Properties

Label 220.3.i.a.43.16
Level $220$
Weight $3$
Character 220.43
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.16
Character \(\chi\) \(=\) 220.43
Dual form 220.3.i.a.87.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.49067 + 1.33338i) q^{2} +(-3.87627 + 3.87627i) q^{3} +(0.444207 - 3.97526i) q^{4} +(3.64792 + 3.41945i) q^{5} +(0.609714 - 10.9468i) q^{6} +(5.44609 - 5.44609i) q^{7} +(4.63836 + 6.51810i) q^{8} -21.0509i q^{9} +(-9.99728 - 0.233225i) q^{10} +(7.73363 - 7.82247i) q^{11} +(13.6873 + 17.1310i) q^{12} +(14.7946 - 14.7946i) q^{13} +(-0.856637 + 15.3800i) q^{14} +(-27.3951 + 0.885606i) q^{15} +(-15.6054 - 3.53167i) q^{16} +(5.69580 + 5.69580i) q^{17} +(28.0688 + 31.3800i) q^{18} -21.1920i q^{19} +(15.2136 - 12.9825i) q^{20} +42.2210i q^{21} +(-1.09800 + 21.9726i) q^{22} +(-7.64133 + 7.64133i) q^{23} +(-43.2454 - 7.28640i) q^{24} +(1.61467 + 24.9478i) q^{25} +(-2.32710 + 41.7806i) q^{26} +(46.7126 + 46.7126i) q^{27} +(-19.2304 - 24.0688i) q^{28} -2.11660 q^{29} +(39.6562 - 37.8481i) q^{30} -23.3398i q^{31} +(27.9715 - 15.5433i) q^{32} +(0.344346 + 60.2996i) q^{33} +(-16.0852 - 0.895915i) q^{34} +(38.4895 - 1.24426i) q^{35} +(-83.6829 - 9.35096i) q^{36} +(7.12170 - 7.12170i) q^{37} +(28.2570 + 31.5904i) q^{38} +114.695i q^{39} +(-5.36799 + 39.6382i) q^{40} -13.4770i q^{41} +(-56.2965 - 62.9377i) q^{42} +(-18.4300 - 18.4300i) q^{43} +(-27.6610 - 34.2180i) q^{44} +(71.9827 - 76.7922i) q^{45} +(1.20194 - 21.5795i) q^{46} +(-25.7009 - 25.7009i) q^{47} +(74.1803 - 46.8009i) q^{48} -10.3197i q^{49} +(-35.6718 - 35.0360i) q^{50} -44.1569 q^{51} +(-52.2403 - 65.3840i) q^{52} +(-10.8004 - 10.8004i) q^{53} +(-131.919 - 7.34763i) q^{54} +(54.9602 - 2.09095i) q^{55} +(60.7590 + 10.2373i) q^{56} +(82.1460 + 82.1460i) q^{57} +(3.15516 - 2.82223i) q^{58} +84.0088 q^{59} +(-8.64855 + 109.296i) q^{60} -87.3519i q^{61} +(31.1207 + 34.7919i) q^{62} +(-114.645 - 114.645i) q^{63} +(-20.9713 + 60.4666i) q^{64} +(104.559 - 3.38009i) q^{65} +(-80.9155 - 89.4278i) q^{66} +(55.9563 + 55.9563i) q^{67} +(25.1724 - 20.1122i) q^{68} -59.2397i q^{69} +(-55.7162 + 53.1759i) q^{70} +24.0536i q^{71} +(137.212 - 97.6417i) q^{72} +(-69.0302 + 69.0302i) q^{73} +(-1.12020 + 20.1120i) q^{74} +(-102.963 - 90.4455i) q^{75} +(-84.2438 - 9.41364i) q^{76} +(-0.483800 - 84.7198i) q^{77} +(-152.932 - 170.973i) q^{78} +47.8344i q^{79} +(-44.8508 - 66.2451i) q^{80} -172.683 q^{81} +(17.9699 + 20.0898i) q^{82} +(11.0631 + 11.0631i) q^{83} +(167.839 + 18.7548i) q^{84} +(1.30131 + 40.2543i) q^{85} +(52.0472 + 2.89893i) q^{86} +(8.20451 - 8.20451i) q^{87} +(86.8590 + 14.1252i) q^{88} +90.4306i q^{89} +(-4.90960 + 210.452i) q^{90} -161.145i q^{91} +(26.9819 + 33.7706i) q^{92} +(90.4712 + 90.4712i) q^{93} +(72.5807 + 4.04261i) q^{94} +(72.4652 - 77.3069i) q^{95} +(-48.1752 + 168.675i) q^{96} +(-88.2136 + 88.2136i) q^{97} +(13.7601 + 15.3833i) q^{98} +(-164.670 - 162.800i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.49067 + 1.33338i −0.745336 + 0.666689i
\(3\) −3.87627 + 3.87627i −1.29209 + 1.29209i −0.358598 + 0.933492i \(0.616745\pi\)
−0.933492 + 0.358598i \(0.883255\pi\)
\(4\) 0.444207 3.97526i 0.111052 0.993815i
\(5\) 3.64792 + 3.41945i 0.729584 + 0.683891i
\(6\) 0.609714 10.9468i 0.101619 1.82446i
\(7\) 5.44609 5.44609i 0.778012 0.778012i −0.201480 0.979493i \(-0.564575\pi\)
0.979493 + 0.201480i \(0.0645752\pi\)
\(8\) 4.63836 + 6.51810i 0.579794 + 0.814763i
\(9\) 21.0509i 2.33899i
\(10\) −9.99728 0.233225i −0.999728 0.0233225i
\(11\) 7.73363 7.82247i 0.703057 0.711133i
\(12\) 13.6873 + 17.1310i 1.14061 + 1.42759i
\(13\) 14.7946 14.7946i 1.13804 1.13804i 0.149242 0.988801i \(-0.452317\pi\)
0.988801 0.149242i \(-0.0476834\pi\)
\(14\) −0.856637 + 15.3800i −0.0611884 + 1.09857i
\(15\) −27.3951 + 0.885606i −1.82634 + 0.0590404i
\(16\) −15.6054 3.53167i −0.975335 0.220729i
\(17\) 5.69580 + 5.69580i 0.335047 + 0.335047i 0.854499 0.519452i \(-0.173864\pi\)
−0.519452 + 0.854499i \(0.673864\pi\)
\(18\) 28.0688 + 31.3800i 1.55938 + 1.74334i
\(19\) 21.1920i 1.11537i −0.830053 0.557685i \(-0.811690\pi\)
0.830053 0.557685i \(-0.188310\pi\)
\(20\) 15.2136 12.9825i 0.760682 0.649125i
\(21\) 42.2210i 2.01052i
\(22\) −1.09800 + 21.9726i −0.0499093 + 0.998754i
\(23\) −7.64133 + 7.64133i −0.332232 + 0.332232i −0.853434 0.521202i \(-0.825484\pi\)
0.521202 + 0.853434i \(0.325484\pi\)
\(24\) −43.2454 7.28640i −1.80189 0.303600i
\(25\) 1.61467 + 24.9478i 0.0645869 + 0.997912i
\(26\) −2.32710 + 41.7806i −0.0895037 + 1.60694i
\(27\) 46.7126 + 46.7126i 1.73010 + 1.73010i
\(28\) −19.2304 24.0688i −0.686801 0.859600i
\(29\) −2.11660 −0.0729862 −0.0364931 0.999334i \(-0.511619\pi\)
−0.0364931 + 0.999334i \(0.511619\pi\)
\(30\) 39.6562 37.8481i 1.32187 1.26160i
\(31\) 23.3398i 0.752896i −0.926438 0.376448i \(-0.877145\pi\)
0.926438 0.376448i \(-0.122855\pi\)
\(32\) 27.9715 15.5433i 0.874110 0.485728i
\(33\) 0.344346 + 60.2996i 0.0104347 + 1.82726i
\(34\) −16.0852 0.895915i −0.473095 0.0263505i
\(35\) 38.4895 1.24426i 1.09970 0.0355503i
\(36\) −83.6829 9.35096i −2.32452 0.259749i
\(37\) 7.12170 7.12170i 0.192478 0.192478i −0.604288 0.796766i \(-0.706542\pi\)
0.796766 + 0.604288i \(0.206542\pi\)
\(38\) 28.2570 + 31.5904i 0.743605 + 0.831326i
\(39\) 114.695i 2.94091i
\(40\) −5.36799 + 39.6382i −0.134200 + 0.990954i
\(41\) 13.4770i 0.328707i −0.986401 0.164354i \(-0.947446\pi\)
0.986401 0.164354i \(-0.0525538\pi\)
\(42\) −56.2965 62.9377i −1.34039 1.49852i
\(43\) −18.4300 18.4300i −0.428604 0.428604i 0.459548 0.888153i \(-0.348011\pi\)
−0.888153 + 0.459548i \(0.848011\pi\)
\(44\) −27.6610 34.2180i −0.628659 0.777681i
\(45\) 71.9827 76.7922i 1.59962 1.70649i
\(46\) 1.20194 21.5795i 0.0261291 0.469120i
\(47\) −25.7009 25.7009i −0.546829 0.546829i 0.378694 0.925522i \(-0.376373\pi\)
−0.925522 + 0.378694i \(0.876373\pi\)
\(48\) 74.1803 46.8009i 1.54542 0.975018i
\(49\) 10.3197i 0.210606i
\(50\) −35.6718 35.0360i −0.713436 0.700720i
\(51\) −44.1569 −0.865821
\(52\) −52.2403 65.3840i −1.00462 1.25739i
\(53\) −10.8004 10.8004i −0.203782 0.203782i 0.597836 0.801618i \(-0.296027\pi\)
−0.801618 + 0.597836i \(0.796027\pi\)
\(54\) −131.919 7.34763i −2.44294 0.136067i
\(55\) 54.9602 2.09095i 0.999277 0.0380173i
\(56\) 60.7590 + 10.2373i 1.08498 + 0.182808i
\(57\) 82.1460 + 82.1460i 1.44116 + 1.44116i
\(58\) 3.15516 2.82223i 0.0543992 0.0486591i
\(59\) 84.0088 1.42388 0.711939 0.702242i \(-0.247817\pi\)
0.711939 + 0.702242i \(0.247817\pi\)
\(60\) −8.64855 + 109.296i −0.144142 + 1.82160i
\(61\) 87.3519i 1.43200i −0.698101 0.715999i \(-0.745971\pi\)
0.698101 0.715999i \(-0.254029\pi\)
\(62\) 31.1207 + 34.7919i 0.501947 + 0.561160i
\(63\) −114.645 114.645i −1.81976 1.81976i
\(64\) −20.9713 + 60.4666i −0.327677 + 0.944790i
\(65\) 104.559 3.38009i 1.60860 0.0520014i
\(66\) −80.9155 89.4278i −1.22599 1.35497i
\(67\) 55.9563 + 55.9563i 0.835169 + 0.835169i 0.988218 0.153050i \(-0.0489095\pi\)
−0.153050 + 0.988218i \(0.548909\pi\)
\(68\) 25.1724 20.1122i 0.370182 0.295767i
\(69\) 59.2397i 0.858547i
\(70\) −55.7162 + 53.1759i −0.795946 + 0.759656i
\(71\) 24.0536i 0.338784i 0.985549 + 0.169392i \(0.0541804\pi\)
−0.985549 + 0.169392i \(0.945820\pi\)
\(72\) 137.212 97.6417i 1.90572 1.35613i
\(73\) −69.0302 + 69.0302i −0.945619 + 0.945619i −0.998596 0.0529764i \(-0.983129\pi\)
0.0529764 + 0.998596i \(0.483129\pi\)
\(74\) −1.12020 + 20.1120i −0.0151379 + 0.271784i
\(75\) −102.963 90.4455i −1.37284 1.20594i
\(76\) −84.2438 9.41364i −1.10847 0.123864i
\(77\) −0.483800 84.7198i −0.00628312 1.10026i
\(78\) −152.932 170.973i −1.96067 2.19196i
\(79\) 47.8344i 0.605499i 0.953070 + 0.302749i \(0.0979045\pi\)
−0.953070 + 0.302749i \(0.902095\pi\)
\(80\) −44.8508 66.2451i −0.560634 0.828063i
\(81\) −172.683 −2.13189
\(82\) 17.9699 + 20.0898i 0.219145 + 0.244997i
\(83\) 11.0631 + 11.0631i 0.133290 + 0.133290i 0.770604 0.637314i \(-0.219955\pi\)
−0.637314 + 0.770604i \(0.719955\pi\)
\(84\) 167.839 + 18.7548i 1.99809 + 0.223272i
\(85\) 1.30131 + 40.2543i 0.0153095 + 0.473580i
\(86\) 52.0472 + 2.89893i 0.605200 + 0.0337085i
\(87\) 8.20451 8.20451i 0.0943047 0.0943047i
\(88\) 86.8590 + 14.1252i 0.987034 + 0.160514i
\(89\) 90.4306i 1.01607i 0.861335 + 0.508037i \(0.169629\pi\)
−0.861335 + 0.508037i \(0.830371\pi\)
\(90\) −4.90960 + 210.452i −0.0545511 + 2.33836i
\(91\) 161.145i 1.77082i
\(92\) 26.9819 + 33.7706i 0.293282 + 0.367072i
\(93\) 90.4712 + 90.4712i 0.972809 + 0.972809i
\(94\) 72.5807 + 4.04261i 0.772136 + 0.0430065i
\(95\) 72.4652 77.3069i 0.762791 0.813757i
\(96\) −48.1752 + 168.675i −0.501825 + 1.75703i
\(97\) −88.2136 + 88.2136i −0.909418 + 0.909418i −0.996225 0.0868070i \(-0.972334\pi\)
0.0868070 + 0.996225i \(0.472334\pi\)
\(98\) 13.7601 + 15.3833i 0.140409 + 0.156973i
\(99\) −164.670 162.800i −1.66333 1.64445i
\(100\) 99.8912 + 4.66323i 0.998912 + 0.0466323i
\(101\) 52.6106i 0.520897i −0.965488 0.260449i \(-0.916130\pi\)
0.965488 0.260449i \(-0.0838704\pi\)
\(102\) 65.8234 58.8778i 0.645328 0.577234i
\(103\) −53.2977 + 53.2977i −0.517453 + 0.517453i −0.916800 0.399347i \(-0.869237\pi\)
0.399347 + 0.916800i \(0.369237\pi\)
\(104\) 165.055 + 27.8100i 1.58707 + 0.267404i
\(105\) −144.373 + 154.019i −1.37498 + 1.46685i
\(106\) 30.5010 + 1.69885i 0.287745 + 0.0160269i
\(107\) −47.1165 + 47.1165i −0.440341 + 0.440341i −0.892127 0.451786i \(-0.850787\pi\)
0.451786 + 0.892127i \(0.350787\pi\)
\(108\) 206.445 164.945i 1.91153 1.52727i
\(109\) 178.673 1.63920 0.819599 0.572938i \(-0.194196\pi\)
0.819599 + 0.572938i \(0.194196\pi\)
\(110\) −79.1397 + 76.3997i −0.719451 + 0.694543i
\(111\) 55.2113i 0.497399i
\(112\) −104.222 + 65.7544i −0.930553 + 0.587092i
\(113\) −22.6903 22.6903i −0.200799 0.200799i 0.599543 0.800342i \(-0.295349\pi\)
−0.800342 + 0.599543i \(0.795349\pi\)
\(114\) −231.985 12.9211i −2.03495 0.113343i
\(115\) −54.0042 + 1.74580i −0.469601 + 0.0151809i
\(116\) −0.940207 + 8.41403i −0.00810524 + 0.0725347i
\(117\) −311.439 311.439i −2.66187 2.66187i
\(118\) −125.230 + 112.015i −1.06127 + 0.949283i
\(119\) 62.0396 0.521341
\(120\) −132.840 174.456i −1.10700 1.45380i
\(121\) −1.38192 120.992i −0.0114208 0.999935i
\(122\) 116.473 + 130.213i 0.954698 + 1.06732i
\(123\) 52.2405 + 52.2405i 0.424719 + 0.424719i
\(124\) −92.7816 10.3677i −0.748239 0.0836103i
\(125\) −79.4176 + 96.5289i −0.635341 + 0.772232i
\(126\) 323.764 + 18.0330i 2.56955 + 0.143119i
\(127\) 0.187577 0.187577i 0.00147699 0.00147699i −0.706368 0.707845i \(-0.749668\pi\)
0.707845 + 0.706368i \(0.249668\pi\)
\(128\) −49.3634 118.098i −0.385652 0.922644i
\(129\) 142.879 1.10759
\(130\) −151.356 + 144.455i −1.16428 + 1.11119i
\(131\) 106.461 0.812681 0.406340 0.913722i \(-0.366805\pi\)
0.406340 + 0.913722i \(0.366805\pi\)
\(132\) 239.860 + 25.4166i 1.81712 + 0.192550i
\(133\) −115.414 115.414i −0.867772 0.867772i
\(134\) −158.023 8.80160i −1.17928 0.0656836i
\(135\) 10.6724 + 330.136i 0.0790546 + 2.44545i
\(136\) −10.7067 + 63.5449i −0.0787254 + 0.467242i
\(137\) 63.3415 63.3415i 0.462347 0.462347i −0.437077 0.899424i \(-0.643986\pi\)
0.899424 + 0.437077i \(0.143986\pi\)
\(138\) 78.9889 + 88.3070i 0.572384 + 0.639906i
\(139\) 224.103i 1.61225i 0.591746 + 0.806124i \(0.298439\pi\)
−0.591746 + 0.806124i \(0.701561\pi\)
\(140\) 12.1510 153.559i 0.0867932 1.09685i
\(141\) 199.248 1.41310
\(142\) −32.0726 35.8561i −0.225863 0.252508i
\(143\) −1.31427 230.146i −0.00919067 1.60941i
\(144\) −74.3450 + 328.507i −0.516284 + 2.28130i
\(145\) −7.72119 7.23761i −0.0532496 0.0499146i
\(146\) 10.8580 194.945i 0.0743702 1.33524i
\(147\) 40.0020 + 40.0020i 0.272122 + 0.272122i
\(148\) −25.1471 31.4741i −0.169913 0.212663i
\(149\) −160.633 −1.07807 −0.539037 0.842282i \(-0.681212\pi\)
−0.539037 + 0.842282i \(0.681212\pi\)
\(150\) 274.083 2.46444i 1.82722 0.0164296i
\(151\) 190.101 1.25895 0.629474 0.777022i \(-0.283271\pi\)
0.629474 + 0.777022i \(0.283271\pi\)
\(152\) 138.132 98.2962i 0.908762 0.646686i
\(153\) 119.902 119.902i 0.783672 0.783672i
\(154\) 113.685 + 125.644i 0.738213 + 0.815873i
\(155\) 79.8093 85.1417i 0.514898 0.549301i
\(156\) 455.944 + 50.9484i 2.92272 + 0.326592i
\(157\) −60.5266 + 60.5266i −0.385520 + 0.385520i −0.873086 0.487566i \(-0.837885\pi\)
0.487566 + 0.873086i \(0.337885\pi\)
\(158\) −63.7813 71.3054i −0.403679 0.451300i
\(159\) 83.7309 0.526609
\(160\) 155.187 + 38.9467i 0.969922 + 0.243417i
\(161\) 83.2307i 0.516961i
\(162\) 257.414 230.252i 1.58898 1.42131i
\(163\) −40.7392 + 40.7392i −0.249934 + 0.249934i −0.820943 0.571010i \(-0.806552\pi\)
0.571010 + 0.820943i \(0.306552\pi\)
\(164\) −53.5745 5.98657i −0.326674 0.0365035i
\(165\) −204.936 + 221.146i −1.24203 + 1.34028i
\(166\) −31.2428 1.74016i −0.188209 0.0104829i
\(167\) 100.104 100.104i 0.599423 0.599423i −0.340736 0.940159i \(-0.610676\pi\)
0.940159 + 0.340736i \(0.110676\pi\)
\(168\) −275.201 + 195.836i −1.63810 + 1.16569i
\(169\) 268.758i 1.59028i
\(170\) −55.6141 58.2709i −0.327142 0.342770i
\(171\) −446.112 −2.60884
\(172\) −81.4507 + 65.0772i −0.473551 + 0.378356i
\(173\) −139.979 + 139.979i −0.809126 + 0.809126i −0.984502 0.175376i \(-0.943886\pi\)
0.175376 + 0.984502i \(0.443886\pi\)
\(174\) −1.29052 + 23.1699i −0.00741679 + 0.133161i
\(175\) 144.662 + 127.074i 0.826637 + 0.726138i
\(176\) −148.312 + 94.7597i −0.842685 + 0.538408i
\(177\) −325.641 + 325.641i −1.83978 + 1.83978i
\(178\) −120.578 134.802i −0.677405 0.757316i
\(179\) 106.678 0.595964 0.297982 0.954571i \(-0.403686\pi\)
0.297982 + 0.954571i \(0.403686\pi\)
\(180\) −273.293 320.261i −1.51830 1.77923i
\(181\) 12.7141 0.0702438 0.0351219 0.999383i \(-0.488818\pi\)
0.0351219 + 0.999383i \(0.488818\pi\)
\(182\) 214.867 + 240.214i 1.18059 + 1.31986i
\(183\) 338.600 + 338.600i 1.85027 + 1.85027i
\(184\) −85.2502 14.3638i −0.463316 0.0780639i
\(185\) 50.3318 1.62709i 0.272064 0.00879506i
\(186\) −255.495 14.2306i −1.37363 0.0765086i
\(187\) 88.6044 0.505983i 0.473820 0.00270579i
\(188\) −113.584 + 90.7514i −0.604172 + 0.482720i
\(189\) 508.802 2.69208
\(190\) −4.94251 + 211.863i −0.0260132 + 1.11507i
\(191\) 4.38351i 0.0229503i −0.999934 0.0114751i \(-0.996347\pi\)
0.999934 0.0114751i \(-0.00365273\pi\)
\(192\) −153.094 315.675i −0.797366 1.64414i
\(193\) 194.296 194.296i 1.00672 1.00672i 0.00673955 0.999977i \(-0.497855\pi\)
0.999977 0.00673955i \(-0.00214528\pi\)
\(194\) 13.8755 249.119i 0.0715231 1.28412i
\(195\) −392.195 + 418.400i −2.01126 + 2.14564i
\(196\) −41.0235 4.58408i −0.209304 0.0233882i
\(197\) 119.247 + 119.247i 0.605314 + 0.605314i 0.941718 0.336404i \(-0.109211\pi\)
−0.336404 + 0.941718i \(0.609211\pi\)
\(198\) 462.543 + 23.1140i 2.33608 + 0.116737i
\(199\) −351.199 −1.76482 −0.882410 0.470482i \(-0.844080\pi\)
−0.882410 + 0.470482i \(0.844080\pi\)
\(200\) −155.123 + 126.241i −0.775614 + 0.631207i
\(201\) −433.803 −2.15823
\(202\) 70.1498 + 78.4252i 0.347276 + 0.388243i
\(203\) −11.5272 + 11.5272i −0.0567842 + 0.0567842i
\(204\) −19.6148 + 175.535i −0.0961509 + 0.860466i
\(205\) 46.0840 49.1630i 0.224800 0.239820i
\(206\) 8.38341 150.515i 0.0406962 0.730657i
\(207\) 160.857 + 160.857i 0.777088 + 0.777088i
\(208\) −283.124 + 178.625i −1.36117 + 0.858773i
\(209\) −165.774 163.891i −0.793177 0.784169i
\(210\) 9.84699 422.095i 0.0468904 2.00998i
\(211\) −253.350 −1.20071 −0.600355 0.799734i \(-0.704974\pi\)
−0.600355 + 0.799734i \(0.704974\pi\)
\(212\) −47.7322 + 38.1369i −0.225152 + 0.179891i
\(213\) −93.2384 93.2384i −0.437739 0.437739i
\(214\) 7.41114 133.059i 0.0346315 0.621772i
\(215\) −4.21067 130.252i −0.0195845 0.605822i
\(216\) −87.8079 + 521.148i −0.406518 + 2.41272i
\(217\) −127.110 127.110i −0.585762 0.585762i
\(218\) −266.342 + 238.238i −1.22175 + 1.09283i
\(219\) 535.159i 2.44365i
\(220\) 16.1016 219.410i 0.0731892 0.997318i
\(221\) 168.534 0.762595
\(222\) −73.6175 82.3019i −0.331610 0.370729i
\(223\) 77.2143 77.2143i 0.346252 0.346252i −0.512459 0.858712i \(-0.671265\pi\)
0.858712 + 0.512459i \(0.171265\pi\)
\(224\) 67.6853 236.985i 0.302167 1.05797i
\(225\) 525.174 33.9904i 2.33411 0.151068i
\(226\) 64.0785 + 3.56905i 0.283533 + 0.0157922i
\(227\) 219.293 219.293i 0.966048 0.966048i −0.0333944 0.999442i \(-0.510632\pi\)
0.999442 + 0.0333944i \(0.0106317\pi\)
\(228\) 363.042 290.062i 1.59229 1.27220i
\(229\) 257.724i 1.12543i −0.826650 0.562717i \(-0.809756\pi\)
0.826650 0.562717i \(-0.190244\pi\)
\(230\) 78.1747 74.6104i 0.339890 0.324393i
\(231\) 330.272 + 326.522i 1.42975 + 1.41351i
\(232\) −9.81754 13.7962i −0.0423170 0.0594664i
\(233\) −153.796 + 153.796i −0.660067 + 0.660067i −0.955396 0.295328i \(-0.904571\pi\)
0.295328 + 0.955396i \(0.404571\pi\)
\(234\) 879.520 + 48.9876i 3.75863 + 0.209349i
\(235\) −5.87186 181.638i −0.0249866 0.772929i
\(236\) 37.3172 333.957i 0.158124 1.41507i
\(237\) −185.419 185.419i −0.782359 0.782359i
\(238\) −92.4807 + 82.7222i −0.388574 + 0.347572i
\(239\) 38.8269i 0.162456i −0.996696 0.0812279i \(-0.974116\pi\)
0.996696 0.0812279i \(-0.0258842\pi\)
\(240\) 430.637 + 82.9301i 1.79432 + 0.345542i
\(241\) 0.772619i 0.00320589i −0.999999 0.00160294i \(-0.999490\pi\)
0.999999 0.00160294i \(-0.000510233\pi\)
\(242\) 163.388 + 178.517i 0.675158 + 0.737673i
\(243\) 248.953 248.953i 1.02450 1.02450i
\(244\) −347.246 38.8023i −1.42314 0.159026i
\(245\) 35.2878 37.6455i 0.144032 0.153655i
\(246\) −147.530 8.21712i −0.599714 0.0334029i
\(247\) −313.527 313.527i −1.26934 1.26934i
\(248\) 152.131 108.258i 0.613431 0.436525i
\(249\) −85.7672 −0.344446
\(250\) −10.3239 249.787i −0.0412956 0.999147i
\(251\) 14.8441i 0.0591399i −0.999563 0.0295699i \(-0.990586\pi\)
0.999563 0.0295699i \(-0.00941378\pi\)
\(252\) −506.670 + 404.818i −2.01060 + 1.60642i
\(253\) 0.678814 + 118.869i 0.00268306 + 0.469839i
\(254\) −0.0295048 + 0.529727i −0.000116161 + 0.00208554i
\(255\) −161.081 150.992i −0.631690 0.592127i
\(256\) 231.055 + 110.226i 0.902557 + 0.430570i
\(257\) −64.3743 + 64.3743i −0.250484 + 0.250484i −0.821169 0.570685i \(-0.806678\pi\)
0.570685 + 0.821169i \(0.306678\pi\)
\(258\) −212.986 + 190.512i −0.825527 + 0.738418i
\(259\) 77.5708i 0.299501i
\(260\) 33.0089 417.149i 0.126957 1.60442i
\(261\) 44.5564i 0.170714i
\(262\) −158.699 + 141.953i −0.605720 + 0.541805i
\(263\) −67.4719 67.4719i −0.256547 0.256547i 0.567101 0.823648i \(-0.308065\pi\)
−0.823648 + 0.567101i \(0.808065\pi\)
\(264\) −391.442 + 281.936i −1.48273 + 1.06794i
\(265\) −2.46756 76.3308i −0.00931156 0.288041i
\(266\) 325.934 + 18.1539i 1.22532 + 0.0682477i
\(267\) −350.533 350.533i −1.31286 1.31286i
\(268\) 247.297 197.585i 0.922750 0.737256i
\(269\) 261.542i 0.972275i 0.873882 + 0.486137i \(0.161595\pi\)
−0.873882 + 0.486137i \(0.838405\pi\)
\(270\) −456.105 477.894i −1.68928 1.76998i
\(271\) −383.025 −1.41338 −0.706689 0.707525i \(-0.749812\pi\)
−0.706689 + 0.707525i \(0.749812\pi\)
\(272\) −68.7693 109.001i −0.252828 0.400738i
\(273\) 624.641 + 624.641i 2.28806 + 2.28806i
\(274\) −9.96325 + 178.880i −0.0363622 + 0.652845i
\(275\) 207.641 + 180.306i 0.755057 + 0.655659i
\(276\) −235.493 26.3147i −0.853236 0.0953430i
\(277\) 105.551 + 105.551i 0.381051 + 0.381051i 0.871481 0.490430i \(-0.163160\pi\)
−0.490430 + 0.871481i \(0.663160\pi\)
\(278\) −298.813 334.063i −1.07487 1.20167i
\(279\) −491.324 −1.76102
\(280\) 186.638 + 245.107i 0.666566 + 0.875384i
\(281\) 198.947i 0.707998i 0.935246 + 0.353999i \(0.115178\pi\)
−0.935246 + 0.353999i \(0.884822\pi\)
\(282\) −297.013 + 265.672i −1.05324 + 0.942100i
\(283\) −169.428 169.428i −0.598687 0.598687i 0.341276 0.939963i \(-0.389141\pi\)
−0.939963 + 0.341276i \(0.889141\pi\)
\(284\) 95.6195 + 10.6848i 0.336688 + 0.0376225i
\(285\) 18.7678 + 580.557i 0.0658519 + 2.03704i
\(286\) 308.830 + 341.319i 1.07983 + 1.19342i
\(287\) −73.3969 73.3969i −0.255738 0.255738i
\(288\) −327.200 588.827i −1.13611 2.04454i
\(289\) 224.116i 0.775487i
\(290\) 21.1602 + 0.493644i 0.0729663 + 0.00170222i
\(291\) 683.879i 2.35010i
\(292\) 243.749 + 305.077i 0.834758 + 1.04478i
\(293\) −118.377 + 118.377i −0.404016 + 0.404016i −0.879646 0.475629i \(-0.842220\pi\)
0.475629 + 0.879646i \(0.342220\pi\)
\(294\) −112.968 6.29208i −0.384244 0.0214016i
\(295\) 306.457 + 287.264i 1.03884 + 0.973777i
\(296\) 79.4530 + 13.3870i 0.268422 + 0.0452263i
\(297\) 726.666 4.14969i 2.44669 0.0139720i
\(298\) 239.451 214.185i 0.803528 0.718740i
\(299\) 226.100i 0.756188i
\(300\) −405.281 + 369.129i −1.35094 + 1.23043i
\(301\) −200.743 −0.666919
\(302\) −283.378 + 253.477i −0.938339 + 0.839326i
\(303\) 203.933 + 203.933i 0.673046 + 0.673046i
\(304\) −74.8433 + 330.709i −0.246195 + 1.08786i
\(305\) 298.696 318.653i 0.979331 1.04476i
\(306\) −18.8599 + 338.609i −0.0616335 + 1.10656i
\(307\) 195.242 195.242i 0.635966 0.635966i −0.313592 0.949558i \(-0.601532\pi\)
0.949558 + 0.313592i \(0.101532\pi\)
\(308\) −336.998 35.7099i −1.09415 0.115941i
\(309\) 413.192i 1.33719i
\(310\) −5.44342 + 233.334i −0.0175594 + 0.752691i
\(311\) 522.926i 1.68144i 0.541474 + 0.840718i \(0.317867\pi\)
−0.541474 + 0.840718i \(0.682133\pi\)
\(312\) −747.596 + 531.998i −2.39614 + 1.70512i
\(313\) −242.759 242.759i −0.775587 0.775587i 0.203490 0.979077i \(-0.434772\pi\)
−0.979077 + 0.203490i \(0.934772\pi\)
\(314\) 9.52047 170.930i 0.0303200 0.544363i
\(315\) −26.1928 810.241i −0.0831518 2.57219i
\(316\) 190.154 + 21.2484i 0.601753 + 0.0672416i
\(317\) −33.9249 + 33.9249i −0.107019 + 0.107019i −0.758589 0.651570i \(-0.774111\pi\)
0.651570 + 0.758589i \(0.274111\pi\)
\(318\) −124.815 + 111.645i −0.392501 + 0.351085i
\(319\) −16.3690 + 16.5570i −0.0513135 + 0.0519029i
\(320\) −283.264 + 148.867i −0.885201 + 0.465209i
\(321\) 365.272i 1.13792i
\(322\) −110.978 124.070i −0.344652 0.385310i
\(323\) 120.706 120.706i 0.373701 0.373701i
\(324\) −76.7070 + 686.461i −0.236750 + 2.11871i
\(325\) 392.980 + 345.203i 1.20917 + 1.06216i
\(326\) 6.40803 115.049i 0.0196565 0.352912i
\(327\) −692.583 + 692.583i −2.11799 + 2.11799i
\(328\) 87.8444 62.5111i 0.267818 0.190583i
\(329\) −279.939 −0.850879
\(330\) 10.6209 602.912i 0.0321844 1.82701i
\(331\) 423.596i 1.27975i 0.768480 + 0.639873i \(0.221013\pi\)
−0.768480 + 0.639873i \(0.778987\pi\)
\(332\) 48.8930 39.0644i 0.147268 0.117664i
\(333\) −149.918 149.918i −0.450206 0.450206i
\(334\) −15.7457 + 282.698i −0.0471429 + 0.846400i
\(335\) 12.7843 + 395.464i 0.0381620 + 1.18049i
\(336\) 149.111 658.874i 0.443782 1.96093i
\(337\) 295.524 + 295.524i 0.876926 + 0.876926i 0.993215 0.116290i \(-0.0371001\pi\)
−0.116290 + 0.993215i \(0.537100\pi\)
\(338\) 358.356 + 400.630i 1.06022 + 1.18529i
\(339\) 175.907 0.518900
\(340\) 160.599 + 12.7082i 0.472351 + 0.0373770i
\(341\) −182.575 180.501i −0.535409 0.529329i
\(342\) 665.007 594.836i 1.94446 1.73929i
\(343\) 210.656 + 210.656i 0.614158 + 0.614158i
\(344\) 34.6437 205.613i 0.100708 0.597713i
\(345\) 202.567 216.102i 0.587152 0.626382i
\(346\) 22.0178 395.307i 0.0636354 1.14251i
\(347\) −235.404 + 235.404i −0.678398 + 0.678398i −0.959638 0.281239i \(-0.909255\pi\)
0.281239 + 0.959638i \(0.409255\pi\)
\(348\) −28.9706 36.2595i −0.0832487 0.104194i
\(349\) 487.495 1.39683 0.698416 0.715692i \(-0.253888\pi\)
0.698416 + 0.715692i \(0.253888\pi\)
\(350\) −385.081 + 3.46249i −1.10023 + 0.00989283i
\(351\) 1382.19 3.93785
\(352\) 94.7347 339.012i 0.269133 0.963103i
\(353\) 292.174 + 292.174i 0.827689 + 0.827689i 0.987197 0.159508i \(-0.0509907\pi\)
−0.159508 + 0.987197i \(0.550991\pi\)
\(354\) 51.2214 919.625i 0.144693 2.59781i
\(355\) −82.2503 + 87.7458i −0.231691 + 0.247171i
\(356\) 359.485 + 40.1698i 1.00979 + 0.112837i
\(357\) −240.482 + 240.482i −0.673620 + 0.673620i
\(358\) −159.021 + 142.242i −0.444194 + 0.397323i
\(359\) 183.518i 0.511193i −0.966784 0.255596i \(-0.917728\pi\)
0.966784 0.255596i \(-0.0822718\pi\)
\(360\) 834.420 + 113.001i 2.31783 + 0.313892i
\(361\) −88.1024 −0.244051
\(362\) −18.9526 + 16.9527i −0.0523553 + 0.0468308i
\(363\) 474.355 + 463.641i 1.30676 + 1.27725i
\(364\) −640.592 71.5816i −1.75987 0.196653i
\(365\) −487.862 + 15.7712i −1.33661 + 0.0432089i
\(366\) −956.222 53.2597i −2.61263 0.145518i
\(367\) 309.683 + 309.683i 0.843822 + 0.843822i 0.989354 0.145532i \(-0.0464893\pi\)
−0.145532 + 0.989354i \(0.546489\pi\)
\(368\) 146.232 92.2591i 0.397371 0.250704i
\(369\) −283.703 −0.768843
\(370\) −72.8586 + 69.5367i −0.196915 + 0.187937i
\(371\) −117.640 −0.317090
\(372\) 399.834 319.459i 1.07482 0.858760i
\(373\) 195.281 195.281i 0.523542 0.523542i −0.395097 0.918639i \(-0.629289\pi\)
0.918639 + 0.395097i \(0.129289\pi\)
\(374\) −131.405 + 118.897i −0.351351 + 0.317907i
\(375\) −66.3280 682.016i −0.176875 1.81871i
\(376\) 48.3112 286.731i 0.128487 0.762584i
\(377\) −31.3142 + 31.3142i −0.0830614 + 0.0830614i
\(378\) −758.457 + 678.426i −2.00650 + 1.79478i
\(379\) 683.030 1.80219 0.901095 0.433621i \(-0.142764\pi\)
0.901095 + 0.433621i \(0.142764\pi\)
\(380\) −275.125 322.408i −0.724014 0.848442i
\(381\) 1.45420i 0.00381680i
\(382\) 5.84487 + 6.53437i 0.0153007 + 0.0171057i
\(383\) −283.380 + 283.380i −0.739895 + 0.739895i −0.972557 0.232663i \(-0.925256\pi\)
0.232663 + 0.972557i \(0.425256\pi\)
\(384\) 649.127 + 266.436i 1.69044 + 0.693843i
\(385\) 287.931 310.706i 0.747872 0.807028i
\(386\) −30.5617 + 548.703i −0.0791753 + 1.42151i
\(387\) −387.968 + 387.968i −1.00250 + 1.00250i
\(388\) 311.487 + 389.857i 0.802801 + 1.00479i
\(389\) 699.754i 1.79885i 0.437072 + 0.899427i \(0.356016\pi\)
−0.437072 + 0.899427i \(0.643984\pi\)
\(390\) 26.7498 1146.64i 0.0685893 2.94011i
\(391\) −87.0469 −0.222626
\(392\) 67.2650 47.8665i 0.171594 0.122108i
\(393\) −412.672 + 412.672i −1.05006 + 1.05006i
\(394\) −336.759 18.7568i −0.854718 0.0476062i
\(395\) −163.568 + 174.496i −0.414095 + 0.441762i
\(396\) −720.320 + 582.290i −1.81899 + 1.47043i
\(397\) 482.013 482.013i 1.21414 1.21414i 0.244487 0.969653i \(-0.421380\pi\)
0.969653 0.244487i \(-0.0786195\pi\)
\(398\) 523.523 468.281i 1.31538 1.17659i
\(399\) 894.749 2.24248
\(400\) 62.9099 395.022i 0.157275 0.987555i
\(401\) 615.908 1.53593 0.767965 0.640492i \(-0.221270\pi\)
0.767965 + 0.640492i \(0.221270\pi\)
\(402\) 646.659 578.424i 1.60860 1.43887i
\(403\) −345.301 345.301i −0.856828 0.856828i
\(404\) −209.141 23.3700i −0.517675 0.0578465i
\(405\) −629.935 590.482i −1.55540 1.45798i
\(406\) 1.81316 32.5533i 0.00446591 0.0801807i
\(407\) −0.632653 110.786i −0.00155443 0.272201i
\(408\) −204.815 287.819i −0.501998 0.705439i
\(409\) −330.071 −0.807019 −0.403509 0.914976i \(-0.632210\pi\)
−0.403509 + 0.914976i \(0.632210\pi\)
\(410\) −3.14317 + 134.733i −0.00766627 + 0.328618i
\(411\) 491.058i 1.19479i
\(412\) 188.197 + 235.547i 0.456789 + 0.571717i
\(413\) 457.519 457.519i 1.10779 1.10779i
\(414\) −454.269 25.3019i −1.09727 0.0611157i
\(415\) 2.52757 + 78.1871i 0.00609054 + 0.188403i
\(416\) 183.870 643.782i 0.441996 1.54755i
\(417\) −868.682 868.682i −2.08317 2.08317i
\(418\) 465.644 + 23.2690i 1.11398 + 0.0556674i
\(419\) −429.690 −1.02551 −0.512757 0.858534i \(-0.671376\pi\)
−0.512757 + 0.858534i \(0.671376\pi\)
\(420\) 548.134 + 642.335i 1.30508 + 1.52937i
\(421\) 261.974 0.622267 0.311134 0.950366i \(-0.399291\pi\)
0.311134 + 0.950366i \(0.399291\pi\)
\(422\) 377.661 337.811i 0.894932 0.800500i
\(423\) −541.029 + 541.029i −1.27903 + 1.27903i
\(424\) 20.3021 120.495i 0.0478823 0.284186i
\(425\) −132.901 + 151.294i −0.312708 + 0.355987i
\(426\) 263.310 + 14.6659i 0.618098 + 0.0344269i
\(427\) −475.726 475.726i −1.11411 1.11411i
\(428\) 166.371 + 208.230i 0.388717 + 0.486518i
\(429\) 897.201 + 887.012i 2.09138 + 2.06763i
\(430\) 179.951 + 188.548i 0.418492 + 0.438484i
\(431\) −425.806 −0.987949 −0.493974 0.869476i \(-0.664456\pi\)
−0.493974 + 0.869476i \(0.664456\pi\)
\(432\) −563.994 893.941i −1.30554 2.06931i
\(433\) −441.920 441.920i −1.02060 1.02060i −0.999783 0.0208168i \(-0.993373\pi\)
−0.0208168 0.999783i \(-0.506627\pi\)
\(434\) 358.966 + 19.9937i 0.827111 + 0.0460685i
\(435\) 57.9844 1.87447i 0.133297 0.00430913i
\(436\) 79.3675 710.270i 0.182036 1.62906i
\(437\) 161.935 + 161.935i 0.370561 + 0.370561i
\(438\) 713.570 + 797.747i 1.62915 + 1.82134i
\(439\) 39.1211i 0.0891140i −0.999007 0.0445570i \(-0.985812\pi\)
0.999007 0.0445570i \(-0.0141876\pi\)
\(440\) 268.554 + 348.538i 0.610350 + 0.792132i
\(441\) −217.240 −0.492607
\(442\) −251.228 + 224.719i −0.568390 + 0.508414i
\(443\) −441.330 + 441.330i −0.996231 + 0.996231i −0.999993 0.00376227i \(-0.998802\pi\)
0.00376227 + 0.999993i \(0.498802\pi\)
\(444\) 219.479 + 24.5252i 0.494322 + 0.0552370i
\(445\) −309.223 + 329.884i −0.694883 + 0.741312i
\(446\) −12.1454 + 218.057i −0.0272317 + 0.488917i
\(447\) 622.657 622.657i 1.39297 1.39297i
\(448\) 215.095 + 443.518i 0.480122 + 0.989995i
\(449\) 553.397i 1.23251i −0.787547 0.616254i \(-0.788649\pi\)
0.787547 0.616254i \(-0.211351\pi\)
\(450\) −737.541 + 750.924i −1.63898 + 1.66872i
\(451\) −105.423 104.226i −0.233755 0.231100i
\(452\) −100.279 + 80.1205i −0.221856 + 0.177258i
\(453\) −736.883 + 736.883i −1.62667 + 1.62667i
\(454\) −34.4935 + 619.294i −0.0759768 + 1.36408i
\(455\) 551.027 587.844i 1.21105 1.29196i
\(456\) −154.414 + 916.459i −0.338627 + 2.00978i
\(457\) −154.432 154.432i −0.337925 0.337925i 0.517661 0.855586i \(-0.326803\pi\)
−0.855586 + 0.517661i \(0.826803\pi\)
\(458\) 343.644 + 384.182i 0.750314 + 0.838826i
\(459\) 532.132i 1.15933i
\(460\) −17.0490 + 215.456i −0.0370630 + 0.468383i
\(461\) 471.965i 1.02379i −0.859049 0.511893i \(-0.828944\pi\)
0.859049 0.511893i \(-0.171056\pi\)
\(462\) −927.704 46.3589i −2.00802 0.100344i
\(463\) −100.365 + 100.365i −0.216771 + 0.216771i −0.807136 0.590365i \(-0.798984\pi\)
0.590365 + 0.807136i \(0.298984\pi\)
\(464\) 33.0303 + 7.47513i 0.0711860 + 0.0161102i
\(465\) 20.6698 + 639.394i 0.0444513 + 1.37504i
\(466\) 24.1912 434.327i 0.0519124 0.932032i
\(467\) −239.686 239.686i −0.513247 0.513247i 0.402273 0.915520i \(-0.368220\pi\)
−0.915520 + 0.402273i \(0.868220\pi\)
\(468\) −1376.39 + 1099.71i −2.94101 + 2.34980i
\(469\) 609.486 1.29954
\(470\) 250.945 + 262.934i 0.533926 + 0.559433i
\(471\) 469.235i 0.996252i
\(472\) 389.663 + 547.578i 0.825556 + 1.16012i
\(473\) −286.699 + 1.63722i −0.606128 + 0.00346135i
\(474\) 523.633 + 29.1653i 1.10471 + 0.0615302i
\(475\) 528.695 34.2182i 1.11304 0.0720384i
\(476\) 27.5584 246.623i 0.0578958 0.518117i
\(477\) −227.359 + 227.359i −0.476645 + 0.476645i
\(478\) 51.7710 + 57.8782i 0.108307 + 0.121084i
\(479\) 400.843i 0.836833i 0.908255 + 0.418417i \(0.137415\pi\)
−0.908255 + 0.418417i \(0.862585\pi\)
\(480\) −752.516 + 450.581i −1.56774 + 0.938710i
\(481\) 210.725i 0.438098i
\(482\) 1.03019 + 1.15172i 0.00213733 + 0.00238946i
\(483\) −322.625 322.625i −0.667960 0.667960i
\(484\) −481.589 48.2520i −0.995018 0.0996942i
\(485\) −623.438 + 20.1540i −1.28544 + 0.0415547i
\(486\) −39.1588 + 703.056i −0.0805738 + 1.44662i
\(487\) 24.4248 + 24.4248i 0.0501536 + 0.0501536i 0.731739 0.681585i \(-0.238709\pi\)
−0.681585 + 0.731739i \(0.738709\pi\)
\(488\) 569.369 405.169i 1.16674 0.830265i
\(489\) 315.832i 0.645873i
\(490\) −2.40682 + 103.169i −0.00491187 + 0.210549i
\(491\) 311.219 0.633846 0.316923 0.948451i \(-0.397350\pi\)
0.316923 + 0.948451i \(0.397350\pi\)
\(492\) 230.875 184.464i 0.469258 0.374926i
\(493\) −12.0557 12.0557i −0.0244538 0.0244538i
\(494\) 885.415 + 49.3159i 1.79234 + 0.0998298i
\(495\) −44.0165 1156.96i −0.0889222 2.33730i
\(496\) −82.4284 + 364.226i −0.166186 + 0.734326i
\(497\) 130.998 + 130.998i 0.263578 + 0.263578i
\(498\) 127.851 114.360i 0.256728 0.229639i
\(499\) −108.280 −0.216994 −0.108497 0.994097i \(-0.534604\pi\)
−0.108497 + 0.994097i \(0.534604\pi\)
\(500\) 348.450 + 358.584i 0.696899 + 0.717169i
\(501\) 776.057i 1.54902i
\(502\) 19.7928 + 22.1277i 0.0394279 + 0.0440791i
\(503\) 22.0758 + 22.0758i 0.0438882 + 0.0438882i 0.728710 0.684822i \(-0.240120\pi\)
−0.684822 + 0.728710i \(0.740120\pi\)
\(504\) 215.504 1279.03i 0.427587 2.53777i
\(505\) 179.900 191.919i 0.356237 0.380038i
\(506\) −159.510 176.290i −0.315236 0.348399i
\(507\) 1041.78 + 1041.78i 2.05479 + 2.05479i
\(508\) −0.662345 0.828991i −0.00130383 0.00163187i
\(509\) 417.953i 0.821125i 0.911832 + 0.410562i \(0.134668\pi\)
−0.911832 + 0.410562i \(0.865332\pi\)
\(510\) 441.449 + 10.2985i 0.865586 + 0.0201931i
\(511\) 751.889i 1.47141i
\(512\) −491.400 + 143.772i −0.959765 + 0.280805i
\(513\) 989.936 989.936i 1.92970 1.92970i
\(514\) 10.1257 181.796i 0.0196998 0.353689i
\(515\) −376.675 + 12.1768i −0.731407 + 0.0236444i
\(516\) 63.4679 567.982i 0.123000 1.10074i
\(517\) −399.806 + 2.28313i −0.773320 + 0.00441611i
\(518\) 103.431 + 115.633i 0.199674 + 0.223229i
\(519\) 1085.19i 2.09093i
\(520\) 507.012 + 665.846i 0.975023 + 1.28047i
\(521\) 253.019 0.485640 0.242820 0.970071i \(-0.421927\pi\)
0.242820 + 0.970071i \(0.421927\pi\)
\(522\) −59.4105 66.4190i −0.113813 0.127239i
\(523\) −605.834 605.834i −1.15838 1.15838i −0.984823 0.173559i \(-0.944473\pi\)
−0.173559 0.984823i \(-0.555527\pi\)
\(524\) 47.2907 423.211i 0.0902495 0.807654i
\(525\) −1053.32 + 68.1731i −2.00633 + 0.129854i
\(526\) 190.544 + 10.6129i 0.362251 + 0.0201767i
\(527\) 132.939 132.939i 0.252255 0.252255i
\(528\) 207.585 942.213i 0.393153 1.78450i
\(529\) 412.220i 0.779244i
\(530\) 105.456 + 110.494i 0.198974 + 0.208479i
\(531\) 1768.46i 3.33044i
\(532\) −510.067 + 407.532i −0.958772 + 0.766037i
\(533\) −199.386 199.386i −0.374083 0.374083i
\(534\) 989.923 + 55.1368i 1.85379 + 0.103252i
\(535\) −332.990 + 10.7646i −0.622411 + 0.0201208i
\(536\) −105.184 + 624.274i −0.196238 + 1.16469i
\(537\) −413.511 + 413.511i −0.770040 + 0.770040i
\(538\) −348.734 389.873i −0.648205 0.724671i
\(539\) −80.7256 79.8089i −0.149769 0.148068i
\(540\) 1317.12 + 104.223i 2.43910 + 0.193006i
\(541\) 391.623i 0.723887i −0.932200 0.361944i \(-0.882113\pi\)
0.932200 0.361944i \(-0.117887\pi\)
\(542\) 570.965 510.718i 1.05344 0.942283i
\(543\) −49.2834 + 49.2834i −0.0907613 + 0.0907613i
\(544\) 247.852 + 70.7888i 0.455609 + 0.130126i
\(545\) 651.784 + 610.962i 1.19593 + 1.12103i
\(546\) −1764.02 98.2524i −3.23080 0.179949i
\(547\) −166.752 + 166.752i −0.304847 + 0.304847i −0.842907 0.538059i \(-0.819158\pi\)
0.538059 + 0.842907i \(0.319158\pi\)
\(548\) −223.662 279.936i −0.408143 0.510832i
\(549\) −1838.84 −3.34943
\(550\) −549.941 + 8.08574i −0.999892 + 0.0147014i
\(551\) 44.8551i 0.0814066i
\(552\) 386.131 274.775i 0.699512 0.497781i
\(553\) 260.510 + 260.510i 0.471085 + 0.471085i
\(554\) −298.082 16.6026i −0.538053 0.0299685i
\(555\) −188.792 + 201.406i −0.340167 + 0.362895i
\(556\) 890.866 + 99.5478i 1.60228 + 0.179043i
\(557\) 355.499 + 355.499i 0.638238 + 0.638238i 0.950121 0.311883i \(-0.100960\pi\)
−0.311883 + 0.950121i \(0.600960\pi\)
\(558\) 732.403 655.120i 1.31255 1.17405i
\(559\) −545.327 −0.975540
\(560\) −605.037 116.515i −1.08042 0.208063i
\(561\) −341.493 + 345.416i −0.608722 + 0.615714i
\(562\) −265.272 296.565i −0.472014 0.527696i
\(563\) −608.314 608.314i −1.08049 1.08049i −0.996464 0.0840234i \(-0.973223\pi\)
−0.0840234 0.996464i \(-0.526777\pi\)
\(564\) 88.5071 792.060i 0.156927 1.40436i
\(565\) −5.18401 160.361i −0.00917525 0.283824i
\(566\) 478.474 + 26.6501i 0.845361 + 0.0470850i
\(567\) −940.448 + 940.448i −1.65864 + 1.65864i
\(568\) −156.784 + 111.569i −0.276028 + 0.196425i
\(569\) −937.364 −1.64739 −0.823694 0.567035i \(-0.808091\pi\)
−0.823694 + 0.567035i \(0.808091\pi\)
\(570\) −802.078 840.396i −1.40716 1.47438i
\(571\) 703.275 1.23166 0.615828 0.787881i \(-0.288822\pi\)
0.615828 + 0.787881i \(0.288822\pi\)
\(572\) −915.472 97.0076i −1.60048 0.169594i
\(573\) 16.9917 + 16.9917i 0.0296538 + 0.0296538i
\(574\) 207.276 + 11.5449i 0.361109 + 0.0201131i
\(575\) −202.973 178.296i −0.352996 0.310080i
\(576\) 1272.88 + 441.466i 2.20986 + 0.766433i
\(577\) −123.821 + 123.821i −0.214594 + 0.214594i −0.806216 0.591621i \(-0.798488\pi\)
0.591621 + 0.806216i \(0.298488\pi\)
\(578\) 298.831 + 334.083i 0.517009 + 0.577999i
\(579\) 1506.29i 2.60154i
\(580\) −32.2012 + 27.4787i −0.0555193 + 0.0473771i
\(581\) 120.501 0.207403
\(582\) 911.869 + 1019.44i 1.56679 + 1.75161i
\(583\) −168.013 + 0.959452i −0.288187 + 0.00164572i
\(584\) −770.133 129.759i −1.31872 0.222191i
\(585\) −71.1541 2201.06i −0.121631 3.76249i
\(586\) 18.6200 334.302i 0.0317747 0.570481i
\(587\) −37.1908 37.1908i −0.0633573 0.0633573i 0.674718 0.738075i \(-0.264265\pi\)
−0.738075 + 0.674718i \(0.764265\pi\)
\(588\) 176.787 141.249i 0.300659 0.240220i
\(589\) −494.617 −0.839758
\(590\) −839.859 19.5929i −1.42349 0.0332084i
\(591\) −924.465 −1.56424
\(592\) −136.288 + 85.9852i −0.230217 + 0.145245i
\(593\) −113.671 + 113.671i −0.191688 + 0.191688i −0.796425 0.604737i \(-0.793278\pi\)
0.604737 + 0.796425i \(0.293278\pi\)
\(594\) −1077.69 + 975.107i −1.81429 + 1.64159i
\(595\) 226.316 + 212.142i 0.380362 + 0.356540i
\(596\) −71.3543 + 638.558i −0.119722 + 1.07141i
\(597\) 1361.34 1361.34i 2.28031 2.28031i
\(598\) −301.477 337.041i −0.504142 0.563614i
\(599\) 811.770 1.35521 0.677605 0.735426i \(-0.263018\pi\)
0.677605 + 0.735426i \(0.263018\pi\)
\(600\) 111.952 1090.64i 0.186587 1.81774i
\(601\) 210.411i 0.350102i 0.984559 + 0.175051i \(0.0560091\pi\)
−0.984559 + 0.175051i \(0.943991\pi\)
\(602\) 299.241 267.666i 0.497079 0.444628i
\(603\) 1177.93 1177.93i 1.95345 1.95345i
\(604\) 84.4441 755.701i 0.139808 1.25116i
\(605\) 408.686 446.095i 0.675514 0.737347i
\(606\) −575.917 32.0774i −0.950358 0.0529331i
\(607\) 14.5520 14.5520i 0.0239736 0.0239736i −0.695018 0.718992i \(-0.744604\pi\)
0.718992 + 0.695018i \(0.244604\pi\)
\(608\) −329.394 592.774i −0.541766 0.974957i
\(609\) 89.3649i 0.146740i
\(610\) −20.3726 + 873.282i −0.0333978 + 1.43161i
\(611\) −760.468 −1.24463
\(612\) −423.380 529.902i −0.691797 0.865853i
\(613\) 511.327 511.327i 0.834139 0.834139i −0.153941 0.988080i \(-0.549197\pi\)
0.988080 + 0.153941i \(0.0491966\pi\)
\(614\) −30.7104 + 551.372i −0.0500169 + 0.898000i
\(615\) 11.9353 + 369.203i 0.0194070 + 0.600330i
\(616\) 549.969 396.114i 0.892806 0.643043i
\(617\) −307.862 + 307.862i −0.498965 + 0.498965i −0.911116 0.412151i \(-0.864778\pi\)
0.412151 + 0.911116i \(0.364778\pi\)
\(618\) 550.942 + 615.934i 0.891491 + 0.996657i
\(619\) −149.498 −0.241515 −0.120758 0.992682i \(-0.538532\pi\)
−0.120758 + 0.992682i \(0.538532\pi\)
\(620\) −303.008 355.083i −0.488723 0.572714i
\(621\) −713.894 −1.14959
\(622\) −697.259 779.512i −1.12099 1.25323i
\(623\) 492.493 + 492.493i 0.790518 + 0.790518i
\(624\) 405.066 1789.86i 0.649145 2.86837i
\(625\) −619.786 + 80.5651i −0.991657 + 0.128904i
\(626\) 685.563 + 38.1845i 1.09515 + 0.0609976i
\(627\) 1277.87 7.29740i 2.03807 0.0116386i
\(628\) 213.722 + 267.495i 0.340322 + 0.425948i
\(629\) 81.1276 0.128979
\(630\) 1119.40 + 1172.88i 1.77683 + 1.86171i
\(631\) 367.025i 0.581655i −0.956775 0.290828i \(-0.906069\pi\)
0.956775 0.290828i \(-0.0939306\pi\)
\(632\) −311.789 + 221.873i −0.493338 + 0.351065i
\(633\) 982.052 982.052i 1.55142 1.55142i
\(634\) 5.33619 95.8057i 0.00841671 0.151113i
\(635\) 1.32568 0.0428555i 0.00208768 6.74890e-5i
\(636\) 37.1938 332.852i 0.0584808 0.523352i
\(637\) −152.676 152.676i −0.239679 0.239679i
\(638\) 2.32404 46.5072i 0.00364269 0.0728952i
\(639\) 506.352 0.792413
\(640\) 223.758 599.610i 0.349622 0.936891i
\(641\) −768.223 −1.19848 −0.599238 0.800571i \(-0.704530\pi\)
−0.599238 + 0.800571i \(0.704530\pi\)
\(642\) 487.046 + 544.501i 0.758639 + 0.848133i
\(643\) 440.590 440.590i 0.685210 0.685210i −0.275959 0.961169i \(-0.588996\pi\)
0.961169 + 0.275959i \(0.0889955\pi\)
\(644\) 330.864 + 36.9716i 0.513763 + 0.0574093i
\(645\) 521.212 + 488.569i 0.808081 + 0.757471i
\(646\) −18.9863 + 340.878i −0.0293905 + 0.527676i
\(647\) −93.8740 93.8740i −0.145091 0.145091i 0.630830 0.775921i \(-0.282715\pi\)
−0.775921 + 0.630830i \(0.782715\pi\)
\(648\) −800.966 1125.57i −1.23606 1.73699i
\(649\) 649.693 657.156i 1.00107 1.01257i
\(650\) −1046.09 + 9.40602i −1.60937 + 0.0144708i
\(651\) 985.428 1.51371
\(652\) 143.852 + 180.045i 0.220632 + 0.276143i
\(653\) 539.451 + 539.451i 0.826112 + 0.826112i 0.986977 0.160864i \(-0.0514281\pi\)
−0.160864 + 0.986977i \(0.551428\pi\)
\(654\) 108.939 1955.89i 0.166574 2.99066i
\(655\) 388.362 + 364.039i 0.592919 + 0.555785i
\(656\) −47.5963 + 210.313i −0.0725554 + 0.320600i
\(657\) 1453.15 + 1453.15i 2.21180 + 2.21180i
\(658\) 417.297 373.265i 0.634191 0.567271i
\(659\) 232.233i 0.352402i 0.984354 + 0.176201i \(0.0563809\pi\)
−0.984354 + 0.176201i \(0.943619\pi\)
\(660\) 788.078 + 912.906i 1.19406 + 1.38319i
\(661\) 579.441 0.876613 0.438306 0.898826i \(-0.355578\pi\)
0.438306 + 0.898826i \(0.355578\pi\)
\(662\) −564.814 631.443i −0.853193 0.953841i
\(663\) −653.282 + 653.282i −0.985342 + 0.985342i
\(664\) −20.7958 + 123.425i −0.0313190 + 0.185881i
\(665\) −26.3684 815.672i −0.0396517 1.22657i
\(666\) 423.377 + 23.5813i 0.635702 + 0.0354074i
\(667\) 16.1736 16.1736i 0.0242483 0.0242483i
\(668\) −353.471 442.405i −0.529148 0.662282i
\(669\) 598.607i 0.894778i
\(670\) −546.360 572.461i −0.815463 0.854420i
\(671\) −683.307 675.547i −1.01834 1.00678i
\(672\) 656.253 + 1180.99i 0.976567 + 1.75742i
\(673\) −727.635 + 727.635i −1.08118 + 1.08118i −0.0847817 + 0.996400i \(0.527019\pi\)
−0.996400 + 0.0847817i \(0.972981\pi\)
\(674\) −834.574 46.4842i −1.23824 0.0689676i
\(675\) −1089.95 + 1240.80i −1.61474 + 1.83823i
\(676\) −1068.38 119.384i −1.58045 0.176603i
\(677\) −464.202 464.202i −0.685675 0.685675i 0.275598 0.961273i \(-0.411124\pi\)
−0.961273 + 0.275598i \(0.911124\pi\)
\(678\) −262.220 + 234.551i −0.386755 + 0.345945i
\(679\) 960.837i 1.41508i
\(680\) −256.346 + 195.196i −0.376979 + 0.287053i
\(681\) 1700.08i 2.49644i
\(682\) 512.835 + 25.6272i 0.751957 + 0.0375765i
\(683\) −419.389 + 419.389i −0.614040 + 0.614040i −0.943996 0.329956i \(-0.892966\pi\)
0.329956 + 0.943996i \(0.392966\pi\)
\(684\) −198.166 + 1773.41i −0.289716 + 2.59271i
\(685\) 447.658 14.4716i 0.653516 0.0211264i
\(686\) −594.904 33.1350i −0.867206 0.0483017i
\(687\) 999.009 + 999.009i 1.45416 + 1.45416i
\(688\) 222.518 + 352.695i 0.323427 + 0.512638i
\(689\) −319.576 −0.463825
\(690\) −13.8162 + 592.236i −0.0200235 + 0.858313i
\(691\) 1091.80i 1.58003i 0.613085 + 0.790017i \(0.289928\pi\)
−0.613085 + 0.790017i \(0.710072\pi\)
\(692\) 494.272 + 618.631i 0.714266 + 0.893976i
\(693\) −1783.43 + 10.1844i −2.57349 + 0.0146962i
\(694\) 37.0277 664.793i 0.0533541 0.957916i
\(695\) −766.308 + 817.509i −1.10260 + 1.17627i
\(696\) 91.5333 + 15.4224i 0.131513 + 0.0221586i
\(697\) 76.7622 76.7622i 0.110132 0.110132i
\(698\) −726.695 + 650.015i −1.04111 + 0.931253i
\(699\) 1192.31i 1.70573i
\(700\) 569.413 518.620i 0.813446 0.740885i
\(701\) 1231.26i 1.75643i −0.478262 0.878217i \(-0.658733\pi\)
0.478262 0.878217i \(-0.341267\pi\)
\(702\) −2060.39 + 1842.98i −2.93502 + 2.62532i
\(703\) −150.923 150.923i −0.214685 0.214685i
\(704\) 310.813 + 631.673i 0.441496 + 0.897263i
\(705\) 726.840 + 681.318i 1.03098 + 0.966408i
\(706\) −825.115 45.9573i −1.16872 0.0650953i
\(707\) −286.522 286.522i −0.405264 0.405264i
\(708\) 1149.85 + 1439.16i 1.62409 + 2.03271i
\(709\) 172.519i 0.243327i 0.992571 + 0.121664i \(0.0388229\pi\)
−0.992571 + 0.121664i \(0.961177\pi\)
\(710\) 5.60991 240.471i 0.00790128 0.338692i
\(711\) 1006.96 1.41626
\(712\) −589.436 + 419.449i −0.827859 + 0.589114i
\(713\) 178.347 + 178.347i 0.250136 + 0.250136i
\(714\) 37.8264 679.134i 0.0529782 0.951168i
\(715\) 782.178 844.047i 1.09395 1.18049i
\(716\) 47.3869 424.071i 0.0661828 0.592278i
\(717\) 150.504 + 150.504i 0.209907 + 0.209907i
\(718\) 244.699 + 273.566i 0.340807 + 0.381011i
\(719\) −157.766 −0.219424 −0.109712 0.993963i \(-0.534993\pi\)
−0.109712 + 0.993963i \(0.534993\pi\)
\(720\) −1394.52 + 944.150i −1.93683 + 1.31132i
\(721\) 580.528i 0.805170i
\(722\) 131.332 117.474i 0.181900 0.162706i
\(723\) 2.99488 + 2.99488i 0.00414229 + 0.00414229i
\(724\) 5.64770 50.5420i 0.00780069 0.0698093i
\(725\) −3.41762 52.8045i −0.00471396 0.0728338i
\(726\) −1325.32 58.6431i −1.82550 0.0807756i
\(727\) −883.116 883.116i −1.21474 1.21474i −0.969450 0.245290i \(-0.921117\pi\)
−0.245290 0.969450i \(-0.578883\pi\)
\(728\) 1050.36 747.447i 1.44280 1.02671i
\(729\) 375.868i 0.515595i
\(730\) 706.214 674.015i 0.967416 0.923308i
\(731\) 209.947i 0.287205i
\(732\) 1496.43 1195.61i 2.04430 1.63335i
\(733\) −125.612 + 125.612i −0.171366 + 0.171366i −0.787580 0.616213i \(-0.788666\pi\)
0.616213 + 0.787580i \(0.288666\pi\)
\(734\) −874.559 48.7112i −1.19150 0.0663641i
\(735\) 9.13920 + 282.709i 0.0124343 + 0.384638i
\(736\) −94.9684 + 332.511i −0.129033 + 0.451781i
\(737\) 870.462 4.97085i 1.18109 0.00674471i
\(738\) 422.909 378.284i 0.573047 0.512579i
\(739\) 47.4462i 0.0642033i 0.999485 + 0.0321016i \(0.0102200\pi\)
−0.999485 + 0.0321016i \(0.989780\pi\)
\(740\) 15.8896 200.805i 0.0214724 0.271357i
\(741\) 2430.63 3.28020
\(742\) 175.363 156.859i 0.236339 0.211400i
\(743\) 735.075 + 735.075i 0.989334 + 0.989334i 0.999944 0.0106101i \(-0.00337736\pi\)
−0.0106101 + 0.999944i \(0.503377\pi\)
\(744\) −170.063 + 1009.34i −0.228579 + 1.35664i
\(745\) −585.977 549.277i −0.786546 0.737285i
\(746\) −30.7166 + 551.484i −0.0411751 + 0.739255i
\(747\) 232.889 232.889i 0.311765 0.311765i
\(748\) 37.3472 352.450i 0.0499294 0.471190i
\(749\) 513.201i 0.685181i
\(750\) 1008.26 + 928.223i 1.34435 + 1.23763i
\(751\) 1011.71i 1.34715i 0.739120 + 0.673573i \(0.235241\pi\)
−0.739120 + 0.673573i \(0.764759\pi\)
\(752\) 310.305 + 491.840i 0.412640 + 0.654042i
\(753\) 57.5398 + 57.5398i 0.0764140 + 0.0764140i
\(754\) 4.92553 88.4327i 0.00653254 0.117285i
\(755\) 693.474 + 650.042i 0.918509 + 0.860983i
\(756\) 226.013 2022.62i 0.298959 2.67542i
\(757\) −788.218 + 788.218i −1.04124 + 1.04124i −0.0421273 + 0.999112i \(0.513414\pi\)
−0.999112 + 0.0421273i \(0.986586\pi\)
\(758\) −1018.17 + 910.737i −1.34324 + 1.20150i
\(759\) −463.401 458.138i −0.610541 0.603607i
\(760\) 840.014 + 113.759i 1.10528 + 0.149682i
\(761\) 1401.09i 1.84111i 0.390609 + 0.920557i \(0.372265\pi\)
−0.390609 + 0.920557i \(0.627735\pi\)
\(762\) −1.93900 2.16774i −0.00254462 0.00284480i
\(763\) 973.066 973.066i 1.27532 1.27532i
\(764\) −17.4256 1.94718i −0.0228083 0.00254867i
\(765\) 847.391 27.3938i 1.10770 0.0358089i
\(766\) 44.5740 800.279i 0.0581906 1.04475i
\(767\) 1242.87 1242.87i 1.62043 1.62043i
\(768\) −1322.90 + 468.364i −1.72252 + 0.609849i
\(769\) −392.963 −0.511005 −0.255502 0.966808i \(-0.582241\pi\)
−0.255502 + 0.966808i \(0.582241\pi\)
\(770\) −14.9221 + 847.081i −0.0193793 + 1.10010i
\(771\) 499.064i 0.647295i
\(772\) −686.071 858.686i −0.888692 1.11229i
\(773\) −147.039 147.039i −0.190219 0.190219i 0.605572 0.795791i \(-0.292944\pi\)
−0.795791 + 0.605572i \(0.792944\pi\)
\(774\) 61.0251 1095.64i 0.0788439 1.41556i
\(775\) 582.276 37.6861i 0.751324 0.0486272i
\(776\) −984.151 165.819i −1.26824 0.213684i
\(777\) 300.685 + 300.685i 0.386983 + 0.386983i
\(778\) −933.036 1043.10i −1.19928 1.34075i
\(779\) −285.605 −0.366630
\(780\) 1489.03 + 1744.93i 1.90901 + 2.23710i
\(781\) 188.159 + 186.022i 0.240920 + 0.238184i
\(782\) 129.758 116.066i 0.165932 0.148423i
\(783\) −98.8720 98.8720i −0.126273 0.126273i
\(784\) −36.4458 + 161.043i −0.0464870 + 0.205412i
\(785\) −427.764 + 13.8284i −0.544922 + 0.0176158i
\(786\) 64.9109 1165.41i 0.0825839 1.48271i
\(787\) 69.9045 69.9045i 0.0888240 0.0888240i −0.661299 0.750123i \(-0.729994\pi\)
0.750123 + 0.661299i \(0.229994\pi\)
\(788\) 527.007 421.067i 0.668791 0.534349i
\(789\) 523.078 0.662963
\(790\) 11.1562 478.214i 0.0141217 0.605334i
\(791\) −247.146 −0.312448
\(792\) 297.349 1828.46i 0.375441 2.30866i
\(793\) −1292.33 1292.33i −1.62968 1.62968i
\(794\) −75.8179 + 1361.23i −0.0954885 + 1.71440i
\(795\) 305.444 + 286.314i 0.384206 + 0.360143i
\(796\) −156.005 + 1396.11i −0.195986 + 1.75390i
\(797\) 733.422 733.422i 0.920228 0.920228i −0.0768168 0.997045i \(-0.524476\pi\)
0.997045 + 0.0768168i \(0.0244757\pi\)
\(798\) −1333.78 + 1193.04i −1.67140 + 1.49504i
\(799\) 292.775i 0.366426i
\(800\) 432.936 + 672.731i 0.541169 + 0.840914i
\(801\) 1903.65 2.37659
\(802\) −918.116 + 821.238i −1.14478 + 1.02399i
\(803\) 6.13226 + 1073.84i 0.00763669 + 1.33729i
\(804\) −192.698 + 1724.48i −0.239675 + 2.14488i
\(805\) −284.604 + 303.619i −0.353545 + 0.377167i
\(806\) 975.149 + 54.3139i 1.20986 + 0.0673870i
\(807\) −1013.81 1013.81i −1.25627 1.25627i
\(808\) 342.921 244.027i 0.424408 0.302013i
\(809\) −641.096 −0.792455 −0.396227 0.918152i \(-0.629681\pi\)
−0.396227 + 0.918152i \(0.629681\pi\)
\(810\) 1726.36 + 40.2741i 2.13131 + 0.0497210i
\(811\) −1069.33 −1.31853 −0.659264 0.751911i \(-0.729132\pi\)
−0.659264 + 0.751911i \(0.729132\pi\)
\(812\) 40.7031 + 50.9440i 0.0501270 + 0.0627389i
\(813\) 1484.71 1484.71i 1.82621 1.82621i
\(814\) 148.663 + 164.302i 0.182632 + 0.201845i
\(815\) −287.919 + 9.30762i −0.353275 + 0.0114204i
\(816\) 689.084 + 155.948i 0.844466 + 0.191112i
\(817\) −390.569 + 390.569i −0.478053 + 0.478053i
\(818\) 492.027 440.109i 0.601500 0.538030i
\(819\) −3392.25 −4.14194
\(820\) −174.965 205.034i −0.213372 0.250042i
\(821\) 20.6937i 0.0252055i 0.999921 + 0.0126028i \(0.00401169\pi\)
−0.999921 + 0.0126028i \(0.995988\pi\)
\(822\) −654.765 732.006i −0.796552 0.890518i
\(823\) −210.860 + 210.860i −0.256209 + 0.256209i −0.823510 0.567301i \(-0.807988\pi\)
0.567301 + 0.823510i \(0.307988\pi\)
\(824\) −594.613 100.186i −0.721618 0.121585i
\(825\) −1503.79 + 105.955i −1.82277 + 0.128430i
\(826\) −71.9651 + 1292.06i −0.0871248 + 1.56423i
\(827\) 127.688 127.688i 0.154399 0.154399i −0.625680 0.780080i \(-0.715179\pi\)
0.780080 + 0.625680i \(0.215179\pi\)
\(828\) 710.902 567.995i 0.858578 0.685984i
\(829\) 1285.31i 1.55044i −0.631693 0.775219i \(-0.717640\pi\)
0.631693 0.775219i \(-0.282360\pi\)
\(830\) −108.021 113.181i −0.130146 0.136363i
\(831\) −818.289 −0.984704
\(832\) 584.315 + 1204.84i 0.702301 + 1.44812i
\(833\) 58.7790 58.7790i 0.0705630 0.0705630i
\(834\) 2453.20 + 136.639i 2.94149 + 0.163835i
\(835\) 707.470 22.8705i 0.847270 0.0273899i
\(836\) −725.149 + 586.193i −0.867403 + 0.701188i
\(837\) 1090.26 1090.26i 1.30258 1.30258i
\(838\) 640.527 572.939i 0.764352 0.683698i
\(839\) 723.511 0.862350 0.431175 0.902268i \(-0.358099\pi\)
0.431175 + 0.902268i \(0.358099\pi\)
\(840\) −1673.56 226.642i −1.99234 0.269812i
\(841\) −836.520 −0.994673
\(842\) −390.518 + 349.311i −0.463798 + 0.414859i
\(843\) −771.174 771.174i −0.914797 0.914797i
\(844\) −112.540 + 1007.13i −0.133341 + 1.19328i
\(845\) 919.005 980.407i 1.08758 1.16025i
\(846\) 85.1006 1527.89i 0.100592 1.80602i
\(847\) −666.460 651.407i −0.786847 0.769076i
\(848\) 130.401 + 206.689i 0.153775 + 0.243736i
\(849\) 1313.50 1.54711
\(850\) −3.62125 402.737i −0.00426030 0.473809i
\(851\) 108.839i 0.127895i
\(852\) −412.064 + 329.230i −0.483643 + 0.386420i
\(853\) 258.829 258.829i 0.303434 0.303434i −0.538922 0.842356i \(-0.681168\pi\)
0.842356 + 0.538922i \(0.181168\pi\)
\(854\) 1343.47 + 74.8289i 1.57315 + 0.0876217i
\(855\) −1627.38 1525.46i −1.90337 1.78416i
\(856\) −525.653 88.5670i −0.614081 0.103466i
\(857\) 206.625 + 206.625i 0.241102 + 0.241102i 0.817306 0.576204i \(-0.195467\pi\)
−0.576204 + 0.817306i \(0.695467\pi\)
\(858\) −2520.15 125.936i −2.93724 0.146779i
\(859\) −231.485 −0.269482 −0.134741 0.990881i \(-0.543020\pi\)
−0.134741 + 0.990881i \(0.543020\pi\)
\(860\) −519.654 41.1201i −0.604249 0.0478141i
\(861\) 569.012 0.660874
\(862\) 634.737 567.760i 0.736354 0.658655i
\(863\) 638.441 638.441i 0.739793 0.739793i −0.232745 0.972538i \(-0.574771\pi\)
0.972538 + 0.232745i \(0.0747708\pi\)
\(864\) 2032.69 + 580.556i 2.35265 + 0.671940i
\(865\) −989.282 + 31.9807i −1.14368 + 0.0369720i
\(866\) 1248.00 + 69.5114i 1.44111 + 0.0802672i
\(867\) 868.733 + 868.733i 1.00200 + 1.00200i
\(868\) −561.760 + 448.833i −0.647189 + 0.517089i
\(869\) 374.183 + 369.934i 0.430590 + 0.425700i
\(870\) −83.9363 + 80.1093i −0.0964785 + 0.0920796i
\(871\) 1655.70 1.90092
\(872\) 828.747 + 1164.61i 0.950398 + 1.33556i
\(873\) 1856.98 + 1856.98i 2.12712 + 2.12712i
\(874\) −457.314 25.4715i −0.523242 0.0291436i
\(875\) 93.1896 + 958.220i 0.106502 + 1.09511i
\(876\) −2127.40 237.721i −2.42854 0.271371i
\(877\) −481.721 481.721i −0.549282 0.549282i 0.376951 0.926233i \(-0.376973\pi\)
−0.926233 + 0.376951i \(0.876973\pi\)
\(878\) 52.1632 + 58.3167i 0.0594113 + 0.0664199i
\(879\) 917.721i 1.04405i
\(880\) −865.059 161.471i −0.983022 0.183490i
\(881\) −878.141 −0.996755 −0.498377 0.866960i \(-0.666071\pi\)
−0.498377 + 0.866960i \(0.666071\pi\)
\(882\) 323.833 289.662i 0.367158 0.328415i
\(883\) 792.572 792.572i 0.897591 0.897591i −0.0976320 0.995223i \(-0.531127\pi\)
0.995223 + 0.0976320i \(0.0311268\pi\)
\(884\) 74.8637 669.965i 0.0846875 0.757878i
\(885\) −2301.42 + 74.3987i −2.60048 + 0.0840663i
\(886\) 69.4186 1246.34i 0.0783506 1.40670i
\(887\) 395.005 395.005i 0.445327 0.445327i −0.448471 0.893798i \(-0.648031\pi\)
0.893798 + 0.448471i \(0.148031\pi\)
\(888\) −359.873 + 256.090i −0.405262 + 0.288389i
\(889\) 2.04312i 0.00229823i
\(890\) 21.0907 904.060i 0.0236974 1.01580i
\(891\) −1335.47 + 1350.81i −1.49884 + 1.51606i
\(892\) −272.648 341.246i −0.305659 0.382563i
\(893\) −544.655 + 544.655i −0.609916 + 0.609916i
\(894\) −97.9403 + 1758.41i −0.109553 + 1.96691i
\(895\) 389.152 + 364.779i 0.434806 + 0.407575i
\(896\) −912.012 374.337i −1.01787 0.417787i
\(897\) −876.425 876.425i −0.977063 0.977063i
\(898\) 737.887 + 824.933i 0.821700 + 0.918633i
\(899\) 49.4009i 0.0549510i
\(900\) 98.1653 2102.80i 0.109073 2.33645i
\(901\) 123.034i 0.136553i
\(902\) 296.124 + 14.7978i 0.328298 + 0.0164055i
\(903\) 778.132 778.132i 0.861719 0.861719i
\(904\) 42.6520 253.143i 0.0471814 0.280025i
\(905\) 46.3802 + 43.4754i 0.0512488 + 0.0480391i
\(906\) 115.907 2080.99i 0.127933 2.29690i
\(907\) −948.453 948.453i −1.04570 1.04570i −0.998904 0.0467987i \(-0.985098\pi\)
−0.0467987 0.998904i \(-0.514902\pi\)
\(908\) −774.335 969.157i −0.852791 1.06735i
\(909\) −1107.50 −1.21837
\(910\) −37.5830 + 1611.01i −0.0413000 + 1.77034i
\(911\) 190.484i 0.209093i −0.994520 0.104546i \(-0.966661\pi\)
0.994520 0.104546i \(-0.0333391\pi\)
\(912\) −991.806 1572.03i −1.08751 1.72372i
\(913\) 172.099 0.982785i 0.188498 0.00107644i
\(914\) 436.123 + 24.2912i 0.477159 + 0.0265768i
\(915\) 77.3594 + 2393.01i 0.0845458 + 2.61531i
\(916\) −1024.52 114.483i −1.11847 0.124981i
\(917\) 579.797 579.797i 0.632276 0.632276i
\(918\) −709.532 793.234i −0.772911 0.864089i
\(919\) 139.794i 0.152115i −0.997103 0.0760576i \(-0.975767\pi\)
0.997103 0.0760576i \(-0.0242333\pi\)
\(920\) −261.870 343.907i −0.284641 0.373812i
\(921\) 1513.62i 1.64345i
\(922\) 629.308 + 703.546i 0.682547 + 0.763065i
\(923\) 355.863 + 355.863i 0.385550 + 0.385550i
\(924\) 1444.72 1167.87i 1.56355 1.26393i
\(925\) 189.170 + 166.172i 0.204508 + 0.179645i
\(926\) 15.7868 283.436i 0.0170484 0.306086i
\(927\) 1121.97 + 1121.97i 1.21032 + 1.21032i
\(928\) −59.2045 + 32.8989i −0.0637980 + 0.0354514i
\(929\) 98.0946i 0.105592i 0.998605 + 0.0527958i \(0.0168133\pi\)
−0.998605 + 0.0527958i \(0.983187\pi\)
\(930\) −883.366 925.566i −0.949856 0.995233i
\(931\) −218.696 −0.234904
\(932\) 543.061 + 679.695i 0.582683 + 0.729286i
\(933\) −2027.00 2027.00i −2.17257 2.17257i
\(934\) 676.886 + 37.7013i 0.724717 + 0.0403654i
\(935\) 324.952 + 301.133i 0.347542 + 0.322067i
\(936\) 585.427 3474.56i 0.625456 3.71213i
\(937\) 1026.90 + 1026.90i 1.09594 + 1.09594i 0.994880 + 0.101059i \(0.0322231\pi\)
0.101059 + 0.994880i \(0.467777\pi\)
\(938\) −908.543 + 812.675i −0.968596 + 0.866391i
\(939\) 1882.00 2.00426
\(940\) −724.667 57.3427i −0.770923 0.0610029i
\(941\) 1528.72i 1.62457i 0.583262 + 0.812284i \(0.301776\pi\)
−0.583262 + 0.812284i \(0.698224\pi\)
\(942\) 625.667 + 699.475i 0.664190 + 0.742542i
\(943\) 102.982 + 102.982i 0.109207 + 0.109207i
\(944\) −1310.99 296.691i −1.38876 0.314292i
\(945\) 1856.07 + 1739.83i 1.96410 + 1.84109i
\(946\) 425.191 384.718i 0.449462 0.406679i
\(947\) 118.985 + 118.985i 0.125644 + 0.125644i 0.767132 0.641489i \(-0.221683\pi\)
−0.641489 + 0.767132i \(0.721683\pi\)
\(948\) −819.453 + 654.724i −0.864402 + 0.690637i
\(949\) 2042.54i 2.15231i
\(950\) −742.485 + 755.958i −0.781563 + 0.795745i
\(951\) 263.004i 0.276556i
\(952\) 287.762 + 404.380i 0.302271 + 0.424769i
\(953\) −204.792 + 204.792i −0.214892 + 0.214892i −0.806342 0.591450i \(-0.798556\pi\)
0.591450 + 0.806342i \(0.298556\pi\)
\(954\) 35.7623 642.075i 0.0374867 0.673034i
\(955\) 14.9892 15.9907i 0.0156955 0.0167442i
\(956\) −154.347 17.2472i −0.161451 0.0180410i
\(957\) −0.728843 127.630i −0.000761592 0.133365i
\(958\) −534.475 597.526i −0.557908 0.623722i
\(959\) 689.927i 0.719423i
\(960\) 520.961 1675.06i 0.542667 1.74485i
\(961\) 416.255 0.433148
\(962\) 280.976 + 314.122i 0.292075 + 0.326530i
\(963\) 991.846 + 991.846i 1.02995 + 1.02995i
\(964\) −3.07136 0.343202i −0.00318606 0.000356019i
\(965\) 1373.17 44.3906i 1.42297 0.0460006i
\(966\) 911.108 + 50.7470i 0.943176 + 0.0525331i
\(967\) −327.566 + 327.566i −0.338745 + 0.338745i −0.855895 0.517150i \(-0.826993\pi\)
0.517150 + 0.855895i \(0.326993\pi\)
\(968\) 782.229 570.212i 0.808088 0.589062i
\(969\) 935.774i 0.965711i
\(970\) 902.469 861.322i 0.930381 0.887961i
\(971\) 702.038i 0.723005i −0.932371 0.361503i \(-0.882264\pi\)
0.932371 0.361503i \(-0.117736\pi\)
\(972\) −879.066 1100.24i −0.904389 1.13193i
\(973\) 1220.48 + 1220.48i 1.25435 + 1.25435i
\(974\) −68.9769 3.84188i −0.0708181 0.00394443i
\(975\) −2861.40 + 185.196i −2.93477 + 0.189944i
\(976\) −308.498 + 1363.16i −0.316084 + 1.39668i
\(977\) 96.8366 96.8366i 0.0991163 0.0991163i −0.655810 0.754926i \(-0.727673\pi\)
0.754926 + 0.655810i \(0.227673\pi\)
\(978\) 421.123 + 470.802i 0.430597 + 0.481393i
\(979\) 707.390 + 699.357i 0.722564 + 0.714358i
\(980\) −133.976 157.000i −0.136710 0.160205i
\(981\) 3761.22i 3.83407i
\(982\) −463.925 + 414.972i −0.472429 + 0.422578i
\(983\) −374.140 + 374.140i −0.380611 + 0.380611i −0.871322 0.490711i \(-0.836737\pi\)
0.490711 + 0.871322i \(0.336737\pi\)
\(984\) −98.1988 + 582.818i −0.0997955 + 0.592295i
\(985\) 27.2442 + 842.762i 0.0276590 + 0.855596i
\(986\) 34.0460 + 1.89629i 0.0345294 + 0.00192322i
\(987\) 1085.12 1085.12i 1.09941 1.09941i
\(988\) −1385.62 + 1107.08i −1.40245 + 1.12053i
\(989\) 281.659 0.284792
\(990\) 1608.28 + 1665.96i 1.62453 + 1.68279i
\(991\) 905.275i 0.913496i −0.889596 0.456748i \(-0.849014\pi\)
0.889596 0.456748i \(-0.150986\pi\)
\(992\) −362.777 652.849i −0.365702 0.658114i
\(993\) −1641.97 1641.97i −1.65355 1.65355i
\(994\) −369.946 20.6053i −0.372179 0.0207296i
\(995\) −1281.15 1200.91i −1.28758 1.20694i
\(996\) −38.0983 + 340.947i −0.0382513 + 0.342316i
\(997\) −618.290 618.290i −0.620150 0.620150i 0.325419 0.945570i \(-0.394495\pi\)
−0.945570 + 0.325419i \(0.894495\pi\)
\(998\) 161.410 144.378i 0.161734 0.144668i
\(999\) 665.347 0.666013
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.i.a.43.16 136
4.3 odd 2 inner 220.3.i.a.43.50 yes 136
5.2 odd 4 inner 220.3.i.a.87.19 yes 136
11.10 odd 2 inner 220.3.i.a.43.53 yes 136
20.7 even 4 inner 220.3.i.a.87.53 yes 136
44.43 even 2 inner 220.3.i.a.43.19 yes 136
55.32 even 4 inner 220.3.i.a.87.50 yes 136
220.87 odd 4 inner 220.3.i.a.87.16 yes 136
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.i.a.43.16 136 1.1 even 1 trivial
220.3.i.a.43.19 yes 136 44.43 even 2 inner
220.3.i.a.43.50 yes 136 4.3 odd 2 inner
220.3.i.a.43.53 yes 136 11.10 odd 2 inner
220.3.i.a.87.16 yes 136 220.87 odd 4 inner
220.3.i.a.87.19 yes 136 5.2 odd 4 inner
220.3.i.a.87.50 yes 136 55.32 even 4 inner
220.3.i.a.87.53 yes 136 20.7 even 4 inner