Properties

Label 220.3.i.a.43.11
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.11
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73178 + 1.00047i) q^{2} +(1.22071 - 1.22071i) q^{3} +(1.99810 - 3.46520i) q^{4} +(4.48571 - 2.20872i) q^{5} +(-0.892710 + 3.33529i) q^{6} +(-3.81872 + 3.81872i) q^{7} +(0.00657265 + 8.00000i) q^{8} +6.01972i q^{9} +(-5.55847 + 8.31284i) q^{10} +(7.54107 + 8.00826i) q^{11} +(-1.79090 - 6.66912i) q^{12} +(17.0270 - 17.0270i) q^{13} +(2.79264 - 10.4337i) q^{14} +(2.77954 - 8.17197i) q^{15} +(-8.01517 - 13.8476i) q^{16} +(-7.50031 - 7.50031i) q^{17} +(-6.02258 - 10.4248i) q^{18} +12.1979i q^{19} +(1.30925 - 19.9571i) q^{20} +9.32312i q^{21} +(-21.0715 - 6.32388i) q^{22} +(20.1933 - 20.1933i) q^{23} +(9.77372 + 9.75767i) q^{24} +(15.2431 - 19.8153i) q^{25} +(-12.4519 + 46.5220i) q^{26} +(18.3348 + 18.3348i) q^{27} +(5.60242 + 20.8628i) q^{28} +29.2106 q^{29} +(3.36230 + 16.9329i) q^{30} +11.9603i q^{31} +(27.7347 + 15.9620i) q^{32} +(18.9813 + 0.570308i) q^{33} +(20.4927 + 5.48500i) q^{34} +(-8.69517 + 25.5641i) q^{35} +(20.8595 + 12.0280i) q^{36} +(-14.8278 + 14.8278i) q^{37} +(-12.2037 - 21.1241i) q^{38} -41.5701i q^{39} +(17.6992 + 35.8711i) q^{40} -23.1736i q^{41} +(-9.32754 - 16.1456i) q^{42} +(-21.2346 - 21.2346i) q^{43} +(42.8180 - 10.1300i) q^{44} +(13.2959 + 27.0027i) q^{45} +(-14.7674 + 55.1731i) q^{46} +(-55.8217 - 55.8217i) q^{47} +(-26.6882 - 7.11976i) q^{48} +19.8347i q^{49} +(-6.57292 + 49.5661i) q^{50} -18.3114 q^{51} +(-24.9802 - 93.0236i) q^{52} +(62.0677 + 62.0677i) q^{53} +(-50.0952 - 13.4083i) q^{54} +(51.5150 + 19.2666i) q^{55} +(-30.5749 - 30.5247i) q^{56} +(14.8901 + 14.8901i) q^{57} +(-50.5863 + 29.2245i) q^{58} +12.4952 q^{59} +(-22.7637 - 25.9601i) q^{60} +33.9624i q^{61} +(-11.9659 - 20.7125i) q^{62} +(-22.9876 - 22.9876i) q^{63} +(-63.9999 + 0.105162i) q^{64} +(38.7702 - 113.986i) q^{65} +(-33.4419 + 18.0026i) q^{66} +(-37.9793 - 37.9793i) q^{67} +(-40.9764 + 11.0037i) q^{68} -49.3004i q^{69} +(-10.5182 - 52.9707i) q^{70} -11.1299i q^{71} +(-48.1578 + 0.0395656i) q^{72} +(-34.2833 + 34.2833i) q^{73} +(10.8436 - 40.5134i) q^{74} +(-5.58138 - 42.7963i) q^{75} +(42.2682 + 24.3727i) q^{76} +(-59.3786 - 1.78408i) q^{77} +(41.5899 + 71.9902i) q^{78} +93.2636i q^{79} +(-66.5393 - 44.4131i) q^{80} -9.41456 q^{81} +(23.1846 + 40.1315i) q^{82} +(-75.9544 - 75.9544i) q^{83} +(32.3064 + 18.6285i) q^{84} +(-50.2103 - 17.0781i) q^{85} +(58.0183 + 15.5289i) q^{86} +(35.6578 - 35.6578i) q^{87} +(-64.0165 + 60.3812i) q^{88} -82.3572i q^{89} +(-50.0410 - 33.4605i) q^{90} +130.043i q^{91} +(-29.6254 - 110.322i) q^{92} +(14.6001 + 14.6001i) q^{93} +(152.519 + 40.8225i) q^{94} +(26.9418 + 54.7162i) q^{95} +(53.3411 - 14.3710i) q^{96} +(-2.25877 + 2.25877i) q^{97} +(-19.8441 - 34.3493i) q^{98} +(-48.2075 + 45.3951i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73178 + 1.00047i −0.865888 + 0.500237i
\(3\) 1.22071 1.22071i 0.406904 0.406904i −0.473753 0.880658i \(-0.657101\pi\)
0.880658 + 0.473753i \(0.157101\pi\)
\(4\) 1.99810 3.46520i 0.499526 0.866299i
\(5\) 4.48571 2.20872i 0.897141 0.441744i
\(6\) −0.892710 + 3.33529i −0.148785 + 0.555882i
\(7\) −3.81872 + 3.81872i −0.545532 + 0.545532i −0.925145 0.379614i \(-0.876057\pi\)
0.379614 + 0.925145i \(0.376057\pi\)
\(8\) 0.00657265 + 8.00000i 0.000821582 + 1.00000i
\(9\) 6.01972i 0.668858i
\(10\) −5.55847 + 8.31284i −0.555847 + 0.831284i
\(11\) 7.54107 + 8.00826i 0.685552 + 0.728024i
\(12\) −1.79090 6.66912i −0.149242 0.555760i
\(13\) 17.0270 17.0270i 1.30977 1.30977i 0.388190 0.921579i \(-0.373100\pi\)
0.921579 0.388190i \(-0.126900\pi\)
\(14\) 2.79264 10.4337i 0.199474 0.745265i
\(15\) 2.77954 8.17197i 0.185303 0.544798i
\(16\) −8.01517 13.8476i −0.500948 0.865477i
\(17\) −7.50031 7.50031i −0.441195 0.441195i 0.451219 0.892413i \(-0.350989\pi\)
−0.892413 + 0.451219i \(0.850989\pi\)
\(18\) −6.02258 10.4248i −0.334588 0.579156i
\(19\) 12.1979i 0.641995i 0.947080 + 0.320998i \(0.104018\pi\)
−0.947080 + 0.320998i \(0.895982\pi\)
\(20\) 1.30925 19.9571i 0.0654624 0.997855i
\(21\) 9.32312i 0.443958i
\(22\) −21.0715 6.32388i −0.957796 0.287449i
\(23\) 20.1933 20.1933i 0.877968 0.877968i −0.115356 0.993324i \(-0.536801\pi\)
0.993324 + 0.115356i \(0.0368008\pi\)
\(24\) 9.77372 + 9.75767i 0.407238 + 0.406570i
\(25\) 15.2431 19.8153i 0.609724 0.792614i
\(26\) −12.4519 + 46.5220i −0.478919 + 1.78931i
\(27\) 18.3348 + 18.3348i 0.679065 + 0.679065i
\(28\) 5.60242 + 20.8628i 0.200087 + 0.745101i
\(29\) 29.2106 1.00726 0.503632 0.863919i \(-0.331997\pi\)
0.503632 + 0.863919i \(0.331997\pi\)
\(30\) 3.36230 + 16.9329i 0.112077 + 0.564430i
\(31\) 11.9603i 0.385815i 0.981217 + 0.192908i \(0.0617918\pi\)
−0.981217 + 0.192908i \(0.938208\pi\)
\(32\) 27.7347 + 15.9620i 0.866709 + 0.498814i
\(33\) 18.9813 + 0.570308i 0.575190 + 0.0172821i
\(34\) 20.4927 + 5.48500i 0.602727 + 0.161323i
\(35\) −8.69517 + 25.5641i −0.248433 + 0.730404i
\(36\) 20.8595 + 12.0280i 0.579431 + 0.334112i
\(37\) −14.8278 + 14.8278i −0.400752 + 0.400752i −0.878498 0.477746i \(-0.841454\pi\)
0.477746 + 0.878498i \(0.341454\pi\)
\(38\) −12.2037 21.1241i −0.321150 0.555896i
\(39\) 41.5701i 1.06590i
\(40\) 17.6992 + 35.8711i 0.442481 + 0.896778i
\(41\) 23.1736i 0.565210i −0.959236 0.282605i \(-0.908801\pi\)
0.959236 0.282605i \(-0.0911986\pi\)
\(42\) −9.32754 16.1456i −0.222084 0.384418i
\(43\) −21.2346 21.2346i −0.493829 0.493829i 0.415682 0.909510i \(-0.363543\pi\)
−0.909510 + 0.415682i \(0.863543\pi\)
\(44\) 42.8180 10.1300i 0.973137 0.230226i
\(45\) 13.2959 + 27.0027i 0.295464 + 0.600060i
\(46\) −14.7674 + 55.1731i −0.321030 + 1.19942i
\(47\) −55.8217 55.8217i −1.18770 1.18770i −0.977703 0.209993i \(-0.932656\pi\)
−0.209993 0.977703i \(-0.567344\pi\)
\(48\) −26.6882 7.11976i −0.556004 0.148328i
\(49\) 19.8347i 0.404791i
\(50\) −6.57292 + 49.5661i −0.131458 + 0.991322i
\(51\) −18.3114 −0.359048
\(52\) −24.9802 93.0236i −0.480389 1.78892i
\(53\) 62.0677 + 62.0677i 1.17109 + 1.17109i 0.981950 + 0.189139i \(0.0605697\pi\)
0.189139 + 0.981950i \(0.439430\pi\)
\(54\) −50.0952 13.4083i −0.927688 0.248301i
\(55\) 51.5150 + 19.2666i 0.936637 + 0.350302i
\(56\) −30.5749 30.5247i −0.545980 0.545083i
\(57\) 14.8901 + 14.8901i 0.261231 + 0.261231i
\(58\) −50.5863 + 29.2245i −0.872177 + 0.503870i
\(59\) 12.4952 0.211782 0.105891 0.994378i \(-0.466230\pi\)
0.105891 + 0.994378i \(0.466230\pi\)
\(60\) −22.7637 25.9601i −0.379394 0.432668i
\(61\) 33.9624i 0.556760i 0.960471 + 0.278380i \(0.0897975\pi\)
−0.960471 + 0.278380i \(0.910203\pi\)
\(62\) −11.9659 20.7125i −0.192999 0.334073i
\(63\) −22.9876 22.9876i −0.364883 0.364883i
\(64\) −63.9999 + 0.105162i −0.999999 + 0.00164316i
\(65\) 38.7702 113.986i 0.596465 1.75363i
\(66\) −33.4419 + 18.0026i −0.506695 + 0.272767i
\(67\) −37.9793 37.9793i −0.566856 0.566856i 0.364390 0.931246i \(-0.381277\pi\)
−0.931246 + 0.364390i \(0.881277\pi\)
\(68\) −40.9764 + 11.0037i −0.602595 + 0.161819i
\(69\) 49.3004i 0.714498i
\(70\) −10.5182 52.9707i −0.150260 0.756724i
\(71\) 11.1299i 0.156759i −0.996924 0.0783795i \(-0.975025\pi\)
0.996924 0.0783795i \(-0.0249746\pi\)
\(72\) −48.1578 + 0.0395656i −0.668858 + 0.000549522i
\(73\) −34.2833 + 34.2833i −0.469635 + 0.469635i −0.901796 0.432161i \(-0.857751\pi\)
0.432161 + 0.901796i \(0.357751\pi\)
\(74\) 10.8436 40.5134i 0.146536 0.547478i
\(75\) −5.58138 42.7963i −0.0744184 0.570617i
\(76\) 42.2682 + 24.3727i 0.556160 + 0.320693i
\(77\) −59.3786 1.78408i −0.771150 0.0231699i
\(78\) 41.5899 + 71.9902i 0.533203 + 0.922952i
\(79\) 93.2636i 1.18055i 0.807202 + 0.590276i \(0.200981\pi\)
−0.807202 + 0.590276i \(0.799019\pi\)
\(80\) −66.5393 44.4131i −0.831741 0.555164i
\(81\) −9.41456 −0.116229
\(82\) 23.1846 + 40.1315i 0.282739 + 0.489409i
\(83\) −75.9544 75.9544i −0.915113 0.915113i 0.0815558 0.996669i \(-0.474011\pi\)
−0.996669 + 0.0815558i \(0.974011\pi\)
\(84\) 32.3064 + 18.6285i 0.384601 + 0.221768i
\(85\) −50.2103 17.0781i −0.590709 0.200919i
\(86\) 58.0183 + 15.5289i 0.674632 + 0.180569i
\(87\) 35.6578 35.6578i 0.409860 0.409860i
\(88\) −64.0165 + 60.3812i −0.727460 + 0.686150i
\(89\) 82.3572i 0.925362i −0.886525 0.462681i \(-0.846888\pi\)
0.886525 0.462681i \(-0.153112\pi\)
\(90\) −50.0410 33.4605i −0.556011 0.371783i
\(91\) 130.043i 1.42904i
\(92\) −29.6254 110.322i −0.322016 1.19915i
\(93\) 14.6001 + 14.6001i 0.156990 + 0.156990i
\(94\) 152.519 + 40.8225i 1.62254 + 0.434282i
\(95\) 26.9418 + 54.7162i 0.283598 + 0.575960i
\(96\) 53.3411 14.3710i 0.555637 0.149698i
\(97\) −2.25877 + 2.25877i −0.0232862 + 0.0232862i −0.718654 0.695368i \(-0.755241\pi\)
0.695368 + 0.718654i \(0.255241\pi\)
\(98\) −19.8441 34.3493i −0.202491 0.350503i
\(99\) −48.2075 + 45.3951i −0.486945 + 0.458537i
\(100\) −38.2068 92.4134i −0.382068 0.924134i
\(101\) 58.0996i 0.575244i 0.957744 + 0.287622i \(0.0928646\pi\)
−0.957744 + 0.287622i \(0.907135\pi\)
\(102\) 31.7113 18.3201i 0.310895 0.179609i
\(103\) −117.785 + 117.785i −1.14354 + 1.14354i −0.155742 + 0.987798i \(0.549777\pi\)
−0.987798 + 0.155742i \(0.950223\pi\)
\(104\) 136.328 + 136.104i 1.31085 + 1.30869i
\(105\) 20.5922 + 41.8208i 0.196116 + 0.398293i
\(106\) −169.585 45.3903i −1.59986 0.428210i
\(107\) 104.926 104.926i 0.980620 0.980620i −0.0191957 0.999816i \(-0.506111\pi\)
0.999816 + 0.0191957i \(0.00611056\pi\)
\(108\) 100.168 26.8988i 0.927484 0.249063i
\(109\) −184.321 −1.69102 −0.845510 0.533959i \(-0.820704\pi\)
−0.845510 + 0.533959i \(0.820704\pi\)
\(110\) −108.488 + 18.1740i −0.986257 + 0.165218i
\(111\) 36.2010i 0.326135i
\(112\) 83.4880 + 22.2725i 0.745428 + 0.198862i
\(113\) −50.9267 50.9267i −0.450678 0.450678i 0.444901 0.895580i \(-0.353239\pi\)
−0.895580 + 0.444901i \(0.853239\pi\)
\(114\) −40.6836 10.8892i −0.356874 0.0955193i
\(115\) 45.9798 135.182i 0.399824 1.17550i
\(116\) 58.3658 101.221i 0.503154 0.872591i
\(117\) 102.498 + 102.498i 0.876050 + 0.876050i
\(118\) −21.6388 + 12.5011i −0.183380 + 0.105941i
\(119\) 57.2832 0.481371
\(120\) 65.3940 + 22.1826i 0.544950 + 0.184855i
\(121\) −7.26454 + 120.782i −0.0600375 + 0.998196i
\(122\) −33.9785 58.8152i −0.278512 0.482092i
\(123\) −28.2883 28.2883i −0.229986 0.229986i
\(124\) 41.4447 + 23.8978i 0.334231 + 0.192725i
\(125\) 24.6095 122.554i 0.196876 0.980428i
\(126\) 62.8080 + 16.8109i 0.498476 + 0.133420i
\(127\) −9.46661 + 9.46661i −0.0745402 + 0.0745402i −0.743394 0.668854i \(-0.766785\pi\)
0.668854 + 0.743394i \(0.266785\pi\)
\(128\) 110.728 64.2124i 0.865065 0.501659i
\(129\) −51.8428 −0.401882
\(130\) 46.8987 + 236.187i 0.360759 + 1.81682i
\(131\) 119.794 0.914456 0.457228 0.889350i \(-0.348842\pi\)
0.457228 + 0.889350i \(0.348842\pi\)
\(132\) 39.9027 64.6343i 0.302293 0.489654i
\(133\) −46.5804 46.5804i −0.350229 0.350229i
\(134\) 103.769 + 27.7744i 0.774396 + 0.207272i
\(135\) 122.741 + 41.7480i 0.909190 + 0.309244i
\(136\) 59.9532 60.0518i 0.440832 0.441557i
\(137\) −182.709 + 182.709i −1.33364 + 1.33364i −0.431556 + 0.902086i \(0.642035\pi\)
−0.902086 + 0.431556i \(0.857965\pi\)
\(138\) 49.3237 + 85.3772i 0.357418 + 0.618675i
\(139\) 87.1786i 0.627184i 0.949558 + 0.313592i \(0.101532\pi\)
−0.949558 + 0.313592i \(0.898468\pi\)
\(140\) 71.2110 + 81.2103i 0.508650 + 0.580073i
\(141\) −136.284 −0.966556
\(142\) 11.1352 + 19.2745i 0.0784167 + 0.135736i
\(143\) 264.759 + 7.95490i 1.85146 + 0.0556287i
\(144\) 83.3589 48.2491i 0.578881 0.335063i
\(145\) 131.030 64.5181i 0.903657 0.444953i
\(146\) 25.0715 93.6707i 0.171723 0.641580i
\(147\) 24.2125 + 24.2125i 0.164711 + 0.164711i
\(148\) 21.7538 + 81.0089i 0.146985 + 0.547357i
\(149\) −34.0643 −0.228619 −0.114310 0.993445i \(-0.536466\pi\)
−0.114310 + 0.993445i \(0.536466\pi\)
\(150\) 52.4823 + 68.5296i 0.349882 + 0.456864i
\(151\) −173.276 −1.14752 −0.573762 0.819022i \(-0.694516\pi\)
−0.573762 + 0.819022i \(0.694516\pi\)
\(152\) −97.5833 + 0.0801726i −0.641995 + 0.000527452i
\(153\) 45.1498 45.1498i 0.295097 0.295097i
\(154\) 104.615 56.3171i 0.679320 0.365695i
\(155\) 26.4169 + 53.6503i 0.170432 + 0.346131i
\(156\) −144.049 83.0614i −0.923389 0.532445i
\(157\) 25.3500 25.3500i 0.161465 0.161465i −0.621751 0.783215i \(-0.713578\pi\)
0.783215 + 0.621751i \(0.213578\pi\)
\(158\) −93.3078 161.512i −0.590556 1.02223i
\(159\) 151.534 0.953042
\(160\) 159.665 + 10.3428i 0.997908 + 0.0646425i
\(161\) 154.225i 0.957919i
\(162\) 16.3039 9.41903i 0.100642 0.0581422i
\(163\) −52.4419 + 52.4419i −0.321729 + 0.321729i −0.849430 0.527701i \(-0.823054\pi\)
0.527701 + 0.849430i \(0.323054\pi\)
\(164\) −80.3011 46.3033i −0.489641 0.282337i
\(165\) 86.4040 39.3661i 0.523661 0.238582i
\(166\) 207.526 + 55.5456i 1.25016 + 0.334612i
\(167\) −107.739 + 107.739i −0.645144 + 0.645144i −0.951816 0.306671i \(-0.900785\pi\)
0.306671 + 0.951816i \(0.400785\pi\)
\(168\) −74.5849 + 0.0612776i −0.443958 + 0.000364748i
\(169\) 410.838i 2.43099i
\(170\) 104.039 20.6586i 0.611995 0.121521i
\(171\) −73.4280 −0.429404
\(172\) −116.011 + 31.1532i −0.674483 + 0.181123i
\(173\) −20.6428 + 20.6428i −0.119322 + 0.119322i −0.764247 0.644924i \(-0.776889\pi\)
0.644924 + 0.764247i \(0.276889\pi\)
\(174\) −26.0766 + 97.4260i −0.149866 + 0.559920i
\(175\) 17.4601 + 133.878i 0.0997719 + 0.765020i
\(176\) 50.4525 168.614i 0.286662 0.958032i
\(177\) 15.2530 15.2530i 0.0861751 0.0861751i
\(178\) 82.3963 + 142.624i 0.462900 + 0.801260i
\(179\) −321.360 −1.79531 −0.897655 0.440700i \(-0.854730\pi\)
−0.897655 + 0.440700i \(0.854730\pi\)
\(180\) 120.136 + 7.88131i 0.667423 + 0.0437850i
\(181\) 164.845 0.910745 0.455372 0.890301i \(-0.349506\pi\)
0.455372 + 0.890301i \(0.349506\pi\)
\(182\) −130.104 225.205i −0.714860 1.23739i
\(183\) 41.4583 + 41.4583i 0.226548 + 0.226548i
\(184\) 161.679 + 161.413i 0.878689 + 0.877247i
\(185\) −33.7628 + 99.2638i −0.182501 + 0.536561i
\(186\) −39.8910 10.6771i −0.214468 0.0574035i
\(187\) 3.50409 116.625i 0.0187385 0.623662i
\(188\) −304.971 + 81.8957i −1.62218 + 0.435615i
\(189\) −140.031 −0.740903
\(190\) −101.399 67.8018i −0.533681 0.356851i
\(191\) 215.308i 1.12727i −0.826025 0.563633i \(-0.809403\pi\)
0.826025 0.563633i \(-0.190597\pi\)
\(192\) −77.9971 + 78.2539i −0.406235 + 0.407572i
\(193\) −112.293 + 112.293i −0.581830 + 0.581830i −0.935406 0.353576i \(-0.884966\pi\)
0.353576 + 0.935406i \(0.384966\pi\)
\(194\) 1.65184 6.17152i 0.00851465 0.0318119i
\(195\) −91.8168 186.471i −0.470856 0.956264i
\(196\) 68.7313 + 39.6318i 0.350670 + 0.202203i
\(197\) 94.5590 + 94.5590i 0.479995 + 0.479995i 0.905130 0.425135i \(-0.139773\pi\)
−0.425135 + 0.905130i \(0.639773\pi\)
\(198\) 38.0680 126.845i 0.192263 0.640630i
\(199\) 4.28315 0.0215234 0.0107617 0.999942i \(-0.496574\pi\)
0.0107617 + 0.999942i \(0.496574\pi\)
\(200\) 158.623 + 121.815i 0.793114 + 0.609073i
\(201\) −92.7237 −0.461312
\(202\) −58.1272 100.616i −0.287758 0.498097i
\(203\) −111.547 + 111.547i −0.549494 + 0.549494i
\(204\) −36.5881 + 63.4527i −0.179354 + 0.311043i
\(205\) −51.1840 103.950i −0.249678 0.507073i
\(206\) 86.1361 321.817i 0.418137 1.56222i
\(207\) 121.558 + 121.558i 0.587236 + 0.587236i
\(208\) −372.258 99.3093i −1.78970 0.477449i
\(209\) −97.6841 + 91.9853i −0.467388 + 0.440121i
\(210\) −77.5016 51.8223i −0.369055 0.246773i
\(211\) 45.8243 0.217177 0.108588 0.994087i \(-0.465367\pi\)
0.108588 + 0.994087i \(0.465367\pi\)
\(212\) 339.095 91.0592i 1.59950 0.429525i
\(213\) −13.5864 13.5864i −0.0637859 0.0637859i
\(214\) −76.7329 + 286.685i −0.358565 + 1.33965i
\(215\) −142.154 48.3509i −0.661180 0.224888i
\(216\) −146.558 + 146.799i −0.678507 + 0.679623i
\(217\) −45.6729 45.6729i −0.210474 0.210474i
\(218\) 319.203 184.409i 1.46423 0.845911i
\(219\) 83.7002i 0.382193i
\(220\) 169.695 140.013i 0.771340 0.636423i
\(221\) −255.416 −1.15573
\(222\) −36.2182 62.6921i −0.163145 0.282397i
\(223\) 198.915 198.915i 0.891997 0.891997i −0.102714 0.994711i \(-0.532753\pi\)
0.994711 + 0.102714i \(0.0327526\pi\)
\(224\) −166.866 + 44.9565i −0.744936 + 0.200699i
\(225\) 119.283 + 91.7593i 0.530146 + 0.407819i
\(226\) 139.144 + 37.2428i 0.615683 + 0.164791i
\(227\) 176.483 176.483i 0.777459 0.777459i −0.201939 0.979398i \(-0.564724\pi\)
0.979398 + 0.201939i \(0.0647244\pi\)
\(228\) 81.3493 21.8452i 0.356795 0.0958124i
\(229\) 216.745i 0.946483i −0.880933 0.473242i \(-0.843084\pi\)
0.880933 0.473242i \(-0.156916\pi\)
\(230\) 55.6198 + 280.107i 0.241825 + 1.21786i
\(231\) −74.6620 + 70.3063i −0.323212 + 0.304356i
\(232\) 0.191991 + 233.685i 0.000827549 + 1.00726i
\(233\) 36.9257 36.9257i 0.158480 0.158480i −0.623413 0.781893i \(-0.714254\pi\)
0.781893 + 0.623413i \(0.214254\pi\)
\(234\) −280.050 74.9569i −1.19679 0.320329i
\(235\) −373.694 127.105i −1.59019 0.540873i
\(236\) 24.9666 43.2982i 0.105791 0.183467i
\(237\) 113.848 + 113.848i 0.480371 + 0.480371i
\(238\) −99.2017 + 57.3104i −0.416814 + 0.240800i
\(239\) 77.4780i 0.324176i −0.986776 0.162088i \(-0.948177\pi\)
0.986776 0.162088i \(-0.0518228\pi\)
\(240\) −135.441 + 27.0096i −0.564337 + 0.112540i
\(241\) 384.201i 1.59420i −0.603850 0.797098i \(-0.706367\pi\)
0.603850 0.797098i \(-0.293633\pi\)
\(242\) −108.258 216.435i −0.447349 0.894359i
\(243\) −176.505 + 176.505i −0.726359 + 0.726359i
\(244\) 117.686 + 67.8603i 0.482321 + 0.278116i
\(245\) 43.8094 + 88.9728i 0.178814 + 0.363154i
\(246\) 77.2908 + 20.6873i 0.314190 + 0.0840948i
\(247\) 207.694 + 207.694i 0.840866 + 0.840866i
\(248\) −95.6821 + 0.0786107i −0.385815 + 0.000316979i
\(249\) −185.437 −0.744726
\(250\) 79.9934 + 236.857i 0.319974 + 0.947426i
\(251\) 71.4560i 0.284685i −0.989817 0.142343i \(-0.954537\pi\)
0.989817 0.142343i \(-0.0454635\pi\)
\(252\) −125.588 + 33.7250i −0.498366 + 0.133830i
\(253\) 313.992 + 9.43416i 1.24107 + 0.0372892i
\(254\) 6.92295 25.8651i 0.0272557 0.101831i
\(255\) −82.1397 + 40.4449i −0.322117 + 0.158607i
\(256\) −127.514 + 221.982i −0.498101 + 0.867119i
\(257\) −80.4439 + 80.4439i −0.313011 + 0.313011i −0.846075 0.533064i \(-0.821041\pi\)
0.533064 + 0.846075i \(0.321041\pi\)
\(258\) 89.7801 51.8673i 0.347985 0.201036i
\(259\) 113.247i 0.437246i
\(260\) −317.517 362.102i −1.22122 1.39270i
\(261\) 175.840i 0.673716i
\(262\) −207.456 + 119.851i −0.791817 + 0.457445i
\(263\) 306.069 + 306.069i 1.16376 + 1.16376i 0.983645 + 0.180116i \(0.0576473\pi\)
0.180116 + 0.983645i \(0.442353\pi\)
\(264\) −4.43771 + 151.854i −0.0168095 + 0.575204i
\(265\) 415.508 + 141.327i 1.56795 + 0.533311i
\(266\) 127.269 + 34.0644i 0.478456 + 0.128062i
\(267\) −100.534 100.534i −0.376534 0.376534i
\(268\) −207.492 + 55.7193i −0.774226 + 0.207908i
\(269\) 203.022i 0.754730i 0.926065 + 0.377365i \(0.123170\pi\)
−0.926065 + 0.377365i \(0.876830\pi\)
\(270\) −254.327 + 50.5007i −0.941953 + 0.187040i
\(271\) 251.162 0.926795 0.463398 0.886150i \(-0.346630\pi\)
0.463398 + 0.886150i \(0.346630\pi\)
\(272\) −43.7453 + 163.978i −0.160828 + 0.602860i
\(273\) 158.745 + 158.745i 0.581483 + 0.581483i
\(274\) 133.616 499.207i 0.487648 1.82192i
\(275\) 273.636 27.3581i 0.995039 0.0994838i
\(276\) −170.835 98.5072i −0.618969 0.356910i
\(277\) −32.9708 32.9708i −0.119028 0.119028i 0.645084 0.764112i \(-0.276822\pi\)
−0.764112 + 0.645084i \(0.776822\pi\)
\(278\) −87.2199 150.974i −0.313741 0.543071i
\(279\) −71.9975 −0.258056
\(280\) −204.570 69.3933i −0.730608 0.247833i
\(281\) 123.056i 0.437923i 0.975734 + 0.218961i \(0.0702669\pi\)
−0.975734 + 0.218961i \(0.929733\pi\)
\(282\) 236.014 136.349i 0.836930 0.483507i
\(283\) −370.554 370.554i −1.30938 1.30938i −0.921865 0.387512i \(-0.873335\pi\)
−0.387512 0.921865i \(-0.626665\pi\)
\(284\) −38.5672 22.2387i −0.135800 0.0783051i
\(285\) 99.6809 + 33.9046i 0.349758 + 0.118964i
\(286\) −466.461 + 251.108i −1.63098 + 0.878000i
\(287\) 88.4936 + 88.4936i 0.308340 + 0.308340i
\(288\) −96.0870 + 166.955i −0.333636 + 0.579705i
\(289\) 176.491i 0.610694i
\(290\) −162.366 + 242.823i −0.559884 + 0.837322i
\(291\) 5.51461i 0.0189505i
\(292\) 50.2969 + 187.300i 0.172250 + 0.641439i
\(293\) 392.259 392.259i 1.33877 1.33877i 0.441516 0.897254i \(-0.354441\pi\)
0.897254 0.441516i \(-0.145559\pi\)
\(294\) −66.1547 17.7067i −0.225016 0.0602268i
\(295\) 56.0496 27.5983i 0.189999 0.0935536i
\(296\) −118.720 118.525i −0.401081 0.400423i
\(297\) −8.56587 + 285.093i −0.0288413 + 0.959910i
\(298\) 58.9917 34.0804i 0.197959 0.114364i
\(299\) 687.662i 2.29987i
\(300\) −159.450 66.1708i −0.531499 0.220569i
\(301\) 162.178 0.538798
\(302\) 300.075 173.358i 0.993627 0.574034i
\(303\) 70.9229 + 70.9229i 0.234069 + 0.234069i
\(304\) 168.912 97.7684i 0.555632 0.321607i
\(305\) 75.0134 + 152.345i 0.245945 + 0.499492i
\(306\) −33.0182 + 123.361i −0.107902 + 0.403139i
\(307\) −156.629 + 156.629i −0.510192 + 0.510192i −0.914585 0.404393i \(-0.867483\pi\)
0.404393 + 0.914585i \(0.367483\pi\)
\(308\) −124.827 + 202.194i −0.405281 + 0.656473i
\(309\) 287.562i 0.930622i
\(310\) −99.4239 66.4808i −0.320722 0.214454i
\(311\) 82.1856i 0.264262i 0.991232 + 0.132131i \(0.0421820\pi\)
−0.991232 + 0.132131i \(0.957818\pi\)
\(312\) 332.561 0.273226i 1.06590 0.000875725i
\(313\) 217.002 + 217.002i 0.693296 + 0.693296i 0.962956 0.269660i \(-0.0869112\pi\)
−0.269660 + 0.962956i \(0.586911\pi\)
\(314\) −18.5385 + 69.2624i −0.0590398 + 0.220581i
\(315\) −153.889 52.3425i −0.488537 0.166167i
\(316\) 323.177 + 186.350i 1.02271 + 0.589716i
\(317\) −41.1916 + 41.1916i −0.129942 + 0.129942i −0.769087 0.639145i \(-0.779289\pi\)
0.639145 + 0.769087i \(0.279289\pi\)
\(318\) −262.423 + 151.606i −0.825228 + 0.476747i
\(319\) 220.279 + 233.926i 0.690531 + 0.733312i
\(320\) −286.852 + 141.830i −0.896414 + 0.443218i
\(321\) 256.170i 0.798037i
\(322\) −154.298 267.083i −0.479187 0.829451i
\(323\) 91.4881 91.4881i 0.283245 0.283245i
\(324\) −18.8113 + 32.6233i −0.0580594 + 0.100689i
\(325\) −77.8514 596.940i −0.239543 1.83674i
\(326\) 38.3509 143.284i 0.117641 0.439523i
\(327\) −225.003 + 225.003i −0.688083 + 0.688083i
\(328\) 185.389 0.152312i 0.565210 0.000464366i
\(329\) 426.335 1.29585
\(330\) −110.248 + 154.618i −0.334084 + 0.468540i
\(331\) 263.642i 0.796503i −0.917276 0.398251i \(-0.869617\pi\)
0.917276 0.398251i \(-0.130383\pi\)
\(332\) −414.961 + 111.432i −1.24988 + 0.335639i
\(333\) −89.2594 89.2594i −0.268046 0.268046i
\(334\) 78.7899 294.370i 0.235898 0.881348i
\(335\) −254.250 86.4784i −0.758955 0.258144i
\(336\) 129.103 74.7264i 0.384236 0.222400i
\(337\) −71.2005 71.2005i −0.211278 0.211278i 0.593532 0.804810i \(-0.297733\pi\)
−0.804810 + 0.593532i \(0.797733\pi\)
\(338\) 411.033 + 711.479i 1.21607 + 2.10497i
\(339\) −124.334 −0.366766
\(340\) −159.504 + 139.865i −0.469130 + 0.411367i
\(341\) −95.7810 + 90.1932i −0.280883 + 0.264496i
\(342\) 127.161 73.4629i 0.371816 0.214804i
\(343\) −262.861 262.861i −0.766358 0.766358i
\(344\) 169.737 170.017i 0.493423 0.494234i
\(345\) −108.891 221.147i −0.315625 0.641005i
\(346\) 15.0961 56.4012i 0.0436304 0.163009i
\(347\) −129.961 + 129.961i −0.374528 + 0.374528i −0.869123 0.494595i \(-0.835316\pi\)
0.494595 + 0.869123i \(0.335316\pi\)
\(348\) −52.3133 194.809i −0.150326 0.559796i
\(349\) −162.716 −0.466234 −0.233117 0.972449i \(-0.574893\pi\)
−0.233117 + 0.972449i \(0.574893\pi\)
\(350\) −164.179 214.379i −0.469083 0.612512i
\(351\) 624.372 1.77884
\(352\) 81.3211 + 342.478i 0.231026 + 0.972948i
\(353\) −156.532 156.532i −0.443433 0.443433i 0.449731 0.893164i \(-0.351520\pi\)
−0.893164 + 0.449731i \(0.851520\pi\)
\(354\) −11.1546 + 41.6750i −0.0315100 + 0.117726i
\(355\) −24.5828 49.9254i −0.0692474 0.140635i
\(356\) −285.384 164.558i −0.801640 0.462242i
\(357\) 69.9263 69.9263i 0.195872 0.195872i
\(358\) 556.524 321.513i 1.55454 0.898080i
\(359\) 526.944i 1.46781i 0.679252 + 0.733905i \(0.262304\pi\)
−0.679252 + 0.733905i \(0.737696\pi\)
\(360\) −215.934 + 106.545i −0.599817 + 0.295957i
\(361\) 212.211 0.587842
\(362\) −285.474 + 164.923i −0.788603 + 0.455588i
\(363\) 138.572 + 156.308i 0.381741 + 0.430600i
\(364\) 450.624 + 259.839i 1.23798 + 0.713843i
\(365\) −78.0627 + 229.507i −0.213870 + 0.628787i
\(366\) −113.274 30.3185i −0.309493 0.0828376i
\(367\) 195.297 + 195.297i 0.532145 + 0.532145i 0.921210 0.389065i \(-0.127202\pi\)
−0.389065 + 0.921210i \(0.627202\pi\)
\(368\) −441.482 117.776i −1.19968 0.320045i
\(369\) 139.499 0.378045
\(370\) −40.8414 205.682i −0.110382 0.555896i
\(371\) −474.039 −1.27773
\(372\) 79.7644 21.4196i 0.214421 0.0575797i
\(373\) −139.231 + 139.231i −0.373274 + 0.373274i −0.868668 0.495394i \(-0.835024\pi\)
0.495394 + 0.868668i \(0.335024\pi\)
\(374\) 110.612 + 205.474i 0.295754 + 0.549395i
\(375\) −119.561 179.644i −0.318831 0.479050i
\(376\) 446.206 446.940i 1.18672 1.18867i
\(377\) 497.369 497.369i 1.31928 1.31928i
\(378\) 242.502 140.097i 0.641539 0.370627i
\(379\) −121.053 −0.319402 −0.159701 0.987165i \(-0.551053\pi\)
−0.159701 + 0.987165i \(0.551053\pi\)
\(380\) 243.435 + 15.9701i 0.640618 + 0.0420265i
\(381\) 23.1120i 0.0606614i
\(382\) 215.410 + 372.865i 0.563901 + 0.976087i
\(383\) 430.859 430.859i 1.12496 1.12496i 0.133974 0.990985i \(-0.457226\pi\)
0.990985 0.133974i \(-0.0427739\pi\)
\(384\) 56.7826 213.552i 0.147871 0.556126i
\(385\) −270.295 + 123.148i −0.702066 + 0.319864i
\(386\) 82.1204 306.813i 0.212747 0.794853i
\(387\) 127.827 127.827i 0.330301 0.330301i
\(388\) 3.31382 + 12.3403i 0.00854078 + 0.0318049i
\(389\) 45.9252i 0.118060i −0.998256 0.0590299i \(-0.981199\pi\)
0.998256 0.0590299i \(-0.0188007\pi\)
\(390\) 345.566 + 231.067i 0.886067 + 0.592478i
\(391\) −302.912 −0.774710
\(392\) −158.678 + 0.130367i −0.404790 + 0.000332569i
\(393\) 146.234 146.234i 0.372096 0.372096i
\(394\) −258.359 69.1513i −0.655734 0.175511i
\(395\) 205.993 + 418.353i 0.521502 + 1.05912i
\(396\) 60.9795 + 257.753i 0.153989 + 0.650891i
\(397\) 189.606 189.606i 0.477598 0.477598i −0.426765 0.904363i \(-0.640347\pi\)
0.904363 + 0.426765i \(0.140347\pi\)
\(398\) −7.41746 + 4.28518i −0.0186368 + 0.0107668i
\(399\) −113.723 −0.285019
\(400\) −396.572 52.2576i −0.991429 0.130644i
\(401\) −335.445 −0.836521 −0.418260 0.908327i \(-0.637360\pi\)
−0.418260 + 0.908327i \(0.637360\pi\)
\(402\) 160.577 92.7677i 0.399445 0.230765i
\(403\) 203.648 + 203.648i 0.505329 + 0.505329i
\(404\) 201.327 + 116.089i 0.498333 + 0.287349i
\(405\) −42.2310 + 20.7941i −0.104274 + 0.0513436i
\(406\) 81.5748 304.775i 0.200923 0.750678i
\(407\) −230.563 6.92746i −0.566494 0.0170208i
\(408\) −0.120355 146.491i −0.000294987 0.359048i
\(409\) −518.858 −1.26860 −0.634300 0.773087i \(-0.718712\pi\)
−0.634300 + 0.773087i \(0.718712\pi\)
\(410\) 192.639 + 128.810i 0.469850 + 0.314171i
\(411\) 446.070i 1.08533i
\(412\) 172.801 + 643.492i 0.419420 + 1.56187i
\(413\) −47.7155 + 47.7155i −0.115534 + 0.115534i
\(414\) −332.127 88.8956i −0.802238 0.214724i
\(415\) −508.471 172.947i −1.22523 0.416740i
\(416\) 744.024 200.453i 1.78852 0.481858i
\(417\) 106.420 + 106.420i 0.255204 + 0.255204i
\(418\) 77.1381 257.028i 0.184541 0.614900i
\(419\) 520.164 1.24144 0.620721 0.784031i \(-0.286840\pi\)
0.620721 + 0.784031i \(0.286840\pi\)
\(420\) 186.062 + 12.2063i 0.443006 + 0.0290626i
\(421\) −352.410 −0.837078 −0.418539 0.908199i \(-0.637458\pi\)
−0.418539 + 0.908199i \(0.637458\pi\)
\(422\) −79.3575 + 45.8460i −0.188051 + 0.108640i
\(423\) 336.031 336.031i 0.794400 0.794400i
\(424\) −496.134 + 496.950i −1.17013 + 1.17205i
\(425\) −262.949 + 34.2932i −0.618704 + 0.0806898i
\(426\) 37.1214 + 9.93576i 0.0871395 + 0.0233234i
\(427\) −129.693 129.693i −0.303730 0.303730i
\(428\) −153.937 573.244i −0.359665 1.33936i
\(429\) 332.905 313.483i 0.776002 0.730730i
\(430\) 294.552 58.4881i 0.685005 0.136019i
\(431\) 527.215 1.22324 0.611618 0.791153i \(-0.290519\pi\)
0.611618 + 0.791153i \(0.290519\pi\)
\(432\) 106.937 400.849i 0.247539 0.927892i
\(433\) 111.830 + 111.830i 0.258267 + 0.258267i 0.824349 0.566082i \(-0.191541\pi\)
−0.566082 + 0.824349i \(0.691541\pi\)
\(434\) 124.790 + 33.4007i 0.287534 + 0.0769602i
\(435\) 81.1922 238.708i 0.186649 0.548755i
\(436\) −368.293 + 638.709i −0.844708 + 1.46493i
\(437\) 246.316 + 246.316i 0.563652 + 0.563652i
\(438\) −83.7399 144.950i −0.191187 0.330936i
\(439\) 409.254i 0.932241i 0.884721 + 0.466120i \(0.154349\pi\)
−0.884721 + 0.466120i \(0.845651\pi\)
\(440\) −153.794 + 412.247i −0.349532 + 0.936924i
\(441\) −119.400 −0.270747
\(442\) 442.323 255.537i 1.00073 0.578137i
\(443\) −289.194 + 289.194i −0.652807 + 0.652807i −0.953668 0.300861i \(-0.902726\pi\)
0.300861 + 0.953668i \(0.402726\pi\)
\(444\) 125.444 + 72.3334i 0.282531 + 0.162913i
\(445\) −181.904 369.430i −0.408773 0.830180i
\(446\) −145.467 + 543.487i −0.326160 + 1.21858i
\(447\) −41.5827 + 41.5827i −0.0930261 + 0.0930261i
\(448\) 243.996 244.799i 0.544634 0.546427i
\(449\) 357.561i 0.796350i 0.917309 + 0.398175i \(0.130356\pi\)
−0.917309 + 0.398175i \(0.869644\pi\)
\(450\) −298.374 39.5672i −0.663054 0.0879270i
\(451\) 185.580 174.754i 0.411487 0.387481i
\(452\) −278.228 + 74.7142i −0.615548 + 0.165297i
\(453\) −211.520 + 211.520i −0.466932 + 0.466932i
\(454\) −129.063 + 482.196i −0.284279 + 1.06211i
\(455\) 287.228 + 583.333i 0.631271 + 1.28205i
\(456\) −119.023 + 119.219i −0.261016 + 0.261445i
\(457\) 52.4029 + 52.4029i 0.114667 + 0.114667i 0.762112 0.647445i \(-0.224162\pi\)
−0.647445 + 0.762112i \(0.724162\pi\)
\(458\) 216.847 + 375.353i 0.473466 + 0.819549i
\(459\) 275.033i 0.599200i
\(460\) −376.561 429.437i −0.818611 0.933559i
\(461\) 78.9775i 0.171318i −0.996325 0.0856589i \(-0.972700\pi\)
0.996325 0.0856589i \(-0.0272995\pi\)
\(462\) 58.9583 196.452i 0.127615 0.425221i
\(463\) −140.726 + 140.726i −0.303943 + 0.303943i −0.842554 0.538611i \(-0.818949\pi\)
0.538611 + 0.842554i \(0.318949\pi\)
\(464\) −234.128 404.498i −0.504587 0.871763i
\(465\) 97.7390 + 33.2441i 0.210191 + 0.0714927i
\(466\) −27.0039 + 100.890i −0.0579483 + 0.216503i
\(467\) 137.005 + 137.005i 0.293373 + 0.293373i 0.838411 0.545038i \(-0.183485\pi\)
−0.545038 + 0.838411i \(0.683485\pi\)
\(468\) 559.976 150.374i 1.19653 0.321312i
\(469\) 290.065 0.618476
\(470\) 774.320 153.754i 1.64749 0.327135i
\(471\) 61.8900i 0.131401i
\(472\) 0.0821263 + 99.9612i 0.000173996 + 0.211782i
\(473\) 9.92067 330.184i 0.0209739 0.698064i
\(474\) −311.061 83.2573i −0.656247 0.175648i
\(475\) 241.706 + 185.934i 0.508854 + 0.391440i
\(476\) 114.458 198.497i 0.240457 0.417012i
\(477\) −373.631 + 373.631i −0.783293 + 0.783293i
\(478\) 77.5148 + 134.175i 0.162165 + 0.280700i
\(479\) 716.300i 1.49541i −0.664032 0.747704i \(-0.731156\pi\)
0.664032 0.747704i \(-0.268844\pi\)
\(480\) 207.531 182.280i 0.432356 0.379750i
\(481\) 504.947i 1.04979i
\(482\) 384.383 + 665.351i 0.797476 + 1.38040i
\(483\) 188.264 + 188.264i 0.389781 + 0.389781i
\(484\) 404.017 + 266.507i 0.834746 + 0.550635i
\(485\) −5.14318 + 15.1211i −0.0106045 + 0.0311776i
\(486\) 129.079 482.257i 0.265594 0.992298i
\(487\) 365.486 + 365.486i 0.750484 + 0.750484i 0.974569 0.224086i \(-0.0719396\pi\)
−0.224086 + 0.974569i \(0.571940\pi\)
\(488\) −271.699 + 0.223223i −0.556760 + 0.000457424i
\(489\) 128.033i 0.261826i
\(490\) −164.883 110.251i −0.336496 0.225002i
\(491\) 149.770 0.305030 0.152515 0.988301i \(-0.451263\pi\)
0.152515 + 0.988301i \(0.451263\pi\)
\(492\) −154.548 + 41.5016i −0.314121 + 0.0843529i
\(493\) −219.089 219.089i −0.444399 0.444399i
\(494\) −567.472 151.887i −1.14873 0.307464i
\(495\) −115.980 + 310.106i −0.234302 + 0.626477i
\(496\) 165.621 95.8637i 0.333914 0.193273i
\(497\) 42.5019 + 42.5019i 0.0855170 + 0.0855170i
\(498\) 321.135 185.525i 0.644850 0.372540i
\(499\) −288.828 −0.578815 −0.289407 0.957206i \(-0.593458\pi\)
−0.289407 + 0.957206i \(0.593458\pi\)
\(500\) −375.500 330.151i −0.750999 0.660303i
\(501\) 263.037i 0.525024i
\(502\) 71.4899 + 123.746i 0.142410 + 0.246506i
\(503\) −339.191 339.191i −0.674336 0.674336i 0.284376 0.958713i \(-0.408213\pi\)
−0.958713 + 0.284376i \(0.908213\pi\)
\(504\) 183.750 184.052i 0.364583 0.365183i
\(505\) 128.326 + 260.618i 0.254111 + 0.516075i
\(506\) −553.203 + 297.803i −1.09329 + 0.588543i
\(507\) −501.515 501.515i −0.989181 0.989181i
\(508\) 13.8884 + 51.7189i 0.0273394 + 0.101809i
\(509\) 763.452i 1.49991i 0.661491 + 0.749953i \(0.269924\pi\)
−0.661491 + 0.749953i \(0.730076\pi\)
\(510\) 101.784 152.220i 0.199576 0.298471i
\(511\) 261.837i 0.512401i
\(512\) −1.26195 511.998i −0.00246474 0.999997i
\(513\) −223.646 + 223.646i −0.435957 + 0.435957i
\(514\) 58.8288 219.793i 0.114453 0.427613i
\(515\) −268.194 + 788.500i −0.520764 + 1.53107i
\(516\) −103.587 + 179.645i −0.200750 + 0.348150i
\(517\) 26.0795 867.990i 0.0504439 1.67890i
\(518\) 113.300 + 196.118i 0.218727 + 0.378606i
\(519\) 50.3978i 0.0971055i
\(520\) 912.143 + 309.413i 1.75412 + 0.595024i
\(521\) 197.199 0.378501 0.189251 0.981929i \(-0.439394\pi\)
0.189251 + 0.981929i \(0.439394\pi\)
\(522\) −175.923 304.515i −0.337018 0.583363i
\(523\) −178.216 178.216i −0.340757 0.340757i 0.515895 0.856652i \(-0.327459\pi\)
−0.856652 + 0.515895i \(0.827459\pi\)
\(524\) 239.360 415.109i 0.456794 0.792192i
\(525\) 184.741 + 142.113i 0.351887 + 0.270692i
\(526\) −836.258 223.829i −1.58984 0.425531i
\(527\) 89.7057 89.7057i 0.170220 0.170220i
\(528\) −144.241 267.417i −0.273183 0.506471i
\(529\) 286.536i 0.541657i
\(530\) −860.961 + 170.958i −1.62446 + 0.322562i
\(531\) 75.2174i 0.141652i
\(532\) −254.483 + 68.3379i −0.478351 + 0.128455i
\(533\) −394.577 394.577i −0.740295 0.740295i
\(534\) 274.685 + 73.5211i 0.514392 + 0.137680i
\(535\) 238.916 702.422i 0.446571 1.31294i
\(536\) 303.585 304.084i 0.566390 0.567321i
\(537\) −392.289 + 392.289i −0.730519 + 0.730519i
\(538\) −203.119 351.590i −0.377544 0.653512i
\(539\) −158.842 + 149.575i −0.294697 + 0.277505i
\(540\) 389.913 341.904i 0.722062 0.633155i
\(541\) 82.1696i 0.151885i −0.997112 0.0759423i \(-0.975804\pi\)
0.997112 0.0759423i \(-0.0241965\pi\)
\(542\) −434.956 + 251.281i −0.802501 + 0.463618i
\(543\) 201.228 201.228i 0.370586 0.370586i
\(544\) −88.2986 327.739i −0.162314 0.602461i
\(545\) −826.811 + 407.114i −1.51708 + 0.746998i
\(546\) −433.731 116.090i −0.794379 0.212620i
\(547\) 81.5062 81.5062i 0.149006 0.149006i −0.628668 0.777674i \(-0.716400\pi\)
0.777674 + 0.628668i \(0.216400\pi\)
\(548\) 268.051 + 998.194i 0.489145 + 1.82152i
\(549\) −204.444 −0.372393
\(550\) −446.505 + 321.144i −0.811827 + 0.583897i
\(551\) 356.309i 0.646658i
\(552\) 394.403 0.324034i 0.714498 0.000587018i
\(553\) −356.148 356.148i −0.644028 0.644028i
\(554\) 90.0845 + 24.1116i 0.162607 + 0.0435228i
\(555\) 79.9580 + 162.387i 0.144068 + 0.292590i
\(556\) 302.091 + 174.192i 0.543329 + 0.313294i
\(557\) −751.060 751.060i −1.34840 1.34840i −0.887398 0.461005i \(-0.847489\pi\)
−0.461005 0.887398i \(-0.652511\pi\)
\(558\) 124.684 72.0317i 0.223447 0.129089i
\(559\) −723.124 −1.29360
\(560\) 423.696 84.4935i 0.756600 0.150881i
\(561\) −138.088 146.643i −0.246146 0.261395i
\(562\) −123.115 213.106i −0.219065 0.379192i
\(563\) −213.567 213.567i −0.379337 0.379337i 0.491526 0.870863i \(-0.336439\pi\)
−0.870863 + 0.491526i \(0.836439\pi\)
\(564\) −272.310 + 472.252i −0.482820 + 0.837327i
\(565\) −340.925 115.959i −0.603407 0.205238i
\(566\) 1012.45 + 270.987i 1.78877 + 0.478775i
\(567\) 35.9516 35.9516i 0.0634067 0.0634067i
\(568\) 89.0391 0.0731529i 0.156759 0.000128790i
\(569\) −395.306 −0.694737 −0.347369 0.937729i \(-0.612925\pi\)
−0.347369 + 0.937729i \(0.612925\pi\)
\(570\) −206.546 + 41.0130i −0.362361 + 0.0719526i
\(571\) 551.953 0.966643 0.483322 0.875443i \(-0.339430\pi\)
0.483322 + 0.875443i \(0.339430\pi\)
\(572\) 556.580 901.546i 0.973042 1.57613i
\(573\) −262.829 262.829i −0.458689 0.458689i
\(574\) −241.787 64.7156i −0.421231 0.112745i
\(575\) −92.3283 707.945i −0.160571 1.23121i
\(576\) −0.633049 385.262i −0.00109904 0.668857i
\(577\) −133.865 + 133.865i −0.232002 + 0.232002i −0.813528 0.581526i \(-0.802456\pi\)
0.581526 + 0.813528i \(0.302456\pi\)
\(578\) 176.574 + 305.643i 0.305492 + 0.528793i
\(579\) 274.156i 0.473498i
\(580\) 38.2440 582.959i 0.0659378 1.00510i
\(581\) 580.097 0.998446
\(582\) −5.51722 9.55007i −0.00947976 0.0164091i
\(583\) −28.9976 + 965.112i −0.0497386 + 1.65542i
\(584\) −274.492 274.041i −0.470021 0.469249i
\(585\) 686.164 + 233.386i 1.17293 + 0.398950i
\(586\) −286.860 + 1071.75i −0.489523 + 1.82893i
\(587\) −445.693 445.693i −0.759272 0.759272i 0.216918 0.976190i \(-0.430400\pi\)
−0.976190 + 0.216918i \(0.930400\pi\)
\(588\) 132.280 35.5220i 0.224966 0.0604116i
\(589\) −145.890 −0.247692
\(590\) −69.4540 + 103.870i −0.117719 + 0.176051i
\(591\) 230.859 0.390624
\(592\) 324.178 + 86.4827i 0.547598 + 0.146086i
\(593\) −702.062 + 702.062i −1.18392 + 1.18392i −0.205195 + 0.978721i \(0.565783\pi\)
−0.978721 + 0.205195i \(0.934217\pi\)
\(594\) −270.394 502.288i −0.455209 0.845603i
\(595\) 256.955 126.523i 0.431858 0.212643i
\(596\) −68.0639 + 118.039i −0.114201 + 0.198053i
\(597\) 5.22849 5.22849i 0.00875795 0.00875795i
\(598\) 687.988 + 1190.88i 1.15048 + 1.99143i
\(599\) −127.836 −0.213415 −0.106708 0.994290i \(-0.534031\pi\)
−0.106708 + 0.994290i \(0.534031\pi\)
\(600\) 342.333 44.9323i 0.570556 0.0748872i
\(601\) 660.027i 1.09821i −0.835752 0.549107i \(-0.814968\pi\)
0.835752 0.549107i \(-0.185032\pi\)
\(602\) −280.857 + 162.255i −0.466539 + 0.269527i
\(603\) 228.625 228.625i 0.379146 0.379146i
\(604\) −346.223 + 600.436i −0.573217 + 0.994099i
\(605\) 234.187 + 557.837i 0.387085 + 0.922044i
\(606\) −193.779 51.8661i −0.319768 0.0855877i
\(607\) −605.035 + 605.035i −0.996763 + 0.996763i −0.999995 0.00323225i \(-0.998971\pi\)
0.00323225 + 0.999995i \(0.498971\pi\)
\(608\) −194.704 + 338.305i −0.320236 + 0.556423i
\(609\) 272.334i 0.447183i
\(610\) −282.324 188.779i −0.462826 0.309474i
\(611\) −1900.95 −3.11121
\(612\) −66.2390 246.667i −0.108234 0.403050i
\(613\) −523.218 + 523.218i −0.853536 + 0.853536i −0.990567 0.137031i \(-0.956244\pi\)
0.137031 + 0.990567i \(0.456244\pi\)
\(614\) 114.543 427.949i 0.186552 0.696986i
\(615\) −189.374 64.4121i −0.307925 0.104735i
\(616\) 13.8824 475.040i 0.0225363 0.771169i
\(617\) 274.281 274.281i 0.444539 0.444539i −0.448995 0.893534i \(-0.648218\pi\)
0.893534 + 0.448995i \(0.148218\pi\)
\(618\) −287.699 497.993i −0.465532 0.805815i
\(619\) 760.653 1.22884 0.614421 0.788978i \(-0.289390\pi\)
0.614421 + 0.788978i \(0.289390\pi\)
\(620\) 238.692 + 15.6590i 0.384988 + 0.0252564i
\(621\) 740.478 1.19240
\(622\) −82.2246 142.327i −0.132194 0.228822i
\(623\) 314.499 + 314.499i 0.504814 + 0.504814i
\(624\) −575.648 + 333.192i −0.922513 + 0.533961i
\(625\) −160.295 604.095i −0.256473 0.966552i
\(626\) −592.903 158.694i −0.947129 0.253505i
\(627\) −6.95657 + 231.532i −0.0110950 + 0.369269i
\(628\) −37.1908 138.494i −0.0592210 0.220532i
\(629\) 222.427 0.353620
\(630\) 318.869 63.3165i 0.506141 0.100502i
\(631\) 1043.71i 1.65405i −0.562163 0.827026i \(-0.690031\pi\)
0.562163 0.827026i \(-0.309969\pi\)
\(632\) −746.108 + 0.612989i −1.18055 + 0.000969919i
\(633\) 55.9383 55.9383i 0.0883701 0.0883701i
\(634\) 30.1235 112.546i 0.0475134 0.177517i
\(635\) −21.5553 + 63.3735i −0.0339454 + 0.0998008i
\(636\) 302.780 525.094i 0.476069 0.825620i
\(637\) 337.726 + 337.726i 0.530182 + 0.530182i
\(638\) −615.512 184.724i −0.964753 0.289537i
\(639\) 66.9988 0.104850
\(640\) 354.868 532.606i 0.554481 0.832197i
\(641\) 226.825 0.353861 0.176930 0.984223i \(-0.443383\pi\)
0.176930 + 0.984223i \(0.443383\pi\)
\(642\) 256.291 + 443.629i 0.399208 + 0.691011i
\(643\) −345.770 + 345.770i −0.537746 + 0.537746i −0.922866 0.385121i \(-0.874160\pi\)
0.385121 + 0.922866i \(0.374160\pi\)
\(644\) 534.420 + 308.157i 0.829844 + 0.478505i
\(645\) −232.551 + 114.506i −0.360545 + 0.177529i
\(646\) −66.9055 + 249.968i −0.103569 + 0.386948i
\(647\) 221.274 + 221.274i 0.342000 + 0.342000i 0.857119 0.515118i \(-0.172252\pi\)
−0.515118 + 0.857119i \(0.672252\pi\)
\(648\) −0.0618787 75.3165i −9.54918e−5 0.116229i
\(649\) 94.2268 + 100.064i 0.145188 + 0.154183i
\(650\) 732.045 + 955.879i 1.12622 + 1.47058i
\(651\) −111.507 −0.171286
\(652\) 76.9372 + 286.506i 0.118002 + 0.439426i
\(653\) 624.289 + 624.289i 0.956033 + 0.956033i 0.999073 0.0430405i \(-0.0137045\pi\)
−0.0430405 + 0.999073i \(0.513704\pi\)
\(654\) 164.545 614.765i 0.251598 0.940008i
\(655\) 537.359 264.591i 0.820396 0.403955i
\(656\) −320.900 + 185.741i −0.489177 + 0.283141i
\(657\) −206.376 206.376i −0.314119 0.314119i
\(658\) −738.317 + 426.537i −1.12206 + 0.648233i
\(659\) 108.163i 0.164132i −0.996627 0.0820659i \(-0.973848\pi\)
0.996627 0.0820659i \(-0.0261518\pi\)
\(660\) 36.2329 378.064i 0.0548983 0.572825i
\(661\) 57.1206 0.0864154 0.0432077 0.999066i \(-0.486242\pi\)
0.0432077 + 0.999066i \(0.486242\pi\)
\(662\) 263.768 + 456.570i 0.398440 + 0.689683i
\(663\) −311.789 + 311.789i −0.470270 + 0.470270i
\(664\) 607.136 608.134i 0.914361 0.915864i
\(665\) −311.829 106.063i −0.468916 0.159493i
\(666\) 243.879 + 65.2757i 0.366185 + 0.0980115i
\(667\) 589.858 589.858i 0.884345 0.884345i
\(668\) 158.063 + 588.611i 0.236622 + 0.881154i
\(669\) 485.637i 0.725915i
\(670\) 526.824 104.609i 0.786304 0.156133i
\(671\) −271.980 + 256.113i −0.405335 + 0.381688i
\(672\) −148.816 + 258.574i −0.221452 + 0.384783i
\(673\) 250.393 250.393i 0.372055 0.372055i −0.496170 0.868225i \(-0.665261\pi\)
0.868225 + 0.496170i \(0.165261\pi\)
\(674\) 194.538 + 52.0691i 0.288632 + 0.0772539i
\(675\) 642.788 83.8308i 0.952279 0.124194i
\(676\) −1423.63 820.896i −2.10597 1.21434i
\(677\) 266.578 + 266.578i 0.393764 + 0.393764i 0.876027 0.482262i \(-0.160185\pi\)
−0.482262 + 0.876027i \(0.660185\pi\)
\(678\) 215.318 124.393i 0.317578 0.183470i
\(679\) 17.2512i 0.0254068i
\(680\) 136.295 401.794i 0.200433 0.590874i
\(681\) 430.870i 0.632702i
\(682\) 75.6353 252.021i 0.110902 0.369532i
\(683\) −110.070 + 110.070i −0.161157 + 0.161157i −0.783079 0.621922i \(-0.786352\pi\)
0.621922 + 0.783079i \(0.286352\pi\)
\(684\) −146.717 + 254.443i −0.214498 + 0.371992i
\(685\) −416.026 + 1223.13i −0.607337 + 1.78559i
\(686\) 718.201 + 192.231i 1.04694 + 0.280220i
\(687\) −264.583 264.583i −0.385128 0.385128i
\(688\) −123.850 + 464.249i −0.180015 + 0.674780i
\(689\) 2113.66 3.06771
\(690\) 409.826 + 274.035i 0.593951 + 0.397152i
\(691\) 403.102i 0.583360i 0.956516 + 0.291680i \(0.0942142\pi\)
−0.956516 + 0.291680i \(0.905786\pi\)
\(692\) 30.2849 + 112.778i 0.0437643 + 0.162973i
\(693\) 10.7397 357.442i 0.0154974 0.515790i
\(694\) 95.0410 355.087i 0.136947 0.511653i
\(695\) 192.553 + 391.057i 0.277055 + 0.562672i
\(696\) 285.496 + 285.028i 0.410196 + 0.409523i
\(697\) −173.809 + 173.809i −0.249368 + 0.249368i
\(698\) 281.787 162.793i 0.403707 0.233228i
\(699\) 90.1514i 0.128972i
\(700\) 498.802 + 207.000i 0.712574 + 0.295715i
\(701\) 1212.30i 1.72939i −0.502299 0.864694i \(-0.667512\pi\)
0.502299 0.864694i \(-0.332488\pi\)
\(702\) −1081.27 + 624.668i −1.54028 + 0.889841i
\(703\) −180.869 180.869i −0.257281 0.257281i
\(704\) −483.470 511.735i −0.686747 0.726896i
\(705\) −611.332 + 301.014i −0.867137 + 0.426971i
\(706\) 427.685 + 114.472i 0.605786 + 0.162142i
\(707\) −221.866 221.866i −0.313814 0.313814i
\(708\) −22.3776 83.3317i −0.0316067 0.117700i
\(709\) 757.535i 1.06846i −0.845341 0.534228i \(-0.820602\pi\)
0.845341 0.534228i \(-0.179398\pi\)
\(710\) 92.5210 + 61.8652i 0.130311 + 0.0871341i
\(711\) −561.421 −0.789621
\(712\) 658.857 0.541305i 0.925362 0.000760260i
\(713\) 241.517 + 241.517i 0.338734 + 0.338734i
\(714\) −51.1373 + 191.056i −0.0716208 + 0.267586i
\(715\) 1205.20 549.094i 1.68559 0.767964i
\(716\) −642.111 + 1113.58i −0.896803 + 1.55527i
\(717\) −94.5784 94.5784i −0.131908 0.131908i
\(718\) −527.194 912.549i −0.734253 1.27096i
\(719\) 371.694 0.516959 0.258480 0.966017i \(-0.416779\pi\)
0.258480 + 0.966017i \(0.416779\pi\)
\(720\) 267.355 400.548i 0.371326 0.556317i
\(721\) 899.573i 1.24767i
\(722\) −367.502 + 212.312i −0.509006 + 0.294060i
\(723\) −468.999 468.999i −0.648685 0.648685i
\(724\) 329.377 571.220i 0.454940 0.788977i
\(725\) 445.261 578.819i 0.614153 0.798370i
\(726\) −396.357 132.052i −0.545947 0.181890i
\(727\) 299.214 + 299.214i 0.411573 + 0.411573i 0.882286 0.470713i \(-0.156003\pi\)
−0.470713 + 0.882286i \(0.656003\pi\)
\(728\) −1040.34 + 0.854726i −1.42904 + 0.00117407i
\(729\) 346.193i 0.474888i
\(730\) −94.4291 475.555i −0.129355 0.651445i
\(731\) 318.533i 0.435749i
\(732\) 226.499 60.8232i 0.309425 0.0830918i
\(733\) −390.495 + 390.495i −0.532735 + 0.532735i −0.921385 0.388650i \(-0.872941\pi\)
0.388650 + 0.921385i \(0.372941\pi\)
\(734\) −533.601 142.821i −0.726977 0.194580i
\(735\) 162.089 + 55.1315i 0.220529 + 0.0750089i
\(736\) 882.380 237.728i 1.19889 0.323001i
\(737\) 17.7437 590.553i 0.0240756 0.801294i
\(738\) −241.581 + 139.565i −0.327345 + 0.189112i
\(739\) 623.945i 0.844310i 0.906524 + 0.422155i \(0.138726\pi\)
−0.906524 + 0.422155i \(0.861274\pi\)
\(740\) 276.507 + 315.334i 0.373658 + 0.426127i
\(741\) 507.069 0.684304
\(742\) 820.929 474.264i 1.10637 0.639169i
\(743\) −109.679 109.679i −0.147617 0.147617i 0.629436 0.777053i \(-0.283286\pi\)
−0.777053 + 0.629436i \(0.783286\pi\)
\(744\) −116.704 + 116.896i −0.156861 + 0.157119i
\(745\) −152.802 + 75.2385i −0.205104 + 0.100991i
\(746\) 101.820 380.415i 0.136488 0.509939i
\(747\) 457.224 457.224i 0.612081 0.612081i
\(748\) −397.126 245.171i −0.530918 0.327768i
\(749\) 801.369i 1.06992i
\(750\) 386.783 + 191.485i 0.515710 + 0.255313i
\(751\) 167.466i 0.222990i −0.993765 0.111495i \(-0.964436\pi\)
0.993765 0.111495i \(-0.0355639\pi\)
\(752\) −325.578 + 1220.42i −0.432949 + 1.62290i
\(753\) −87.2272 87.2272i −0.115840 0.115840i
\(754\) −363.728 + 1358.94i −0.482397 + 1.80231i
\(755\) −777.265 + 382.718i −1.02949 + 0.506912i
\(756\) −279.796 + 485.234i −0.370100 + 0.641844i
\(757\) −43.2145 + 43.2145i −0.0570865 + 0.0570865i −0.735074 0.677987i \(-0.762852\pi\)
0.677987 + 0.735074i \(0.262852\pi\)
\(758\) 209.638 121.111i 0.276567 0.159777i
\(759\) 394.810 371.777i 0.520172 0.489825i
\(760\) −437.553 + 215.894i −0.575727 + 0.284071i
\(761\) 717.901i 0.943365i 0.881768 + 0.471683i \(0.156353\pi\)
−0.881768 + 0.471683i \(0.843647\pi\)
\(762\) −23.1230 40.0248i −0.0303451 0.0525260i
\(763\) 703.871 703.871i 0.922505 0.922505i
\(764\) −746.084 430.207i −0.976550 0.563098i
\(765\) 102.805 302.252i 0.134386 0.395101i
\(766\) −315.089 + 1177.22i −0.411343 + 1.53684i
\(767\) 212.755 212.755i 0.277386 0.277386i
\(768\) 115.319 + 426.635i 0.150155 + 0.555514i
\(769\) 724.758 0.942468 0.471234 0.882008i \(-0.343809\pi\)
0.471234 + 0.882008i \(0.343809\pi\)
\(770\) 344.885 483.688i 0.447902 0.628166i
\(771\) 196.398i 0.254731i
\(772\) 164.745 + 613.492i 0.213400 + 0.794678i
\(773\) 418.517 + 418.517i 0.541420 + 0.541420i 0.923945 0.382525i \(-0.124946\pi\)
−0.382525 + 0.923945i \(0.624946\pi\)
\(774\) −93.4799 + 349.254i −0.120775 + 0.451233i
\(775\) 236.997 + 182.312i 0.305802 + 0.235241i
\(776\) −18.0850 18.0553i −0.0233054 0.0232671i
\(777\) −138.242 138.242i −0.177917 0.177917i
\(778\) 45.9470 + 79.5323i 0.0590579 + 0.102227i
\(779\) 282.670 0.362862
\(780\) −829.620 54.4256i −1.06361 0.0697764i
\(781\) 89.1311 83.9313i 0.114124 0.107466i
\(782\) 524.575 303.055i 0.670812 0.387539i
\(783\) 535.570 + 535.570i 0.683997 + 0.683997i
\(784\) 274.664 158.979i 0.350337 0.202779i
\(785\) 57.7215 169.703i 0.0735305 0.216183i
\(786\) −106.941 + 399.547i −0.136057 + 0.508330i
\(787\) 157.467 157.467i 0.200085 0.200085i −0.599951 0.800037i \(-0.704813\pi\)
0.800037 + 0.599951i \(0.204813\pi\)
\(788\) 516.604 138.727i 0.655589 0.176049i
\(789\) 747.245 0.947079
\(790\) −775.285 518.403i −0.981374 0.656206i
\(791\) 388.949 0.491719
\(792\) −363.478 385.362i −0.458937 0.486568i
\(793\) 578.277 + 578.277i 0.729227 + 0.729227i
\(794\) −138.660 + 518.052i −0.174634 + 0.652458i
\(795\) 679.736 334.696i 0.855013 0.421001i
\(796\) 8.55817 14.8420i 0.0107515 0.0186457i
\(797\) 761.763 761.763i 0.955788 0.955788i −0.0432753 0.999063i \(-0.513779\pi\)
0.999063 + 0.0432753i \(0.0137793\pi\)
\(798\) 196.942 113.777i 0.246795 0.142577i
\(799\) 837.360i 1.04801i
\(800\) 739.056 306.261i 0.923820 0.382827i
\(801\) 495.768 0.618936
\(802\) 580.916 335.604i 0.724334 0.418459i
\(803\) −533.083 16.0169i −0.663864 0.0199464i
\(804\) −185.271 + 321.306i −0.230437 + 0.399634i
\(805\) 340.640 + 691.808i 0.423155 + 0.859388i
\(806\) −556.416 148.928i −0.690343 0.184774i
\(807\) 247.832 + 247.832i 0.307103 + 0.307103i
\(808\) −464.797 + 0.381869i −0.575244 + 0.000472610i
\(809\) 1222.82 1.51152 0.755761 0.654847i \(-0.227267\pi\)
0.755761 + 0.654847i \(0.227267\pi\)
\(810\) 52.3306 78.2618i 0.0646057 0.0966195i
\(811\) 464.051 0.572196 0.286098 0.958200i \(-0.407642\pi\)
0.286098 + 0.958200i \(0.407642\pi\)
\(812\) 163.650 + 609.416i 0.201540 + 0.750512i
\(813\) 306.596 306.596i 0.377117 0.377117i
\(814\) 406.214 218.675i 0.499035 0.268643i
\(815\) −119.409 + 351.068i −0.146515 + 0.430759i
\(816\) 146.769 + 253.570i 0.179864 + 0.310748i
\(817\) 259.018 259.018i 0.317036 0.317036i
\(818\) 898.545 519.104i 1.09847 0.634601i
\(819\) −782.821 −0.955826
\(820\) −462.478 30.3400i −0.563998 0.0370000i
\(821\) 1111.10i 1.35335i 0.736284 + 0.676673i \(0.236579\pi\)
−0.736284 + 0.676673i \(0.763421\pi\)
\(822\) −446.282 772.494i −0.542922 0.939774i
\(823\) −443.184 + 443.184i −0.538498 + 0.538498i −0.923088 0.384590i \(-0.874343\pi\)
0.384590 + 0.923088i \(0.374343\pi\)
\(824\) −943.050 941.502i −1.14448 1.14260i
\(825\) 300.634 367.427i 0.364405 0.445366i
\(826\) 34.8945 130.371i 0.0422451 0.157834i
\(827\) 150.631 150.631i 0.182141 0.182141i −0.610147 0.792288i \(-0.708890\pi\)
0.792288 + 0.610147i \(0.208890\pi\)
\(828\) 664.107 178.337i 0.802062 0.215383i
\(829\) 1189.01i 1.43427i 0.696937 + 0.717133i \(0.254546\pi\)
−0.696937 + 0.717133i \(0.745454\pi\)
\(830\) 1053.59 209.207i 1.26938 0.252056i
\(831\) −80.4957 −0.0968661
\(832\) −1087.94 + 1091.52i −1.30762 + 1.31192i
\(833\) 148.767 148.767i 0.178591 0.178591i
\(834\) −290.766 77.8252i −0.348640 0.0933156i
\(835\) −245.320 + 721.252i −0.293797 + 0.863774i
\(836\) 123.564 + 522.291i 0.147804 + 0.624749i
\(837\) −219.289 + 219.289i −0.261994 + 0.261994i
\(838\) −900.809 + 520.411i −1.07495 + 0.621016i
\(839\) 1406.47 1.67636 0.838181 0.545393i \(-0.183620\pi\)
0.838181 + 0.545393i \(0.183620\pi\)
\(840\) −334.431 + 165.012i −0.398132 + 0.196443i
\(841\) 12.2609 0.0145790
\(842\) 610.295 352.577i 0.724816 0.418737i
\(843\) 150.216 + 150.216i 0.178193 + 0.178193i
\(844\) 91.5617 158.790i 0.108485 0.188140i
\(845\) −907.426 1842.90i −1.07388 2.18094i
\(846\) −245.740 + 918.121i −0.290473 + 1.08525i
\(847\) −433.490 488.973i −0.511795 0.577300i
\(848\) 362.008 1356.98i 0.426896 1.60021i
\(849\) −904.679 −1.06558
\(850\) 421.060 322.462i 0.495365 0.379367i
\(851\) 598.845i 0.703696i
\(852\) −74.2265 + 19.9325i −0.0871203 + 0.0233950i
\(853\) −453.619 + 453.619i −0.531792 + 0.531792i −0.921105 0.389313i \(-0.872712\pi\)
0.389313 + 0.921105i \(0.372712\pi\)
\(854\) 354.353 + 94.8447i 0.414934 + 0.111059i
\(855\) −329.377 + 162.182i −0.385236 + 0.189687i
\(856\) 840.100 + 838.721i 0.981425 + 0.979814i
\(857\) −783.087 783.087i −0.913754 0.913754i 0.0828113 0.996565i \(-0.473610\pi\)
−0.996565 + 0.0828113i \(0.973610\pi\)
\(858\) −262.885 + 875.946i −0.306392 + 1.02092i
\(859\) 472.093 0.549585 0.274792 0.961504i \(-0.411391\pi\)
0.274792 + 0.961504i \(0.411391\pi\)
\(860\) −451.583 + 395.980i −0.525097 + 0.460442i
\(861\) 216.050 0.250930
\(862\) −913.019 + 527.465i −1.05919 + 0.611908i
\(863\) 57.4206 57.4206i 0.0665360 0.0665360i −0.673056 0.739592i \(-0.735019\pi\)
0.739592 + 0.673056i \(0.235019\pi\)
\(864\) 215.849 + 801.169i 0.249825 + 0.927279i
\(865\) −47.0033 + 138.191i −0.0543390 + 0.159759i
\(866\) −305.547 81.7813i −0.352825 0.0944357i
\(867\) −215.444 215.444i −0.248494 0.248494i
\(868\) −249.525 + 67.0065i −0.287471 + 0.0771964i
\(869\) −746.879 + 703.307i −0.859470 + 0.809329i
\(870\) 98.2148 + 494.620i 0.112891 + 0.568529i
\(871\) −1293.35 −1.48490
\(872\) −1.21148 1474.57i −0.00138931 1.69102i
\(873\) −13.5971 13.5971i −0.0155752 0.0155752i
\(874\) −672.996 180.131i −0.770019 0.206100i
\(875\) 374.021 + 561.975i 0.427452 + 0.642257i
\(876\) 290.038 + 167.242i 0.331093 + 0.190915i
\(877\) −844.684 844.684i −0.963152 0.963152i 0.0361927 0.999345i \(-0.488477\pi\)
−0.999345 + 0.0361927i \(0.988477\pi\)
\(878\) −409.448 708.736i −0.466342 0.807217i
\(879\) 957.672i 1.08950i
\(880\) −146.105 867.786i −0.166029 0.986121i
\(881\) −75.9756 −0.0862379 −0.0431189 0.999070i \(-0.513729\pi\)
−0.0431189 + 0.999070i \(0.513729\pi\)
\(882\) 206.774 119.456i 0.234437 0.135438i
\(883\) −729.780 + 729.780i −0.826478 + 0.826478i −0.987028 0.160550i \(-0.948673\pi\)
0.160550 + 0.987028i \(0.448673\pi\)
\(884\) −510.347 + 885.065i −0.577315 + 1.00121i
\(885\) 34.7308 102.110i 0.0392439 0.115379i
\(886\) 211.488 790.150i 0.238700 0.891817i
\(887\) 107.883 107.883i 0.121627 0.121627i −0.643673 0.765300i \(-0.722590\pi\)
0.765300 + 0.643673i \(0.222590\pi\)
\(888\) −289.608 + 0.237937i −0.326135 + 0.000267947i
\(889\) 72.3007i 0.0813281i
\(890\) 684.623 + 457.780i 0.769239 + 0.514360i
\(891\) −70.9959 75.3943i −0.0796811 0.0846176i
\(892\) −291.828 1086.73i −0.327161 1.21831i
\(893\) 680.908 680.908i 0.762495 0.762495i
\(894\) 30.4095 113.614i 0.0340151 0.127085i
\(895\) −1441.53 + 709.795i −1.61065 + 0.793067i
\(896\) −177.632 + 668.050i −0.198249 + 0.745591i
\(897\) −839.437 839.437i −0.935828 0.935828i
\(898\) −357.731 619.217i −0.398364 0.689551i
\(899\) 349.367i 0.388617i
\(900\) 556.303 229.994i 0.618115 0.255549i
\(901\) 931.055i 1.03336i
\(902\) −146.547 + 488.303i −0.162469 + 0.541356i
\(903\) 197.973 197.973i 0.219239 0.219239i
\(904\) 407.078 407.748i 0.450308 0.451048i
\(905\) 739.445 364.096i 0.817067 0.402316i
\(906\) 154.685 577.926i 0.170734 0.637888i
\(907\) −1025.92 1025.92i −1.13111 1.13111i −0.989993 0.141118i \(-0.954930\pi\)
−0.141118 0.989993i \(-0.545070\pi\)
\(908\) −258.917 964.180i −0.285151 1.06187i
\(909\) −349.744 −0.384756
\(910\) −1081.03 722.839i −1.18794 0.794329i
\(911\) 1056.66i 1.15989i −0.814655 0.579946i \(-0.803074\pi\)
0.814655 0.579946i \(-0.196926\pi\)
\(912\) 86.8462 325.540i 0.0952260 0.356952i
\(913\) 35.4854 1181.04i 0.0388668 1.29358i
\(914\) −143.178 38.3224i −0.156650 0.0419282i
\(915\) 277.539 + 94.3999i 0.303322 + 0.103169i
\(916\) −751.063 433.078i −0.819937 0.472792i
\(917\) −457.459 + 457.459i −0.498865 + 0.498865i
\(918\) 275.163 + 476.295i 0.299742 + 0.518840i
\(919\) 1251.77i 1.36210i −0.732235 0.681052i \(-0.761523\pi\)
0.732235 0.681052i \(-0.238477\pi\)
\(920\) 1081.76 + 366.950i 1.17583 + 0.398858i
\(921\) 382.398i 0.415198i
\(922\) 79.0150 + 136.771i 0.0856995 + 0.148342i
\(923\) −189.509 189.509i −0.205318 0.205318i
\(924\) 94.4428 + 399.198i 0.102211 + 0.432032i
\(925\) 67.7963 + 519.841i 0.0732933 + 0.561990i
\(926\) 102.913 384.498i 0.111137 0.415224i
\(927\) −709.030 709.030i −0.764866 0.764866i
\(928\) 810.148 + 466.261i 0.873004 + 0.502437i
\(929\) 129.701i 0.139614i −0.997561 0.0698068i \(-0.977762\pi\)
0.997561 0.0698068i \(-0.0222383\pi\)
\(930\) −202.522 + 40.2140i −0.217766 + 0.0432408i
\(931\) −241.942 −0.259874
\(932\) −54.1735 201.736i −0.0581261 0.216455i
\(933\) 100.325 + 100.325i 0.107529 + 0.107529i
\(934\) −374.333 100.192i −0.400785 0.107272i
\(935\) −241.873 530.884i −0.258688 0.567790i
\(936\) −819.309 + 820.656i −0.875330 + 0.876769i
\(937\) 419.471 + 419.471i 0.447674 + 0.447674i 0.894581 0.446907i \(-0.147474\pi\)
−0.446907 + 0.894581i \(0.647474\pi\)
\(938\) −502.328 + 290.203i −0.535531 + 0.309384i
\(939\) 529.793 0.564210
\(940\) −1187.12 + 1040.95i −1.26290 + 1.10740i
\(941\) 1347.04i 1.43150i 0.698355 + 0.715751i \(0.253916\pi\)
−0.698355 + 0.715751i \(0.746084\pi\)
\(942\) 61.9194 + 107.180i 0.0657318 + 0.113779i
\(943\) −467.951 467.951i −0.496237 0.496237i
\(944\) −100.151 173.028i −0.106092 0.183293i
\(945\) −628.136 + 309.289i −0.664695 + 0.327290i
\(946\) 313.161 + 581.731i 0.331037 + 0.614938i
\(947\) −152.173 152.173i −0.160689 0.160689i 0.622183 0.782872i \(-0.286246\pi\)
−0.782872 + 0.622183i \(0.786246\pi\)
\(948\) 621.986 167.026i 0.656103 0.176187i
\(949\) 1167.49i 1.23023i
\(950\) −604.603 80.1759i −0.636424 0.0843957i
\(951\) 100.566i 0.105748i
\(952\) 0.376503 + 458.265i 0.000395486 + 0.481371i
\(953\) 607.043 607.043i 0.636982 0.636982i −0.312828 0.949810i \(-0.601276\pi\)
0.949810 + 0.312828i \(0.101276\pi\)
\(954\) 273.237 1020.85i 0.286412 1.07008i
\(955\) −475.555 965.808i −0.497963 1.01132i
\(956\) −268.477 154.809i −0.280833 0.161934i
\(957\) 554.455 + 16.6591i 0.579367 + 0.0174076i
\(958\) 716.640 + 1240.47i 0.748059 + 1.29486i
\(959\) 1395.43i 1.45509i
\(960\) −177.031 + 523.298i −0.184407 + 0.545102i
\(961\) 817.952 0.851147
\(962\) −505.187 874.456i −0.525142 0.908998i
\(963\) 631.627 + 631.627i 0.655896 + 0.655896i
\(964\) −1331.33 767.673i −1.38105 0.796342i
\(965\) −255.690 + 751.739i −0.264964 + 0.779004i
\(966\) −514.385 137.678i −0.532490 0.142524i
\(967\) −448.623 + 448.623i −0.463933 + 0.463933i −0.899942 0.436009i \(-0.856391\pi\)
0.436009 + 0.899942i \(0.356391\pi\)
\(968\) −966.301 57.3224i −0.998245 0.0592174i
\(969\) 223.361i 0.230507i
\(970\) −6.22148 31.3321i −0.00641390 0.0323011i
\(971\) 701.291i 0.722235i 0.932520 + 0.361118i \(0.117605\pi\)
−0.932520 + 0.361118i \(0.882395\pi\)
\(972\) 258.950 + 964.301i 0.266409 + 0.992080i
\(973\) −332.911 332.911i −0.342149 0.342149i
\(974\) −998.598 267.280i −1.02525 0.274415i
\(975\) −823.727 633.658i −0.844848 0.649906i
\(976\) 470.298 272.214i 0.481863 0.278908i
\(977\) −1130.83 + 1130.83i −1.15745 + 1.15745i −0.172433 + 0.985021i \(0.555163\pi\)
−0.985021 + 0.172433i \(0.944837\pi\)
\(978\) −128.094 221.724i −0.130975 0.226712i
\(979\) 659.538 621.061i 0.673686 0.634383i
\(980\) 395.844 + 25.9686i 0.403922 + 0.0264986i
\(981\) 1109.56i 1.13105i
\(982\) −259.368 + 149.841i −0.264122 + 0.152587i
\(983\) −351.794 + 351.794i −0.357878 + 0.357878i −0.863030 0.505152i \(-0.831436\pi\)
0.505152 + 0.863030i \(0.331436\pi\)
\(984\) 226.121 226.492i 0.229797 0.230175i
\(985\) 633.018 + 215.309i 0.642658 + 0.218588i
\(986\) 598.606 + 160.220i 0.607105 + 0.162495i
\(987\) 520.432 520.432i 0.527287 0.527287i
\(988\) 1134.69 304.706i 1.14848 0.308407i
\(989\) −857.593 −0.867132
\(990\) −109.403 653.069i −0.110508 0.659666i
\(991\) 288.167i 0.290784i −0.989374 0.145392i \(-0.953556\pi\)
0.989374 0.145392i \(-0.0464443\pi\)
\(992\) −190.910 + 331.714i −0.192450 + 0.334390i
\(993\) −321.832 321.832i −0.324100 0.324100i
\(994\) −116.126 31.0818i −0.116827 0.0312694i
\(995\) 19.2130 9.46028i 0.0193095 0.00950782i
\(996\) −370.522 + 642.575i −0.372010 + 0.645156i
\(997\) 921.234 + 921.234i 0.924006 + 0.924006i 0.997310 0.0733035i \(-0.0233542\pi\)
−0.0733035 + 0.997310i \(0.523354\pi\)
\(998\) 500.186 288.965i 0.501189 0.289545i
\(999\) −543.730 −0.544274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.i.a.43.11 136
4.3 odd 2 inner 220.3.i.a.43.45 yes 136
5.2 odd 4 inner 220.3.i.a.87.24 yes 136
11.10 odd 2 inner 220.3.i.a.43.58 yes 136
20.7 even 4 inner 220.3.i.a.87.58 yes 136
44.43 even 2 inner 220.3.i.a.43.24 yes 136
55.32 even 4 inner 220.3.i.a.87.45 yes 136
220.87 odd 4 inner 220.3.i.a.87.11 yes 136
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.i.a.43.11 136 1.1 even 1 trivial
220.3.i.a.43.24 yes 136 44.43 even 2 inner
220.3.i.a.43.45 yes 136 4.3 odd 2 inner
220.3.i.a.43.58 yes 136 11.10 odd 2 inner
220.3.i.a.87.11 yes 136 220.87 odd 4 inner
220.3.i.a.87.24 yes 136 5.2 odd 4 inner
220.3.i.a.87.45 yes 136 55.32 even 4 inner
220.3.i.a.87.58 yes 136 20.7 even 4 inner