Properties

Label 220.3.i.a.87.58
Level $220$
Weight $3$
Character 220.87
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 87.58
Character \(\chi\) \(=\) 220.87
Dual form 220.3.i.a.43.58

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73178 + 1.00047i) q^{2} +(1.22071 + 1.22071i) q^{3} +(1.99810 + 3.46520i) q^{4} +(4.48571 + 2.20872i) q^{5} +(0.892710 + 3.33529i) q^{6} +(3.81872 + 3.81872i) q^{7} +(-0.00657265 + 8.00000i) q^{8} -6.01972i q^{9} +(5.55847 + 8.31284i) q^{10} +(-7.54107 - 8.00826i) q^{11} +(-1.79090 + 6.66912i) q^{12} +(-17.0270 - 17.0270i) q^{13} +(2.79264 + 10.4337i) q^{14} +(2.77954 + 8.17197i) q^{15} +(-8.01517 + 13.8476i) q^{16} +(7.50031 - 7.50031i) q^{17} +(6.02258 - 10.4248i) q^{18} +12.1979i q^{19} +(1.30925 + 19.9571i) q^{20} +9.32312i q^{21} +(-5.04739 - 21.4132i) q^{22} +(20.1933 + 20.1933i) q^{23} +(-9.77372 + 9.75767i) q^{24} +(15.2431 + 19.8153i) q^{25} +(-12.4519 - 46.5220i) q^{26} +(18.3348 - 18.3348i) q^{27} +(-5.60242 + 20.8628i) q^{28} -29.2106 q^{29} +(-3.36230 + 16.9329i) q^{30} -11.9603i q^{31} +(-27.7347 + 15.9620i) q^{32} +(0.570308 - 18.9813i) q^{33} +(20.4927 - 5.48500i) q^{34} +(8.69517 + 25.5641i) q^{35} +(20.8595 - 12.0280i) q^{36} +(-14.8278 - 14.8278i) q^{37} +(-12.2037 + 21.1241i) q^{38} -41.5701i q^{39} +(-17.6992 + 35.8711i) q^{40} -23.1736i q^{41} +(-9.32754 + 16.1456i) q^{42} +(21.2346 - 21.2346i) q^{43} +(12.6824 - 42.1326i) q^{44} +(13.2959 - 27.0027i) q^{45} +(14.7674 + 55.1731i) q^{46} +(-55.8217 + 55.8217i) q^{47} +(-26.6882 + 7.11976i) q^{48} -19.8347i q^{49} +(6.57292 + 49.5661i) q^{50} +18.3114 q^{51} +(24.9802 - 93.0236i) q^{52} +(62.0677 - 62.0677i) q^{53} +(50.0952 - 13.4083i) q^{54} +(-16.1390 - 52.5788i) q^{55} +(-30.5749 + 30.5247i) q^{56} +(-14.8901 + 14.8901i) q^{57} +(-50.5863 - 29.2245i) q^{58} +12.4952 q^{59} +(-22.7637 + 25.9601i) q^{60} +33.9624i q^{61} +(11.9659 - 20.7125i) q^{62} +(22.9876 - 22.9876i) q^{63} +(-63.9999 - 0.105162i) q^{64} +(-38.7702 - 113.986i) q^{65} +(19.9779 - 32.3007i) q^{66} +(-37.9793 + 37.9793i) q^{67} +(40.9764 + 11.0037i) q^{68} +49.3004i q^{69} +(-10.5182 + 52.9707i) q^{70} +11.1299i q^{71} +(48.1578 + 0.0395656i) q^{72} +(34.2833 + 34.2833i) q^{73} +(-10.8436 - 40.5134i) q^{74} +(-5.58138 + 42.7963i) q^{75} +(-42.2682 + 24.3727i) q^{76} +(1.78408 - 59.3786i) q^{77} +(41.5899 - 71.9902i) q^{78} +93.2636i q^{79} +(-66.5393 + 44.4131i) q^{80} -9.41456 q^{81} +(23.1846 - 40.1315i) q^{82} +(75.9544 - 75.9544i) q^{83} +(-32.3064 + 18.6285i) q^{84} +(50.2103 - 17.0781i) q^{85} +(58.0183 - 15.5289i) q^{86} +(-35.6578 - 35.6578i) q^{87} +(64.1156 - 60.2759i) q^{88} +82.3572i q^{89} +(50.0410 - 33.4605i) q^{90} -130.043i q^{91} +(-29.6254 + 110.322i) q^{92} +(14.6001 - 14.6001i) q^{93} +(-152.519 + 40.8225i) q^{94} +(-26.9418 + 54.7162i) q^{95} +(-53.3411 - 14.3710i) q^{96} +(-2.25877 - 2.25877i) q^{97} +(19.8441 - 34.3493i) q^{98} +(-48.2075 + 45.3951i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73178 + 1.00047i 0.865888 + 0.500237i
\(3\) 1.22071 + 1.22071i 0.406904 + 0.406904i 0.880658 0.473753i \(-0.157101\pi\)
−0.473753 + 0.880658i \(0.657101\pi\)
\(4\) 1.99810 + 3.46520i 0.499526 + 0.866299i
\(5\) 4.48571 + 2.20872i 0.897141 + 0.441744i
\(6\) 0.892710 + 3.33529i 0.148785 + 0.555882i
\(7\) 3.81872 + 3.81872i 0.545532 + 0.545532i 0.925145 0.379614i \(-0.123943\pi\)
−0.379614 + 0.925145i \(0.623943\pi\)
\(8\) −0.00657265 + 8.00000i −0.000821582 + 1.00000i
\(9\) 6.01972i 0.668858i
\(10\) 5.55847 + 8.31284i 0.555847 + 0.831284i
\(11\) −7.54107 8.00826i −0.685552 0.728024i
\(12\) −1.79090 + 6.66912i −0.149242 + 0.555760i
\(13\) −17.0270 17.0270i −1.30977 1.30977i −0.921579 0.388190i \(-0.873100\pi\)
−0.388190 0.921579i \(-0.626900\pi\)
\(14\) 2.79264 + 10.4337i 0.199474 + 0.745265i
\(15\) 2.77954 + 8.17197i 0.185303 + 0.544798i
\(16\) −8.01517 + 13.8476i −0.500948 + 0.865477i
\(17\) 7.50031 7.50031i 0.441195 0.441195i −0.451219 0.892413i \(-0.649011\pi\)
0.892413 + 0.451219i \(0.149011\pi\)
\(18\) 6.02258 10.4248i 0.334588 0.579156i
\(19\) 12.1979i 0.641995i 0.947080 + 0.320998i \(0.104018\pi\)
−0.947080 + 0.320998i \(0.895982\pi\)
\(20\) 1.30925 + 19.9571i 0.0654624 + 0.997855i
\(21\) 9.32312i 0.443958i
\(22\) −5.04739 21.4132i −0.229427 0.973326i
\(23\) 20.1933 + 20.1933i 0.877968 + 0.877968i 0.993324 0.115356i \(-0.0368008\pi\)
−0.115356 + 0.993324i \(0.536801\pi\)
\(24\) −9.77372 + 9.75767i −0.407238 + 0.406570i
\(25\) 15.2431 + 19.8153i 0.609724 + 0.792614i
\(26\) −12.4519 46.5220i −0.478919 1.78931i
\(27\) 18.3348 18.3348i 0.679065 0.679065i
\(28\) −5.60242 + 20.8628i −0.200087 + 0.745101i
\(29\) −29.2106 −1.00726 −0.503632 0.863919i \(-0.668003\pi\)
−0.503632 + 0.863919i \(0.668003\pi\)
\(30\) −3.36230 + 16.9329i −0.112077 + 0.564430i
\(31\) 11.9603i 0.385815i −0.981217 0.192908i \(-0.938208\pi\)
0.981217 0.192908i \(-0.0617918\pi\)
\(32\) −27.7347 + 15.9620i −0.866709 + 0.498814i
\(33\) 0.570308 18.9813i 0.0172821 0.575190i
\(34\) 20.4927 5.48500i 0.602727 0.161323i
\(35\) 8.69517 + 25.5641i 0.248433 + 0.730404i
\(36\) 20.8595 12.0280i 0.579431 0.334112i
\(37\) −14.8278 14.8278i −0.400752 0.400752i 0.477746 0.878498i \(-0.341454\pi\)
−0.878498 + 0.477746i \(0.841454\pi\)
\(38\) −12.2037 + 21.1241i −0.321150 + 0.555896i
\(39\) 41.5701i 1.06590i
\(40\) −17.6992 + 35.8711i −0.442481 + 0.896778i
\(41\) 23.1736i 0.565210i −0.959236 0.282605i \(-0.908801\pi\)
0.959236 0.282605i \(-0.0911986\pi\)
\(42\) −9.32754 + 16.1456i −0.222084 + 0.384418i
\(43\) 21.2346 21.2346i 0.493829 0.493829i −0.415682 0.909510i \(-0.636457\pi\)
0.909510 + 0.415682i \(0.136457\pi\)
\(44\) 12.6824 42.1326i 0.288236 0.957559i
\(45\) 13.2959 27.0027i 0.295464 0.600060i
\(46\) 14.7674 + 55.1731i 0.321030 + 1.19942i
\(47\) −55.8217 + 55.8217i −1.18770 + 1.18770i −0.209993 + 0.977703i \(0.567344\pi\)
−0.977703 + 0.209993i \(0.932656\pi\)
\(48\) −26.6882 + 7.11976i −0.556004 + 0.148328i
\(49\) 19.8347i 0.404791i
\(50\) 6.57292 + 49.5661i 0.131458 + 0.991322i
\(51\) 18.3114 0.359048
\(52\) 24.9802 93.0236i 0.480389 1.78892i
\(53\) 62.0677 62.0677i 1.17109 1.17109i 0.189139 0.981950i \(-0.439430\pi\)
0.981950 0.189139i \(-0.0605697\pi\)
\(54\) 50.0952 13.4083i 0.927688 0.248301i
\(55\) −16.1390 52.5788i −0.293436 0.955979i
\(56\) −30.5749 + 30.5247i −0.545980 + 0.545083i
\(57\) −14.8901 + 14.8901i −0.261231 + 0.261231i
\(58\) −50.5863 29.2245i −0.872177 0.503870i
\(59\) 12.4952 0.211782 0.105891 0.994378i \(-0.466230\pi\)
0.105891 + 0.994378i \(0.466230\pi\)
\(60\) −22.7637 + 25.9601i −0.379394 + 0.432668i
\(61\) 33.9624i 0.556760i 0.960471 + 0.278380i \(0.0897975\pi\)
−0.960471 + 0.278380i \(0.910203\pi\)
\(62\) 11.9659 20.7125i 0.192999 0.334073i
\(63\) 22.9876 22.9876i 0.364883 0.364883i
\(64\) −63.9999 0.105162i −0.999999 0.00164316i
\(65\) −38.7702 113.986i −0.596465 1.75363i
\(66\) 19.9779 32.3007i 0.302696 0.489405i
\(67\) −37.9793 + 37.9793i −0.566856 + 0.566856i −0.931246 0.364390i \(-0.881277\pi\)
0.364390 + 0.931246i \(0.381277\pi\)
\(68\) 40.9764 + 11.0037i 0.602595 + 0.161819i
\(69\) 49.3004i 0.714498i
\(70\) −10.5182 + 52.9707i −0.150260 + 0.756724i
\(71\) 11.1299i 0.156759i 0.996924 + 0.0783795i \(0.0249746\pi\)
−0.996924 + 0.0783795i \(0.975025\pi\)
\(72\) 48.1578 + 0.0395656i 0.668858 + 0.000549522i
\(73\) 34.2833 + 34.2833i 0.469635 + 0.469635i 0.901796 0.432161i \(-0.142249\pi\)
−0.432161 + 0.901796i \(0.642249\pi\)
\(74\) −10.8436 40.5134i −0.146536 0.547478i
\(75\) −5.58138 + 42.7963i −0.0744184 + 0.570617i
\(76\) −42.2682 + 24.3727i −0.556160 + 0.320693i
\(77\) 1.78408 59.3786i 0.0231699 0.771150i
\(78\) 41.5899 71.9902i 0.533203 0.922952i
\(79\) 93.2636i 1.18055i 0.807202 + 0.590276i \(0.200981\pi\)
−0.807202 + 0.590276i \(0.799019\pi\)
\(80\) −66.5393 + 44.4131i −0.831741 + 0.555164i
\(81\) −9.41456 −0.116229
\(82\) 23.1846 40.1315i 0.282739 0.489409i
\(83\) 75.9544 75.9544i 0.915113 0.915113i −0.0815558 0.996669i \(-0.525989\pi\)
0.996669 + 0.0815558i \(0.0259889\pi\)
\(84\) −32.3064 + 18.6285i −0.384601 + 0.221768i
\(85\) 50.2103 17.0781i 0.590709 0.200919i
\(86\) 58.0183 15.5289i 0.674632 0.180569i
\(87\) −35.6578 35.6578i −0.409860 0.409860i
\(88\) 64.1156 60.2759i 0.728587 0.684953i
\(89\) 82.3572i 0.925362i 0.886525 + 0.462681i \(0.153112\pi\)
−0.886525 + 0.462681i \(0.846888\pi\)
\(90\) 50.0410 33.4605i 0.556011 0.371783i
\(91\) 130.043i 1.42904i
\(92\) −29.6254 + 110.322i −0.322016 + 1.19915i
\(93\) 14.6001 14.6001i 0.156990 0.156990i
\(94\) −152.519 + 40.8225i −1.62254 + 0.434282i
\(95\) −26.9418 + 54.7162i −0.283598 + 0.575960i
\(96\) −53.3411 14.3710i −0.555637 0.149698i
\(97\) −2.25877 2.25877i −0.0232862 0.0232862i 0.695368 0.718654i \(-0.255241\pi\)
−0.718654 + 0.695368i \(0.755241\pi\)
\(98\) 19.8441 34.3493i 0.202491 0.350503i
\(99\) −48.2075 + 45.3951i −0.486945 + 0.458537i
\(100\) −38.2068 + 92.4134i −0.382068 + 0.924134i
\(101\) 58.0996i 0.575244i 0.957744 + 0.287622i \(0.0928646\pi\)
−0.957744 + 0.287622i \(0.907135\pi\)
\(102\) 31.7113 + 18.3201i 0.310895 + 0.179609i
\(103\) −117.785 117.785i −1.14354 1.14354i −0.987798 0.155742i \(-0.950223\pi\)
−0.155742 0.987798i \(-0.549777\pi\)
\(104\) 136.328 136.104i 1.31085 1.30869i
\(105\) −20.5922 + 41.8208i −0.196116 + 0.398293i
\(106\) 169.585 45.3903i 1.59986 0.428210i
\(107\) −104.926 104.926i −0.980620 0.980620i 0.0191957 0.999816i \(-0.493889\pi\)
−0.999816 + 0.0191957i \(0.993889\pi\)
\(108\) 100.168 + 26.8988i 0.927484 + 0.249063i
\(109\) 184.321 1.69102 0.845510 0.533959i \(-0.179296\pi\)
0.845510 + 0.533959i \(0.179296\pi\)
\(110\) 24.6546 107.201i 0.224133 0.974559i
\(111\) 36.2010i 0.326135i
\(112\) −83.4880 + 22.2725i −0.745428 + 0.198862i
\(113\) −50.9267 + 50.9267i −0.450678 + 0.450678i −0.895580 0.444901i \(-0.853239\pi\)
0.444901 + 0.895580i \(0.353239\pi\)
\(114\) −40.6836 + 10.8892i −0.356874 + 0.0955193i
\(115\) 45.9798 + 135.182i 0.399824 + 1.17550i
\(116\) −58.3658 101.221i −0.503154 0.872591i
\(117\) −102.498 + 102.498i −0.876050 + 0.876050i
\(118\) 21.6388 + 12.5011i 0.183380 + 0.105941i
\(119\) 57.2832 0.481371
\(120\) −65.3940 + 22.1826i −0.544950 + 0.184855i
\(121\) −7.26454 + 120.782i −0.0600375 + 0.998196i
\(122\) −33.9785 + 58.8152i −0.278512 + 0.482092i
\(123\) 28.2883 28.2883i 0.229986 0.229986i
\(124\) 41.4447 23.8978i 0.334231 0.192725i
\(125\) 24.6095 + 122.554i 0.196876 + 0.980428i
\(126\) 62.8080 16.8109i 0.498476 0.133420i
\(127\) 9.46661 + 9.46661i 0.0745402 + 0.0745402i 0.743394 0.668854i \(-0.233215\pi\)
−0.668854 + 0.743394i \(0.733215\pi\)
\(128\) −110.728 64.2124i −0.865065 0.501659i
\(129\) 51.8428 0.401882
\(130\) 46.8987 236.187i 0.360759 1.81682i
\(131\) −119.794 −0.914456 −0.457228 0.889350i \(-0.651158\pi\)
−0.457228 + 0.889350i \(0.651158\pi\)
\(132\) 66.9133 35.9503i 0.506919 0.272351i
\(133\) −46.5804 + 46.5804i −0.350229 + 0.350229i
\(134\) −103.769 + 27.7744i −0.774396 + 0.207272i
\(135\) 122.741 41.7480i 0.909190 0.309244i
\(136\) 59.9532 + 60.0518i 0.440832 + 0.441557i
\(137\) −182.709 182.709i −1.33364 1.33364i −0.902086 0.431556i \(-0.857965\pi\)
−0.431556 0.902086i \(-0.642035\pi\)
\(138\) −49.3237 + 85.3772i −0.357418 + 0.618675i
\(139\) 87.1786i 0.627184i 0.949558 + 0.313592i \(0.101532\pi\)
−0.949558 + 0.313592i \(0.898468\pi\)
\(140\) −71.2110 + 81.2103i −0.508650 + 0.580073i
\(141\) −136.284 −0.966556
\(142\) −11.1352 + 19.2745i −0.0784167 + 0.135736i
\(143\) −7.95490 + 264.759i −0.0556287 + 1.85146i
\(144\) 83.3589 + 48.2491i 0.578881 + 0.335063i
\(145\) −131.030 64.5181i −0.903657 0.444953i
\(146\) 25.0715 + 93.6707i 0.171723 + 0.641580i
\(147\) 24.2125 24.2125i 0.164711 0.164711i
\(148\) 21.7538 81.0089i 0.146985 0.547357i
\(149\) 34.0643 0.228619 0.114310 0.993445i \(-0.463534\pi\)
0.114310 + 0.993445i \(0.463534\pi\)
\(150\) −52.4823 + 68.5296i −0.349882 + 0.456864i
\(151\) 173.276 1.14752 0.573762 0.819022i \(-0.305484\pi\)
0.573762 + 0.819022i \(0.305484\pi\)
\(152\) −97.5833 0.0801726i −0.641995 0.000527452i
\(153\) −45.1498 45.1498i −0.295097 0.295097i
\(154\) 62.4964 101.045i 0.405820 0.656140i
\(155\) 26.4169 53.6503i 0.170432 0.346131i
\(156\) 144.049 83.0614i 0.923389 0.532445i
\(157\) 25.3500 + 25.3500i 0.161465 + 0.161465i 0.783215 0.621751i \(-0.213578\pi\)
−0.621751 + 0.783215i \(0.713578\pi\)
\(158\) −93.3078 + 161.512i −0.590556 + 1.02223i
\(159\) 151.534 0.953042
\(160\) −159.665 + 10.3428i −0.997908 + 0.0646425i
\(161\) 154.225i 0.957919i
\(162\) −16.3039 9.41903i −0.100642 0.0581422i
\(163\) −52.4419 52.4419i −0.321729 0.321729i 0.527701 0.849430i \(-0.323054\pi\)
−0.849430 + 0.527701i \(0.823054\pi\)
\(164\) 80.3011 46.3033i 0.489641 0.282337i
\(165\) 44.4825 83.8847i 0.269591 0.508392i
\(166\) 207.526 55.5456i 1.25016 0.334612i
\(167\) 107.739 + 107.739i 0.645144 + 0.645144i 0.951816 0.306671i \(-0.0992152\pi\)
−0.306671 + 0.951816i \(0.599215\pi\)
\(168\) −74.5849 0.0612776i −0.443958 0.000364748i
\(169\) 410.838i 2.43099i
\(170\) 104.039 + 20.6586i 0.611995 + 0.121521i
\(171\) 73.4280 0.429404
\(172\) 116.011 + 31.1532i 0.674483 + 0.181123i
\(173\) 20.6428 + 20.6428i 0.119322 + 0.119322i 0.764247 0.644924i \(-0.223111\pi\)
−0.644924 + 0.764247i \(0.723111\pi\)
\(174\) −26.0766 97.4260i −0.149866 0.559920i
\(175\) −17.4601 + 133.878i −0.0997719 + 0.765020i
\(176\) 171.338 40.2384i 0.973514 0.228627i
\(177\) 15.2530 + 15.2530i 0.0861751 + 0.0861751i
\(178\) −82.3963 + 142.624i −0.462900 + 0.801260i
\(179\) −321.360 −1.79531 −0.897655 0.440700i \(-0.854730\pi\)
−0.897655 + 0.440700i \(0.854730\pi\)
\(180\) 120.136 7.88131i 0.667423 0.0437850i
\(181\) 164.845 0.910745 0.455372 0.890301i \(-0.349506\pi\)
0.455372 + 0.890301i \(0.349506\pi\)
\(182\) 130.104 225.205i 0.714860 1.23739i
\(183\) −41.4583 + 41.4583i −0.226548 + 0.226548i
\(184\) −161.679 + 161.413i −0.878689 + 0.877247i
\(185\) −33.7628 99.2638i −0.182501 0.536561i
\(186\) 39.8910 10.6771i 0.214468 0.0574035i
\(187\) −116.625 3.50409i −0.623662 0.0187385i
\(188\) −304.971 81.8957i −1.62218 0.435615i
\(189\) 140.031 0.740903
\(190\) −101.399 + 67.8018i −0.533681 + 0.356851i
\(191\) 215.308i 1.12727i 0.826025 + 0.563633i \(0.190597\pi\)
−0.826025 + 0.563633i \(0.809403\pi\)
\(192\) −77.9971 78.2539i −0.406235 0.407572i
\(193\) 112.293 + 112.293i 0.581830 + 0.581830i 0.935406 0.353576i \(-0.115034\pi\)
−0.353576 + 0.935406i \(0.615034\pi\)
\(194\) −1.65184 6.17152i −0.00851465 0.0318119i
\(195\) 91.8168 186.471i 0.470856 0.956264i
\(196\) 68.7313 39.6318i 0.350670 0.202203i
\(197\) −94.5590 + 94.5590i −0.479995 + 0.479995i −0.905130 0.425135i \(-0.860227\pi\)
0.425135 + 0.905130i \(0.360227\pi\)
\(198\) −128.901 + 30.3839i −0.651017 + 0.153454i
\(199\) 4.28315 0.0215234 0.0107617 0.999942i \(-0.496574\pi\)
0.0107617 + 0.999942i \(0.496574\pi\)
\(200\) −158.623 + 121.815i −0.793114 + 0.609073i
\(201\) −92.7237 −0.461312
\(202\) −58.1272 + 100.616i −0.287758 + 0.498097i
\(203\) −111.547 111.547i −0.549494 0.549494i
\(204\) 36.5881 + 63.4527i 0.179354 + 0.311043i
\(205\) 51.1840 103.950i 0.249678 0.507073i
\(206\) −86.1361 321.817i −0.418137 1.56222i
\(207\) 121.558 121.558i 0.587236 0.587236i
\(208\) 372.258 99.3093i 1.78970 0.477449i
\(209\) 97.6841 91.9853i 0.467388 0.440121i
\(210\) −77.5016 + 51.8223i −0.369055 + 0.246773i
\(211\) −45.8243 −0.217177 −0.108588 0.994087i \(-0.534633\pi\)
−0.108588 + 0.994087i \(0.534633\pi\)
\(212\) 339.095 + 91.0592i 1.59950 + 0.429525i
\(213\) −13.5864 + 13.5864i −0.0637859 + 0.0637859i
\(214\) −76.7329 286.685i −0.358565 1.33965i
\(215\) 142.154 48.3509i 0.661180 0.224888i
\(216\) 146.558 + 146.799i 0.678507 + 0.679623i
\(217\) 45.6729 45.6729i 0.210474 0.210474i
\(218\) 319.203 + 184.409i 1.46423 + 0.845911i
\(219\) 83.7002i 0.382193i
\(220\) 149.949 160.983i 0.681584 0.731739i
\(221\) −255.416 −1.15573
\(222\) 36.2182 62.6921i 0.163145 0.282397i
\(223\) 198.915 + 198.915i 0.891997 + 0.891997i 0.994711 0.102714i \(-0.0327526\pi\)
−0.102714 + 0.994711i \(0.532753\pi\)
\(224\) −166.866 44.9565i −0.744936 0.200699i
\(225\) 119.283 91.7593i 0.530146 0.407819i
\(226\) −139.144 + 37.2428i −0.615683 + 0.164791i
\(227\) −176.483 176.483i −0.777459 0.777459i 0.201939 0.979398i \(-0.435276\pi\)
−0.979398 + 0.201939i \(0.935276\pi\)
\(228\) −81.3493 21.8452i −0.356795 0.0958124i
\(229\) 216.745i 0.946483i 0.880933 + 0.473242i \(0.156916\pi\)
−0.880933 + 0.473242i \(0.843084\pi\)
\(230\) −55.6198 + 280.107i −0.241825 + 1.21786i
\(231\) 74.6620 70.3063i 0.323212 0.304356i
\(232\) 0.191991 233.685i 0.000827549 1.00726i
\(233\) −36.9257 36.9257i −0.158480 0.158480i 0.623413 0.781893i \(-0.285746\pi\)
−0.781893 + 0.623413i \(0.785746\pi\)
\(234\) −280.050 + 74.9569i −1.19679 + 0.320329i
\(235\) −373.694 + 127.105i −1.59019 + 0.540873i
\(236\) 24.9666 + 43.2982i 0.105791 + 0.183467i
\(237\) −113.848 + 113.848i −0.480371 + 0.480371i
\(238\) 99.2017 + 57.3104i 0.416814 + 0.240800i
\(239\) 77.4780i 0.324176i −0.986776 0.162088i \(-0.948177\pi\)
0.986776 0.162088i \(-0.0518228\pi\)
\(240\) −135.441 27.0096i −0.564337 0.112540i
\(241\) 384.201i 1.59420i −0.603850 0.797098i \(-0.706367\pi\)
0.603850 0.797098i \(-0.293633\pi\)
\(242\) −133.420 + 201.899i −0.551321 + 0.834293i
\(243\) −176.505 176.505i −0.726359 0.726359i
\(244\) −117.686 + 67.8603i −0.482321 + 0.278116i
\(245\) 43.8094 88.9728i 0.178814 0.363154i
\(246\) 77.2908 20.6873i 0.314190 0.0840948i
\(247\) 207.694 207.694i 0.840866 0.840866i
\(248\) 95.6821 + 0.0786107i 0.385815 + 0.000316979i
\(249\) 185.437 0.744726
\(250\) −79.9934 + 236.857i −0.319974 + 0.947426i
\(251\) 71.4560i 0.284685i 0.989817 + 0.142343i \(0.0454635\pi\)
−0.989817 + 0.142343i \(0.954537\pi\)
\(252\) 125.588 + 33.7250i 0.498366 + 0.133830i
\(253\) 9.43416 313.992i 0.0372892 1.24107i
\(254\) 6.92295 + 25.8651i 0.0272557 + 0.101831i
\(255\) 82.1397 + 40.4449i 0.322117 + 0.158607i
\(256\) −127.514 221.982i −0.498101 0.867119i
\(257\) −80.4439 80.4439i −0.313011 0.313011i 0.533064 0.846075i \(-0.321041\pi\)
−0.846075 + 0.533064i \(0.821041\pi\)
\(258\) 89.7801 + 51.8673i 0.347985 + 0.201036i
\(259\) 113.247i 0.437246i
\(260\) 317.517 362.102i 1.22122 1.39270i
\(261\) 175.840i 0.673716i
\(262\) −207.456 119.851i −0.791817 0.457445i
\(263\) −306.069 + 306.069i −1.16376 + 1.16376i −0.180116 + 0.983645i \(0.557647\pi\)
−0.983645 + 0.180116i \(0.942353\pi\)
\(264\) 151.846 + 4.68722i 0.575175 + 0.0177546i
\(265\) 415.508 141.327i 1.56795 0.533311i
\(266\) −127.269 + 34.0644i −0.478456 + 0.128062i
\(267\) −100.534 + 100.534i −0.376534 + 0.376534i
\(268\) −207.492 55.7193i −0.774226 0.207908i
\(269\) 203.022i 0.754730i −0.926065 0.377365i \(-0.876830\pi\)
0.926065 0.377365i \(-0.123170\pi\)
\(270\) 254.327 + 50.5007i 0.941953 + 0.187040i
\(271\) −251.162 −0.926795 −0.463398 0.886150i \(-0.653370\pi\)
−0.463398 + 0.886150i \(0.653370\pi\)
\(272\) 43.7453 + 163.978i 0.160828 + 0.602860i
\(273\) 158.745 158.745i 0.581483 0.581483i
\(274\) −133.616 499.207i −0.487648 1.82192i
\(275\) 43.7371 271.500i 0.159044 0.987271i
\(276\) −170.835 + 98.5072i −0.618969 + 0.356910i
\(277\) 32.9708 32.9708i 0.119028 0.119028i −0.645084 0.764112i \(-0.723178\pi\)
0.764112 + 0.645084i \(0.223178\pi\)
\(278\) −87.2199 + 150.974i −0.313741 + 0.543071i
\(279\) −71.9975 −0.258056
\(280\) −204.570 + 69.3933i −0.730608 + 0.247833i
\(281\) 123.056i 0.437923i 0.975734 + 0.218961i \(0.0702669\pi\)
−0.975734 + 0.218961i \(0.929733\pi\)
\(282\) −236.014 136.349i −0.836930 0.483507i
\(283\) 370.554 370.554i 1.30938 1.30938i 0.387512 0.921865i \(-0.373335\pi\)
0.921865 0.387512i \(-0.126665\pi\)
\(284\) −38.5672 + 22.2387i −0.135800 + 0.0783051i
\(285\) −99.6809 + 33.9046i −0.349758 + 0.118964i
\(286\) −278.660 + 450.544i −0.974336 + 1.57533i
\(287\) 88.4936 88.4936i 0.308340 0.308340i
\(288\) 96.0870 + 166.955i 0.333636 + 0.579705i
\(289\) 176.491i 0.610694i
\(290\) −162.366 242.823i −0.559884 0.837322i
\(291\) 5.51461i 0.0189505i
\(292\) −50.2969 + 187.300i −0.172250 + 0.641439i
\(293\) −392.259 392.259i −1.33877 1.33877i −0.897254 0.441516i \(-0.854441\pi\)
−0.441516 0.897254i \(-0.645559\pi\)
\(294\) 66.1547 17.7067i 0.225016 0.0602268i
\(295\) 56.0496 + 27.5983i 0.189999 + 0.0935536i
\(296\) 118.720 118.525i 0.401081 0.400423i
\(297\) −285.093 8.56587i −0.959910 0.0288413i
\(298\) 58.9917 + 34.0804i 0.197959 + 0.114364i
\(299\) 687.662i 2.29987i
\(300\) −159.450 + 66.1708i −0.531499 + 0.220569i
\(301\) 162.178 0.538798
\(302\) 300.075 + 173.358i 0.993627 + 0.574034i
\(303\) −70.9229 + 70.9229i −0.234069 + 0.234069i
\(304\) −168.912 97.7684i −0.555632 0.321607i
\(305\) −75.0134 + 152.345i −0.245945 + 0.499492i
\(306\) −33.0182 123.361i −0.107902 0.403139i
\(307\) 156.629 + 156.629i 0.510192 + 0.510192i 0.914585 0.404393i \(-0.132517\pi\)
−0.404393 + 0.914585i \(0.632517\pi\)
\(308\) 209.323 112.462i 0.679621 0.365137i
\(309\) 287.562i 0.930622i
\(310\) 99.4239 66.4808i 0.320722 0.214454i
\(311\) 82.1856i 0.264262i −0.991232 0.132131i \(-0.957818\pi\)
0.991232 0.132131i \(-0.0421820\pi\)
\(312\) 332.561 + 0.273226i 1.06590 + 0.000875725i
\(313\) 217.002 217.002i 0.693296 0.693296i −0.269660 0.962956i \(-0.586911\pi\)
0.962956 + 0.269660i \(0.0869112\pi\)
\(314\) 18.5385 + 69.2624i 0.0590398 + 0.220581i
\(315\) 153.889 52.3425i 0.488537 0.166167i
\(316\) −323.177 + 186.350i −1.02271 + 0.589716i
\(317\) −41.1916 41.1916i −0.129942 0.129942i 0.639145 0.769087i \(-0.279289\pi\)
−0.769087 + 0.639145i \(0.779289\pi\)
\(318\) 262.423 + 151.606i 0.825228 + 0.476747i
\(319\) 220.279 + 233.926i 0.690531 + 0.733312i
\(320\) −286.852 141.830i −0.896414 0.443218i
\(321\) 256.170i 0.798037i
\(322\) −154.298 + 267.083i −0.479187 + 0.829451i
\(323\) 91.4881 + 91.4881i 0.283245 + 0.283245i
\(324\) −18.8113 32.6233i −0.0580594 0.100689i
\(325\) 77.8514 596.940i 0.239543 1.83674i
\(326\) −38.3509 143.284i −0.117641 0.439523i
\(327\) 225.003 + 225.003i 0.688083 + 0.688083i
\(328\) 185.389 + 0.152312i 0.565210 + 0.000464366i
\(329\) −426.335 −1.29585
\(330\) 160.958 100.766i 0.487752 0.305351i
\(331\) 263.642i 0.796503i 0.917276 + 0.398251i \(0.130383\pi\)
−0.917276 + 0.398251i \(0.869617\pi\)
\(332\) 414.961 + 111.432i 1.24988 + 0.335639i
\(333\) −89.2594 + 89.2594i −0.268046 + 0.268046i
\(334\) 78.7899 + 294.370i 0.235898 + 0.881348i
\(335\) −254.250 + 86.4784i −0.758955 + 0.258144i
\(336\) −129.103 74.7264i −0.384236 0.222400i
\(337\) 71.2005 71.2005i 0.211278 0.211278i −0.593532 0.804810i \(-0.702267\pi\)
0.804810 + 0.593532i \(0.202267\pi\)
\(338\) −411.033 + 711.479i −1.21607 + 2.10497i
\(339\) −124.334 −0.366766
\(340\) 159.504 + 139.865i 0.469130 + 0.411367i
\(341\) −95.7810 + 90.1932i −0.280883 + 0.264496i
\(342\) 127.161 + 73.4629i 0.371816 + 0.214804i
\(343\) 262.861 262.861i 0.766358 0.766358i
\(344\) 169.737 + 170.017i 0.493423 + 0.494234i
\(345\) −108.891 + 221.147i −0.315625 + 0.641005i
\(346\) 15.0961 + 56.4012i 0.0436304 + 0.163009i
\(347\) 129.961 + 129.961i 0.374528 + 0.374528i 0.869123 0.494595i \(-0.164684\pi\)
−0.494595 + 0.869123i \(0.664684\pi\)
\(348\) 52.3133 194.809i 0.150326 0.559796i
\(349\) 162.716 0.466234 0.233117 0.972449i \(-0.425107\pi\)
0.233117 + 0.972449i \(0.425107\pi\)
\(350\) −164.179 + 214.379i −0.469083 + 0.612512i
\(351\) −624.372 −1.77884
\(352\) 336.977 + 101.736i 0.957322 + 0.289022i
\(353\) −156.532 + 156.532i −0.443433 + 0.443433i −0.893164 0.449731i \(-0.851520\pi\)
0.449731 + 0.893164i \(0.351520\pi\)
\(354\) 11.1546 + 41.6750i 0.0315100 + 0.117726i
\(355\) −24.5828 + 49.9254i −0.0692474 + 0.140635i
\(356\) −285.384 + 164.558i −0.801640 + 0.462242i
\(357\) 69.9263 + 69.9263i 0.195872 + 0.195872i
\(358\) −556.524 321.513i −1.55454 0.898080i
\(359\) 526.944i 1.46781i 0.679252 + 0.733905i \(0.262304\pi\)
−0.679252 + 0.733905i \(0.737696\pi\)
\(360\) 215.934 + 106.545i 0.599817 + 0.295957i
\(361\) 212.211 0.587842
\(362\) 285.474 + 164.923i 0.788603 + 0.455588i
\(363\) −156.308 + 138.572i −0.430600 + 0.381741i
\(364\) 450.624 259.839i 1.23798 0.713843i
\(365\) 78.0627 + 229.507i 0.213870 + 0.628787i
\(366\) −113.274 + 30.3185i −0.309493 + 0.0828376i
\(367\) 195.297 195.297i 0.532145 0.532145i −0.389065 0.921210i \(-0.627202\pi\)
0.921210 + 0.389065i \(0.127202\pi\)
\(368\) −441.482 + 117.776i −1.19968 + 0.320045i
\(369\) −139.499 −0.378045
\(370\) 40.8414 205.682i 0.110382 0.555896i
\(371\) 474.039 1.27773
\(372\) 79.7644 + 21.4196i 0.214421 + 0.0575797i
\(373\) 139.231 + 139.231i 0.373274 + 0.373274i 0.868668 0.495394i \(-0.164976\pi\)
−0.495394 + 0.868668i \(0.664976\pi\)
\(374\) −198.462 122.748i −0.530648 0.328204i
\(375\) −119.561 + 179.644i −0.318831 + 0.479050i
\(376\) −446.206 446.940i −1.18672 1.18867i
\(377\) 497.369 + 497.369i 1.31928 + 1.31928i
\(378\) 242.502 + 140.097i 0.641539 + 0.370627i
\(379\) −121.053 −0.319402 −0.159701 0.987165i \(-0.551053\pi\)
−0.159701 + 0.987165i \(0.551053\pi\)
\(380\) −243.435 + 15.9701i −0.640618 + 0.0420265i
\(381\) 23.1120i 0.0606614i
\(382\) −215.410 + 372.865i −0.563901 + 0.976087i
\(383\) 430.859 + 430.859i 1.12496 + 1.12496i 0.990985 + 0.133974i \(0.0427739\pi\)
0.133974 + 0.990985i \(0.457226\pi\)
\(384\) −56.7826 213.552i −0.147871 0.556126i
\(385\) 139.154 262.414i 0.361438 0.681595i
\(386\) 82.1204 + 306.813i 0.212747 + 0.794853i
\(387\) −127.827 127.827i −0.330301 0.330301i
\(388\) 3.31382 12.3403i 0.00854078 0.0318049i
\(389\) 45.9252i 0.118060i 0.998256 + 0.0590299i \(0.0188007\pi\)
−0.998256 + 0.0590299i \(0.981199\pi\)
\(390\) 345.566 231.067i 0.886067 0.592478i
\(391\) 302.912 0.774710
\(392\) 158.678 + 0.130367i 0.404790 + 0.000332569i
\(393\) −146.234 146.234i −0.372096 0.372096i
\(394\) −258.359 + 69.1513i −0.655734 + 0.175511i
\(395\) −205.993 + 418.353i −0.521502 + 1.05912i
\(396\) −253.627 76.3444i −0.640471 0.192789i
\(397\) 189.606 + 189.606i 0.477598 + 0.477598i 0.904363 0.426765i \(-0.140347\pi\)
−0.426765 + 0.904363i \(0.640347\pi\)
\(398\) 7.41746 + 4.28518i 0.0186368 + 0.0107668i
\(399\) −113.723 −0.285019
\(400\) −396.572 + 52.2576i −0.991429 + 0.130644i
\(401\) −335.445 −0.836521 −0.418260 0.908327i \(-0.637360\pi\)
−0.418260 + 0.908327i \(0.637360\pi\)
\(402\) −160.577 92.7677i −0.399445 0.230765i
\(403\) −203.648 + 203.648i −0.505329 + 0.505329i
\(404\) −201.327 + 116.089i −0.498333 + 0.287349i
\(405\) −42.2310 20.7941i −0.104274 0.0513436i
\(406\) −81.5748 304.775i −0.200923 0.750678i
\(407\) −6.92746 + 230.563i −0.0170208 + 0.566494i
\(408\) −0.120355 + 146.491i −0.000294987 + 0.359048i
\(409\) 518.858 1.26860 0.634300 0.773087i \(-0.281288\pi\)
0.634300 + 0.773087i \(0.281288\pi\)
\(410\) 192.639 128.810i 0.469850 0.314171i
\(411\) 446.070i 1.08533i
\(412\) 172.801 643.492i 0.419420 1.56187i
\(413\) 47.7155 + 47.7155i 0.115534 + 0.115534i
\(414\) 332.127 88.8956i 0.802238 0.214724i
\(415\) 508.471 172.947i 1.22523 0.416740i
\(416\) 744.024 + 200.453i 1.78852 + 0.481858i
\(417\) −106.420 + 106.420i −0.255204 + 0.255204i
\(418\) 261.196 61.5676i 0.624871 0.147291i
\(419\) 520.164 1.24144 0.620721 0.784031i \(-0.286840\pi\)
0.620721 + 0.784031i \(0.286840\pi\)
\(420\) −186.062 + 12.2063i −0.443006 + 0.0290626i
\(421\) −352.410 −0.837078 −0.418539 0.908199i \(-0.637458\pi\)
−0.418539 + 0.908199i \(0.637458\pi\)
\(422\) −79.3575 45.8460i −0.188051 0.108640i
\(423\) 336.031 + 336.031i 0.794400 + 0.794400i
\(424\) 496.134 + 496.950i 1.17013 + 1.17205i
\(425\) 262.949 + 34.2932i 0.618704 + 0.0806898i
\(426\) −37.1214 + 9.93576i −0.0871395 + 0.0233234i
\(427\) −129.693 + 129.693i −0.303730 + 0.303730i
\(428\) 153.937 573.244i 0.359665 1.33936i
\(429\) −332.905 + 313.483i −0.776002 + 0.730730i
\(430\) 294.552 + 58.4881i 0.685005 + 0.136019i
\(431\) −527.215 −1.22324 −0.611618 0.791153i \(-0.709481\pi\)
−0.611618 + 0.791153i \(0.709481\pi\)
\(432\) 106.937 + 400.849i 0.247539 + 0.927892i
\(433\) 111.830 111.830i 0.258267 0.258267i −0.566082 0.824349i \(-0.691541\pi\)
0.824349 + 0.566082i \(0.191541\pi\)
\(434\) 124.790 33.4007i 0.287534 0.0769602i
\(435\) −81.1922 238.708i −0.186649 0.548755i
\(436\) 368.293 + 638.709i 0.844708 + 1.46493i
\(437\) −246.316 + 246.316i −0.563652 + 0.563652i
\(438\) −83.7399 + 144.950i −0.191187 + 0.330936i
\(439\) 409.254i 0.932241i 0.884721 + 0.466120i \(0.154349\pi\)
−0.884721 + 0.466120i \(0.845651\pi\)
\(440\) 420.737 128.766i 0.956219 0.292651i
\(441\) −119.400 −0.270747
\(442\) −442.323 255.537i −1.00073 0.578137i
\(443\) −289.194 289.194i −0.652807 0.652807i 0.300861 0.953668i \(-0.402726\pi\)
−0.953668 + 0.300861i \(0.902726\pi\)
\(444\) 125.444 72.3334i 0.282531 0.162913i
\(445\) −181.904 + 369.430i −0.408773 + 0.830180i
\(446\) 145.467 + 543.487i 0.326160 + 1.21858i
\(447\) 41.5827 + 41.5827i 0.0930261 + 0.0930261i
\(448\) −243.996 244.799i −0.544634 0.546427i
\(449\) 357.561i 0.796350i −0.917309 0.398175i \(-0.869644\pi\)
0.917309 0.398175i \(-0.130356\pi\)
\(450\) 298.374 39.5672i 0.663054 0.0879270i
\(451\) −185.580 + 174.754i −0.411487 + 0.387481i
\(452\) −278.228 74.7142i −0.615548 0.165297i
\(453\) 211.520 + 211.520i 0.466932 + 0.466932i
\(454\) −129.063 482.196i −0.284279 1.06211i
\(455\) 287.228 583.333i 0.631271 1.28205i
\(456\) −119.023 119.219i −0.261016 0.261445i
\(457\) −52.4029 + 52.4029i −0.114667 + 0.114667i −0.762112 0.647445i \(-0.775838\pi\)
0.647445 + 0.762112i \(0.275838\pi\)
\(458\) −216.847 + 375.353i −0.473466 + 0.819549i
\(459\) 275.033i 0.599200i
\(460\) −376.561 + 429.437i −0.818611 + 0.933559i
\(461\) 78.9775i 0.171318i −0.996325 0.0856589i \(-0.972700\pi\)
0.996325 0.0856589i \(-0.0272995\pi\)
\(462\) 199.638 47.0574i 0.432116 0.101856i
\(463\) −140.726 140.726i −0.303943 0.303943i 0.538611 0.842554i \(-0.318949\pi\)
−0.842554 + 0.538611i \(0.818949\pi\)
\(464\) 234.128 404.498i 0.504587 0.871763i
\(465\) 97.7390 33.2441i 0.210191 0.0714927i
\(466\) −27.0039 100.890i −0.0579483 0.216503i
\(467\) 137.005 137.005i 0.293373 0.293373i −0.545038 0.838411i \(-0.683485\pi\)
0.838411 + 0.545038i \(0.183485\pi\)
\(468\) −559.976 150.374i −1.19653 0.321312i
\(469\) −290.065 −0.618476
\(470\) −774.320 153.754i −1.64749 0.327135i
\(471\) 61.8900i 0.131401i
\(472\) −0.0821263 + 99.9612i −0.000173996 + 0.211782i
\(473\) −330.184 9.92067i −0.698064 0.0209739i
\(474\) −311.061 + 83.2573i −0.656247 + 0.175648i
\(475\) −241.706 + 185.934i −0.508854 + 0.391440i
\(476\) 114.458 + 198.497i 0.240457 + 0.417012i
\(477\) −373.631 373.631i −0.783293 0.783293i
\(478\) 77.5148 134.175i 0.162165 0.280700i
\(479\) 716.300i 1.49541i −0.664032 0.747704i \(-0.731156\pi\)
0.664032 0.747704i \(-0.268844\pi\)
\(480\) −207.531 182.280i −0.432356 0.379750i
\(481\) 504.947i 1.04979i
\(482\) 384.383 665.351i 0.797476 1.38040i
\(483\) −188.264 + 188.264i −0.389781 + 0.389781i
\(484\) −433.048 + 216.161i −0.894727 + 0.446614i
\(485\) −5.14318 15.1211i −0.0106045 0.0311776i
\(486\) −129.079 482.257i −0.265594 0.992298i
\(487\) 365.486 365.486i 0.750484 0.750484i −0.224086 0.974569i \(-0.571940\pi\)
0.974569 + 0.224086i \(0.0719396\pi\)
\(488\) −271.699 0.223223i −0.556760 0.000457424i
\(489\) 128.033i 0.261826i
\(490\) 164.883 110.251i 0.336496 0.225002i
\(491\) −149.770 −0.305030 −0.152515 0.988301i \(-0.548737\pi\)
−0.152515 + 0.988301i \(0.548737\pi\)
\(492\) 154.548 + 41.5016i 0.314121 + 0.0843529i
\(493\) −219.089 + 219.089i −0.444399 + 0.444399i
\(494\) 567.472 151.887i 1.14873 0.307464i
\(495\) −316.510 + 97.1523i −0.639414 + 0.196267i
\(496\) 165.621 + 95.8637i 0.333914 + 0.193273i
\(497\) −42.5019 + 42.5019i −0.0855170 + 0.0855170i
\(498\) 321.135 + 185.525i 0.644850 + 0.372540i
\(499\) −288.828 −0.578815 −0.289407 0.957206i \(-0.593458\pi\)
−0.289407 + 0.957206i \(0.593458\pi\)
\(500\) −375.500 + 330.151i −0.750999 + 0.660303i
\(501\) 263.037i 0.525024i
\(502\) −71.4899 + 123.746i −0.142410 + 0.246506i
\(503\) 339.191 339.191i 0.674336 0.674336i −0.284376 0.958713i \(-0.591787\pi\)
0.958713 + 0.284376i \(0.0917865\pi\)
\(504\) 183.750 + 184.052i 0.364583 + 0.365183i
\(505\) −128.326 + 260.618i −0.254111 + 0.516075i
\(506\) 330.479 534.325i 0.653120 1.05598i
\(507\) −501.515 + 501.515i −0.989181 + 0.989181i
\(508\) −13.8884 + 51.7189i −0.0273394 + 0.101809i
\(509\) 763.452i 1.49991i −0.661491 0.749953i \(-0.730076\pi\)
0.661491 0.749953i \(-0.269924\pi\)
\(510\) 101.784 + 152.220i 0.199576 + 0.298471i
\(511\) 261.837i 0.512401i
\(512\) 1.26195 511.998i 0.00246474 0.999997i
\(513\) 223.646 + 223.646i 0.435957 + 0.435957i
\(514\) −58.8288 219.793i −0.114453 0.427613i
\(515\) −268.194 788.500i −0.520764 1.53107i
\(516\) 103.587 + 179.645i 0.200750 + 0.348150i
\(517\) 867.990 + 26.0795i 1.67890 + 0.0504439i
\(518\) 113.300 196.118i 0.218727 0.378606i
\(519\) 50.3978i 0.0971055i
\(520\) 912.143 309.413i 1.75412 0.595024i
\(521\) 197.199 0.378501 0.189251 0.981929i \(-0.439394\pi\)
0.189251 + 0.981929i \(0.439394\pi\)
\(522\) −175.923 + 304.515i −0.337018 + 0.583363i
\(523\) 178.216 178.216i 0.340757 0.340757i −0.515895 0.856652i \(-0.672541\pi\)
0.856652 + 0.515895i \(0.172541\pi\)
\(524\) −239.360 415.109i −0.456794 0.792192i
\(525\) −184.741 + 142.113i −0.351887 + 0.270692i
\(526\) −836.258 + 223.829i −1.58984 + 0.425531i
\(527\) −89.7057 89.7057i −0.170220 0.170220i
\(528\) 258.274 + 160.036i 0.489156 + 0.303098i
\(529\) 286.536i 0.541657i
\(530\) 860.961 + 170.958i 1.62446 + 0.322562i
\(531\) 75.2174i 0.141652i
\(532\) −254.483 68.3379i −0.478351 0.128455i
\(533\) −394.577 + 394.577i −0.740295 + 0.740295i
\(534\) −274.685 + 73.5211i −0.514392 + 0.137680i
\(535\) −238.916 702.422i −0.446571 1.31294i
\(536\) −303.585 304.084i −0.566390 0.567321i
\(537\) −392.289 392.289i −0.730519 0.730519i
\(538\) 203.119 351.590i 0.377544 0.653512i
\(539\) −158.842 + 149.575i −0.294697 + 0.277505i
\(540\) 389.913 + 341.904i 0.722062 + 0.633155i
\(541\) 82.1696i 0.151885i −0.997112 0.0759423i \(-0.975804\pi\)
0.997112 0.0759423i \(-0.0241965\pi\)
\(542\) −434.956 251.281i −0.802501 0.463618i
\(543\) 201.228 + 201.228i 0.370586 + 0.370586i
\(544\) −88.2986 + 327.739i −0.162314 + 0.602461i
\(545\) 826.811 + 407.114i 1.51708 + 0.746998i
\(546\) 433.731 116.090i 0.794379 0.212620i
\(547\) −81.5062 81.5062i −0.149006 0.149006i 0.628668 0.777674i \(-0.283600\pi\)
−0.777674 + 0.628668i \(0.783600\pi\)
\(548\) 268.051 998.194i 0.489145 1.82152i
\(549\) 204.444 0.372393
\(550\) 347.371 426.419i 0.631584 0.775307i
\(551\) 356.309i 0.646658i
\(552\) −394.403 0.324034i −0.714498 0.000587018i
\(553\) −356.148 + 356.148i −0.644028 + 0.644028i
\(554\) 90.0845 24.1116i 0.162607 0.0435228i
\(555\) 79.9580 162.387i 0.144068 0.292590i
\(556\) −302.091 + 174.192i −0.543329 + 0.313294i
\(557\) 751.060 751.060i 1.34840 1.34840i 0.461005 0.887398i \(-0.347489\pi\)
0.887398 0.461005i \(-0.152511\pi\)
\(558\) −124.684 72.0317i −0.223447 0.129089i
\(559\) −723.124 −1.29360
\(560\) −423.696 84.4935i −0.756600 0.150881i
\(561\) −138.088 146.643i −0.246146 0.261395i
\(562\) −123.115 + 213.106i −0.219065 + 0.379192i
\(563\) 213.567 213.567i 0.379337 0.379337i −0.491526 0.870863i \(-0.663561\pi\)
0.870863 + 0.491526i \(0.163561\pi\)
\(564\) −272.310 472.252i −0.482820 0.837327i
\(565\) −340.925 + 115.959i −0.603407 + 0.205238i
\(566\) 1012.45 270.987i 1.78877 0.478775i
\(567\) −35.9516 35.9516i −0.0634067 0.0634067i
\(568\) −89.0391 0.0731529i −0.156759 0.000128790i
\(569\) 395.306 0.694737 0.347369 0.937729i \(-0.387075\pi\)
0.347369 + 0.937729i \(0.387075\pi\)
\(570\) −206.546 41.0130i −0.362361 0.0719526i
\(571\) −551.953 −0.966643 −0.483322 0.875443i \(-0.660570\pi\)
−0.483322 + 0.875443i \(0.660570\pi\)
\(572\) −933.335 + 501.449i −1.63170 + 0.876660i
\(573\) −262.829 + 262.829i −0.458689 + 0.458689i
\(574\) 241.787 64.7156i 0.421231 0.112745i
\(575\) −92.3283 + 707.945i −0.160571 + 1.23121i
\(576\) −0.633049 + 385.262i −0.00109904 + 0.668857i
\(577\) −133.865 133.865i −0.232002 0.232002i 0.581526 0.813528i \(-0.302456\pi\)
−0.813528 + 0.581526i \(0.802456\pi\)
\(578\) −176.574 + 305.643i −0.305492 + 0.528793i
\(579\) 274.156i 0.473498i
\(580\) −38.2440 582.959i −0.0659378 1.00510i
\(581\) 580.097 0.998446
\(582\) 5.51722 9.55007i 0.00947976 0.0164091i
\(583\) −965.112 28.9976i −1.65542 0.0497386i
\(584\) −274.492 + 274.041i −0.470021 + 0.469249i
\(585\) −686.164 + 233.386i −1.17293 + 0.398950i
\(586\) −286.860 1071.75i −0.489523 1.82893i
\(587\) −445.693 + 445.693i −0.759272 + 0.759272i −0.976190 0.216918i \(-0.930400\pi\)
0.216918 + 0.976190i \(0.430400\pi\)
\(588\) 132.280 + 35.5220i 0.224966 + 0.0604116i
\(589\) 145.890 0.247692
\(590\) 69.4540 + 103.870i 0.117719 + 0.176051i
\(591\) −230.859 −0.390624
\(592\) 324.178 86.4827i 0.547598 0.146086i
\(593\) 702.062 + 702.062i 1.18392 + 1.18392i 0.978721 + 0.205195i \(0.0657829\pi\)
0.205195 + 0.978721i \(0.434217\pi\)
\(594\) −485.148 300.063i −0.816748 0.505156i
\(595\) 256.955 + 126.523i 0.431858 + 0.212643i
\(596\) 68.0639 + 118.039i 0.114201 + 0.198053i
\(597\) 5.22849 + 5.22849i 0.00875795 + 0.00875795i
\(598\) 687.988 1190.88i 1.15048 1.99143i
\(599\) −127.836 −0.213415 −0.106708 0.994290i \(-0.534031\pi\)
−0.106708 + 0.994290i \(0.534031\pi\)
\(600\) −342.333 44.9323i −0.570556 0.0748872i
\(601\) 660.027i 1.09821i −0.835752 0.549107i \(-0.814968\pi\)
0.835752 0.549107i \(-0.185032\pi\)
\(602\) 280.857 + 162.255i 0.466539 + 0.269527i
\(603\) 228.625 + 228.625i 0.379146 + 0.379146i
\(604\) 346.223 + 600.436i 0.573217 + 0.994099i
\(605\) −299.360 + 525.746i −0.494809 + 0.869002i
\(606\) −193.779 + 51.8661i −0.319768 + 0.0855877i
\(607\) 605.035 + 605.035i 0.996763 + 0.996763i 0.999995 0.00323225i \(-0.00102886\pi\)
−0.00323225 + 0.999995i \(0.501029\pi\)
\(608\) −194.704 338.305i −0.320236 0.556423i
\(609\) 272.334i 0.447183i
\(610\) −282.324 + 188.779i −0.462826 + 0.309474i
\(611\) 1900.95 3.11121
\(612\) 66.2390 246.667i 0.108234 0.403050i
\(613\) 523.218 + 523.218i 0.853536 + 0.853536i 0.990567 0.137031i \(-0.0437559\pi\)
−0.137031 + 0.990567i \(0.543756\pi\)
\(614\) 114.543 + 427.949i 0.186552 + 0.696986i
\(615\) 189.374 64.4121i 0.307925 0.104735i
\(616\) 475.017 + 14.6629i 0.771131 + 0.0238034i
\(617\) 274.281 + 274.281i 0.444539 + 0.444539i 0.893534 0.448995i \(-0.148218\pi\)
−0.448995 + 0.893534i \(0.648218\pi\)
\(618\) 287.699 497.993i 0.465532 0.805815i
\(619\) 760.653 1.22884 0.614421 0.788978i \(-0.289390\pi\)
0.614421 + 0.788978i \(0.289390\pi\)
\(620\) 238.692 15.6590i 0.384988 0.0252564i
\(621\) 740.478 1.19240
\(622\) 82.2246 142.327i 0.132194 0.228822i
\(623\) −314.499 + 314.499i −0.504814 + 0.504814i
\(624\) 575.648 + 333.192i 0.922513 + 0.533961i
\(625\) −160.295 + 604.095i −0.256473 + 0.966552i
\(626\) 592.903 158.694i 0.947129 0.253505i
\(627\) 231.532 + 6.95657i 0.369269 + 0.0110950i
\(628\) −37.1908 + 138.494i −0.0592210 + 0.220532i
\(629\) −222.427 −0.353620
\(630\) 318.869 + 63.3165i 0.506141 + 0.100502i
\(631\) 1043.71i 1.65405i 0.562163 + 0.827026i \(0.309969\pi\)
−0.562163 + 0.827026i \(0.690031\pi\)
\(632\) −746.108 0.612989i −1.18055 0.000969919i
\(633\) −55.9383 55.9383i −0.0883701 0.0883701i
\(634\) −30.1235 112.546i −0.0475134 0.177517i
\(635\) 21.5553 + 63.3735i 0.0339454 + 0.0998008i
\(636\) 302.780 + 525.094i 0.476069 + 0.825620i
\(637\) −337.726 + 337.726i −0.530182 + 0.530182i
\(638\) 147.437 + 625.492i 0.231093 + 0.980395i
\(639\) 66.9988 0.104850
\(640\) −354.868 532.606i −0.554481 0.832197i
\(641\) 226.825 0.353861 0.176930 0.984223i \(-0.443383\pi\)
0.176930 + 0.984223i \(0.443383\pi\)
\(642\) 256.291 443.629i 0.399208 0.691011i
\(643\) −345.770 345.770i −0.537746 0.537746i 0.385121 0.922866i \(-0.374160\pi\)
−0.922866 + 0.385121i \(0.874160\pi\)
\(644\) −534.420 + 308.157i −0.829844 + 0.478505i
\(645\) 232.551 + 114.506i 0.360545 + 0.177529i
\(646\) 66.9055 + 249.968i 0.103569 + 0.386948i
\(647\) 221.274 221.274i 0.342000 0.342000i −0.515118 0.857119i \(-0.672252\pi\)
0.857119 + 0.515118i \(0.172252\pi\)
\(648\) 0.0618787 75.3165i 9.54918e−5 0.116229i
\(649\) −94.2268 100.064i −0.145188 0.154183i
\(650\) 732.045 955.879i 1.12622 1.47058i
\(651\) 111.507 0.171286
\(652\) 76.9372 286.506i 0.118002 0.439426i
\(653\) 624.289 624.289i 0.956033 0.956033i −0.0430405 0.999073i \(-0.513704\pi\)
0.999073 + 0.0430405i \(0.0137045\pi\)
\(654\) 164.545 + 614.765i 0.251598 + 0.940008i
\(655\) −537.359 264.591i −0.820396 0.403955i
\(656\) 320.900 + 185.741i 0.489177 + 0.283141i
\(657\) 206.376 206.376i 0.314119 0.314119i
\(658\) −738.317 426.537i −1.12206 0.648233i
\(659\) 108.163i 0.164132i −0.996627 0.0820659i \(-0.973848\pi\)
0.996627 0.0820659i \(-0.0261518\pi\)
\(660\) 379.558 13.4695i 0.575087 0.0204083i
\(661\) 57.1206 0.0864154 0.0432077 0.999066i \(-0.486242\pi\)
0.0432077 + 0.999066i \(0.486242\pi\)
\(662\) −263.768 + 456.570i −0.398440 + 0.689683i
\(663\) −311.789 311.789i −0.470270 0.470270i
\(664\) 607.136 + 608.134i 0.914361 + 0.915864i
\(665\) −311.829 + 106.063i −0.468916 + 0.159493i
\(666\) −243.879 + 65.2757i −0.366185 + 0.0980115i
\(667\) −589.858 589.858i −0.884345 0.884345i
\(668\) −158.063 + 588.611i −0.236622 + 0.881154i
\(669\) 485.637i 0.725915i
\(670\) −526.824 104.609i −0.786304 0.156133i
\(671\) 271.980 256.113i 0.405335 0.381688i
\(672\) −148.816 258.574i −0.221452 0.384783i
\(673\) −250.393 250.393i −0.372055 0.372055i 0.496170 0.868225i \(-0.334739\pi\)
−0.868225 + 0.496170i \(0.834739\pi\)
\(674\) 194.538 52.0691i 0.288632 0.0772539i
\(675\) 642.788 + 83.8308i 0.952279 + 0.124194i
\(676\) −1423.63 + 820.896i −2.10597 + 1.21434i
\(677\) −266.578 + 266.578i −0.393764 + 0.393764i −0.876027 0.482262i \(-0.839815\pi\)
0.482262 + 0.876027i \(0.339815\pi\)
\(678\) −215.318 124.393i −0.317578 0.183470i
\(679\) 17.2512i 0.0254068i
\(680\) 136.295 + 401.794i 0.200433 + 0.590874i
\(681\) 430.870i 0.632702i
\(682\) −256.107 + 60.3681i −0.375524 + 0.0885163i
\(683\) −110.070 110.070i −0.161157 0.161157i 0.621922 0.783079i \(-0.286352\pi\)
−0.783079 + 0.621922i \(0.786352\pi\)
\(684\) 146.717 + 254.443i 0.214498 + 0.371992i
\(685\) −416.026 1223.13i −0.607337 1.78559i
\(686\) 718.201 192.231i 1.04694 0.280220i
\(687\) −264.583 + 264.583i −0.385128 + 0.385128i
\(688\) 123.850 + 464.249i 0.180015 + 0.674780i
\(689\) −2113.66 −3.06771
\(690\) −409.826 + 274.035i −0.593951 + 0.397152i
\(691\) 403.102i 0.583360i −0.956516 0.291680i \(-0.905786\pi\)
0.956516 0.291680i \(-0.0942142\pi\)
\(692\) −30.2849 + 112.778i −0.0437643 + 0.162973i
\(693\) −357.442 10.7397i −0.515790 0.0154974i
\(694\) 95.0410 + 355.087i 0.136947 + 0.511653i
\(695\) −192.553 + 391.057i −0.277055 + 0.562672i
\(696\) 285.496 285.028i 0.410196 0.409523i
\(697\) −173.809 173.809i −0.249368 0.249368i
\(698\) 281.787 + 162.793i 0.403707 + 0.233228i
\(699\) 90.1514i 0.128972i
\(700\) −498.802 + 207.000i −0.712574 + 0.295715i
\(701\) 1212.30i 1.72939i −0.502299 0.864694i \(-0.667512\pi\)
0.502299 0.864694i \(-0.332488\pi\)
\(702\) −1081.27 624.668i −1.54028 0.889841i
\(703\) 180.869 180.869i 0.257281 0.257281i
\(704\) 481.786 + 513.321i 0.684355 + 0.729149i
\(705\) −611.332 301.014i −0.867137 0.426971i
\(706\) −427.685 + 114.472i −0.605786 + 0.162142i
\(707\) −221.866 + 221.866i −0.313814 + 0.313814i
\(708\) −22.3776 + 83.3317i −0.0316067 + 0.117700i
\(709\) 757.535i 1.06846i 0.845341 + 0.534228i \(0.179398\pi\)
−0.845341 + 0.534228i \(0.820602\pi\)
\(710\) −92.5210 + 61.8652i −0.130311 + 0.0871341i
\(711\) 561.421 0.789621
\(712\) −658.857 0.541305i −0.925362 0.000760260i
\(713\) 241.517 241.517i 0.338734 0.338734i
\(714\) 51.1373 + 191.056i 0.0716208 + 0.267586i
\(715\) −620.461 + 1170.06i −0.867778 + 1.63645i
\(716\) −642.111 1113.58i −0.896803 1.55527i
\(717\) 94.5784 94.5784i 0.131908 0.131908i
\(718\) −527.194 + 912.549i −0.734253 + 1.27096i
\(719\) 371.694 0.516959 0.258480 0.966017i \(-0.416779\pi\)
0.258480 + 0.966017i \(0.416779\pi\)
\(720\) 267.355 + 400.548i 0.371326 + 0.556317i
\(721\) 899.573i 1.24767i
\(722\) 367.502 + 212.312i 0.509006 + 0.294060i
\(723\) 468.999 468.999i 0.648685 0.648685i
\(724\) 329.377 + 571.220i 0.454940 + 0.788977i
\(725\) −445.261 578.819i −0.614153 0.798370i
\(726\) −409.328 + 83.5937i −0.563812 + 0.115143i
\(727\) 299.214 299.214i 0.411573 0.411573i −0.470713 0.882286i \(-0.656003\pi\)
0.882286 + 0.470713i \(0.156003\pi\)
\(728\) 1040.34 + 0.854726i 1.42904 + 0.00117407i
\(729\) 346.193i 0.474888i
\(730\) −94.4291 + 475.555i −0.129355 + 0.651445i
\(731\) 318.533i 0.435749i
\(732\) −226.499 60.8232i −0.309425 0.0830918i
\(733\) 390.495 + 390.495i 0.532735 + 0.532735i 0.921385 0.388650i \(-0.127059\pi\)
−0.388650 + 0.921385i \(0.627059\pi\)
\(734\) 533.601 142.821i 0.726977 0.194580i
\(735\) 162.089 55.1315i 0.220529 0.0750089i
\(736\) −882.380 237.728i −1.19889 0.323001i
\(737\) 590.553 + 17.7437i 0.801294 + 0.0240756i
\(738\) −241.581 139.565i −0.327345 0.189112i
\(739\) 623.945i 0.844310i 0.906524 + 0.422155i \(0.138726\pi\)
−0.906524 + 0.422155i \(0.861274\pi\)
\(740\) 276.507 315.334i 0.373658 0.426127i
\(741\) 507.069 0.684304
\(742\) 820.929 + 474.264i 1.10637 + 0.639169i
\(743\) 109.679 109.679i 0.147617 0.147617i −0.629436 0.777053i \(-0.716714\pi\)
0.777053 + 0.629436i \(0.216714\pi\)
\(744\) 116.704 + 116.896i 0.156861 + 0.157119i
\(745\) 152.802 + 75.2385i 0.205104 + 0.100991i
\(746\) 101.820 + 380.415i 0.136488 + 0.509939i
\(747\) −457.224 457.224i −0.612081 0.612081i
\(748\) −220.886 411.129i −0.295302 0.549638i
\(749\) 801.369i 1.06992i
\(750\) −386.783 + 191.485i −0.515710 + 0.255313i
\(751\) 167.466i 0.222990i 0.993765 + 0.111495i \(0.0355639\pi\)
−0.993765 + 0.111495i \(0.964436\pi\)
\(752\) −325.578 1220.42i −0.432949 1.62290i
\(753\) −87.2272 + 87.2272i −0.115840 + 0.115840i
\(754\) 363.728 + 1358.94i 0.482397 + 1.80231i
\(755\) 777.265 + 382.718i 1.02949 + 0.506912i
\(756\) 279.796 + 485.234i 0.370100 + 0.641844i
\(757\) −43.2145 43.2145i −0.0570865 0.0570865i 0.677987 0.735074i \(-0.262852\pi\)
−0.735074 + 0.677987i \(0.762852\pi\)
\(758\) −209.638 121.111i −0.276567 0.159777i
\(759\) 394.810 371.777i 0.520172 0.489825i
\(760\) −437.553 215.894i −0.575727 0.284071i
\(761\) 717.901i 0.943365i 0.881768 + 0.471683i \(0.156353\pi\)
−0.881768 + 0.471683i \(0.843647\pi\)
\(762\) −23.1230 + 40.0248i −0.0303451 + 0.0525260i
\(763\) 703.871 + 703.871i 0.922505 + 0.922505i
\(764\) −746.084 + 430.207i −0.976550 + 0.563098i
\(765\) −102.805 302.252i −0.134386 0.395101i
\(766\) 315.089 + 1177.22i 0.411343 + 1.53684i
\(767\) −212.755 212.755i −0.277386 0.277386i
\(768\) 115.319 426.635i 0.150155 0.555514i
\(769\) −724.758 −0.942468 −0.471234 0.882008i \(-0.656191\pi\)
−0.471234 + 0.882008i \(0.656191\pi\)
\(770\) 503.522 315.223i 0.653924 0.409381i
\(771\) 196.398i 0.254731i
\(772\) −164.745 + 613.492i −0.213400 + 0.794678i
\(773\) 418.517 418.517i 0.541420 0.541420i −0.382525 0.923945i \(-0.624946\pi\)
0.923945 + 0.382525i \(0.124946\pi\)
\(774\) −93.4799 349.254i −0.120775 0.451233i
\(775\) 236.997 182.312i 0.305802 0.235241i
\(776\) 18.0850 18.0553i 0.0233054 0.0232671i
\(777\) 138.242 138.242i 0.177917 0.177917i
\(778\) −45.9470 + 79.5323i −0.0590579 + 0.102227i
\(779\) 282.670 0.362862
\(780\) 829.620 54.4256i 1.06361 0.0697764i
\(781\) 89.1311 83.9313i 0.114124 0.107466i
\(782\) 524.575 + 303.055i 0.670812 + 0.387539i
\(783\) −535.570 + 535.570i −0.683997 + 0.683997i
\(784\) 274.664 + 158.979i 0.350337 + 0.202779i
\(785\) 57.7215 + 169.703i 0.0735305 + 0.216183i
\(786\) −106.941 399.547i −0.136057 0.508330i
\(787\) −157.467 157.467i −0.200085 0.200085i 0.599951 0.800037i \(-0.295187\pi\)
−0.800037 + 0.599951i \(0.795187\pi\)
\(788\) −516.604 138.727i −0.655589 0.176049i
\(789\) −747.245 −0.947079
\(790\) −775.285 + 518.403i −0.981374 + 0.656206i
\(791\) −388.949 −0.491719
\(792\) −362.844 385.958i −0.458137 0.487321i
\(793\) 578.277 578.277i 0.729227 0.729227i
\(794\) 138.660 + 518.052i 0.174634 + 0.652458i
\(795\) 679.736 + 334.696i 0.855013 + 0.421001i
\(796\) 8.55817 + 14.8420i 0.0107515 + 0.0186457i
\(797\) 761.763 + 761.763i 0.955788 + 0.955788i 0.999063 0.0432753i \(-0.0137793\pi\)
−0.0432753 + 0.999063i \(0.513779\pi\)
\(798\) −196.942 113.777i −0.246795 0.142577i
\(799\) 837.360i 1.04801i
\(800\) −739.056 306.261i −0.923820 0.382827i
\(801\) 495.768 0.618936
\(802\) −580.916 335.604i −0.724334 0.418459i
\(803\) 16.0169 533.083i 0.0199464 0.663864i
\(804\) −185.271 321.306i −0.230437 0.399634i
\(805\) −340.640 + 691.808i −0.423155 + 0.859388i
\(806\) −556.416 + 148.928i −0.690343 + 0.184774i
\(807\) 247.832 247.832i 0.307103 0.307103i
\(808\) −464.797 0.381869i −0.575244 0.000472610i
\(809\) −1222.82 −1.51152 −0.755761 0.654847i \(-0.772733\pi\)
−0.755761 + 0.654847i \(0.772733\pi\)
\(810\) −52.3306 78.2618i −0.0646057 0.0966195i
\(811\) −464.051 −0.572196 −0.286098 0.958200i \(-0.592358\pi\)
−0.286098 + 0.958200i \(0.592358\pi\)
\(812\) 163.650 609.416i 0.201540 0.750512i
\(813\) −306.596 306.596i −0.377117 0.377117i
\(814\) −242.669 + 392.353i −0.298119 + 0.482006i
\(815\) −119.409 351.068i −0.146515 0.430759i
\(816\) −146.769 + 253.570i −0.179864 + 0.310748i
\(817\) 259.018 + 259.018i 0.317036 + 0.317036i
\(818\) 898.545 + 519.104i 1.09847 + 0.634601i
\(819\) −782.821 −0.955826
\(820\) 462.478 30.3400i 0.563998 0.0370000i
\(821\) 1111.10i 1.35335i 0.736284 + 0.676673i \(0.236579\pi\)
−0.736284 + 0.676673i \(0.763421\pi\)
\(822\) 446.282 772.494i 0.542922 0.939774i
\(823\) −443.184 443.184i −0.538498 0.538498i 0.384590 0.923088i \(-0.374343\pi\)
−0.923088 + 0.384590i \(0.874343\pi\)
\(824\) 943.050 941.502i 1.14448 1.14260i
\(825\) 384.813 278.033i 0.466441 0.337009i
\(826\) 34.8945 + 130.371i 0.0422451 + 0.157834i
\(827\) −150.631 150.631i −0.182141 0.182141i 0.610147 0.792288i \(-0.291110\pi\)
−0.792288 + 0.610147i \(0.791110\pi\)
\(828\) 664.107 + 178.337i 0.802062 + 0.215383i
\(829\) 1189.01i 1.43427i −0.696937 0.717133i \(-0.745454\pi\)
0.696937 0.717133i \(-0.254546\pi\)
\(830\) 1053.59 + 209.207i 1.26938 + 0.252056i
\(831\) 80.4957 0.0968661
\(832\) 1087.94 + 1091.52i 1.30762 + 1.31192i
\(833\) −148.767 148.767i −0.178591 0.178591i
\(834\) −290.766 + 77.8252i −0.348640 + 0.0933156i
\(835\) 245.320 + 721.252i 0.293797 + 0.863774i
\(836\) 513.930 + 154.698i 0.614749 + 0.185046i
\(837\) −219.289 219.289i −0.261994 0.261994i
\(838\) 900.809 + 520.411i 1.07495 + 0.621016i
\(839\) 1406.47 1.67636 0.838181 0.545393i \(-0.183620\pi\)
0.838181 + 0.545393i \(0.183620\pi\)
\(840\) −334.431 165.012i −0.398132 0.196443i
\(841\) 12.2609 0.0145790
\(842\) −610.295 352.577i −0.724816 0.418737i
\(843\) −150.216 + 150.216i −0.178193 + 0.178193i
\(844\) −91.5617 158.790i −0.108485 0.188140i
\(845\) −907.426 + 1842.90i −1.07388 + 2.18094i
\(846\) 245.740 + 918.121i 0.290473 + 1.08525i
\(847\) −488.973 + 433.490i −0.577300 + 0.511795i
\(848\) 362.008 + 1356.98i 0.426896 + 1.60021i
\(849\) 904.679 1.06558
\(850\) 421.060 + 322.462i 0.495365 + 0.379367i
\(851\) 598.845i 0.703696i
\(852\) −74.2265 19.9325i −0.0871203 0.0233950i
\(853\) 453.619 + 453.619i 0.531792 + 0.531792i 0.921105 0.389313i \(-0.127288\pi\)
−0.389313 + 0.921105i \(0.627288\pi\)
\(854\) −354.353 + 94.8447i −0.414934 + 0.111059i
\(855\) 329.377 + 162.182i 0.385236 + 0.189687i
\(856\) 840.100 838.721i 0.981425 0.979814i
\(857\) 783.087 783.087i 0.913754 0.913754i −0.0828113 0.996565i \(-0.526390\pi\)
0.996565 + 0.0828113i \(0.0263899\pi\)
\(858\) −890.149 + 209.821i −1.03747 + 0.244546i
\(859\) 472.093 0.549585 0.274792 0.961504i \(-0.411391\pi\)
0.274792 + 0.961504i \(0.411391\pi\)
\(860\) 451.583 + 395.980i 0.525097 + 0.460442i
\(861\) 216.050 0.250930
\(862\) −913.019 527.465i −1.05919 0.611908i
\(863\) 57.4206 + 57.4206i 0.0665360 + 0.0665360i 0.739592 0.673056i \(-0.235019\pi\)
−0.673056 + 0.739592i \(0.735019\pi\)
\(864\) −215.849 + 801.169i −0.249825 + 0.927279i
\(865\) 47.0033 + 138.191i 0.0543390 + 0.159759i
\(866\) 305.547 81.7813i 0.352825 0.0944357i
\(867\) −215.444 + 215.444i −0.248494 + 0.248494i
\(868\) 249.525 + 67.0065i 0.287471 + 0.0771964i
\(869\) 746.879 703.307i 0.859470 0.809329i
\(870\) 98.2148 494.620i 0.112891 0.568529i
\(871\) 1293.35 1.48490
\(872\) −1.21148 + 1474.57i −0.00138931 + 1.69102i
\(873\) −13.5971 + 13.5971i −0.0155752 + 0.0155752i
\(874\) −672.996 + 180.131i −0.770019 + 0.206100i
\(875\) −374.021 + 561.975i −0.427452 + 0.642257i
\(876\) −290.038 + 167.242i −0.331093 + 0.190915i
\(877\) 844.684 844.684i 0.963152 0.963152i −0.0361927 0.999345i \(-0.511523\pi\)
0.999345 + 0.0361927i \(0.0115230\pi\)
\(878\) −409.448 + 708.736i −0.466342 + 0.807217i
\(879\) 957.672i 1.08950i
\(880\) 857.449 + 197.941i 0.974374 + 0.224933i
\(881\) −75.9756 −0.0862379 −0.0431189 0.999070i \(-0.513729\pi\)
−0.0431189 + 0.999070i \(0.513729\pi\)
\(882\) −206.774 119.456i −0.234437 0.135438i
\(883\) −729.780 729.780i −0.826478 0.826478i 0.160550 0.987028i \(-0.448673\pi\)
−0.987028 + 0.160550i \(0.948673\pi\)
\(884\) −510.347 885.065i −0.577315 1.00121i
\(885\) 34.7308 + 102.110i 0.0392439 + 0.115379i
\(886\) −211.488 790.150i −0.238700 0.891817i
\(887\) −107.883 107.883i −0.121627 0.121627i 0.643673 0.765300i \(-0.277410\pi\)
−0.765300 + 0.643673i \(0.777410\pi\)
\(888\) 289.608 + 0.237937i 0.326135 + 0.000267947i
\(889\) 72.3007i 0.0813281i
\(890\) −684.623 + 457.780i −0.769239 + 0.514360i
\(891\) 70.9959 + 75.3943i 0.0796811 + 0.0846176i
\(892\) −291.828 + 1086.73i −0.327161 + 1.21831i
\(893\) −680.908 680.908i −0.762495 0.762495i
\(894\) 30.4095 + 113.614i 0.0340151 + 0.127085i
\(895\) −1441.53 709.795i −1.61065 0.793067i
\(896\) −177.632 668.050i −0.198249 0.745591i
\(897\) 839.437 839.437i 0.935828 0.935828i
\(898\) 357.731 619.217i 0.398364 0.689551i
\(899\) 349.367i 0.388617i
\(900\) 556.303 + 229.994i 0.618115 + 0.255549i
\(901\) 931.055i 1.03336i
\(902\) −496.221 + 116.966i −0.550134 + 0.129674i
\(903\) 197.973 + 197.973i 0.219239 + 0.219239i
\(904\) −407.078 407.748i −0.450308 0.451048i
\(905\) 739.445 + 364.096i 0.817067 + 0.402316i
\(906\) 154.685 + 577.926i 0.170734 + 0.637888i
\(907\) −1025.92 + 1025.92i −1.13111 + 1.13111i −0.141118 + 0.989993i \(0.545070\pi\)
−0.989993 + 0.141118i \(0.954930\pi\)
\(908\) 258.917 964.180i 0.285151 1.06187i
\(909\) 349.744 0.384756
\(910\) 1081.03 722.839i 1.18794 0.794329i
\(911\) 1056.66i 1.15989i 0.814655 + 0.579946i \(0.196926\pi\)
−0.814655 + 0.579946i \(0.803074\pi\)
\(912\) −86.8462 325.540i −0.0952260 0.356952i
\(913\) −1181.04 35.4854i −1.29358 0.0388668i
\(914\) −143.178 + 38.3224i −0.156650 + 0.0419282i
\(915\) −277.539 + 94.3999i −0.303322 + 0.103169i
\(916\) −751.063 + 433.078i −0.819937 + 0.472792i
\(917\) −457.459 457.459i −0.498865 0.498865i
\(918\) 275.163 476.295i 0.299742 0.518840i
\(919\) 1251.77i 1.36210i −0.732235 0.681052i \(-0.761523\pi\)
0.732235 0.681052i \(-0.238477\pi\)
\(920\) −1081.76 + 366.950i −1.17583 + 0.398858i
\(921\) 382.398i 0.415198i
\(922\) 79.0150 136.771i 0.0856995 0.148342i
\(923\) 189.509 189.509i 0.205318 0.205318i
\(924\) 392.807 + 118.239i 0.425116 + 0.127965i
\(925\) 67.7963 519.841i 0.0732933 0.561990i
\(926\) −102.913 384.498i −0.111137 0.415224i
\(927\) −709.030 + 709.030i −0.764866 + 0.764866i
\(928\) 810.148 466.261i 0.873004 0.502437i
\(929\) 129.701i 0.139614i 0.997561 + 0.0698068i \(0.0222383\pi\)
−0.997561 + 0.0698068i \(0.977762\pi\)
\(930\) 202.522 + 40.2140i 0.217766 + 0.0432408i
\(931\) 241.942 0.259874
\(932\) 54.1735 201.736i 0.0581261 0.216455i
\(933\) 100.325 100.325i 0.107529 0.107529i
\(934\) 374.333 100.192i 0.400785 0.107272i
\(935\) −515.405 273.310i −0.551235 0.292310i
\(936\) −819.309 820.656i −0.875330 0.876769i
\(937\) −419.471 + 419.471i −0.447674 + 0.447674i −0.894581 0.446907i \(-0.852526\pi\)
0.446907 + 0.894581i \(0.352526\pi\)
\(938\) −502.328 290.203i −0.535531 0.309384i
\(939\) 529.793 0.564210
\(940\) −1187.12 1040.95i −1.26290 1.10740i
\(941\) 1347.04i 1.43150i 0.698355 + 0.715751i \(0.253916\pi\)
−0.698355 + 0.715751i \(0.746084\pi\)
\(942\) −61.9194 + 107.180i −0.0657318 + 0.113779i
\(943\) 467.951 467.951i 0.496237 0.496237i
\(944\) −100.151 + 173.028i −0.106092 + 0.183293i
\(945\) 628.136 + 309.289i 0.664695 + 0.327290i
\(946\) −561.880 347.521i −0.593954 0.367359i
\(947\) −152.173 + 152.173i −0.160689 + 0.160689i −0.782872 0.622183i \(-0.786246\pi\)
0.622183 + 0.782872i \(0.286246\pi\)
\(948\) −621.986 167.026i −0.656103 0.176187i
\(949\) 1167.49i 1.23023i
\(950\) −604.603 + 80.1759i −0.636424 + 0.0843957i
\(951\) 100.566i 0.105748i
\(952\) −0.376503 + 458.265i −0.000395486 + 0.481371i
\(953\) −607.043 607.043i −0.636982 0.636982i 0.312828 0.949810i \(-0.398724\pi\)
−0.949810 + 0.312828i \(0.898724\pi\)
\(954\) −273.237 1020.85i −0.286412 1.07008i
\(955\) −475.555 + 965.808i −0.497963 + 1.01132i
\(956\) 268.477 154.809i 0.280833 0.161934i
\(957\) −16.6591 + 554.455i −0.0174076 + 0.579367i
\(958\) 716.640 1240.47i 0.748059 1.29486i
\(959\) 1395.43i 1.45509i
\(960\) −177.031 523.298i −0.184407 0.545102i
\(961\) 817.952 0.851147
\(962\) −505.187 + 874.456i −0.525142 + 0.908998i
\(963\) −631.627 + 631.627i −0.655896 + 0.655896i
\(964\) 1331.33 767.673i 1.38105 0.796342i
\(965\) 255.690 + 751.739i 0.264964 + 0.779004i
\(966\) −514.385 + 137.678i −0.532490 + 0.142524i
\(967\) 448.623 + 448.623i 0.463933 + 0.463933i 0.899942 0.436009i \(-0.143609\pi\)
−0.436009 + 0.899942i \(0.643609\pi\)
\(968\) −966.206 58.9102i −0.998146 0.0608576i
\(969\) 223.361i 0.230507i
\(970\) 6.22148 31.3321i 0.00641390 0.0323011i
\(971\) 701.291i 0.722235i −0.932520 0.361118i \(-0.882395\pi\)
0.932520 0.361118i \(-0.117605\pi\)
\(972\) 258.950 964.301i 0.266409 0.992080i
\(973\) −332.911 + 332.911i −0.342149 + 0.342149i
\(974\) 998.598 267.280i 1.02525 0.274415i
\(975\) 823.727 633.658i 0.844848 0.649906i
\(976\) −470.298 272.214i −0.481863 0.278908i
\(977\) −1130.83 1130.83i −1.15745 1.15745i −0.985021 0.172433i \(-0.944837\pi\)
−0.172433 0.985021i \(-0.555163\pi\)
\(978\) 128.094 221.724i 0.130975 0.226712i
\(979\) 659.538 621.061i 0.673686 0.634383i
\(980\) 395.844 25.9686i 0.403922 0.0264986i
\(981\) 1109.56i 1.13105i
\(982\) −259.368 149.841i −0.264122 0.152587i
\(983\) −351.794 351.794i −0.357878 0.357878i 0.505152 0.863030i \(-0.331436\pi\)
−0.863030 + 0.505152i \(0.831436\pi\)
\(984\) 226.121 + 226.492i 0.229797 + 0.230175i
\(985\) −633.018 + 215.309i −0.642658 + 0.218588i
\(986\) −598.606 + 160.220i −0.607105 + 0.162495i
\(987\) −520.432 520.432i −0.527287 0.527287i
\(988\) 1134.69 + 304.706i 1.14848 + 0.308407i
\(989\) 857.593 0.867132
\(990\) −645.323 148.414i −0.651841 0.149913i
\(991\) 288.167i 0.290784i 0.989374 + 0.145392i \(0.0464443\pi\)
−0.989374 + 0.145392i \(0.953556\pi\)
\(992\) 190.910 + 331.714i 0.192450 + 0.334390i
\(993\) −321.832 + 321.832i −0.324100 + 0.324100i
\(994\) −116.126 + 31.0818i −0.116827 + 0.0312694i
\(995\) 19.2130 + 9.46028i 0.0193095 + 0.00950782i
\(996\) 370.522 + 642.575i 0.372010 + 0.645156i
\(997\) −921.234 + 921.234i −0.924006 + 0.924006i −0.997310 0.0733035i \(-0.976646\pi\)
0.0733035 + 0.997310i \(0.476646\pi\)
\(998\) −500.186 288.965i −0.501189 0.289545i
\(999\) −543.730 −0.544274
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.i.a.87.58 yes 136
4.3 odd 2 inner 220.3.i.a.87.24 yes 136
5.3 odd 4 inner 220.3.i.a.43.45 yes 136
11.10 odd 2 inner 220.3.i.a.87.11 yes 136
20.3 even 4 inner 220.3.i.a.43.11 136
44.43 even 2 inner 220.3.i.a.87.45 yes 136
55.43 even 4 inner 220.3.i.a.43.24 yes 136
220.43 odd 4 inner 220.3.i.a.43.58 yes 136
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.i.a.43.11 136 20.3 even 4 inner
220.3.i.a.43.24 yes 136 55.43 even 4 inner
220.3.i.a.43.45 yes 136 5.3 odd 4 inner
220.3.i.a.43.58 yes 136 220.43 odd 4 inner
220.3.i.a.87.11 yes 136 11.10 odd 2 inner
220.3.i.a.87.24 yes 136 4.3 odd 2 inner
220.3.i.a.87.45 yes 136 44.43 even 2 inner
220.3.i.a.87.58 yes 136 1.1 even 1 trivial