 0.312056i \(-0.898982\pi\)
0.312056 + 0.950064i \(0.398982\pi\)
\(858\) 0 0
\(859\) 6.24532i 0.213088i −0.994308 0.106544i \(-0.966022\pi\)
0.994308 0.106544i \(-0.0339784\pi\)
\(860\) 0 0
\(861\) 5.11021 3.71279i 0.174156 0.126531i
\(862\) 0 0
\(863\) 15.6521 + 7.97514i 0.532804 + 0.271477i 0.699625 0.714510i \(-0.253350\pi\)
−0.166822 + 0.985987i \(0.553350\pi\)
\(864\) 0 0
\(865\) 33.5358 + 5.53756i 1.14025 + 0.188283i
\(866\) 0 0
\(867\) 0.158704 0.0808639i 0.00538989 0.00274628i
\(868\) 0 0
\(869\) 1.96093 + 12.1143i 0.0665200 + 0.410948i
\(870\) 0 0
\(871\) 57.2992 + 18.6176i 1.94151 + 0.630835i
\(872\) 0 0
\(873\) −9.85108 + 1.56026i −0.333409 + 0.0528068i
\(874\) 0 0
\(875\) 36.0423 4.98277i 1.21845 0.168448i
\(876\) 0 0
\(877\) −7.86105 + 49.6327i −0.265449 + 1.67598i 0.390060 + 0.920789i \(0.372454\pi\)
−0.655509 + 0.755188i \(0.727546\pi\)
\(878\) 0 0
\(879\) −1.54313 −0.0520485
\(880\) 0 0
\(881\) −48.4041 −1.63077 −0.815387 0.578916i \(-0.803476\pi\)
−0.815387 + 0.578916i \(0.803476\pi\)
\(882\) 0 0
\(883\) −5.98949 + 37.8161i −0.201562 + 1.27261i 0.654627 + 0.755952i \(0.272826\pi\)
−0.856189 + 0.516662i \(0.827174\pi\)
\(884\) 0 0
\(885\) −2.33519 2.36607i −0.0784967 0.0795346i
\(886\) 0 0
\(887\) −43.4632 + 6.88389i −1.45935 + 0.231138i −0.835105 0.550090i \(-0.814593\pi\)
−0.624245 + 0.781228i \(0.714593\pi\)
\(888\) 0 0
\(889\) 12.7176 + 4.13220i 0.426535 + 0.138590i
\(890\) 0 0
\(891\) −28.3631 4.39354i −0.950201 0.147189i
\(892\) 0 0
\(893\) 3.27484 1.66862i 0.109588 0.0558381i
\(894\) 0 0
\(895\) 9.38551 + 13.0981i 0.313723 + 0.437821i
\(896\) 0 0
\(897\) 3.43517 + 1.75031i 0.114697 + 0.0584410i
\(898\) 0 0
\(899\) −31.0289 + 22.5438i −1.03487 + 0.751878i
\(900\) 0 0
\(901\) 25.5189i 0.850157i
\(902\) 0 0
\(903\) −3.31175 + 3.31175i −0.110208 + 0.110208i
\(904\) 0 0
\(905\) 7.87117 + 24.7775i 0.261646 + 0.823632i
\(906\) 0 0
\(907\) −4.88315 + 9.58372i −0.162142 + 0.318222i −0.957756 0.287582i \(-0.907149\pi\)
0.795614 + 0.605804i \(0.207149\pi\)
\(908\) 0 0
\(909\) 0.264378 + 0.192082i 0.00876886 + 0.00637095i
\(910\) 0 0
\(911\) 5.83452 17.9568i 0.193306 0.594936i −0.806686 0.590981i \(-0.798741\pi\)
0.999992 0.00395526i \(-0.00125900\pi\)
\(912\) 0 0
\(913\) 0.0211285 + 6.21802i 0.000699252 + 0.205786i
\(914\) 0 0
\(915\) 0.544040 + 3.58726i 0.0179854 + 0.118591i
\(916\) 0 0
\(917\) 4.28699 + 27.0670i 0.141569 + 0.893831i
\(918\) 0 0
\(919\) 5.20310 + 16.0135i 0.171634 + 0.528236i 0.999464 0.0327436i \(-0.0104245\pi\)
−0.827829 + 0.560980i \(0.810424\pi\)
\(920\) 0 0
\(921\) −1.08699 1.49612i −0.0358177 0.0492988i
\(922\) 0 0
\(923\) 37.9901 + 37.9901i 1.25046 + 1.25046i
\(924\) 0 0
\(925\) −8.10224 55.8980i −0.266400 1.83791i
\(926\) 0 0
\(927\) −0.301370 0.0477322i −0.00989827 0.00156773i
\(928\) 0 0
\(929\) 14.0294 4.55842i 0.460289 0.149557i −0.0696882 0.997569i \(-0.522200\pi\)
0.529977 + 0.848012i \(0.322200\pi\)
\(930\) 0 0
\(931\) 11.5740 15.9303i 0.379324 0.522095i
\(932\) 0 0
\(933\) −0.684241 1.34290i −0.0224011 0.0439646i
\(934\) 0 0
\(935\) −29.7515 0.0943027i −0.972977 0.00308403i
\(936\) 0 0
\(937\) 18.0760 + 35.4761i 0.590517 + 1.15895i 0.972088 + 0.234615i \(0.0753830\pi\)
−0.381571 + 0.924339i \(0.624617\pi\)
\(938\) 0 0
\(939\) 3.65811 5.03496i 0.119378 0.164310i
\(940\) 0 0
\(941\) −22.5807 + 7.33691i −0.736110 + 0.239177i −0.652994 0.757363i \(-0.726487\pi\)
−0.0831160 + 0.996540i \(0.526487\pi\)
\(942\) 0 0
\(943\) 35.9039 + 5.68661i 1.16919 + 0.185182i
\(944\) 0 0
\(945\) −2.68806 + 8.09179i −0.0874427 + 0.263226i
\(946\) 0 0
\(947\) 22.9342 + 22.9342i 0.745261 + 0.745261i 0.973585 0.228324i \(-0.0733246\pi\)
−0.228324 + 0.973585i \(0.573325\pi\)
\(948\) 0 0
\(949\) 3.56042 + 4.90050i 0.115576 + 0.159077i
\(950\) 0 0
\(951\) 0.519836 + 1.59989i 0.0168568 + 0.0518800i
\(952\) 0 0
\(953\) −5.01286 31.6499i −0.162382 1.02524i −0.925435 0.378906i \(-0.876300\pi\)
0.763053 0.646336i \(-0.223700\pi\)
\(954\) 0 0
\(955\) −29.0851 21.4248i −0.941170 0.693290i
\(956\) 0 0
\(957\) −0.935839 + 2.91387i −0.0302514 + 0.0941920i
\(958\) 0 0
\(959\) 3.70256 11.3953i 0.119562 0.367974i
\(960\) 0 0
\(961\) −28.9144 21.0075i −0.932722 0.677662i
\(962\) 0 0
\(963\) 21.4472 42.0925i 0.691126 1.35641i
\(964\) 0 0
\(965\) 8.28728 16.0040i 0.266777 0.515186i
\(966\) 0 0
\(967\) 20.9981 20.9981i 0.675253 0.675253i −0.283669 0.958922i \(-0.591552\pi\)
0.958922 + 0.283669i \(0.0915518\pi\)
\(968\) 0 0
\(969\) 4.32368i 0.138897i
\(970\) 0 0
\(971\) −0.106113 + 0.0770954i −0.00340532 + 0.00247411i −0.589487 0.807778i \(-0.700670\pi\)
0.586081 + 0.810252i \(0.300670\pi\)
\(972\) 0 0
\(973\) −10.0070 5.09880i −0.320808 0.163460i
\(974\) 0 0
\(975\) 1.55266 + 5.00117i 0.0497248 + 0.160166i
\(976\) 0 0
\(977\) −14.4170 + 7.34581i −0.461240 + 0.235013i −0.669140 0.743137i \(-0.733337\pi\)
0.207900 + 0.978150i \(0.433337\pi\)
\(978\) 0 0
\(979\) −1.55807 3.03236i −0.0497960 0.0969146i
\(980\) 0 0
\(981\) 2.18156 + 0.708833i 0.0696519 + 0.0226313i
\(982\) 0 0
\(983\) 40.1054 6.35207i 1.27916 0.202600i 0.520376 0.853937i \(-0.325792\pi\)
0.758788 + 0.651338i \(0.225792\pi\)
\(984\) 0 0
\(985\) 18.0013 17.7664i 0.573568 0.566083i
\(986\) 0 0
\(987\) 0.0670716 0.423473i 0.00213491 0.0134793i
\(988\) 0 0
\(989\) −26.9533 −0.857066
\(990\) 0 0
\(991\) −23.5944 −0.749502 −0.374751 0.927126i \(-0.622272\pi\)
−0.374751 + 0.927126i \(0.622272\pi\)
\(992\) 0 0
\(993\) −0.520141 + 3.28404i −0.0165062 + 0.104216i
\(994\) 0 0
\(995\) 0.117158 17.8384i 0.00371414 0.565517i
\(996\) 0 0
\(997\) 3.22469 0.510741i 0.102127 0.0161753i −0.105162 0.994455i \(-0.533536\pi\)
0.207289 + 0.978280i \(0.433536\pi\)
\(998\) 0 0
\(999\) 12.5884 + 4.09020i 0.398278 + 0.129408i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.b.497.3 48
4.3 odd 2 220.2.u.a.57.4 yes 48
5.3 odd 4 inner 880.2.cm.b.673.3 48
11.6 odd 10 inner 880.2.cm.b.17.3 48
20.3 even 4 220.2.u.a.13.4 48
44.39 even 10 220.2.u.a.17.4 yes 48
55.28 even 20 inner 880.2.cm.b.193.3 48
220.83 odd 20 220.2.u.a.193.4 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.u.a.13.4 48 20.3 even 4
220.2.u.a.17.4 yes 48 44.39 even 10
220.2.u.a.57.4 yes 48 4.3 odd 2
220.2.u.a.193.4 yes 48 220.83 odd 20
880.2.cm.b.17.3 48 11.6 odd 10 inner
880.2.cm.b.193.3 48 55.28 even 20 inner
880.2.cm.b.497.3 48 1.1 even 1 trivial
880.2.cm.b.673.3 48 5.3 odd 4 inner