Properties

Label 220.2.u.a.73.1
Level $220$
Weight $2$
Character 220.73
Analytic conductor $1.757$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(13,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 15, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.u (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 73.1
Character \(\chi\) \(=\) 220.73
Dual form 220.2.u.a.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.69137 + 1.37132i) q^{3} +(-0.0704176 - 2.23496i) q^{5} +(-0.328865 + 0.645435i) q^{7} +(3.59960 - 4.95443i) q^{9} +(-0.737999 - 3.23347i) q^{11} +(6.33471 - 1.00332i) q^{13} +(3.25437 + 5.91854i) q^{15} +(-2.66791 - 0.422556i) q^{17} +(2.17270 - 6.68689i) q^{19} -2.18809i q^{21} +(-0.399505 - 0.399505i) q^{23} +(-4.99008 + 0.314761i) q^{25} +(-1.47617 + 9.32020i) q^{27} +(-0.400667 - 1.23312i) q^{29} +(2.43127 + 1.76642i) q^{31} +(6.42037 + 7.69045i) q^{33} +(1.46568 + 0.689551i) q^{35} +(-7.40461 - 3.77284i) q^{37} +(-15.6732 + 11.3872i) q^{39} +(-4.24004 - 1.37767i) q^{41} +(-1.85191 + 1.85191i) q^{43} +(-11.3264 - 7.69608i) q^{45} +(0.0315244 + 0.0618701i) q^{47} +(3.80606 + 5.23860i) q^{49} +(7.75981 - 2.52131i) q^{51} +(-1.28461 - 8.11073i) q^{53} +(-7.17471 + 1.87709i) q^{55} +(3.32233 + 20.9764i) q^{57} +(6.46029 - 2.09908i) q^{59} +(6.84018 + 9.41470i) q^{61} +(2.01397 + 3.95265i) q^{63} +(-2.68845 - 14.0872i) q^{65} +(2.17585 - 2.17585i) q^{67} +(1.62307 + 0.527366i) q^{69} +(5.64630 - 4.10228i) q^{71} +(4.33309 + 2.20782i) q^{73} +(12.9985 - 7.69015i) q^{75} +(2.32970 + 0.587048i) q^{77} +(-3.49465 - 2.53901i) q^{79} +(-3.13079 - 9.63559i) q^{81} +(1.93474 - 12.2155i) q^{83} +(-0.756527 + 5.99243i) q^{85} +(2.76935 + 2.76935i) q^{87} +7.03122i q^{89} +(-1.43569 + 4.41860i) q^{91} +(-8.96579 - 1.42004i) q^{93} +(-15.0979 - 4.38502i) q^{95} +(13.1791 - 2.08736i) q^{97} +(-18.6765 - 7.98286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{3} + 4 q^{5} + 10 q^{7} - 16 q^{15} + 10 q^{17} + 16 q^{23} - 26 q^{25} - 10 q^{27} + 16 q^{31} + 28 q^{33} - 34 q^{37} - 20 q^{41} - 56 q^{45} - 2 q^{47} - 80 q^{51} + 6 q^{53} - 18 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.69137 + 1.37132i −1.55386 + 0.791733i −0.999186 0.0403316i \(-0.987159\pi\)
−0.554678 + 0.832065i \(0.687159\pi\)
\(4\) 0 0
\(5\) −0.0704176 2.23496i −0.0314917 0.999504i
\(6\) 0 0
\(7\) −0.328865 + 0.645435i −0.124299 + 0.243951i −0.944768 0.327741i \(-0.893713\pi\)
0.820468 + 0.571692i \(0.193713\pi\)
\(8\) 0 0
\(9\) 3.59960 4.95443i 1.19987 1.65148i
\(10\) 0 0
\(11\) −0.737999 3.23347i −0.222515 0.974929i
\(12\) 0 0
\(13\) 6.33471 1.00332i 1.75693 0.278271i 0.806961 0.590605i \(-0.201111\pi\)
0.949972 + 0.312334i \(0.101111\pi\)
\(14\) 0 0
\(15\) 3.25437 + 5.91854i 0.840275 + 1.52816i
\(16\) 0 0
\(17\) −2.66791 0.422556i −0.647064 0.102485i −0.175728 0.984439i \(-0.556228\pi\)
−0.471336 + 0.881954i \(0.656228\pi\)
\(18\) 0 0
\(19\) 2.17270 6.68689i 0.498452 1.53408i −0.313055 0.949735i \(-0.601353\pi\)
0.811507 0.584342i \(-0.198647\pi\)
\(20\) 0 0
\(21\) 2.18809i 0.477479i
\(22\) 0 0
\(23\) −0.399505 0.399505i −0.0833026 0.0833026i 0.664228 0.747530i \(-0.268761\pi\)
−0.747530 + 0.664228i \(0.768761\pi\)
\(24\) 0 0
\(25\) −4.99008 + 0.314761i −0.998017 + 0.0629522i
\(26\) 0 0
\(27\) −1.47617 + 9.32020i −0.284090 + 1.79367i
\(28\) 0 0
\(29\) −0.400667 1.23312i −0.0744019 0.228986i 0.906939 0.421262i \(-0.138413\pi\)
−0.981341 + 0.192277i \(0.938413\pi\)
\(30\) 0 0
\(31\) 2.43127 + 1.76642i 0.436669 + 0.317259i 0.784310 0.620369i \(-0.213017\pi\)
−0.347641 + 0.937628i \(0.613017\pi\)
\(32\) 0 0
\(33\) 6.42037 + 7.69045i 1.11764 + 1.33874i
\(34\) 0 0
\(35\) 1.46568 + 0.689551i 0.247745 + 0.116555i
\(36\) 0 0
\(37\) −7.40461 3.77284i −1.21731 0.620250i −0.277098 0.960842i \(-0.589373\pi\)
−0.940211 + 0.340591i \(0.889373\pi\)
\(38\) 0 0
\(39\) −15.6732 + 11.3872i −2.50972 + 1.82342i
\(40\) 0 0
\(41\) −4.24004 1.37767i −0.662183 0.215156i −0.0414044 0.999142i \(-0.513183\pi\)
−0.620778 + 0.783986i \(0.713183\pi\)
\(42\) 0 0
\(43\) −1.85191 + 1.85191i −0.282414 + 0.282414i −0.834071 0.551657i \(-0.813996\pi\)
0.551657 + 0.834071i \(0.313996\pi\)
\(44\) 0 0
\(45\) −11.3264 7.69608i −1.68844 1.14726i
\(46\) 0 0
\(47\) 0.0315244 + 0.0618701i 0.00459830 + 0.00902468i 0.893294 0.449472i \(-0.148388\pi\)
−0.888696 + 0.458497i \(0.848388\pi\)
\(48\) 0 0
\(49\) 3.80606 + 5.23860i 0.543723 + 0.748371i
\(50\) 0 0
\(51\) 7.75981 2.52131i 1.08659 0.353055i
\(52\) 0 0
\(53\) −1.28461 8.11073i −0.176455 1.11410i −0.903842 0.427867i \(-0.859265\pi\)
0.727386 0.686228i \(-0.240735\pi\)
\(54\) 0 0
\(55\) −7.17471 + 1.87709i −0.967438 + 0.253107i
\(56\) 0 0
\(57\) 3.32233 + 20.9764i 0.440054 + 2.77839i
\(58\) 0 0
\(59\) 6.46029 2.09908i 0.841058 0.273276i 0.143362 0.989670i \(-0.454209\pi\)
0.697696 + 0.716394i \(0.254209\pi\)
\(60\) 0 0
\(61\) 6.84018 + 9.41470i 0.875795 + 1.20543i 0.977568 + 0.210621i \(0.0675487\pi\)
−0.101772 + 0.994808i \(0.532451\pi\)
\(62\) 0 0
\(63\) 2.01397 + 3.95265i 0.253737 + 0.497987i
\(64\) 0 0
\(65\) −2.68845 14.0872i −0.333462 1.74730i
\(66\) 0 0
\(67\) 2.17585 2.17585i 0.265822 0.265822i −0.561592 0.827414i \(-0.689811\pi\)
0.827414 + 0.561592i \(0.189811\pi\)
\(68\) 0 0
\(69\) 1.62307 + 0.527366i 0.195394 + 0.0634875i
\(70\) 0 0
\(71\) 5.64630 4.10228i 0.670093 0.486851i −0.199963 0.979803i \(-0.564082\pi\)
0.870056 + 0.492952i \(0.164082\pi\)
\(72\) 0 0
\(73\) 4.33309 + 2.20782i 0.507150 + 0.258406i 0.688792 0.724959i \(-0.258141\pi\)
−0.181642 + 0.983365i \(0.558141\pi\)
\(74\) 0 0
\(75\) 12.9985 7.69015i 1.50094 0.887982i
\(76\) 0 0
\(77\) 2.32970 + 0.587048i 0.265494 + 0.0669003i
\(78\) 0 0
\(79\) −3.49465 2.53901i −0.393179 0.285661i 0.373578 0.927599i \(-0.378131\pi\)
−0.766757 + 0.641937i \(0.778131\pi\)
\(80\) 0 0
\(81\) −3.13079 9.63559i −0.347866 1.07062i
\(82\) 0 0
\(83\) 1.93474 12.2155i 0.212365 1.34082i −0.619130 0.785288i \(-0.712515\pi\)
0.831495 0.555532i \(-0.187485\pi\)
\(84\) 0 0
\(85\) −0.756527 + 5.99243i −0.0820569 + 0.649970i
\(86\) 0 0
\(87\) 2.76935 + 2.76935i 0.296906 + 0.296906i
\(88\) 0 0
\(89\) 7.03122i 0.745308i 0.927970 + 0.372654i \(0.121552\pi\)
−0.927970 + 0.372654i \(0.878448\pi\)
\(90\) 0 0
\(91\) −1.43569 + 4.41860i −0.150501 + 0.463195i
\(92\) 0 0
\(93\) −8.96579 1.42004i −0.929709 0.147251i
\(94\) 0 0
\(95\) −15.0979 4.38502i −1.54901 0.449894i
\(96\) 0 0
\(97\) 13.1791 2.08736i 1.33813 0.211939i 0.553991 0.832522i \(-0.313104\pi\)
0.784141 + 0.620583i \(0.213104\pi\)
\(98\) 0 0
\(99\) −18.6765 7.98286i −1.87706 0.802308i
\(100\) 0 0
\(101\) −2.86963 + 3.94971i −0.285539 + 0.393011i −0.927559 0.373677i \(-0.878097\pi\)
0.642020 + 0.766688i \(0.278097\pi\)
\(102\) 0 0
\(103\) −2.05633 + 4.03577i −0.202616 + 0.397656i −0.969847 0.243715i \(-0.921634\pi\)
0.767231 + 0.641371i \(0.221634\pi\)
\(104\) 0 0
\(105\) −4.89028 + 0.154080i −0.477243 + 0.0150366i
\(106\) 0 0
\(107\) −12.6078 + 6.42400i −1.21884 + 0.621032i −0.940613 0.339482i \(-0.889748\pi\)
−0.278231 + 0.960514i \(0.589748\pi\)
\(108\) 0 0
\(109\) −9.31654 −0.892363 −0.446181 0.894943i \(-0.647216\pi\)
−0.446181 + 0.894943i \(0.647216\pi\)
\(110\) 0 0
\(111\) 25.1023 2.38261
\(112\) 0 0
\(113\) 3.97341 2.02455i 0.373787 0.190454i −0.256997 0.966412i \(-0.582733\pi\)
0.630784 + 0.775958i \(0.282733\pi\)
\(114\) 0 0
\(115\) −0.864745 + 0.921010i −0.0806379 + 0.0858846i
\(116\) 0 0
\(117\) 17.8316 34.9964i 1.64853 3.23542i
\(118\) 0 0
\(119\) 1.15012 1.58300i 0.105431 0.145113i
\(120\) 0 0
\(121\) −9.91072 + 4.77260i −0.900974 + 0.433873i
\(122\) 0 0
\(123\) 13.3007 2.10663i 1.19929 0.189949i
\(124\) 0 0
\(125\) 1.05487 + 11.1305i 0.0943502 + 0.995539i
\(126\) 0 0
\(127\) 4.39719 + 0.696447i 0.390188 + 0.0617997i 0.348446 0.937329i \(-0.386709\pi\)
0.0417415 + 0.999128i \(0.486709\pi\)
\(128\) 0 0
\(129\) 2.44461 7.52375i 0.215236 0.662429i
\(130\) 0 0
\(131\) 17.1079i 1.49472i 0.664419 + 0.747360i \(0.268679\pi\)
−0.664419 + 0.747360i \(0.731321\pi\)
\(132\) 0 0
\(133\) 3.60142 + 3.60142i 0.312283 + 0.312283i
\(134\) 0 0
\(135\) 20.9342 + 2.64288i 1.80173 + 0.227463i
\(136\) 0 0
\(137\) −0.501626 + 3.16714i −0.0428568 + 0.270587i −0.999807 0.0196662i \(-0.993740\pi\)
0.956950 + 0.290254i \(0.0937397\pi\)
\(138\) 0 0
\(139\) −0.736668 2.26723i −0.0624833 0.192304i 0.914942 0.403586i \(-0.132236\pi\)
−0.977425 + 0.211282i \(0.932236\pi\)
\(140\) 0 0
\(141\) −0.169688 0.123285i −0.0142903 0.0103825i
\(142\) 0 0
\(143\) −7.91922 19.7427i −0.662239 1.65097i
\(144\) 0 0
\(145\) −2.72777 + 0.982307i −0.226529 + 0.0815762i
\(146\) 0 0
\(147\) −17.4273 8.87967i −1.43738 0.732383i
\(148\) 0 0
\(149\) 11.5619 8.40019i 0.947185 0.688170i −0.00295440 0.999996i \(-0.500940\pi\)
0.950139 + 0.311825i \(0.100940\pi\)
\(150\) 0 0
\(151\) −17.0508 5.54015i −1.38758 0.450851i −0.482424 0.875938i \(-0.660244\pi\)
−0.905153 + 0.425087i \(0.860244\pi\)
\(152\) 0 0
\(153\) −11.6969 + 11.6969i −0.945642 + 0.945642i
\(154\) 0 0
\(155\) 3.77668 5.55818i 0.303350 0.446444i
\(156\) 0 0
\(157\) 1.51796 + 2.97917i 0.121147 + 0.237764i 0.943613 0.331050i \(-0.107403\pi\)
−0.822467 + 0.568813i \(0.807403\pi\)
\(158\) 0 0
\(159\) 14.5798 + 20.0674i 1.15625 + 1.59145i
\(160\) 0 0
\(161\) 0.389238 0.126471i 0.0306762 0.00996731i
\(162\) 0 0
\(163\) 1.99353 + 12.5866i 0.156145 + 0.985862i 0.933962 + 0.357371i \(0.116327\pi\)
−0.777817 + 0.628490i \(0.783673\pi\)
\(164\) 0 0
\(165\) 16.7357 14.8908i 1.30287 1.15925i
\(166\) 0 0
\(167\) 0.0665828 + 0.420387i 0.00515233 + 0.0325306i 0.990131 0.140148i \(-0.0447578\pi\)
−0.984978 + 0.172679i \(0.944758\pi\)
\(168\) 0 0
\(169\) 26.7582 8.69427i 2.05832 0.668790i
\(170\) 0 0
\(171\) −25.3088 34.8346i −1.93542 2.66387i
\(172\) 0 0
\(173\) 6.05217 + 11.8780i 0.460138 + 0.903071i 0.998189 + 0.0601590i \(0.0191608\pi\)
−0.538051 + 0.842912i \(0.680839\pi\)
\(174\) 0 0
\(175\) 1.43791 3.32429i 0.108696 0.251292i
\(176\) 0 0
\(177\) −14.5085 + 14.5085i −1.09053 + 1.09053i
\(178\) 0 0
\(179\) 20.3460 + 6.61081i 1.52073 + 0.494115i 0.945983 0.324217i \(-0.105101\pi\)
0.574746 + 0.818332i \(0.305101\pi\)
\(180\) 0 0
\(181\) 5.91056 4.29427i 0.439328 0.319191i −0.346040 0.938220i \(-0.612474\pi\)
0.785368 + 0.619029i \(0.212474\pi\)
\(182\) 0 0
\(183\) −31.3201 15.9584i −2.31525 1.17968i
\(184\) 0 0
\(185\) −7.91072 + 16.8147i −0.581608 + 1.23624i
\(186\) 0 0
\(187\) 0.602593 + 8.93847i 0.0440660 + 0.653646i
\(188\) 0 0
\(189\) −5.53012 4.01786i −0.402257 0.292257i
\(190\) 0 0
\(191\) 0.115702 + 0.356093i 0.00837188 + 0.0257660i 0.955155 0.296106i \(-0.0956880\pi\)
−0.946783 + 0.321872i \(0.895688\pi\)
\(192\) 0 0
\(193\) −2.11650 + 13.3630i −0.152349 + 0.961893i 0.786507 + 0.617582i \(0.211888\pi\)
−0.938856 + 0.344311i \(0.888112\pi\)
\(194\) 0 0
\(195\) 26.5537 + 34.2271i 1.90155 + 2.45105i
\(196\) 0 0
\(197\) −18.0772 18.0772i −1.28795 1.28795i −0.936032 0.351916i \(-0.885530\pi\)
−0.351916 0.936032i \(-0.614470\pi\)
\(198\) 0 0
\(199\) 1.57894i 0.111928i 0.998433 + 0.0559641i \(0.0178233\pi\)
−0.998433 + 0.0559641i \(0.982177\pi\)
\(200\) 0 0
\(201\) −2.87223 + 8.83981i −0.202591 + 0.623512i
\(202\) 0 0
\(203\) 0.927667 + 0.146928i 0.0651094 + 0.0103123i
\(204\) 0 0
\(205\) −2.78047 + 9.57332i −0.194196 + 0.668630i
\(206\) 0 0
\(207\) −3.41738 + 0.541260i −0.237524 + 0.0376201i
\(208\) 0 0
\(209\) −23.2253 2.09046i −1.60653 0.144600i
\(210\) 0 0
\(211\) −9.31244 + 12.8175i −0.641095 + 0.882391i −0.998673 0.0514920i \(-0.983602\pi\)
0.357579 + 0.933883i \(0.383602\pi\)
\(212\) 0 0
\(213\) −9.57076 + 18.7837i −0.655777 + 1.28704i
\(214\) 0 0
\(215\) 4.26935 + 4.00854i 0.291167 + 0.273380i
\(216\) 0 0
\(217\) −1.93967 + 0.988311i −0.131673 + 0.0670910i
\(218\) 0 0
\(219\) −14.6896 −0.992630
\(220\) 0 0
\(221\) −17.3244 −1.16537
\(222\) 0 0
\(223\) 15.6005 7.94888i 1.04469 0.532296i 0.154551 0.987985i \(-0.450607\pi\)
0.890139 + 0.455689i \(0.150607\pi\)
\(224\) 0 0
\(225\) −16.4029 + 25.8560i −1.09352 + 1.72373i
\(226\) 0 0
\(227\) 1.00988 1.98201i 0.0670283 0.131550i −0.855061 0.518527i \(-0.826481\pi\)
0.922090 + 0.386977i \(0.126481\pi\)
\(228\) 0 0
\(229\) 4.26974 5.87679i 0.282152 0.388349i −0.644293 0.764779i \(-0.722848\pi\)
0.926445 + 0.376429i \(0.122848\pi\)
\(230\) 0 0
\(231\) −7.07512 + 1.61480i −0.465509 + 0.106246i
\(232\) 0 0
\(233\) −6.46966 + 1.02469i −0.423841 + 0.0671299i −0.364712 0.931120i \(-0.618832\pi\)
−0.0591295 + 0.998250i \(0.518832\pi\)
\(234\) 0 0
\(235\) 0.136057 0.0748124i 0.00887540 0.00488023i
\(236\) 0 0
\(237\) 12.8872 + 2.04113i 0.837115 + 0.132586i
\(238\) 0 0
\(239\) −5.04062 + 15.5134i −0.326051 + 1.00348i 0.644913 + 0.764256i \(0.276893\pi\)
−0.970964 + 0.239225i \(0.923107\pi\)
\(240\) 0 0
\(241\) 4.18134i 0.269344i −0.990890 0.134672i \(-0.957002\pi\)
0.990890 0.134672i \(-0.0429980\pi\)
\(242\) 0 0
\(243\) 1.62206 + 1.62206i 0.104055 + 0.104055i
\(244\) 0 0
\(245\) 11.4400 8.87528i 0.730877 0.567021i
\(246\) 0 0
\(247\) 7.05435 44.5394i 0.448858 2.83398i
\(248\) 0 0
\(249\) 11.5442 + 35.5295i 0.731586 + 2.25159i
\(250\) 0 0
\(251\) 10.2704 + 7.46191i 0.648264 + 0.470992i 0.862680 0.505751i \(-0.168785\pi\)
−0.214415 + 0.976743i \(0.568785\pi\)
\(252\) 0 0
\(253\) −0.996955 + 1.58662i −0.0626780 + 0.0997502i
\(254\) 0 0
\(255\) −6.18146 17.1653i −0.387098 1.07493i
\(256\) 0 0
\(257\) 1.06560 + 0.542953i 0.0664706 + 0.0338685i 0.486910 0.873452i \(-0.338124\pi\)
−0.420439 + 0.907321i \(0.638124\pi\)
\(258\) 0 0
\(259\) 4.87024 3.53843i 0.302622 0.219868i
\(260\) 0 0
\(261\) −7.55167 2.45369i −0.467436 0.151879i
\(262\) 0 0
\(263\) 21.2348 21.2348i 1.30939 1.30939i 0.387540 0.921853i \(-0.373325\pi\)
0.921853 0.387540i \(-0.126675\pi\)
\(264\) 0 0
\(265\) −18.0367 + 3.44220i −1.10799 + 0.211453i
\(266\) 0 0
\(267\) −9.64207 18.9236i −0.590085 1.15811i
\(268\) 0 0
\(269\) −8.55891 11.7803i −0.521846 0.718259i 0.464015 0.885828i \(-0.346409\pi\)
−0.985860 + 0.167568i \(0.946409\pi\)
\(270\) 0 0
\(271\) 12.7061 4.12848i 0.771844 0.250787i 0.103490 0.994631i \(-0.466999\pi\)
0.668354 + 0.743843i \(0.266999\pi\)
\(272\) 0 0
\(273\) −2.19535 13.8609i −0.132869 0.838899i
\(274\) 0 0
\(275\) 4.70045 + 15.9030i 0.283448 + 0.958988i
\(276\) 0 0
\(277\) 3.33857 + 21.0789i 0.200595 + 1.26651i 0.858266 + 0.513205i \(0.171542\pi\)
−0.657671 + 0.753305i \(0.728458\pi\)
\(278\) 0 0
\(279\) 17.5032 5.68714i 1.04789 0.340480i
\(280\) 0 0
\(281\) 14.0944 + 19.3993i 0.840801 + 1.15726i 0.985815 + 0.167834i \(0.0536771\pi\)
−0.145014 + 0.989430i \(0.546323\pi\)
\(282\) 0 0
\(283\) −6.49288 12.7430i −0.385962 0.757493i 0.613520 0.789679i \(-0.289753\pi\)
−0.999482 + 0.0321865i \(0.989753\pi\)
\(284\) 0 0
\(285\) 46.6474 8.90238i 2.76315 0.527332i
\(286\) 0 0
\(287\) 2.28360 2.28360i 0.134797 0.134797i
\(288\) 0 0
\(289\) −9.22876 2.99860i −0.542868 0.176389i
\(290\) 0 0
\(291\) −32.6073 + 23.6906i −1.91148 + 1.38877i
\(292\) 0 0
\(293\) −21.1158 10.7590i −1.23360 0.628548i −0.289171 0.957277i \(-0.593380\pi\)
−0.944424 + 0.328729i \(0.893380\pi\)
\(294\) 0 0
\(295\) −5.14627 14.2907i −0.299627 0.832035i
\(296\) 0 0
\(297\) 31.2260 2.10512i 1.81192 0.122152i
\(298\) 0 0
\(299\) −2.93158 2.12992i −0.169538 0.123176i
\(300\) 0 0
\(301\) −0.586258 1.80432i −0.0337913 0.103999i
\(302\) 0 0
\(303\) 2.30692 14.5653i 0.132529 0.836757i
\(304\) 0 0
\(305\) 20.5598 15.9505i 1.17725 0.913322i
\(306\) 0 0
\(307\) −10.5579 10.5579i −0.602570 0.602570i 0.338424 0.940994i \(-0.390106\pi\)
−0.940994 + 0.338424i \(0.890106\pi\)
\(308\) 0 0
\(309\) 13.6816i 0.778322i
\(310\) 0 0
\(311\) −1.32389 + 4.07451i −0.0750708 + 0.231044i −0.981550 0.191207i \(-0.938760\pi\)
0.906479 + 0.422251i \(0.138760\pi\)
\(312\) 0 0
\(313\) 28.6128 + 4.53183i 1.61729 + 0.256154i 0.898468 0.439038i \(-0.144681\pi\)
0.718824 + 0.695192i \(0.244681\pi\)
\(314\) 0 0
\(315\) 8.69219 4.77949i 0.489749 0.269294i
\(316\) 0 0
\(317\) 8.13986 1.28923i 0.457180 0.0724102i 0.0764028 0.997077i \(-0.475657\pi\)
0.380777 + 0.924667i \(0.375657\pi\)
\(318\) 0 0
\(319\) −3.69159 + 2.20559i −0.206689 + 0.123489i
\(320\) 0 0
\(321\) 25.1229 34.5788i 1.40223 1.93000i
\(322\) 0 0
\(323\) −8.62216 + 16.9219i −0.479750 + 0.941562i
\(324\) 0 0
\(325\) −31.2949 + 7.00057i −1.73593 + 0.388322i
\(326\) 0 0
\(327\) 25.0743 12.7760i 1.38661 0.706514i
\(328\) 0 0
\(329\) −0.0503004 −0.00277315
\(330\) 0 0
\(331\) 24.6521 1.35500 0.677502 0.735521i \(-0.263063\pi\)
0.677502 + 0.735521i \(0.263063\pi\)
\(332\) 0 0
\(333\) −45.3459 + 23.1049i −2.48494 + 1.26614i
\(334\) 0 0
\(335\) −5.01615 4.70971i −0.274062 0.257319i
\(336\) 0 0
\(337\) 1.15819 2.27308i 0.0630907 0.123822i −0.857308 0.514804i \(-0.827865\pi\)
0.920398 + 0.390982i \(0.127865\pi\)
\(338\) 0 0
\(339\) −7.91761 + 10.8977i −0.430025 + 0.591879i
\(340\) 0 0
\(341\) 3.91740 9.16507i 0.212139 0.496316i
\(342\) 0 0
\(343\) −9.64114 + 1.52701i −0.520573 + 0.0824506i
\(344\) 0 0
\(345\) 1.06435 3.66462i 0.0573027 0.197297i
\(346\) 0 0
\(347\) 21.0523 + 3.33435i 1.13015 + 0.178997i 0.693376 0.720576i \(-0.256123\pi\)
0.436769 + 0.899573i \(0.356123\pi\)
\(348\) 0 0
\(349\) 4.10120 12.6222i 0.219532 0.675651i −0.779268 0.626690i \(-0.784409\pi\)
0.998801 0.0489608i \(-0.0155910\pi\)
\(350\) 0 0
\(351\) 60.5218i 3.23042i
\(352\) 0 0
\(353\) 5.35710 + 5.35710i 0.285130 + 0.285130i 0.835151 0.550021i \(-0.185380\pi\)
−0.550021 + 0.835151i \(0.685380\pi\)
\(354\) 0 0
\(355\) −9.56603 12.3304i −0.507712 0.654429i
\(356\) 0 0
\(357\) −0.924588 + 5.83762i −0.0489344 + 0.308960i
\(358\) 0 0
\(359\) 9.21704 + 28.3671i 0.486457 + 1.49716i 0.829860 + 0.557971i \(0.188420\pi\)
−0.343404 + 0.939188i \(0.611580\pi\)
\(360\) 0 0
\(361\) −24.6225 17.8893i −1.29592 0.941542i
\(362\) 0 0
\(363\) 20.1286 26.4356i 1.05648 1.38751i
\(364\) 0 0
\(365\) 4.62926 9.83974i 0.242306 0.515036i
\(366\) 0 0
\(367\) −0.604234 0.307872i −0.0315407 0.0160708i 0.438149 0.898902i \(-0.355634\pi\)
−0.469690 + 0.882832i \(0.655634\pi\)
\(368\) 0 0
\(369\) −22.0880 + 16.0479i −1.14986 + 0.835420i
\(370\) 0 0
\(371\) 5.65741 + 1.83821i 0.293718 + 0.0954349i
\(372\) 0 0
\(373\) −7.34024 + 7.34024i −0.380063 + 0.380063i −0.871125 0.491061i \(-0.836609\pi\)
0.491061 + 0.871125i \(0.336609\pi\)
\(374\) 0 0
\(375\) −18.1025 28.5097i −0.934809 1.47223i
\(376\) 0 0
\(377\) −3.77533 7.40950i −0.194439 0.381608i
\(378\) 0 0
\(379\) −8.97797 12.3571i −0.461167 0.634742i 0.513583 0.858040i \(-0.328318\pi\)
−0.974750 + 0.223298i \(0.928318\pi\)
\(380\) 0 0
\(381\) −12.7895 + 4.15557i −0.655228 + 0.212896i
\(382\) 0 0
\(383\) 3.28863 + 20.7636i 0.168041 + 1.06097i 0.917156 + 0.398529i \(0.130479\pi\)
−0.749114 + 0.662441i \(0.769521\pi\)
\(384\) 0 0
\(385\) 1.14798 5.24812i 0.0585063 0.267469i
\(386\) 0 0
\(387\) 2.50901 + 15.8413i 0.127540 + 0.805258i
\(388\) 0 0
\(389\) −16.6876 + 5.42213i −0.846096 + 0.274913i −0.699810 0.714329i \(-0.746732\pi\)
−0.146286 + 0.989242i \(0.546732\pi\)
\(390\) 0 0
\(391\) 0.897032 + 1.23466i 0.0453648 + 0.0624393i
\(392\) 0 0
\(393\) −23.4604 46.0436i −1.18342 2.32259i
\(394\) 0 0
\(395\) −5.42851 + 7.98920i −0.273138 + 0.401980i
\(396\) 0 0
\(397\) 10.1338 10.1338i 0.508603 0.508603i −0.405495 0.914097i \(-0.632901\pi\)
0.914097 + 0.405495i \(0.132901\pi\)
\(398\) 0 0
\(399\) −14.6315 4.75406i −0.732490 0.238000i
\(400\) 0 0
\(401\) 31.6798 23.0167i 1.58201 1.14940i 0.667671 0.744456i \(-0.267291\pi\)
0.914342 0.404943i \(-0.132709\pi\)
\(402\) 0 0
\(403\) 17.1737 + 8.75043i 0.855482 + 0.435890i
\(404\) 0 0
\(405\) −21.3147 + 7.67571i −1.05914 + 0.381409i
\(406\) 0 0
\(407\) −6.73478 + 26.7270i −0.333830 + 1.32481i
\(408\) 0 0
\(409\) −17.3141 12.5794i −0.856128 0.622013i 0.0707012 0.997498i \(-0.477476\pi\)
−0.926829 + 0.375484i \(0.877476\pi\)
\(410\) 0 0
\(411\) −2.99311 9.21185i −0.147639 0.454387i
\(412\) 0 0
\(413\) −0.769750 + 4.86001i −0.0378769 + 0.239145i
\(414\) 0 0
\(415\) −27.4373 3.46388i −1.34684 0.170035i
\(416\) 0 0
\(417\) 5.09175 + 5.09175i 0.249344 + 0.249344i
\(418\) 0 0
\(419\) 14.5036i 0.708548i 0.935142 + 0.354274i \(0.115272\pi\)
−0.935142 + 0.354274i \(0.884728\pi\)
\(420\) 0 0
\(421\) −6.22588 + 19.1613i −0.303431 + 0.933864i 0.676827 + 0.736142i \(0.263354\pi\)
−0.980258 + 0.197722i \(0.936646\pi\)
\(422\) 0 0
\(423\) 0.420006 + 0.0665224i 0.0204214 + 0.00323443i
\(424\) 0 0
\(425\) 13.4461 + 1.26883i 0.652232 + 0.0615475i
\(426\) 0 0
\(427\) −8.32607 + 1.31872i −0.402927 + 0.0638174i
\(428\) 0 0
\(429\) 48.3872 + 42.2751i 2.33615 + 2.04106i
\(430\) 0 0
\(431\) 10.8439 14.9254i 0.522334 0.718931i −0.463604 0.886042i \(-0.653444\pi\)
0.985938 + 0.167112i \(0.0534440\pi\)
\(432\) 0 0
\(433\) 12.8954 25.3087i 0.619715 1.21626i −0.341350 0.939936i \(-0.610884\pi\)
0.961065 0.276323i \(-0.0891158\pi\)
\(434\) 0 0
\(435\) 5.99438 6.38441i 0.287409 0.306109i
\(436\) 0 0
\(437\) −3.53945 + 1.80344i −0.169315 + 0.0862703i
\(438\) 0 0
\(439\) 16.1551 0.771040 0.385520 0.922699i \(-0.374022\pi\)
0.385520 + 0.922699i \(0.374022\pi\)
\(440\) 0 0
\(441\) 39.6546 1.88831
\(442\) 0 0
\(443\) −24.1154 + 12.2874i −1.14576 + 0.583791i −0.920590 0.390529i \(-0.872292\pi\)
−0.225165 + 0.974321i \(0.572292\pi\)
\(444\) 0 0
\(445\) 15.7145 0.495121i 0.744938 0.0234710i
\(446\) 0 0
\(447\) −19.5979 + 38.4631i −0.926950 + 1.81924i
\(448\) 0 0
\(449\) 7.68659 10.5797i 0.362752 0.499286i −0.588161 0.808744i \(-0.700148\pi\)
0.950913 + 0.309458i \(0.100148\pi\)
\(450\) 0 0
\(451\) −1.32552 + 14.7268i −0.0624165 + 0.693457i
\(452\) 0 0
\(453\) 53.4875 8.47158i 2.51306 0.398030i
\(454\) 0 0
\(455\) 9.97649 + 2.89756i 0.467705 + 0.135840i
\(456\) 0 0
\(457\) 25.9795 + 4.11475i 1.21527 + 0.192480i 0.730962 0.682418i \(-0.239072\pi\)
0.484307 + 0.874898i \(0.339072\pi\)
\(458\) 0 0
\(459\) 7.87661 24.2417i 0.367649 1.13151i
\(460\) 0 0
\(461\) 16.1463i 0.752009i −0.926618 0.376004i \(-0.877298\pi\)
0.926618 0.376004i \(-0.122702\pi\)
\(462\) 0 0
\(463\) 13.3994 + 13.3994i 0.622724 + 0.622724i 0.946227 0.323503i \(-0.104861\pi\)
−0.323503 + 0.946227i \(0.604861\pi\)
\(464\) 0 0
\(465\) −2.54238 + 20.1382i −0.117900 + 0.933885i
\(466\) 0 0
\(467\) −1.10504 + 6.97693i −0.0511350 + 0.322854i 0.948840 + 0.315758i \(0.102259\pi\)
−0.999975 + 0.00709589i \(0.997741\pi\)
\(468\) 0 0
\(469\) 0.688807 + 2.11993i 0.0318061 + 0.0978892i
\(470\) 0 0
\(471\) −8.17080 5.93644i −0.376491 0.273537i
\(472\) 0 0
\(473\) 7.35481 + 4.62140i 0.338175 + 0.212492i
\(474\) 0 0
\(475\) −8.73719 + 34.0520i −0.400890 + 1.56241i
\(476\) 0 0
\(477\) −44.8081 22.8309i −2.05162 1.04535i
\(478\) 0 0
\(479\) −11.6472 + 8.46222i −0.532176 + 0.386649i −0.821171 0.570682i \(-0.806679\pi\)
0.288995 + 0.957331i \(0.406679\pi\)
\(480\) 0 0
\(481\) −50.6914 16.4706i −2.31133 0.750997i
\(482\) 0 0
\(483\) −0.874151 + 0.874151i −0.0397753 + 0.0397753i
\(484\) 0 0
\(485\) −5.59320 29.3077i −0.253974 1.33079i
\(486\) 0 0
\(487\) −16.2772 31.9458i −0.737590 1.44760i −0.888415 0.459042i \(-0.848193\pi\)
0.150825 0.988561i \(-0.451807\pi\)
\(488\) 0 0
\(489\) −22.6257 31.1416i −1.02317 1.40827i
\(490\) 0 0
\(491\) −17.6291 + 5.72805i −0.795591 + 0.258503i −0.678483 0.734616i \(-0.737362\pi\)
−0.117108 + 0.993119i \(0.537362\pi\)
\(492\) 0 0
\(493\) 0.547879 + 3.45917i 0.0246752 + 0.155793i
\(494\) 0 0
\(495\) −16.5262 + 42.3034i −0.742798 + 1.90140i
\(496\) 0 0
\(497\) 0.790880 + 4.99342i 0.0354758 + 0.223985i
\(498\) 0 0
\(499\) 10.8573 3.52775i 0.486040 0.157924i −0.0557384 0.998445i \(-0.517751\pi\)
0.541778 + 0.840522i \(0.317751\pi\)
\(500\) 0 0
\(501\) −0.755686 1.04011i −0.0337616 0.0464688i
\(502\) 0 0
\(503\) 10.3079 + 20.2304i 0.459608 + 0.902031i 0.998229 + 0.0594833i \(0.0189453\pi\)
−0.538621 + 0.842548i \(0.681055\pi\)
\(504\) 0 0
\(505\) 9.02952 + 6.13538i 0.401808 + 0.273021i
\(506\) 0 0
\(507\) −60.0937 + 60.0937i −2.66885 + 2.66885i
\(508\) 0 0
\(509\) −15.5927 5.06639i −0.691136 0.224564i −0.0576716 0.998336i \(-0.518368\pi\)
−0.633464 + 0.773772i \(0.718368\pi\)
\(510\) 0 0
\(511\) −2.85001 + 2.07065i −0.126077 + 0.0916002i
\(512\) 0 0
\(513\) 59.1158 + 30.1210i 2.61003 + 1.32988i
\(514\) 0 0
\(515\) 9.16458 + 4.31162i 0.403840 + 0.189993i
\(516\) 0 0
\(517\) 0.176790 0.147593i 0.00777523 0.00649115i
\(518\) 0 0
\(519\) −32.5773 23.6688i −1.42998 1.03894i
\(520\) 0 0
\(521\) 11.4206 + 35.1490i 0.500346 + 1.53991i 0.808456 + 0.588556i \(0.200303\pi\)
−0.308110 + 0.951351i \(0.599697\pi\)
\(522\) 0 0
\(523\) −2.08688 + 13.1761i −0.0912530 + 0.576149i 0.899118 + 0.437707i \(0.144209\pi\)
−0.990371 + 0.138442i \(0.955791\pi\)
\(524\) 0 0
\(525\) 0.688724 + 10.9187i 0.0300584 + 0.476532i
\(526\) 0 0
\(527\) −5.74001 5.74001i −0.250039 0.250039i
\(528\) 0 0
\(529\) 22.6808i 0.986121i
\(530\) 0 0
\(531\) 12.8548 39.5629i 0.557849 1.71688i
\(532\) 0 0
\(533\) −28.2417 4.47304i −1.22328 0.193749i
\(534\) 0 0
\(535\) 15.2452 + 27.7256i 0.659107 + 1.19868i
\(536\) 0 0
\(537\) −63.8241 + 10.1087i −2.75421 + 0.436225i
\(538\) 0 0
\(539\) 14.1300 16.1729i 0.608622 0.696616i
\(540\) 0 0
\(541\) 5.17033 7.11635i 0.222290 0.305956i −0.683277 0.730159i \(-0.739446\pi\)
0.905567 + 0.424203i \(0.139446\pi\)
\(542\) 0 0
\(543\) −10.0187 + 19.6628i −0.429943 + 0.843810i
\(544\) 0 0
\(545\) 0.656049 + 20.8221i 0.0281020 + 0.891920i
\(546\) 0 0
\(547\) 19.1062 9.73509i 0.816922 0.416242i 0.00498489 0.999988i \(-0.498413\pi\)
0.811937 + 0.583745i \(0.198413\pi\)
\(548\) 0 0
\(549\) 71.2664 3.04158
\(550\) 0 0
\(551\) −9.11630 −0.388367
\(552\) 0 0
\(553\) 2.78804 1.42058i 0.118559 0.0604091i
\(554\) 0 0
\(555\) −1.76765 56.1027i −0.0750324 2.38143i
\(556\) 0 0
\(557\) −5.19678 + 10.1993i −0.220195 + 0.432156i −0.974506 0.224360i \(-0.927971\pi\)
0.754312 + 0.656517i \(0.227971\pi\)
\(558\) 0 0
\(559\) −9.87326 + 13.5894i −0.417594 + 0.574769i
\(560\) 0 0
\(561\) −13.8793 23.2304i −0.585986 0.980789i
\(562\) 0 0
\(563\) −13.6659 + 2.16446i −0.575948 + 0.0912213i −0.437612 0.899164i \(-0.644176\pi\)
−0.138337 + 0.990385i \(0.544176\pi\)
\(564\) 0 0
\(565\) −4.80459 8.73784i −0.202131 0.367604i
\(566\) 0 0
\(567\) 7.24875 + 1.14809i 0.304419 + 0.0482152i
\(568\) 0 0
\(569\) −7.89984 + 24.3132i −0.331179 + 1.01926i 0.637395 + 0.770537i \(0.280012\pi\)
−0.968574 + 0.248726i \(0.919988\pi\)
\(570\) 0 0
\(571\) 29.7381i 1.24450i −0.782818 0.622251i \(-0.786218\pi\)
0.782818 0.622251i \(-0.213782\pi\)
\(572\) 0 0
\(573\) −0.799715 0.799715i −0.0334086 0.0334086i
\(574\) 0 0
\(575\) 2.11931 + 1.86781i 0.0883814 + 0.0778933i
\(576\) 0 0
\(577\) −4.52857 + 28.5923i −0.188527 + 1.19031i 0.693974 + 0.720000i \(0.255858\pi\)
−0.882500 + 0.470311i \(0.844142\pi\)
\(578\) 0 0
\(579\) −12.6288 38.8673i −0.524833 1.61527i
\(580\) 0 0
\(581\) 7.24801 + 5.26599i 0.300698 + 0.218470i
\(582\) 0 0
\(583\) −25.2778 + 10.1395i −1.04690 + 0.419934i
\(584\) 0 0
\(585\) −79.4712 37.3885i −3.28573 1.54582i
\(586\) 0 0
\(587\) 35.5782 + 18.1280i 1.46847 + 0.748222i 0.991427 0.130659i \(-0.0417094\pi\)
0.477041 + 0.878881i \(0.341709\pi\)
\(588\) 0 0
\(589\) 17.0943 12.4197i 0.704358 0.511746i
\(590\) 0 0
\(591\) 73.4422 + 23.8628i 3.02101 + 0.981585i
\(592\) 0 0
\(593\) −15.3021 + 15.3021i −0.628383 + 0.628383i −0.947661 0.319278i \(-0.896560\pi\)
0.319278 + 0.947661i \(0.396560\pi\)
\(594\) 0 0
\(595\) −3.61893 2.45899i −0.148362 0.100809i
\(596\) 0 0
\(597\) −2.16524 4.24952i −0.0886174 0.173921i
\(598\) 0 0
\(599\) 10.9535 + 15.0762i 0.447547 + 0.615996i 0.971868 0.235525i \(-0.0756808\pi\)
−0.524321 + 0.851521i \(0.675681\pi\)
\(600\) 0 0
\(601\) −9.80318 + 3.18525i −0.399880 + 0.129929i −0.502051 0.864838i \(-0.667421\pi\)
0.102171 + 0.994767i \(0.467421\pi\)
\(602\) 0 0
\(603\) −2.94789 18.6123i −0.120048 0.757950i
\(604\) 0 0
\(605\) 11.3645 + 21.8140i 0.462031 + 0.886864i
\(606\) 0 0
\(607\) 0.752433 + 4.75068i 0.0305403 + 0.192824i 0.998242 0.0592754i \(-0.0188790\pi\)
−0.967701 + 0.252099i \(0.918879\pi\)
\(608\) 0 0
\(609\) −2.69818 + 0.876693i −0.109336 + 0.0355254i
\(610\) 0 0
\(611\) 0.261773 + 0.360300i 0.0105902 + 0.0145762i
\(612\) 0 0
\(613\) 5.12125 + 10.0510i 0.206846 + 0.405957i 0.971001 0.239075i \(-0.0768441\pi\)
−0.764156 + 0.645032i \(0.776844\pi\)
\(614\) 0 0
\(615\) −5.64484 29.5783i −0.227622 1.19271i
\(616\) 0 0
\(617\) −11.3680 + 11.3680i −0.457659 + 0.457659i −0.897886 0.440227i \(-0.854898\pi\)
0.440227 + 0.897886i \(0.354898\pi\)
\(618\) 0 0
\(619\) 24.0772 + 7.82317i 0.967746 + 0.314440i 0.749906 0.661545i \(-0.230099\pi\)
0.217840 + 0.975984i \(0.430099\pi\)
\(620\) 0 0
\(621\) 4.31320 3.13373i 0.173083 0.125752i
\(622\) 0 0
\(623\) −4.53819 2.31232i −0.181819 0.0926413i
\(624\) 0 0
\(625\) 24.8019 3.14137i 0.992074 0.125655i
\(626\) 0 0
\(627\) 65.3747 26.2232i 2.61081 1.04725i
\(628\) 0 0
\(629\) 18.1606 + 13.1945i 0.724111 + 0.526097i
\(630\) 0 0
\(631\) −15.0120 46.2023i −0.597620 1.83929i −0.541227 0.840877i \(-0.682040\pi\)
−0.0563932 0.998409i \(-0.517960\pi\)
\(632\) 0 0
\(633\) 7.48635 47.2669i 0.297556 1.87869i
\(634\) 0 0
\(635\) 1.24689 9.87659i 0.0494813 0.391940i
\(636\) 0 0
\(637\) 29.3663 + 29.3663i 1.16354 + 1.16354i
\(638\) 0 0
\(639\) 42.7408i 1.69080i
\(640\) 0 0
\(641\) −6.22570 + 19.1607i −0.245900 + 0.756804i 0.749587 + 0.661906i \(0.230252\pi\)
−0.995487 + 0.0948974i \(0.969748\pi\)
\(642\) 0 0
\(643\) 19.4799 + 3.08531i 0.768213 + 0.121673i 0.528227 0.849103i \(-0.322857\pi\)
0.239986 + 0.970776i \(0.422857\pi\)
\(644\) 0 0
\(645\) −16.9874 4.93381i −0.668878 0.194268i
\(646\) 0 0
\(647\) −4.97430 + 0.787851i −0.195560 + 0.0309736i −0.253446 0.967350i \(-0.581564\pi\)
0.0578861 + 0.998323i \(0.481564\pi\)
\(648\) 0 0
\(649\) −11.5550 19.3401i −0.453573 0.759164i
\(650\) 0 0
\(651\) 3.86508 5.31983i 0.151484 0.208500i
\(652\) 0 0
\(653\) 7.31163 14.3499i 0.286126 0.561554i −0.702547 0.711637i \(-0.747954\pi\)
0.988673 + 0.150083i \(0.0479541\pi\)
\(654\) 0 0
\(655\) 38.2354 1.20469i 1.49398 0.0470713i
\(656\) 0 0
\(657\) 26.5359 13.5207i 1.03526 0.527493i
\(658\) 0 0
\(659\) 13.1583 0.512575 0.256287 0.966601i \(-0.417501\pi\)
0.256287 + 0.966601i \(0.417501\pi\)
\(660\) 0 0
\(661\) 16.6065 0.645919 0.322960 0.946413i \(-0.395322\pi\)
0.322960 + 0.946413i \(0.395322\pi\)
\(662\) 0 0
\(663\) 46.6265 23.7574i 1.81082 0.922660i
\(664\) 0 0
\(665\) 7.79543 8.30264i 0.302294 0.321962i
\(666\) 0 0
\(667\) −0.332571 + 0.652708i −0.0128772 + 0.0252730i
\(668\) 0 0
\(669\) −31.0864 + 42.7868i −1.20187 + 1.65423i
\(670\) 0 0
\(671\) 25.3942 29.0656i 0.980330 1.12206i
\(672\) 0 0
\(673\) −8.18656 + 1.29662i −0.315569 + 0.0499812i −0.312210 0.950013i \(-0.601069\pi\)
−0.00335891 + 0.999994i \(0.501069\pi\)
\(674\) 0 0
\(675\) 4.43260 46.9732i 0.170611 1.80800i
\(676\) 0 0
\(677\) −22.9582 3.63622i −0.882354 0.139751i −0.301216 0.953556i \(-0.597392\pi\)
−0.581138 + 0.813805i \(0.697392\pi\)
\(678\) 0 0
\(679\) −2.98689 + 9.19269i −0.114626 + 0.352783i
\(680\) 0 0
\(681\) 6.71919i 0.257480i
\(682\) 0 0
\(683\) 10.7294 + 10.7294i 0.410548 + 0.410548i 0.881929 0.471382i \(-0.156245\pi\)
−0.471382 + 0.881929i \(0.656245\pi\)
\(684\) 0 0
\(685\) 7.11376 + 0.898092i 0.271803 + 0.0343143i
\(686\) 0 0
\(687\) −3.43248 + 21.6718i −0.130957 + 0.826832i
\(688\) 0 0
\(689\) −16.2753 50.0903i −0.620041 1.90829i
\(690\) 0 0
\(691\) 6.67401 + 4.84895i 0.253891 + 0.184463i 0.707450 0.706764i \(-0.249846\pi\)
−0.453558 + 0.891227i \(0.649846\pi\)
\(692\) 0 0
\(693\) 11.2945 9.42918i 0.429042 0.358185i
\(694\) 0 0
\(695\) −5.01529 + 1.80607i −0.190241 + 0.0685083i
\(696\) 0 0
\(697\) 10.7299 + 5.46716i 0.406424 + 0.207083i
\(698\) 0 0
\(699\) 16.0071 11.6298i 0.605443 0.439880i
\(700\) 0 0
\(701\) −17.4538 5.67108i −0.659220 0.214194i −0.0397449 0.999210i \(-0.512655\pi\)
−0.619475 + 0.785016i \(0.712655\pi\)
\(702\) 0 0
\(703\) −41.3165 + 41.3165i −1.55828 + 1.55828i
\(704\) 0 0
\(705\) −0.263589 + 0.387926i −0.00992732 + 0.0146102i
\(706\) 0 0
\(707\) −1.60556 3.15108i −0.0603832 0.118509i
\(708\) 0 0
\(709\) −9.81584 13.5103i −0.368641 0.507391i 0.583890 0.811833i \(-0.301530\pi\)
−0.952531 + 0.304442i \(0.901530\pi\)
\(710\) 0 0
\(711\) −25.1587 + 8.17456i −0.943526 + 0.306570i
\(712\) 0 0
\(713\) −0.265611 1.67700i −0.00994720 0.0628041i
\(714\) 0 0
\(715\) −43.5664 + 19.0894i −1.62929 + 0.713902i
\(716\) 0 0
\(717\) −7.70774 48.6647i −0.287851 1.81742i
\(718\) 0 0
\(719\) −41.7628 + 13.5696i −1.55749 + 0.506059i −0.956136 0.292924i \(-0.905372\pi\)
−0.601354 + 0.798983i \(0.705372\pi\)
\(720\) 0 0
\(721\) −1.92857 2.65445i −0.0718237 0.0988569i
\(722\) 0 0
\(723\) 5.73396 + 11.2535i 0.213248 + 0.418523i
\(724\) 0 0
\(725\) 2.38750 + 6.02728i 0.0886695 + 0.223848i
\(726\) 0 0
\(727\) −16.0350 + 16.0350i −0.594705 + 0.594705i −0.938899 0.344194i \(-0.888152\pi\)
0.344194 + 0.938899i \(0.388152\pi\)
\(728\) 0 0
\(729\) 22.3168 + 7.25118i 0.826550 + 0.268562i
\(730\) 0 0
\(731\) 5.72327 4.15820i 0.211683 0.153797i
\(732\) 0 0
\(733\) 6.19423 + 3.15612i 0.228789 + 0.116574i 0.564628 0.825346i \(-0.309020\pi\)
−0.335839 + 0.941919i \(0.609020\pi\)
\(734\) 0 0
\(735\) −18.6185 + 39.5747i −0.686754 + 1.45973i
\(736\) 0 0
\(737\) −8.64132 5.42978i −0.318307 0.200008i
\(738\) 0 0
\(739\) −18.2947 13.2919i −0.672981 0.488949i 0.198041 0.980194i \(-0.436542\pi\)
−0.871022 + 0.491245i \(0.836542\pi\)
\(740\) 0 0
\(741\) 42.0920 + 129.546i 1.54629 + 4.75899i
\(742\) 0 0
\(743\) 7.69739 48.5994i 0.282390 1.78294i −0.284022 0.958818i \(-0.591669\pi\)
0.566412 0.824122i \(-0.308331\pi\)
\(744\) 0 0
\(745\) −19.5882 25.2488i −0.717657 0.925044i
\(746\) 0 0
\(747\) −53.5563 53.5563i −1.95952 1.95952i
\(748\) 0 0
\(749\) 10.2502i 0.374533i
\(750\) 0 0
\(751\) −7.00769 + 21.5674i −0.255714 + 0.787007i 0.737974 + 0.674829i \(0.235783\pi\)
−0.993688 + 0.112178i \(0.964217\pi\)
\(752\) 0 0
\(753\) −37.8743 5.99869i −1.38021 0.218605i
\(754\) 0 0
\(755\) −11.1813 + 38.4980i −0.406930 + 1.40109i
\(756\) 0 0
\(757\) 1.74836 0.276914i 0.0635454 0.0100646i −0.124581 0.992209i \(-0.539759\pi\)
0.188126 + 0.982145i \(0.439759\pi\)
\(758\) 0 0
\(759\) 0.507404 5.63734i 0.0184176 0.204623i
\(760\) 0 0
\(761\) 19.3732 26.6649i 0.702279 0.966604i −0.297650 0.954675i \(-0.596203\pi\)
0.999929 0.0119286i \(-0.00379709\pi\)
\(762\) 0 0
\(763\) 3.06389 6.01322i 0.110920 0.217693i
\(764\) 0 0
\(765\) 26.9659 + 25.3185i 0.974953 + 0.915393i
\(766\) 0 0
\(767\) 38.8180 19.7788i 1.40164 0.714170i
\(768\) 0 0
\(769\) −37.5969 −1.35578 −0.677889 0.735164i \(-0.737105\pi\)
−0.677889 + 0.735164i \(0.737105\pi\)
\(770\) 0 0
\(771\) −3.61250 −0.130101
\(772\) 0 0
\(773\) 11.4475 5.83278i 0.411737 0.209790i −0.235838 0.971792i \(-0.575783\pi\)
0.647575 + 0.762002i \(0.275783\pi\)
\(774\) 0 0
\(775\) −12.6882 8.04932i −0.455775 0.289140i
\(776\) 0 0
\(777\) −8.25529 + 16.2019i −0.296157 + 0.581240i
\(778\) 0 0
\(779\) −18.4247 + 25.3594i −0.660132 + 0.908594i
\(780\) 0 0
\(781\) −17.4316 15.2297i −0.623751 0.544962i
\(782\) 0 0
\(783\) 12.0844 1.91398i 0.431862 0.0684002i
\(784\) 0 0
\(785\) 6.55143 3.60237i 0.233831 0.128574i
\(786\) 0 0
\(787\) 14.4723 + 2.29218i 0.515881 + 0.0817075i 0.408946 0.912559i \(-0.365896\pi\)
0.106935 + 0.994266i \(0.465896\pi\)
\(788\) 0 0
\(789\) −28.0310 + 86.2704i −0.997929 + 3.07131i
\(790\) 0 0
\(791\) 3.23038i 0.114859i
\(792\) 0 0
\(793\) 52.7765 + 52.7765i 1.87415 + 1.87415i
\(794\) 0 0
\(795\) 43.8231 33.9984i 1.55425 1.20580i
\(796\) 0 0
\(797\) −0.264802 + 1.67189i −0.00937977 + 0.0592215i −0.991934 0.126753i \(-0.959544\pi\)
0.982554 + 0.185975i \(0.0595443\pi\)
\(798\) 0 0
\(799\) −0.0579607 0.178385i −0.00205050 0.00631080i
\(800\) 0 0
\(801\) 34.8357 + 25.3096i 1.23086 + 0.894270i
\(802\) 0 0
\(803\) 3.94111 15.6403i 0.139079 0.551934i
\(804\) 0 0
\(805\) −0.310067 0.861025i −0.0109284 0.0303471i
\(806\) 0 0
\(807\) 39.1898 + 19.9682i 1.37955 + 0.702915i
\(808\) 0 0
\(809\) 3.29877 2.39669i 0.115978 0.0842633i −0.528284 0.849068i \(-0.677164\pi\)
0.644263 + 0.764804i \(0.277164\pi\)
\(810\) 0 0
\(811\) 0.365104 + 0.118629i 0.0128205 + 0.00416564i 0.315420 0.948952i \(-0.397855\pi\)
−0.302600 + 0.953118i \(0.597855\pi\)
\(812\) 0 0
\(813\) −28.5355 + 28.5355i −1.00078 + 1.00078i
\(814\) 0 0
\(815\) 27.9902 5.34177i 0.980455 0.187114i
\(816\) 0 0
\(817\) 8.35987 + 16.4072i 0.292475 + 0.574014i
\(818\) 0 0
\(819\) 16.7237 + 23.0182i 0.584374 + 0.804322i
\(820\) 0 0
\(821\) −37.9513 + 12.3311i −1.32451 + 0.430359i −0.884041 0.467410i \(-0.845187\pi\)
−0.440467 + 0.897769i \(0.645187\pi\)
\(822\) 0 0
\(823\) 5.16364 + 32.6020i 0.179993 + 1.13643i 0.897869 + 0.440262i \(0.145114\pi\)
−0.717876 + 0.696171i \(0.754886\pi\)
\(824\) 0 0
\(825\) −34.4588 36.3551i −1.19970 1.26572i
\(826\) 0 0
\(827\) 4.33802 + 27.3892i 0.150848 + 0.952415i 0.940730 + 0.339157i \(0.110142\pi\)
−0.789882 + 0.613259i \(0.789858\pi\)
\(828\) 0 0
\(829\) −48.8463 + 15.8711i −1.69650 + 0.551227i −0.987996 0.154477i \(-0.950631\pi\)
−0.708507 + 0.705704i \(0.750631\pi\)
\(830\) 0 0
\(831\) −37.8914 52.1530i −1.31444 1.80917i
\(832\) 0 0
\(833\) −7.94065 15.5844i −0.275127 0.539967i
\(834\) 0 0
\(835\) 0.934860 0.178413i 0.0323522 0.00617422i
\(836\) 0 0
\(837\) −20.0524 + 20.0524i −0.693111 + 0.693111i
\(838\) 0 0
\(839\) −1.93080 0.627354i −0.0666585 0.0216587i 0.275498 0.961302i \(-0.411157\pi\)
−0.342156 + 0.939643i \(0.611157\pi\)
\(840\) 0 0
\(841\) 22.1014 16.0576i 0.762118 0.553711i
\(842\) 0 0
\(843\) −64.5359 32.8827i −2.22273 1.13254i
\(844\) 0 0
\(845\) −21.3156 59.1913i −0.733278 2.03624i
\(846\) 0 0
\(847\) 0.178889 7.96626i 0.00614670 0.273724i
\(848\) 0 0
\(849\) 34.9495 + 25.3923i 1.19946 + 0.871462i
\(850\) 0 0
\(851\) 1.45091 + 4.46545i 0.0497366 + 0.153073i
\(852\) 0 0
\(853\) 3.62270 22.8728i 0.124039 0.783150i −0.844731 0.535190i \(-0.820240\pi\)
0.968770 0.247960i \(-0.0797602\pi\)
\(854\) 0 0
\(855\) −76.0718 + 59.0172i −2.60160 + 2.01835i
\(856\) 0 0
\(857\) −2.65045 2.65045i −0.0905378 0.0905378i 0.660387 0.750925i \(-0.270392\pi\)
−0.750925 + 0.660387i \(0.770392\pi\)
\(858\) 0 0
\(859\) 29.9156i 1.02071i 0.859965 + 0.510353i \(0.170485\pi\)
−0.859965 + 0.510353i \(0.829515\pi\)
\(860\) 0 0
\(861\) −3.01446 + 9.27756i −0.102733 + 0.316178i
\(862\) 0 0
\(863\) −30.7625 4.87230i −1.04717 0.165855i −0.390939 0.920417i \(-0.627850\pi\)
−0.656229 + 0.754561i \(0.727850\pi\)
\(864\) 0 0
\(865\) 26.1208 14.3628i 0.888133 0.488349i
\(866\) 0 0
\(867\) 28.9501 4.58524i 0.983196 0.155723i
\(868\) 0 0
\(869\) −5.63079 + 13.1737i −0.191011 + 0.446886i
\(870\) 0 0
\(871\) 11.6003 15.9664i 0.393061 0.541002i
\(872\) 0 0
\(873\) 37.0977 72.8084i 1.25557 2.46419i
\(874\) 0 0
\(875\) −7.53090 2.97958i −0.254591 0.100728i
\(876\) 0 0
\(877\) 4.01742 2.04698i 0.135659 0.0691215i −0.384844 0.922982i \(-0.625745\pi\)
0.520502 + 0.853860i \(0.325745\pi\)
\(878\) 0 0
\(879\) 71.5844 2.41448
\(880\) 0 0
\(881\) −12.6932 −0.427646 −0.213823 0.976872i \(-0.568592\pi\)
−0.213823 + 0.976872i \(0.568592\pi\)
\(882\) 0 0
\(883\) −12.0876 + 6.15894i −0.406780 + 0.207265i −0.645394 0.763850i \(-0.723307\pi\)
0.238614 + 0.971114i \(0.423307\pi\)
\(884\) 0 0
\(885\) 33.4476 + 31.4043i 1.12433 + 1.05564i
\(886\) 0 0
\(887\) 11.6610 22.8860i 0.391538 0.768436i −0.608140 0.793830i \(-0.708084\pi\)
0.999678 + 0.0253938i \(0.00808397\pi\)
\(888\) 0 0
\(889\) −1.89560 + 2.60906i −0.0635762 + 0.0875052i
\(890\) 0 0
\(891\) −28.8459 + 17.2344i −0.966374 + 0.577374i
\(892\) 0 0
\(893\) 0.482211 0.0763748i 0.0161366 0.00255578i
\(894\) 0 0
\(895\) 13.3422 45.9379i 0.445979 1.53554i
\(896\) 0 0
\(897\) 10.8108 + 1.71226i 0.360962 + 0.0571707i
\(898\) 0 0
\(899\) 1.20409 3.70581i 0.0401586 0.123596i
\(900\) 0 0
\(901\) 22.1816i 0.738975i
\(902\) 0 0
\(903\) 4.05214 + 4.05214i 0.134847 + 0.134847i
\(904\) 0 0
\(905\) −10.0137 12.9075i −0.332868 0.429059i
\(906\) 0 0
\(907\) 0.636482 4.01859i 0.0211340 0.133435i −0.974865 0.222795i \(-0.928482\pi\)
0.995999 + 0.0893597i \(0.0284821\pi\)
\(908\) 0 0
\(909\) 9.23902 + 28.4348i 0.306439 + 0.943122i
\(910\) 0 0
\(911\) −39.9673 29.0380i −1.32418 0.962070i −0.999870 0.0161180i \(-0.994869\pi\)
−0.324306 0.945952i \(-0.605131\pi\)
\(912\) 0 0
\(913\) −40.9262 + 2.75907i −1.35446 + 0.0913118i
\(914\) 0 0
\(915\) −33.4608 + 71.1228i −1.10618 + 2.35125i
\(916\) 0 0
\(917\) −11.0420 5.62618i −0.364639 0.185793i
\(918\) 0 0
\(919\) 9.17092 6.66307i 0.302521 0.219794i −0.426160 0.904648i \(-0.640134\pi\)
0.728681 + 0.684854i \(0.240134\pi\)
\(920\) 0 0
\(921\) 42.8935 + 13.9369i 1.41339 + 0.459237i
\(922\) 0 0
\(923\) 31.6518 31.6518i 1.04183 1.04183i
\(924\) 0 0
\(925\) 38.1371 + 16.4961i 1.25394 + 0.542388i
\(926\) 0 0
\(927\) 12.5930 + 24.7151i 0.413607 + 0.811750i
\(928\) 0 0
\(929\) 10.3144 + 14.1966i 0.338404 + 0.465774i 0.943975 0.330018i \(-0.107055\pi\)
−0.605570 + 0.795792i \(0.707055\pi\)
\(930\) 0 0
\(931\) 43.2993 14.0688i 1.41908 0.461087i
\(932\) 0 0
\(933\) −2.02439 12.7815i −0.0662755 0.418447i
\(934\) 0 0
\(935\) 19.9347 1.97620i 0.651934 0.0646285i
\(936\) 0 0
\(937\) −6.90315 43.5848i −0.225516 1.42385i −0.797367 0.603495i \(-0.793774\pi\)
0.571851 0.820357i \(-0.306226\pi\)
\(938\) 0 0
\(939\) −83.2223 + 27.0406i −2.71586 + 0.882436i
\(940\) 0 0
\(941\) −7.71688 10.6214i −0.251563 0.346247i 0.664495 0.747293i \(-0.268647\pi\)
−0.916058 + 0.401046i \(0.868647\pi\)
\(942\) 0 0
\(943\) 1.14353 + 2.24430i 0.0372384 + 0.0730846i
\(944\) 0 0
\(945\) −8.59034 + 12.6425i −0.279444 + 0.411261i
\(946\) 0 0
\(947\) −14.1055 + 14.1055i −0.458367 + 0.458367i −0.898119 0.439752i \(-0.855066\pi\)
0.439752 + 0.898119i \(0.355066\pi\)
\(948\) 0 0
\(949\) 29.6640 + 9.63843i 0.962935 + 0.312877i
\(950\) 0 0
\(951\) −20.1394 + 14.6322i −0.653066 + 0.474480i
\(952\) 0 0
\(953\) 38.2426 + 19.4856i 1.23880 + 0.631199i 0.945749 0.324898i \(-0.105330\pi\)
0.293050 + 0.956097i \(0.405330\pi\)
\(954\) 0 0
\(955\) 0.787706 0.283664i 0.0254896 0.00917915i
\(956\) 0 0
\(957\) 6.91086 10.9984i 0.223396 0.355528i
\(958\) 0 0
\(959\) −1.87922 1.36533i −0.0606831 0.0440888i
\(960\) 0 0
\(961\) −6.78870 20.8935i −0.218990 0.673982i
\(962\) 0 0
\(963\) −13.5559 + 85.5884i −0.436832 + 2.75805i
\(964\) 0 0
\(965\) 30.0149 + 3.78929i 0.966214 + 0.121982i
\(966\) 0 0
\(967\) −10.8777 10.8777i −0.349803 0.349803i 0.510233 0.860036i \(-0.329559\pi\)
−0.860036 + 0.510233i \(0.829559\pi\)
\(968\) 0 0
\(969\) 57.3670i 1.84289i
\(970\) 0 0
\(971\) 6.16511 18.9743i 0.197848 0.608913i −0.802084 0.597212i \(-0.796275\pi\)
0.999932 0.0117013i \(-0.00372472\pi\)
\(972\) 0 0
\(973\) 1.70561 + 0.270143i 0.0546794 + 0.00866037i
\(974\) 0 0
\(975\) 74.6263 61.7566i 2.38995 1.97779i
\(976\) 0 0
\(977\) 24.5475 3.88795i 0.785345 0.124386i 0.249133 0.968469i \(-0.419854\pi\)
0.536213 + 0.844083i \(0.319854\pi\)
\(978\) 0 0
\(979\) 22.7353 5.18903i 0.726622 0.165842i
\(980\) 0 0
\(981\) −33.5358 + 46.1581i −1.07072 + 1.47372i
\(982\) 0 0
\(983\) −13.2129 + 25.9317i −0.421424 + 0.827092i 0.578510 + 0.815675i \(0.303634\pi\)
−0.999935 + 0.0114171i \(0.996366\pi\)
\(984\) 0 0
\(985\) −39.1289 + 41.6748i −1.24675 + 1.32787i
\(986\) 0 0
\(987\) 0.135377 0.0689780i 0.00430910 0.00219560i
\(988\) 0 0
\(989\) 1.47970 0.0470516
\(990\) 0 0
\(991\) −48.5379 −1.54186 −0.770929 0.636921i \(-0.780208\pi\)
−0.770929 + 0.636921i \(0.780208\pi\)
\(992\) 0 0
\(993\) −66.3481 + 33.8060i −2.10549 + 1.07280i
\(994\) 0 0
\(995\) 3.52887 0.111185i 0.111873 0.00352481i
\(996\) 0 0
\(997\) 11.8187 23.1955i 0.374303 0.734610i −0.624624 0.780925i \(-0.714748\pi\)
0.998927 + 0.0463152i \(0.0147479\pi\)
\(998\) 0 0
\(999\) 46.0941 63.4430i 1.45835 2.00725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.u.a.73.1 48
4.3 odd 2 880.2.cm.b.513.6 48
5.2 odd 4 inner 220.2.u.a.117.6 yes 48
11.8 odd 10 inner 220.2.u.a.173.6 yes 48
20.7 even 4 880.2.cm.b.337.1 48
44.19 even 10 880.2.cm.b.833.1 48
55.52 even 20 inner 220.2.u.a.217.1 yes 48
220.107 odd 20 880.2.cm.b.657.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.u.a.73.1 48 1.1 even 1 trivial
220.2.u.a.117.6 yes 48 5.2 odd 4 inner
220.2.u.a.173.6 yes 48 11.8 odd 10 inner
220.2.u.a.217.1 yes 48 55.52 even 20 inner
880.2.cm.b.337.1 48 20.7 even 4
880.2.cm.b.513.6 48 4.3 odd 2
880.2.cm.b.657.6 48 220.107 odd 20
880.2.cm.b.833.1 48 44.19 even 10