Properties

Label 880.2.cm.b.337.1
Level $880$
Weight $2$
Character 880.337
Analytic conductor $7.027$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [880,2,Mod(17,880)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(880, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("880.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 880 = 2^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 880.cm (of order \(20\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.02683537787\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 337.1
Character \(\chi\) \(=\) 880.337
Dual form 880.2.cm.b.833.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37132 - 2.69137i) q^{3} +(2.10381 + 0.757611i) q^{5} +(0.645435 + 0.328865i) q^{7} +(-3.59960 + 4.95443i) q^{9} +(0.737999 + 3.23347i) q^{11} +(-1.00332 - 6.33471i) q^{13} +(-0.845991 - 6.70107i) q^{15} +(0.422556 - 2.66791i) q^{17} +(2.17270 - 6.68689i) q^{19} -2.18809i q^{21} +(0.399505 - 0.399505i) q^{23} +(3.85205 + 3.18774i) q^{25} +(9.32020 + 1.47617i) q^{27} +(0.400667 + 1.23312i) q^{29} +(-2.43127 - 1.76642i) q^{31} +(7.69045 - 6.42037i) q^{33} +(1.10872 + 1.18086i) q^{35} +(3.77284 - 7.40461i) q^{37} +(-15.6732 + 11.3872i) q^{39} +(-4.24004 - 1.37767i) q^{41} +(-1.85191 - 1.85191i) q^{43} +(-11.3264 + 7.69608i) q^{45} +(0.0618701 - 0.0315244i) q^{47} +(-3.80606 - 5.23860i) q^{49} +(-7.75981 + 2.52131i) q^{51} +(-8.11073 + 1.28461i) q^{53} +(-0.897106 + 7.36174i) q^{55} +(-20.9764 + 3.32233i) q^{57} +(6.46029 - 2.09908i) q^{59} +(6.84018 + 9.41470i) q^{61} +(-3.95265 + 2.01397i) q^{63} +(2.68845 - 14.0872i) q^{65} +(-2.17585 - 2.17585i) q^{67} +(-1.62307 - 0.527366i) q^{69} +(-5.64630 + 4.10228i) q^{71} +(2.20782 - 4.33309i) q^{73} +(3.29700 - 14.7387i) q^{75} +(-0.587048 + 2.32970i) q^{77} +(-3.49465 - 2.53901i) q^{79} +(-3.13079 - 9.63559i) q^{81} +(12.2155 + 1.93474i) q^{83} +(2.91022 - 5.29265i) q^{85} +(2.76935 - 2.76935i) q^{87} -7.03122i q^{89} +(1.43569 - 4.41860i) q^{91} +(-1.42004 + 8.96579i) q^{93} +(9.63702 - 12.4219i) q^{95} +(2.08736 + 13.1791i) q^{97} +(-18.6765 - 7.98286i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{3} + 4 q^{5} - 10 q^{7} + 16 q^{15} + 10 q^{17} - 16 q^{23} - 26 q^{25} + 10 q^{27} - 16 q^{31} + 28 q^{33} - 34 q^{37} - 20 q^{41} - 56 q^{45} + 2 q^{47} + 80 q^{51} + 6 q^{53} + 18 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/880\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(321\) \(661\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.37132 2.69137i −0.791733 1.55386i −0.832065 0.554678i \(-0.812841\pi\)
0.0403316 0.999186i \(-0.487159\pi\)
\(4\) 0 0
\(5\) 2.10381 + 0.757611i 0.940853 + 0.338814i
\(6\) 0 0
\(7\) 0.645435 + 0.328865i 0.243951 + 0.124299i 0.571692 0.820468i \(-0.306287\pi\)
−0.327741 + 0.944768i \(0.606287\pi\)
\(8\) 0 0
\(9\) −3.59960 + 4.95443i −1.19987 + 1.65148i
\(10\) 0 0
\(11\) 0.737999 + 3.23347i 0.222515 + 0.974929i
\(12\) 0 0
\(13\) −1.00332 6.33471i −0.278271 1.75693i −0.590605 0.806961i \(-0.701111\pi\)
0.312334 0.949972i \(-0.398889\pi\)
\(14\) 0 0
\(15\) −0.845991 6.70107i −0.218434 1.73021i
\(16\) 0 0
\(17\) 0.422556 2.66791i 0.102485 0.647064i −0.881954 0.471336i \(-0.843772\pi\)
0.984439 0.175728i \(-0.0562280\pi\)
\(18\) 0 0
\(19\) 2.17270 6.68689i 0.498452 1.53408i −0.313055 0.949735i \(-0.601353\pi\)
0.811507 0.584342i \(-0.198647\pi\)
\(20\) 0 0
\(21\) 2.18809i 0.477479i
\(22\) 0 0
\(23\) 0.399505 0.399505i 0.0833026 0.0833026i −0.664228 0.747530i \(-0.731239\pi\)
0.747530 + 0.664228i \(0.231239\pi\)
\(24\) 0 0
\(25\) 3.85205 + 3.18774i 0.770410 + 0.637549i
\(26\) 0 0
\(27\) 9.32020 + 1.47617i 1.79367 + 0.284090i
\(28\) 0 0
\(29\) 0.400667 + 1.23312i 0.0744019 + 0.228986i 0.981341 0.192277i \(-0.0615872\pi\)
−0.906939 + 0.421262i \(0.861587\pi\)
\(30\) 0 0
\(31\) −2.43127 1.76642i −0.436669 0.317259i 0.347641 0.937628i \(-0.386983\pi\)
−0.784310 + 0.620369i \(0.786983\pi\)
\(32\) 0 0
\(33\) 7.69045 6.42037i 1.33874 1.11764i
\(34\) 0 0
\(35\) 1.10872 + 1.18086i 0.187408 + 0.199602i
\(36\) 0 0
\(37\) 3.77284 7.40461i 0.620250 1.21731i −0.340591 0.940211i \(-0.610627\pi\)
0.960842 0.277098i \(-0.0893728\pi\)
\(38\) 0 0
\(39\) −15.6732 + 11.3872i −2.50972 + 1.82342i
\(40\) 0 0
\(41\) −4.24004 1.37767i −0.662183 0.215156i −0.0414044 0.999142i \(-0.513183\pi\)
−0.620778 + 0.783986i \(0.713183\pi\)
\(42\) 0 0
\(43\) −1.85191 1.85191i −0.282414 0.282414i 0.551657 0.834071i \(-0.313996\pi\)
−0.834071 + 0.551657i \(0.813996\pi\)
\(44\) 0 0
\(45\) −11.3264 + 7.69608i −1.68844 + 1.14726i
\(46\) 0 0
\(47\) 0.0618701 0.0315244i 0.00902468 0.00459830i −0.449472 0.893294i \(-0.648388\pi\)
0.458497 + 0.888696i \(0.348388\pi\)
\(48\) 0 0
\(49\) −3.80606 5.23860i −0.543723 0.748371i
\(50\) 0 0
\(51\) −7.75981 + 2.52131i −1.08659 + 0.353055i
\(52\) 0 0
\(53\) −8.11073 + 1.28461i −1.11410 + 0.176455i −0.686228 0.727386i \(-0.740735\pi\)
−0.427867 + 0.903842i \(0.640735\pi\)
\(54\) 0 0
\(55\) −0.897106 + 7.36174i −0.120966 + 0.992657i
\(56\) 0 0
\(57\) −20.9764 + 3.32233i −2.77839 + 0.440054i
\(58\) 0 0
\(59\) 6.46029 2.09908i 0.841058 0.273276i 0.143362 0.989670i \(-0.454209\pi\)
0.697696 + 0.716394i \(0.254209\pi\)
\(60\) 0 0
\(61\) 6.84018 + 9.41470i 0.875795 + 1.20543i 0.977568 + 0.210621i \(0.0675487\pi\)
−0.101772 + 0.994808i \(0.532451\pi\)
\(62\) 0 0
\(63\) −3.95265 + 2.01397i −0.497987 + 0.253737i
\(64\) 0 0
\(65\) 2.68845 14.0872i 0.333462 1.74730i
\(66\) 0 0
\(67\) −2.17585 2.17585i −0.265822 0.265822i 0.561592 0.827414i \(-0.310189\pi\)
−0.827414 + 0.561592i \(0.810189\pi\)
\(68\) 0 0
\(69\) −1.62307 0.527366i −0.195394 0.0634875i
\(70\) 0 0
\(71\) −5.64630 + 4.10228i −0.670093 + 0.486851i −0.870056 0.492952i \(-0.835918\pi\)
0.199963 + 0.979803i \(0.435918\pi\)
\(72\) 0 0
\(73\) 2.20782 4.33309i 0.258406 0.507150i −0.724959 0.688792i \(-0.758141\pi\)
0.983365 + 0.181642i \(0.0581413\pi\)
\(74\) 0 0
\(75\) 3.29700 14.7387i 0.380705 1.70188i
\(76\) 0 0
\(77\) −0.587048 + 2.32970i −0.0669003 + 0.265494i
\(78\) 0 0
\(79\) −3.49465 2.53901i −0.393179 0.285661i 0.373578 0.927599i \(-0.378131\pi\)
−0.766757 + 0.641937i \(0.778131\pi\)
\(80\) 0 0
\(81\) −3.13079 9.63559i −0.347866 1.07062i
\(82\) 0 0
\(83\) 12.2155 + 1.93474i 1.34082 + 0.212365i 0.785288 0.619130i \(-0.212515\pi\)
0.555532 + 0.831495i \(0.312515\pi\)
\(84\) 0 0
\(85\) 2.91022 5.29265i 0.315658 0.574069i
\(86\) 0 0
\(87\) 2.76935 2.76935i 0.296906 0.296906i
\(88\) 0 0
\(89\) 7.03122i 0.745308i −0.927970 0.372654i \(-0.878448\pi\)
0.927970 0.372654i \(-0.121552\pi\)
\(90\) 0 0
\(91\) 1.43569 4.41860i 0.150501 0.463195i
\(92\) 0 0
\(93\) −1.42004 + 8.96579i −0.147251 + 0.929709i
\(94\) 0 0
\(95\) 9.63702 12.4219i 0.988737 1.27446i
\(96\) 0 0
\(97\) 2.08736 + 13.1791i 0.211939 + 1.33813i 0.832522 + 0.553991i \(0.186896\pi\)
−0.620583 + 0.784141i \(0.713104\pi\)
\(98\) 0 0
\(99\) −18.6765 7.98286i −1.87706 0.802308i
\(100\) 0 0
\(101\) −2.86963 + 3.94971i −0.285539 + 0.393011i −0.927559 0.373677i \(-0.878097\pi\)
0.642020 + 0.766688i \(0.278097\pi\)
\(102\) 0 0
\(103\) −4.03577 2.05633i −0.397656 0.202616i 0.243715 0.969847i \(-0.421634\pi\)
−0.641371 + 0.767231i \(0.721634\pi\)
\(104\) 0 0
\(105\) 1.65772 4.60332i 0.161777 0.449238i
\(106\) 0 0
\(107\) 6.42400 + 12.6078i 0.621032 + 1.21884i 0.960514 + 0.278231i \(0.0897482\pi\)
−0.339482 + 0.940613i \(0.610252\pi\)
\(108\) 0 0
\(109\) 9.31654 0.892363 0.446181 0.894943i \(-0.352784\pi\)
0.446181 + 0.894943i \(0.352784\pi\)
\(110\) 0 0
\(111\) −25.1023 −2.38261
\(112\) 0 0
\(113\) −2.02455 3.97341i −0.190454 0.373787i 0.775958 0.630784i \(-0.217267\pi\)
−0.966412 + 0.256997i \(0.917267\pi\)
\(114\) 0 0
\(115\) 1.14315 0.537814i 0.106600 0.0501514i
\(116\) 0 0
\(117\) 34.9964 + 17.8316i 3.23542 + 1.64853i
\(118\) 0 0
\(119\) 1.15012 1.58300i 0.105431 0.145113i
\(120\) 0 0
\(121\) −9.91072 + 4.77260i −0.900974 + 0.433873i
\(122\) 0 0
\(123\) 2.10663 + 13.3007i 0.189949 + 1.19929i
\(124\) 0 0
\(125\) 5.68892 + 9.62477i 0.508832 + 0.860866i
\(126\) 0 0
\(127\) 0.696447 4.39719i 0.0617997 0.390188i −0.937329 0.348446i \(-0.886709\pi\)
0.999128 0.0417415i \(-0.0132906\pi\)
\(128\) 0 0
\(129\) −2.44461 + 7.52375i −0.215236 + 0.662429i
\(130\) 0 0
\(131\) 17.1079i 1.49472i −0.664419 0.747360i \(-0.731321\pi\)
0.664419 0.747360i \(-0.268679\pi\)
\(132\) 0 0
\(133\) 3.60142 3.60142i 0.312283 0.312283i
\(134\) 0 0
\(135\) 18.4896 + 10.1667i 1.59133 + 0.875008i
\(136\) 0 0
\(137\) −3.16714 0.501626i −0.270587 0.0428568i 0.0196662 0.999807i \(-0.493740\pi\)
−0.290254 + 0.956950i \(0.593740\pi\)
\(138\) 0 0
\(139\) −0.736668 2.26723i −0.0624833 0.192304i 0.914942 0.403586i \(-0.132236\pi\)
−0.977425 + 0.211282i \(0.932236\pi\)
\(140\) 0 0
\(141\) −0.169688 0.123285i −0.0142903 0.0103825i
\(142\) 0 0
\(143\) 19.7427 7.91922i 1.65097 0.662239i
\(144\) 0 0
\(145\) −0.0913023 + 2.89781i −0.00758225 + 0.240650i
\(146\) 0 0
\(147\) −8.87967 + 17.4273i −0.732383 + 1.43738i
\(148\) 0 0
\(149\) −11.5619 + 8.40019i −0.947185 + 0.688170i −0.950139 0.311825i \(-0.899060\pi\)
0.00295440 + 0.999996i \(0.499060\pi\)
\(150\) 0 0
\(151\) 17.0508 + 5.54015i 1.38758 + 0.450851i 0.905153 0.425087i \(-0.139756\pi\)
0.482424 + 0.875938i \(0.339756\pi\)
\(152\) 0 0
\(153\) 11.6969 + 11.6969i 0.945642 + 0.945642i
\(154\) 0 0
\(155\) −3.77668 5.55818i −0.303350 0.446444i
\(156\) 0 0
\(157\) −2.97917 + 1.51796i −0.237764 + 0.121147i −0.568813 0.822467i \(-0.692597\pi\)
0.331050 + 0.943613i \(0.392597\pi\)
\(158\) 0 0
\(159\) 14.5798 + 20.0674i 1.15625 + 1.59145i
\(160\) 0 0
\(161\) 0.389238 0.126471i 0.0306762 0.00996731i
\(162\) 0 0
\(163\) −12.5866 + 1.99353i −0.985862 + 0.156145i −0.628490 0.777817i \(-0.716327\pi\)
−0.357371 + 0.933962i \(0.616327\pi\)
\(164\) 0 0
\(165\) 21.0434 7.68087i 1.63823 0.597955i
\(166\) 0 0
\(167\) 0.420387 0.0665828i 0.0325306 0.00515233i −0.140148 0.990131i \(-0.544758\pi\)
0.172679 + 0.984978i \(0.444758\pi\)
\(168\) 0 0
\(169\) −26.7582 + 8.69427i −2.05832 + 0.668790i
\(170\) 0 0
\(171\) 25.3088 + 34.8346i 1.93542 + 2.66387i
\(172\) 0 0
\(173\) 11.8780 6.05217i 0.903071 0.460138i 0.0601590 0.998189i \(-0.480839\pi\)
0.842912 + 0.538051i \(0.180839\pi\)
\(174\) 0 0
\(175\) 1.43791 + 3.32429i 0.108696 + 0.251292i
\(176\) 0 0
\(177\) −14.5085 14.5085i −1.09053 1.09053i
\(178\) 0 0
\(179\) 20.3460 + 6.61081i 1.52073 + 0.494115i 0.945983 0.324217i \(-0.105101\pi\)
0.574746 + 0.818332i \(0.305101\pi\)
\(180\) 0 0
\(181\) 5.91056 4.29427i 0.439328 0.319191i −0.346040 0.938220i \(-0.612474\pi\)
0.785368 + 0.619029i \(0.212474\pi\)
\(182\) 0 0
\(183\) 15.9584 31.3201i 1.17968 2.31525i
\(184\) 0 0
\(185\) 13.5472 12.7196i 0.996006 0.935161i
\(186\) 0 0
\(187\) 8.93847 0.602593i 0.653646 0.0440660i
\(188\) 0 0
\(189\) 5.53012 + 4.01786i 0.402257 + 0.292257i
\(190\) 0 0
\(191\) −0.115702 0.356093i −0.00837188 0.0257660i 0.946783 0.321872i \(-0.104312\pi\)
−0.955155 + 0.296106i \(0.904312\pi\)
\(192\) 0 0
\(193\) 13.3630 + 2.11650i 0.961893 + 0.152349i 0.617582 0.786507i \(-0.288112\pi\)
0.344311 + 0.938856i \(0.388112\pi\)
\(194\) 0 0
\(195\) −41.6006 + 12.0824i −2.97908 + 0.865241i
\(196\) 0 0
\(197\) 18.0772 18.0772i 1.28795 1.28795i 0.351916 0.936032i \(-0.385530\pi\)
0.936032 0.351916i \(-0.114470\pi\)
\(198\) 0 0
\(199\) 1.57894i 0.111928i 0.998433 + 0.0559641i \(0.0178233\pi\)
−0.998433 + 0.0559641i \(0.982177\pi\)
\(200\) 0 0
\(201\) −2.87223 + 8.83981i −0.202591 + 0.623512i
\(202\) 0 0
\(203\) −0.146928 + 0.927667i −0.0103123 + 0.0651094i
\(204\) 0 0
\(205\) −7.87650 6.11066i −0.550119 0.426787i
\(206\) 0 0
\(207\) 0.541260 + 3.41738i 0.0376201 + 0.237524i
\(208\) 0 0
\(209\) 23.2253 + 2.09046i 1.60653 + 0.144600i
\(210\) 0 0
\(211\) 9.31244 12.8175i 0.641095 0.882391i −0.357579 0.933883i \(-0.616398\pi\)
0.998673 + 0.0514920i \(0.0163977\pi\)
\(212\) 0 0
\(213\) 18.7837 + 9.57076i 1.28704 + 0.655777i
\(214\) 0 0
\(215\) −2.49304 5.29910i −0.170024 0.361396i
\(216\) 0 0
\(217\) −0.988311 1.93967i −0.0670910 0.131673i
\(218\) 0 0
\(219\) −14.6896 −0.992630
\(220\) 0 0
\(221\) −17.3244 −1.16537
\(222\) 0 0
\(223\) 7.94888 + 15.6005i 0.532296 + 1.04469i 0.987985 + 0.154551i \(0.0493930\pi\)
−0.455689 + 0.890139i \(0.650607\pi\)
\(224\) 0 0
\(225\) −29.6593 + 7.61009i −1.97729 + 0.507339i
\(226\) 0 0
\(227\) −1.98201 1.00988i −0.131550 0.0670283i 0.386977 0.922090i \(-0.373519\pi\)
−0.518527 + 0.855061i \(0.673519\pi\)
\(228\) 0 0
\(229\) −4.26974 + 5.87679i −0.282152 + 0.388349i −0.926445 0.376429i \(-0.877152\pi\)
0.644293 + 0.764779i \(0.277152\pi\)
\(230\) 0 0
\(231\) 7.07512 1.61480i 0.465509 0.106246i
\(232\) 0 0
\(233\) 1.02469 + 6.46966i 0.0671299 + 0.423841i 0.998250 + 0.0591295i \(0.0188325\pi\)
−0.931120 + 0.364712i \(0.881168\pi\)
\(234\) 0 0
\(235\) 0.154046 0.0194479i 0.0100489 0.00126864i
\(236\) 0 0
\(237\) −2.04113 + 12.8872i −0.132586 + 0.837115i
\(238\) 0 0
\(239\) −5.04062 + 15.5134i −0.326051 + 1.00348i 0.644913 + 0.764256i \(0.276893\pi\)
−0.970964 + 0.239225i \(0.923107\pi\)
\(240\) 0 0
\(241\) 4.18134i 0.269344i −0.990890 0.134672i \(-0.957002\pi\)
0.990890 0.134672i \(-0.0429980\pi\)
\(242\) 0 0
\(243\) −1.62206 + 1.62206i −0.104055 + 0.104055i
\(244\) 0 0
\(245\) −4.03842 13.9045i −0.258005 0.888328i
\(246\) 0 0
\(247\) −44.5394 7.05435i −2.83398 0.448858i
\(248\) 0 0
\(249\) −11.5442 35.5295i −0.731586 2.25159i
\(250\) 0 0
\(251\) −10.2704 7.46191i −0.648264 0.470992i 0.214415 0.976743i \(-0.431215\pi\)
−0.862680 + 0.505751i \(0.831215\pi\)
\(252\) 0 0
\(253\) 1.58662 + 0.996955i 0.0997502 + 0.0626780i
\(254\) 0 0
\(255\) −18.2353 0.574547i −1.14194 0.0359795i
\(256\) 0 0
\(257\) −0.542953 + 1.06560i −0.0338685 + 0.0664706i −0.907321 0.420439i \(-0.861876\pi\)
0.873452 + 0.486910i \(0.161876\pi\)
\(258\) 0 0
\(259\) 4.87024 3.53843i 0.302622 0.219868i
\(260\) 0 0
\(261\) −7.55167 2.45369i −0.467436 0.151879i
\(262\) 0 0
\(263\) 21.2348 + 21.2348i 1.30939 + 1.30939i 0.921853 + 0.387540i \(0.126675\pi\)
0.387540 + 0.921853i \(0.373325\pi\)
\(264\) 0 0
\(265\) −18.0367 3.44220i −1.10799 0.211453i
\(266\) 0 0
\(267\) −18.9236 + 9.64207i −1.15811 + 0.590085i
\(268\) 0 0
\(269\) 8.55891 + 11.7803i 0.521846 + 0.718259i 0.985860 0.167568i \(-0.0535915\pi\)
−0.464015 + 0.885828i \(0.653591\pi\)
\(270\) 0 0
\(271\) −12.7061 + 4.12848i −0.771844 + 0.250787i −0.668354 0.743843i \(-0.733001\pi\)
−0.103490 + 0.994631i \(0.533001\pi\)
\(272\) 0 0
\(273\) −13.8609 + 2.19535i −0.838899 + 0.132869i
\(274\) 0 0
\(275\) −7.46468 + 14.8081i −0.450137 + 0.892959i
\(276\) 0 0
\(277\) −21.0789 + 3.33857i −1.26651 + 0.200595i −0.753305 0.657671i \(-0.771542\pi\)
−0.513205 + 0.858266i \(0.671542\pi\)
\(278\) 0 0
\(279\) 17.5032 5.68714i 1.04789 0.340480i
\(280\) 0 0
\(281\) 14.0944 + 19.3993i 0.840801 + 1.15726i 0.985815 + 0.167834i \(0.0536771\pi\)
−0.145014 + 0.989430i \(0.546323\pi\)
\(282\) 0 0
\(283\) 12.7430 6.49288i 0.757493 0.385962i −0.0321865 0.999482i \(-0.510247\pi\)
0.789679 + 0.613520i \(0.210247\pi\)
\(284\) 0 0
\(285\) −46.6474 8.90238i −2.76315 0.527332i
\(286\) 0 0
\(287\) −2.28360 2.28360i −0.134797 0.134797i
\(288\) 0 0
\(289\) 9.22876 + 2.99860i 0.542868 + 0.176389i
\(290\) 0 0
\(291\) 32.6073 23.6906i 1.91148 1.38877i
\(292\) 0 0
\(293\) −10.7590 + 21.1158i −0.628548 + 1.23360i 0.328729 + 0.944424i \(0.393380\pi\)
−0.957277 + 0.289171i \(0.906620\pi\)
\(294\) 0 0
\(295\) 15.1815 + 0.478329i 0.883902 + 0.0278494i
\(296\) 0 0
\(297\) 2.10512 + 31.2260i 0.122152 + 1.81192i
\(298\) 0 0
\(299\) −2.93158 2.12992i −0.169538 0.123176i
\(300\) 0 0
\(301\) −0.586258 1.80432i −0.0337913 0.103999i
\(302\) 0 0
\(303\) 14.5653 + 2.30692i 0.836757 + 0.132529i
\(304\) 0 0
\(305\) 7.25777 + 24.9890i 0.415579 + 1.43086i
\(306\) 0 0
\(307\) −10.5579 + 10.5579i −0.602570 + 0.602570i −0.940994 0.338424i \(-0.890106\pi\)
0.338424 + 0.940994i \(0.390106\pi\)
\(308\) 0 0
\(309\) 13.6816i 0.778322i
\(310\) 0 0
\(311\) 1.32389 4.07451i 0.0750708 0.231044i −0.906479 0.422251i \(-0.861240\pi\)
0.981550 + 0.191207i \(0.0612401\pi\)
\(312\) 0 0
\(313\) 4.53183 28.6128i 0.256154 1.61729i −0.439038 0.898468i \(-0.644681\pi\)
0.695192 0.718824i \(-0.255319\pi\)
\(314\) 0 0
\(315\) −9.84144 + 1.24245i −0.554502 + 0.0700043i
\(316\) 0 0
\(317\) 1.28923 + 8.13986i 0.0724102 + 0.457180i 0.997077 + 0.0764028i \(0.0243435\pi\)
−0.924667 + 0.380777i \(0.875657\pi\)
\(318\) 0 0
\(319\) −3.69159 + 2.20559i −0.206689 + 0.123489i
\(320\) 0 0
\(321\) 25.1229 34.5788i 1.40223 1.93000i
\(322\) 0 0
\(323\) −16.9219 8.62216i −0.941562 0.479750i
\(324\) 0 0
\(325\) 16.3286 27.6000i 0.905748 1.53097i
\(326\) 0 0
\(327\) −12.7760 25.0743i −0.706514 1.38661i
\(328\) 0 0
\(329\) 0.0503004 0.00277315
\(330\) 0 0
\(331\) −24.6521 −1.35500 −0.677502 0.735521i \(-0.736937\pi\)
−0.677502 + 0.735521i \(0.736937\pi\)
\(332\) 0 0
\(333\) 23.1049 + 45.3459i 1.26614 + 2.48494i
\(334\) 0 0
\(335\) −2.92913 6.22602i −0.160035 0.340164i
\(336\) 0 0
\(337\) 2.27308 + 1.15819i 0.123822 + 0.0630907i 0.514804 0.857308i \(-0.327865\pi\)
−0.390982 + 0.920398i \(0.627865\pi\)
\(338\) 0 0
\(339\) −7.91761 + 10.8977i −0.430025 + 0.591879i
\(340\) 0 0
\(341\) 3.91740 9.16507i 0.212139 0.496316i
\(342\) 0 0
\(343\) −1.52701 9.64114i −0.0824506 0.520573i
\(344\) 0 0
\(345\) −3.01509 2.33913i −0.162327 0.125935i
\(346\) 0 0
\(347\) 3.33435 21.0523i 0.178997 1.13015i −0.720576 0.693376i \(-0.756123\pi\)
0.899573 0.436769i \(-0.143877\pi\)
\(348\) 0 0
\(349\) −4.10120 + 12.6222i −0.219532 + 0.675651i 0.779268 + 0.626690i \(0.215591\pi\)
−0.998801 + 0.0489608i \(0.984409\pi\)
\(350\) 0 0
\(351\) 60.5218i 3.23042i
\(352\) 0 0
\(353\) 5.35710 5.35710i 0.285130 0.285130i −0.550021 0.835151i \(-0.685380\pi\)
0.835151 + 0.550021i \(0.185380\pi\)
\(354\) 0 0
\(355\) −14.9867 + 4.35272i −0.795411 + 0.231018i
\(356\) 0 0
\(357\) −5.83762 0.924588i −0.308960 0.0489344i
\(358\) 0 0
\(359\) 9.21704 + 28.3671i 0.486457 + 1.49716i 0.829860 + 0.557971i \(0.188420\pi\)
−0.343404 + 0.939188i \(0.611580\pi\)
\(360\) 0 0
\(361\) −24.6225 17.8893i −1.29592 0.941542i
\(362\) 0 0
\(363\) 26.4356 + 20.1286i 1.38751 + 1.05648i
\(364\) 0 0
\(365\) 7.92763 7.44334i 0.414951 0.389602i
\(366\) 0 0
\(367\) −0.307872 + 0.604234i −0.0160708 + 0.0315407i −0.898902 0.438149i \(-0.855634\pi\)
0.882832 + 0.469690i \(0.155634\pi\)
\(368\) 0 0
\(369\) 22.0880 16.0479i 1.14986 0.835420i
\(370\) 0 0
\(371\) −5.65741 1.83821i −0.293718 0.0954349i
\(372\) 0 0
\(373\) 7.34024 + 7.34024i 0.380063 + 0.380063i 0.871125 0.491061i \(-0.163391\pi\)
−0.491061 + 0.871125i \(0.663391\pi\)
\(374\) 0 0
\(375\) 18.1025 28.5097i 0.934809 1.47223i
\(376\) 0 0
\(377\) 7.40950 3.77533i 0.381608 0.194439i
\(378\) 0 0
\(379\) −8.97797 12.3571i −0.461167 0.634742i 0.513583 0.858040i \(-0.328318\pi\)
−0.974750 + 0.223298i \(0.928318\pi\)
\(380\) 0 0
\(381\) −12.7895 + 4.15557i −0.655228 + 0.212896i
\(382\) 0 0
\(383\) −20.7636 + 3.28863i −1.06097 + 0.168041i −0.662441 0.749114i \(-0.730479\pi\)
−0.398529 + 0.917156i \(0.630479\pi\)
\(384\) 0 0
\(385\) −3.00004 + 4.45649i −0.152896 + 0.227124i
\(386\) 0 0
\(387\) 15.8413 2.50901i 0.805258 0.127540i
\(388\) 0 0
\(389\) 16.6876 5.42213i 0.846096 0.274913i 0.146286 0.989242i \(-0.453268\pi\)
0.699810 + 0.714329i \(0.253268\pi\)
\(390\) 0 0
\(391\) −0.897032 1.23466i −0.0453648 0.0624393i
\(392\) 0 0
\(393\) −46.0436 + 23.4604i −2.32259 + 1.18342i
\(394\) 0 0
\(395\) −5.42851 7.98920i −0.273138 0.401980i
\(396\) 0 0
\(397\) 10.1338 + 10.1338i 0.508603 + 0.508603i 0.914097 0.405495i \(-0.132901\pi\)
−0.405495 + 0.914097i \(0.632901\pi\)
\(398\) 0 0
\(399\) −14.6315 4.75406i −0.732490 0.238000i
\(400\) 0 0
\(401\) 31.6798 23.0167i 1.58201 1.14940i 0.667671 0.744456i \(-0.267291\pi\)
0.914342 0.404943i \(-0.132709\pi\)
\(402\) 0 0
\(403\) −8.75043 + 17.1737i −0.435890 + 0.855482i
\(404\) 0 0
\(405\) 0.713433 22.6434i 0.0354508 1.12516i
\(406\) 0 0
\(407\) 26.7270 + 6.73478i 1.32481 + 0.333830i
\(408\) 0 0
\(409\) 17.3141 + 12.5794i 0.856128 + 0.622013i 0.926829 0.375484i \(-0.122524\pi\)
−0.0707012 + 0.997498i \(0.522524\pi\)
\(410\) 0 0
\(411\) 2.99311 + 9.21185i 0.147639 + 0.454387i
\(412\) 0 0
\(413\) 4.86001 + 0.769750i 0.239145 + 0.0378769i
\(414\) 0 0
\(415\) 24.2332 + 13.3249i 1.18956 + 0.654093i
\(416\) 0 0
\(417\) −5.09175 + 5.09175i −0.249344 + 0.249344i
\(418\) 0 0
\(419\) 14.5036i 0.708548i 0.935142 + 0.354274i \(0.115272\pi\)
−0.935142 + 0.354274i \(0.884728\pi\)
\(420\) 0 0
\(421\) −6.22588 + 19.1613i −0.303431 + 0.933864i 0.676827 + 0.736142i \(0.263354\pi\)
−0.980258 + 0.197722i \(0.936646\pi\)
\(422\) 0 0
\(423\) −0.0665224 + 0.420006i −0.00323443 + 0.0204214i
\(424\) 0 0
\(425\) 10.1323 8.92993i 0.491490 0.433165i
\(426\) 0 0
\(427\) 1.31872 + 8.32607i 0.0638174 + 0.402927i
\(428\) 0 0
\(429\) −48.3872 42.2751i −2.33615 2.04106i
\(430\) 0 0
\(431\) −10.8439 + 14.9254i −0.522334 + 0.718931i −0.985938 0.167112i \(-0.946556\pi\)
0.463604 + 0.886042i \(0.346556\pi\)
\(432\) 0 0
\(433\) −25.3087 12.8954i −1.21626 0.619715i −0.276323 0.961065i \(-0.589116\pi\)
−0.939936 + 0.341350i \(0.889116\pi\)
\(434\) 0 0
\(435\) 7.92430 3.72811i 0.379941 0.178749i
\(436\) 0 0
\(437\) −1.80344 3.53945i −0.0862703 0.169315i
\(438\) 0 0
\(439\) 16.1551 0.771040 0.385520 0.922699i \(-0.374022\pi\)
0.385520 + 0.922699i \(0.374022\pi\)
\(440\) 0 0
\(441\) 39.6546 1.88831
\(442\) 0 0
\(443\) −12.2874 24.1154i −0.583791 1.14576i −0.974321 0.225165i \(-0.927708\pi\)
0.390529 0.920590i \(-0.372292\pi\)
\(444\) 0 0
\(445\) 5.32693 14.7924i 0.252521 0.701225i
\(446\) 0 0
\(447\) 38.4631 + 19.5979i 1.81924 + 0.926950i
\(448\) 0 0
\(449\) −7.68659 + 10.5797i −0.362752 + 0.499286i −0.950913 0.309458i \(-0.899852\pi\)
0.588161 + 0.808744i \(0.299852\pi\)
\(450\) 0 0
\(451\) 1.32552 14.7268i 0.0624165 0.693457i
\(452\) 0 0
\(453\) −8.47158 53.4875i −0.398030 2.51306i
\(454\) 0 0
\(455\) 6.36801 8.20821i 0.298537 0.384807i
\(456\) 0 0
\(457\) −4.11475 + 25.9795i −0.192480 + 1.21527i 0.682418 + 0.730962i \(0.260928\pi\)
−0.874898 + 0.484307i \(0.839072\pi\)
\(458\) 0 0
\(459\) 7.87661 24.2417i 0.367649 1.13151i
\(460\) 0 0
\(461\) 16.1463i 0.752009i −0.926618 0.376004i \(-0.877298\pi\)
0.926618 0.376004i \(-0.122702\pi\)
\(462\) 0 0
\(463\) −13.3994 + 13.3994i −0.622724 + 0.622724i −0.946227 0.323503i \(-0.895139\pi\)
0.323503 + 0.946227i \(0.395139\pi\)
\(464\) 0 0
\(465\) −9.78008 + 17.7865i −0.453540 + 0.824829i
\(466\) 0 0
\(467\) 6.97693 + 1.10504i 0.322854 + 0.0511350i 0.315758 0.948840i \(-0.397741\pi\)
0.00709589 + 0.999975i \(0.497741\pi\)
\(468\) 0 0
\(469\) −0.688807 2.11993i −0.0318061 0.0978892i
\(470\) 0 0
\(471\) 8.17080 + 5.93644i 0.376491 + 0.273537i
\(472\) 0 0
\(473\) 4.62140 7.35481i 0.212492 0.338175i
\(474\) 0 0
\(475\) 29.6854 18.8322i 1.36206 0.864081i
\(476\) 0 0
\(477\) 22.8309 44.8081i 1.04535 2.05162i
\(478\) 0 0
\(479\) −11.6472 + 8.46222i −0.532176 + 0.386649i −0.821171 0.570682i \(-0.806679\pi\)
0.288995 + 0.957331i \(0.406679\pi\)
\(480\) 0 0
\(481\) −50.6914 16.4706i −2.31133 0.750997i
\(482\) 0 0
\(483\) −0.874151 0.874151i −0.0397753 0.0397753i
\(484\) 0 0
\(485\) −5.59320 + 29.3077i −0.253974 + 1.33079i
\(486\) 0 0
\(487\) −31.9458 + 16.2772i −1.44760 + 0.737590i −0.988561 0.150825i \(-0.951807\pi\)
−0.459042 + 0.888415i \(0.651807\pi\)
\(488\) 0 0
\(489\) 22.6257 + 31.1416i 1.02317 + 1.40827i
\(490\) 0 0
\(491\) 17.6291 5.72805i 0.795591 0.258503i 0.117108 0.993119i \(-0.462638\pi\)
0.678483 + 0.734616i \(0.262638\pi\)
\(492\) 0 0
\(493\) 3.45917 0.547879i 0.155793 0.0246752i
\(494\) 0 0
\(495\) −33.2440 30.9440i −1.49421 1.39083i
\(496\) 0 0
\(497\) −4.99342 + 0.790880i −0.223985 + 0.0354758i
\(498\) 0 0
\(499\) 10.8573 3.52775i 0.486040 0.157924i −0.0557384 0.998445i \(-0.517751\pi\)
0.541778 + 0.840522i \(0.317751\pi\)
\(500\) 0 0
\(501\) −0.755686 1.04011i −0.0337616 0.0464688i
\(502\) 0 0
\(503\) −20.2304 + 10.3079i −0.902031 + 0.459608i −0.842548 0.538621i \(-0.818945\pi\)
−0.0594833 + 0.998229i \(0.518945\pi\)
\(504\) 0 0
\(505\) −9.02952 + 6.13538i −0.401808 + 0.273021i
\(506\) 0 0
\(507\) 60.0937 + 60.0937i 2.66885 + 2.66885i
\(508\) 0 0
\(509\) 15.5927 + 5.06639i 0.691136 + 0.224564i 0.633464 0.773772i \(-0.281632\pi\)
0.0576716 + 0.998336i \(0.481632\pi\)
\(510\) 0 0
\(511\) 2.85001 2.07065i 0.126077 0.0916002i
\(512\) 0 0
\(513\) 30.1210 59.1158i 1.32988 2.61003i
\(514\) 0 0
\(515\) −6.93260 7.38367i −0.305487 0.325363i
\(516\) 0 0
\(517\) 0.147593 + 0.176790i 0.00649115 + 0.00777523i
\(518\) 0 0
\(519\) −32.5773 23.6688i −1.42998 1.03894i
\(520\) 0 0
\(521\) 11.4206 + 35.1490i 0.500346 + 1.53991i 0.808456 + 0.588556i \(0.200303\pi\)
−0.308110 + 0.951351i \(0.599697\pi\)
\(522\) 0 0
\(523\) −13.1761 2.08688i −0.576149 0.0912530i −0.138442 0.990371i \(-0.544209\pi\)
−0.437707 + 0.899118i \(0.644209\pi\)
\(524\) 0 0
\(525\) 6.97506 8.42861i 0.304416 0.367855i
\(526\) 0 0
\(527\) −5.74001 + 5.74001i −0.250039 + 0.250039i
\(528\) 0 0
\(529\) 22.6808i 0.986121i
\(530\) 0 0
\(531\) −12.8548 + 39.5629i −0.557849 + 1.71688i
\(532\) 0 0
\(533\) −4.47304 + 28.2417i −0.193749 + 1.22328i
\(534\) 0 0
\(535\) 3.96307 + 31.3914i 0.171338 + 1.35717i
\(536\) 0 0
\(537\) −10.1087 63.8241i −0.436225 2.75421i
\(538\) 0 0
\(539\) 14.1300 16.1729i 0.608622 0.696616i
\(540\) 0 0
\(541\) 5.17033 7.11635i 0.222290 0.305956i −0.683277 0.730159i \(-0.739446\pi\)
0.905567 + 0.424203i \(0.139446\pi\)
\(542\) 0 0
\(543\) −19.6628 10.0187i −0.843810 0.429943i
\(544\) 0 0
\(545\) 19.6003 + 7.05832i 0.839583 + 0.302345i
\(546\) 0 0
\(547\) −9.73509 19.1062i −0.416242 0.816922i −0.999988 0.00498489i \(-0.998413\pi\)
0.583745 0.811937i \(-0.301587\pi\)
\(548\) 0 0
\(549\) −71.2664 −3.04158
\(550\) 0 0
\(551\) 9.11630 0.388367
\(552\) 0 0
\(553\) −1.42058 2.78804i −0.0604091 0.118559i
\(554\) 0 0
\(555\) −52.8106 19.0178i −2.24168 0.807261i
\(556\) 0 0
\(557\) −10.1993 5.19678i −0.432156 0.220195i 0.224360 0.974506i \(-0.427971\pi\)
−0.656517 + 0.754312i \(0.727971\pi\)
\(558\) 0 0
\(559\) −9.87326 + 13.5894i −0.417594 + 0.574769i
\(560\) 0 0
\(561\) −13.8793 23.2304i −0.585986 0.980789i
\(562\) 0 0
\(563\) −2.16446 13.6659i −0.0912213 0.575948i −0.990385 0.138337i \(-0.955824\pi\)
0.899164 0.437612i \(-0.144176\pi\)
\(564\) 0 0
\(565\) −1.24898 9.89313i −0.0525450 0.416207i
\(566\) 0 0
\(567\) 1.14809 7.24875i 0.0482152 0.304419i
\(568\) 0 0
\(569\) 7.89984 24.3132i 0.331179 1.01926i −0.637395 0.770537i \(-0.719988\pi\)
0.968574 0.248726i \(-0.0800119\pi\)
\(570\) 0 0
\(571\) 29.7381i 1.24450i 0.782818 + 0.622251i \(0.213782\pi\)
−0.782818 + 0.622251i \(0.786218\pi\)
\(572\) 0 0
\(573\) −0.799715 + 0.799715i −0.0334086 + 0.0334086i
\(574\) 0 0
\(575\) 2.81243 0.265394i 0.117287 0.0110677i
\(576\) 0 0
\(577\) −28.5923 4.52857i −1.19031 0.188527i −0.470311 0.882500i \(-0.655858\pi\)
−0.720000 + 0.693974i \(0.755858\pi\)
\(578\) 0 0
\(579\) −12.6288 38.8673i −0.524833 1.61527i
\(580\) 0 0
\(581\) 7.24801 + 5.26599i 0.300698 + 0.218470i
\(582\) 0 0
\(583\) −10.1395 25.2778i −0.419934 1.04690i
\(584\) 0 0
\(585\) 60.1165 + 64.0280i 2.48551 + 2.64723i
\(586\) 0 0
\(587\) 18.1280 35.5782i 0.748222 1.46847i −0.130659 0.991427i \(-0.541709\pi\)
0.878881 0.477041i \(-0.158291\pi\)
\(588\) 0 0
\(589\) −17.0943 + 12.4197i −0.704358 + 0.511746i
\(590\) 0 0
\(591\) −73.4422 23.8628i −3.02101 0.981585i
\(592\) 0 0
\(593\) 15.3021 + 15.3021i 0.628383 + 0.628383i 0.947661 0.319278i \(-0.103440\pi\)
−0.319278 + 0.947661i \(0.603440\pi\)
\(594\) 0 0
\(595\) 3.61893 2.45899i 0.148362 0.100809i
\(596\) 0 0
\(597\) 4.24952 2.16524i 0.173921 0.0886174i
\(598\) 0 0
\(599\) 10.9535 + 15.0762i 0.447547 + 0.615996i 0.971868 0.235525i \(-0.0756808\pi\)
−0.524321 + 0.851521i \(0.675681\pi\)
\(600\) 0 0
\(601\) −9.80318 + 3.18525i −0.399880 + 0.129929i −0.502051 0.864838i \(-0.667421\pi\)
0.102171 + 0.994767i \(0.467421\pi\)
\(602\) 0 0
\(603\) 18.6123 2.94789i 0.757950 0.120048i
\(604\) 0 0
\(605\) −24.4661 + 2.53218i −0.994687 + 0.102948i
\(606\) 0 0
\(607\) 4.75068 0.752433i 0.192824 0.0305403i −0.0592754 0.998242i \(-0.518879\pi\)
0.252099 + 0.967701i \(0.418879\pi\)
\(608\) 0 0
\(609\) 2.69818 0.876693i 0.109336 0.0355254i
\(610\) 0 0
\(611\) −0.261773 0.360300i −0.0105902 0.0145762i
\(612\) 0 0
\(613\) 10.0510 5.12125i 0.405957 0.206846i −0.239075 0.971001i \(-0.576844\pi\)
0.645032 + 0.764156i \(0.276844\pi\)
\(614\) 0 0
\(615\) −5.64484 + 29.5783i −0.227622 + 1.19271i
\(616\) 0 0
\(617\) −11.3680 11.3680i −0.457659 0.457659i 0.440227 0.897886i \(-0.354898\pi\)
−0.897886 + 0.440227i \(0.854898\pi\)
\(618\) 0 0
\(619\) 24.0772 + 7.82317i 0.967746 + 0.314440i 0.749906 0.661545i \(-0.230099\pi\)
0.217840 + 0.975984i \(0.430099\pi\)
\(620\) 0 0
\(621\) 4.31320 3.13373i 0.173083 0.125752i
\(622\) 0 0
\(623\) 2.31232 4.53819i 0.0926413 0.181819i
\(624\) 0 0
\(625\) 4.67658 + 24.5587i 0.187063 + 0.982348i
\(626\) 0 0
\(627\) −26.2232 65.3747i −1.04725 2.61081i
\(628\) 0 0
\(629\) −18.1606 13.1945i −0.724111 0.526097i
\(630\) 0 0
\(631\) 15.0120 + 46.2023i 0.597620 + 1.83929i 0.541227 + 0.840877i \(0.317960\pi\)
0.0563932 + 0.998409i \(0.482040\pi\)
\(632\) 0 0
\(633\) −47.2669 7.48635i −1.87869 0.297556i
\(634\) 0 0
\(635\) 4.79656 8.72323i 0.190346 0.346171i
\(636\) 0 0
\(637\) −29.3663 + 29.3663i −1.16354 + 1.16354i
\(638\) 0 0
\(639\) 42.7408i 1.69080i
\(640\) 0 0
\(641\) −6.22570 + 19.1607i −0.245900 + 0.756804i 0.749587 + 0.661906i \(0.230252\pi\)
−0.995487 + 0.0948974i \(0.969748\pi\)
\(642\) 0 0
\(643\) −3.08531 + 19.4799i −0.121673 + 0.768213i 0.849103 + 0.528227i \(0.177143\pi\)
−0.970776 + 0.239986i \(0.922857\pi\)
\(644\) 0 0
\(645\) −10.8431 + 13.9765i −0.426946 + 0.550323i
\(646\) 0 0
\(647\) 0.787851 + 4.97430i 0.0309736 + 0.195560i 0.998323 0.0578861i \(-0.0184360\pi\)
−0.967350 + 0.253446i \(0.918436\pi\)
\(648\) 0 0
\(649\) 11.5550 + 19.3401i 0.453573 + 0.759164i
\(650\) 0 0
\(651\) −3.86508 + 5.31983i −0.151484 + 0.208500i
\(652\) 0 0
\(653\) −14.3499 7.31163i −0.561554 0.286126i 0.150083 0.988673i \(-0.452046\pi\)
−0.711637 + 0.702547i \(0.752046\pi\)
\(654\) 0 0
\(655\) 12.9611 35.9917i 0.506433 1.40631i
\(656\) 0 0
\(657\) 13.5207 + 26.5359i 0.527493 + 1.03526i
\(658\) 0 0
\(659\) 13.1583 0.512575 0.256287 0.966601i \(-0.417501\pi\)
0.256287 + 0.966601i \(0.417501\pi\)
\(660\) 0 0
\(661\) 16.6065 0.645919 0.322960 0.946413i \(-0.395322\pi\)
0.322960 + 0.946413i \(0.395322\pi\)
\(662\) 0 0
\(663\) 23.7574 + 46.6265i 0.922660 + 1.81082i
\(664\) 0 0
\(665\) 10.3052 4.84824i 0.399618 0.188007i
\(666\) 0 0
\(667\) 0.652708 + 0.332571i 0.0252730 + 0.0128772i
\(668\) 0 0
\(669\) 31.0864 42.7868i 1.20187 1.65423i
\(670\) 0 0
\(671\) −25.3942 + 29.0656i −0.980330 + 1.12206i
\(672\) 0 0
\(673\) 1.29662 + 8.18656i 0.0499812 + 0.315569i 0.999994 + 0.00335891i \(0.00106918\pi\)
−0.950013 + 0.312210i \(0.898931\pi\)
\(674\) 0 0
\(675\) 31.1962 + 35.3967i 1.20074 + 1.36242i
\(676\) 0 0
\(677\) 3.63622 22.9582i 0.139751 0.882354i −0.813805 0.581138i \(-0.802608\pi\)
0.953556 0.301216i \(-0.0973925\pi\)
\(678\) 0 0
\(679\) −2.98689 + 9.19269i −0.114626 + 0.352783i
\(680\) 0 0
\(681\) 6.71919i 0.257480i
\(682\) 0 0
\(683\) −10.7294 + 10.7294i −0.410548 + 0.410548i −0.881929 0.471382i \(-0.843755\pi\)
0.471382 + 0.881929i \(0.343755\pi\)
\(684\) 0 0
\(685\) −6.28304 3.45479i −0.240063 0.132001i
\(686\) 0 0
\(687\) 21.6718 + 3.43248i 0.826832 + 0.130957i
\(688\) 0 0
\(689\) 16.2753 + 50.0903i 0.620041 + 1.90829i
\(690\) 0 0
\(691\) −6.67401 4.84895i −0.253891 0.184463i 0.453558 0.891227i \(-0.350154\pi\)
−0.707450 + 0.706764i \(0.750154\pi\)
\(692\) 0 0
\(693\) −9.42918 11.2945i −0.358185 0.429042i
\(694\) 0 0
\(695\) 0.167869 5.32793i 0.00636763 0.202100i
\(696\) 0 0
\(697\) −5.46716 + 10.7299i −0.207083 + 0.406424i
\(698\) 0 0
\(699\) 16.0071 11.6298i 0.605443 0.439880i
\(700\) 0 0
\(701\) −17.4538 5.67108i −0.659220 0.214194i −0.0397449 0.999210i \(-0.512655\pi\)
−0.619475 + 0.785016i \(0.712655\pi\)
\(702\) 0 0
\(703\) −41.3165 41.3165i −1.55828 1.55828i
\(704\) 0 0
\(705\) −0.263589 0.387926i −0.00992732 0.0146102i
\(706\) 0 0
\(707\) −3.15108 + 1.60556i −0.118509 + 0.0603832i
\(708\) 0 0
\(709\) 9.81584 + 13.5103i 0.368641 + 0.507391i 0.952531 0.304442i \(-0.0984699\pi\)
−0.583890 + 0.811833i \(0.698470\pi\)
\(710\) 0 0
\(711\) 25.1587 8.17456i 0.943526 0.306570i
\(712\) 0 0
\(713\) −1.67700 + 0.265611i −0.0628041 + 0.00994720i
\(714\) 0 0
\(715\) 47.5346 1.70327i 1.77769 0.0636986i
\(716\) 0 0
\(717\) 48.6647 7.70774i 1.81742 0.287851i
\(718\) 0 0
\(719\) −41.7628 + 13.5696i −1.55749 + 0.506059i −0.956136 0.292924i \(-0.905372\pi\)
−0.601354 + 0.798983i \(0.705372\pi\)
\(720\) 0 0
\(721\) −1.92857 2.65445i −0.0718237 0.0988569i
\(722\) 0 0
\(723\) −11.2535 + 5.73396i −0.418523 + 0.213248i
\(724\) 0 0
\(725\) −2.38750 + 6.02728i −0.0886695 + 0.223848i
\(726\) 0 0
\(727\) 16.0350 + 16.0350i 0.594705 + 0.594705i 0.938899 0.344194i \(-0.111848\pi\)
−0.344194 + 0.938899i \(0.611848\pi\)
\(728\) 0 0
\(729\) −22.3168 7.25118i −0.826550 0.268562i
\(730\) 0 0
\(731\) −5.72327 + 4.15820i −0.211683 + 0.153797i
\(732\) 0 0
\(733\) 3.15612 6.19423i 0.116574 0.228789i −0.825346 0.564628i \(-0.809020\pi\)
0.941919 + 0.335839i \(0.109020\pi\)
\(734\) 0 0
\(735\) −31.8843 + 29.9365i −1.17607 + 1.10422i
\(736\) 0 0
\(737\) 5.42978 8.64132i 0.200008 0.318307i
\(738\) 0 0
\(739\) −18.2947 13.2919i −0.672981 0.488949i 0.198041 0.980194i \(-0.436542\pi\)
−0.871022 + 0.491245i \(0.836542\pi\)
\(740\) 0 0
\(741\) 42.0920 + 129.546i 1.54629 + 4.75899i
\(742\) 0 0
\(743\) 48.5994 + 7.69739i 1.78294 + 0.282390i 0.958818 0.284022i \(-0.0916687\pi\)
0.824122 + 0.566412i \(0.191669\pi\)
\(744\) 0 0
\(745\) −30.6881 + 8.91301i −1.12432 + 0.326548i
\(746\) 0 0
\(747\) −53.5563 + 53.5563i −1.95952 + 1.95952i
\(748\) 0 0
\(749\) 10.2502i 0.374533i
\(750\) 0 0
\(751\) 7.00769 21.5674i 0.255714 0.787007i −0.737974 0.674829i \(-0.764217\pi\)
0.993688 0.112178i \(-0.0357827\pi\)
\(752\) 0 0
\(753\) −5.99869 + 37.8743i −0.218605 + 1.38021i
\(754\) 0 0
\(755\) 31.6745 + 24.5733i 1.15275 + 0.894315i
\(756\) 0 0
\(757\) 0.276914 + 1.74836i 0.0100646 + 0.0635454i 0.992209 0.124581i \(-0.0397586\pi\)
−0.982145 + 0.188126i \(0.939759\pi\)
\(758\) 0 0
\(759\) 0.507404 5.63734i 0.0184176 0.204623i
\(760\) 0 0
\(761\) 19.3732 26.6649i 0.702279 0.966604i −0.297650 0.954675i \(-0.596203\pi\)
0.999929 0.0119286i \(-0.00379709\pi\)
\(762\) 0 0
\(763\) 6.01322 + 3.06389i 0.217693 + 0.110920i
\(764\) 0 0
\(765\) 15.7464 + 33.4699i 0.569314 + 1.21011i
\(766\) 0 0
\(767\) −19.7788 38.8180i −0.714170 1.40164i
\(768\) 0 0
\(769\) 37.5969 1.35578 0.677889 0.735164i \(-0.262895\pi\)
0.677889 + 0.735164i \(0.262895\pi\)
\(770\) 0 0
\(771\) 3.61250 0.130101
\(772\) 0 0
\(773\) −5.83278 11.4475i −0.209790 0.411737i 0.762002 0.647575i \(-0.224217\pi\)
−0.971792 + 0.235838i \(0.924217\pi\)
\(774\) 0 0
\(775\) −3.73448 14.5546i −0.134146 0.522817i
\(776\) 0 0
\(777\) −16.2019 8.25529i −0.581240 0.296157i
\(778\) 0 0
\(779\) −18.4247 + 25.3594i −0.660132 + 0.908594i
\(780\) 0 0
\(781\) −17.4316 15.2297i −0.623751 0.544962i
\(782\) 0 0
\(783\) 1.91398 + 12.0844i 0.0684002 + 0.431862i
\(784\) 0 0
\(785\) −7.41764 + 0.936455i −0.264747 + 0.0334235i
\(786\) 0 0
\(787\) 2.29218 14.4723i 0.0817075 0.515881i −0.912559 0.408946i \(-0.865896\pi\)
0.994266 0.106935i \(-0.0341035\pi\)
\(788\) 0 0
\(789\) 28.0310 86.2704i 0.997929 3.07131i
\(790\) 0 0
\(791\) 3.23038i 0.114859i
\(792\) 0 0
\(793\) 52.7765 52.7765i 1.87415 1.87415i
\(794\) 0 0
\(795\) 15.4699 + 53.2638i 0.548661 + 1.88907i
\(796\) 0 0
\(797\) −1.67189 0.264802i −0.0592215 0.00937977i 0.126753 0.991934i \(-0.459544\pi\)
−0.185975 + 0.982554i \(0.559544\pi\)
\(798\) 0 0
\(799\) −0.0579607 0.178385i −0.00205050 0.00631080i
\(800\) 0 0
\(801\) 34.8357 + 25.3096i 1.23086 + 0.894270i
\(802\) 0 0
\(803\) 15.6403 + 3.94111i 0.551934 + 0.139079i
\(804\) 0 0
\(805\) 0.914699 + 0.0288197i 0.0322389 + 0.00101576i
\(806\) 0 0
\(807\) 19.9682 39.1898i 0.702915 1.37955i
\(808\) 0 0
\(809\) −3.29877 + 2.39669i −0.115978 + 0.0842633i −0.644263 0.764804i \(-0.722836\pi\)
0.528284 + 0.849068i \(0.322836\pi\)
\(810\) 0 0
\(811\) −0.365104 0.118629i −0.0128205 0.00416564i 0.302600 0.953118i \(-0.402145\pi\)
−0.315420 + 0.948952i \(0.602145\pi\)
\(812\) 0 0
\(813\) 28.5355 + 28.5355i 1.00078 + 1.00078i
\(814\) 0 0
\(815\) −27.9902 5.34177i −0.980455 0.187114i
\(816\) 0 0
\(817\) −16.4072 + 8.35987i −0.574014 + 0.292475i
\(818\) 0 0
\(819\) 16.7237 + 23.0182i 0.584374 + 0.804322i
\(820\) 0 0
\(821\) −37.9513 + 12.3311i −1.32451 + 0.430359i −0.884041 0.467410i \(-0.845187\pi\)
−0.440467 + 0.897769i \(0.645187\pi\)
\(822\) 0 0
\(823\) −32.6020 + 5.16364i −1.13643 + 0.179993i −0.696171 0.717876i \(-0.745114\pi\)
−0.440262 + 0.897869i \(0.645114\pi\)
\(824\) 0 0
\(825\) 50.0905 0.216390i 1.74393 0.00753374i
\(826\) 0 0
\(827\) 27.3892 4.33802i 0.952415 0.150848i 0.339157 0.940730i \(-0.389858\pi\)
0.613259 + 0.789882i \(0.289858\pi\)
\(828\) 0 0
\(829\) 48.8463 15.8711i 1.69650 0.551227i 0.708507 0.705704i \(-0.249369\pi\)
0.987996 + 0.154477i \(0.0493692\pi\)
\(830\) 0 0
\(831\) 37.8914 + 52.1530i 1.31444 + 1.80917i
\(832\) 0 0
\(833\) −15.5844 + 7.94065i −0.539967 + 0.275127i
\(834\) 0 0
\(835\) 0.934860 + 0.178413i 0.0323522 + 0.00617422i
\(836\) 0 0
\(837\) −20.0524 20.0524i −0.693111 0.693111i
\(838\) 0 0
\(839\) −1.93080 0.627354i −0.0666585 0.0216587i 0.275498 0.961302i \(-0.411157\pi\)
−0.342156 + 0.939643i \(0.611157\pi\)
\(840\) 0 0
\(841\) 22.1014 16.0576i 0.762118 0.553711i
\(842\) 0 0
\(843\) 32.8827 64.5359i 1.13254 2.22273i
\(844\) 0 0
\(845\) −62.8811 1.98122i −2.16318 0.0681559i
\(846\) 0 0
\(847\) −7.96626 0.178889i −0.273724 0.00614670i
\(848\) 0 0
\(849\) −34.9495 25.3923i −1.19946 0.871462i
\(850\) 0 0
\(851\) −1.45091 4.46545i −0.0497366 0.153073i
\(852\) 0 0
\(853\) −22.8728 3.62270i −0.783150 0.124039i −0.247960 0.968770i \(-0.579760\pi\)
−0.535190 + 0.844731i \(0.679760\pi\)
\(854\) 0 0
\(855\) 26.8539 + 92.4598i 0.918385 + 3.16206i
\(856\) 0 0
\(857\) 2.65045 2.65045i 0.0905378 0.0905378i −0.660387 0.750925i \(-0.729608\pi\)
0.750925 + 0.660387i \(0.229608\pi\)
\(858\) 0 0
\(859\) 29.9156i 1.02071i 0.859965 + 0.510353i \(0.170485\pi\)
−0.859965 + 0.510353i \(0.829515\pi\)
\(860\) 0 0
\(861\) −3.01446 + 9.27756i −0.102733 + 0.316178i
\(862\) 0 0
\(863\) 4.87230 30.7625i 0.165855 1.04717i −0.754561 0.656229i \(-0.772150\pi\)
0.920417 0.390939i \(-0.127850\pi\)
\(864\) 0 0
\(865\) 29.5744 3.73368i 1.00556 0.126949i
\(866\) 0 0
\(867\) −4.58524 28.9501i −0.155723 0.983196i
\(868\) 0 0
\(869\) 5.63079 13.1737i 0.191011 0.446886i
\(870\) 0 0
\(871\) −11.6003 + 15.9664i −0.393061 + 0.541002i
\(872\) 0 0
\(873\) −72.8084 37.0977i −2.46419 1.25557i
\(874\) 0 0
\(875\) 0.506571 + 8.08305i 0.0171252 + 0.273257i
\(876\) 0 0
\(877\) 2.04698 + 4.01742i 0.0691215 + 0.135659i 0.922982 0.384844i \(-0.125745\pi\)
−0.853860 + 0.520502i \(0.825745\pi\)
\(878\) 0 0
\(879\) 71.5844 2.41448
\(880\) 0 0
\(881\) −12.6932 −0.427646 −0.213823 0.976872i \(-0.568592\pi\)
−0.213823 + 0.976872i \(0.568592\pi\)
\(882\) 0 0
\(883\) −6.15894 12.0876i −0.207265 0.406780i 0.763850 0.645394i \(-0.223307\pi\)
−0.971114 + 0.238614i \(0.923307\pi\)
\(884\) 0 0
\(885\) −19.5314 41.5151i −0.656541 1.39551i
\(886\) 0 0
\(887\) −22.8860 11.6610i −0.768436 0.391538i 0.0253938 0.999678i \(-0.491916\pi\)
−0.793830 + 0.608140i \(0.791916\pi\)
\(888\) 0 0
\(889\) 1.89560 2.60906i 0.0635762 0.0875052i
\(890\) 0 0
\(891\) 28.8459 17.2344i 0.966374 0.577374i
\(892\) 0 0
\(893\) −0.0763748 0.482211i −0.00255578 0.0161366i
\(894\) 0 0
\(895\) 37.7957 + 29.3222i 1.26337 + 0.980134i
\(896\) 0 0
\(897\) −1.71226 + 10.8108i −0.0571707 + 0.360962i
\(898\) 0 0
\(899\) 1.20409 3.70581i 0.0401586 0.123596i
\(900\) 0 0
\(901\) 22.1816i 0.738975i
\(902\) 0 0
\(903\) −4.05214 + 4.05214i −0.134847 + 0.134847i
\(904\) 0 0
\(905\) 15.6881 4.55643i 0.521490 0.151461i
\(906\) 0 0
\(907\) −4.01859 0.636482i −0.133435 0.0211340i 0.0893597 0.995999i \(-0.471518\pi\)
−0.222795 + 0.974865i \(0.571518\pi\)
\(908\) 0 0
\(909\) −9.23902 28.4348i −0.306439 0.943122i
\(910\) 0 0
\(911\) 39.9673 + 29.0380i 1.32418 + 0.962070i 0.999870 + 0.0161180i \(0.00513075\pi\)
0.324306 + 0.945952i \(0.394869\pi\)
\(912\) 0 0
\(913\) 2.75907 + 40.9262i 0.0913118 + 1.35446i
\(914\) 0 0
\(915\) 57.3019 53.8013i 1.89434 1.77862i
\(916\) 0 0
\(917\) 5.62618 11.0420i 0.185793 0.364639i
\(918\) 0 0
\(919\) 9.17092 6.66307i 0.302521 0.219794i −0.426160 0.904648i \(-0.640134\pi\)
0.728681 + 0.684854i \(0.240134\pi\)
\(920\) 0 0
\(921\) 42.8935 + 13.9369i 1.41339 + 0.459237i
\(922\) 0 0
\(923\) 31.6518 + 31.6518i 1.04183 + 1.04183i
\(924\) 0 0
\(925\) 38.1371 16.4961i 1.25394 0.542388i
\(926\) 0 0
\(927\) 24.7151 12.5930i 0.811750 0.413607i
\(928\) 0 0
\(929\) −10.3144 14.1966i −0.338404 0.465774i 0.605570 0.795792i \(-0.292945\pi\)
−0.943975 + 0.330018i \(0.892945\pi\)
\(930\) 0 0
\(931\) −43.2993 + 14.0688i −1.41908 + 0.461087i
\(932\) 0 0
\(933\) −12.7815 + 2.02439i −0.418447 + 0.0662755i
\(934\) 0 0
\(935\) 19.2614 + 5.50415i 0.629915 + 0.180005i
\(936\) 0 0
\(937\) 43.5848 6.90315i 1.42385 0.225516i 0.603495 0.797367i \(-0.293774\pi\)
0.820357 + 0.571851i \(0.193774\pi\)
\(938\) 0 0
\(939\) −83.2223 + 27.0406i −2.71586 + 0.882436i
\(940\) 0 0
\(941\) −7.71688 10.6214i −0.251563 0.346247i 0.664495 0.747293i \(-0.268647\pi\)
−0.916058 + 0.401046i \(0.868647\pi\)
\(942\) 0 0
\(943\) −2.24430 + 1.14353i −0.0730846 + 0.0372384i
\(944\) 0 0
\(945\) 8.59034 + 12.6425i 0.279444 + 0.411261i
\(946\) 0 0
\(947\) 14.1055 + 14.1055i 0.458367 + 0.458367i 0.898119 0.439752i \(-0.144934\pi\)
−0.439752 + 0.898119i \(0.644934\pi\)
\(948\) 0 0
\(949\) −29.6640 9.63843i −0.962935 0.312877i
\(950\) 0 0
\(951\) 20.1394 14.6322i 0.653066 0.474480i
\(952\) 0 0
\(953\) 19.4856 38.2426i 0.631199 1.23880i −0.324898 0.945749i \(-0.605330\pi\)
0.956097 0.293050i \(-0.0946701\pi\)
\(954\) 0 0
\(955\) 0.0263657 0.836810i 0.000853173 0.0270785i
\(956\) 0 0
\(957\) 10.9984 + 6.91086i 0.355528 + 0.223396i
\(958\) 0 0
\(959\) −1.87922 1.36533i −0.0606831 0.0440888i
\(960\) 0 0
\(961\) −6.78870 20.8935i −0.218990 0.673982i
\(962\) 0 0
\(963\) −85.5884 13.5559i −2.75805 0.436832i
\(964\) 0 0
\(965\) 26.5098 + 14.5767i 0.853382 + 0.469241i
\(966\) 0 0
\(967\) −10.8777 + 10.8777i −0.349803 + 0.349803i −0.860036 0.510233i \(-0.829559\pi\)
0.510233 + 0.860036i \(0.329559\pi\)
\(968\) 0 0
\(969\) 57.3670i 1.84289i
\(970\) 0 0
\(971\) −6.16511 + 18.9743i −0.197848 + 0.608913i 0.802084 + 0.597212i \(0.203725\pi\)
−0.999932 + 0.0117013i \(0.996275\pi\)
\(972\) 0 0
\(973\) 0.270143 1.70561i 0.00866037 0.0546794i
\(974\) 0 0
\(975\) −96.6735 6.09790i −3.09603 0.195289i
\(976\) 0 0
\(977\) 3.88795 + 24.5475i 0.124386 + 0.785345i 0.968469 + 0.249133i \(0.0801455\pi\)
−0.844083 + 0.536213i \(0.819854\pi\)
\(978\) 0 0
\(979\) 22.7353 5.18903i 0.726622 0.165842i
\(980\) 0 0
\(981\) −33.5358 + 46.1581i −1.07072 + 1.47372i
\(982\) 0 0
\(983\) −25.9317 13.2129i −0.827092 0.421424i −0.0114171 0.999935i \(-0.503634\pi\)
−0.815675 + 0.578510i \(0.803634\pi\)
\(984\) 0 0
\(985\) 51.7265 24.3355i 1.64814 0.775395i
\(986\) 0 0
\(987\) −0.0689780 0.135377i −0.00219560 0.00430910i
\(988\) 0 0
\(989\) −1.47970 −0.0470516
\(990\) 0 0
\(991\) 48.5379 1.54186 0.770929 0.636921i \(-0.219792\pi\)
0.770929 + 0.636921i \(0.219792\pi\)
\(992\) 0 0
\(993\) 33.8060 + 66.3481i 1.07280 + 2.10549i
\(994\) 0 0
\(995\) −1.19623 + 3.32180i −0.0379229 + 0.105308i
\(996\) 0 0
\(997\) 23.1955 + 11.8187i 0.734610 + 0.374303i 0.780925 0.624624i \(-0.214748\pi\)
−0.0463152 + 0.998927i \(0.514748\pi\)
\(998\) 0 0
\(999\) 46.0941 63.4430i 1.45835 2.00725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 880.2.cm.b.337.1 48
4.3 odd 2 220.2.u.a.117.6 yes 48
5.3 odd 4 inner 880.2.cm.b.513.6 48
11.8 odd 10 inner 880.2.cm.b.657.6 48
20.3 even 4 220.2.u.a.73.1 48
44.19 even 10 220.2.u.a.217.1 yes 48
55.8 even 20 inner 880.2.cm.b.833.1 48
220.63 odd 20 220.2.u.a.173.6 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.u.a.73.1 48 20.3 even 4
220.2.u.a.117.6 yes 48 4.3 odd 2
220.2.u.a.173.6 yes 48 220.63 odd 20
220.2.u.a.217.1 yes 48 44.19 even 10
880.2.cm.b.337.1 48 1.1 even 1 trivial
880.2.cm.b.513.6 48 5.3 odd 4 inner
880.2.cm.b.657.6 48 11.8 odd 10 inner
880.2.cm.b.833.1 48 55.8 even 20 inner