Properties

Label 220.3.i.a.87.19
Level $220$
Weight $3$
Character 220.87
Analytic conductor $5.995$
Analytic rank $0$
Dimension $136$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(43,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(136\)
Relative dimension: \(68\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 87.19
Character \(\chi\) \(=\) 220.87
Dual form 220.3.i.a.43.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33338 - 1.49067i) q^{2} +(3.87627 + 3.87627i) q^{3} +(-0.444207 + 3.97526i) q^{4} +(3.64792 - 3.41945i) q^{5} +(0.609714 - 10.9468i) q^{6} +(5.44609 + 5.44609i) q^{7} +(6.51810 - 4.63836i) q^{8} +21.0509i q^{9} +(-9.96134 - 0.878432i) q^{10} +(7.73363 - 7.82247i) q^{11} +(-17.1310 + 13.6873i) q^{12} +(-14.7946 - 14.7946i) q^{13} +(0.856637 - 15.3800i) q^{14} +(27.3951 + 0.885606i) q^{15} +(-15.6054 - 3.53167i) q^{16} +(-5.69580 + 5.69580i) q^{17} +(31.3800 - 28.0688i) q^{18} +21.1920i q^{19} +(11.9728 + 16.0204i) q^{20} +42.2210i q^{21} +(-21.9726 - 1.09800i) q^{22} +(7.64133 + 7.64133i) q^{23} +(43.2454 + 7.28640i) q^{24} +(1.61467 - 24.9478i) q^{25} +(-2.32710 + 41.7806i) q^{26} +(-46.7126 + 46.7126i) q^{27} +(-24.0688 + 19.2304i) q^{28} +2.11660 q^{29} +(-35.2078 - 42.0179i) q^{30} -23.3398i q^{31} +(15.5433 + 27.9715i) q^{32} +(60.2996 - 0.344346i) q^{33} +(16.0852 + 0.895915i) q^{34} +(38.4895 + 1.24426i) q^{35} +(-83.6829 - 9.35096i) q^{36} +(7.12170 + 7.12170i) q^{37} +(31.5904 - 28.2570i) q^{38} -114.695i q^{39} +(7.91689 - 39.2087i) q^{40} -13.4770i q^{41} +(62.9377 - 56.2965i) q^{42} +(-18.4300 + 18.4300i) q^{43} +(27.6610 + 34.2180i) q^{44} +(71.9827 + 76.7922i) q^{45} +(1.20194 - 21.5795i) q^{46} +(25.7009 - 25.7009i) q^{47} +(-46.8009 - 74.1803i) q^{48} +10.3197i q^{49} +(-39.3420 + 30.8579i) q^{50} -44.1569 q^{51} +(65.3840 - 52.2403i) q^{52} +(-10.8004 + 10.8004i) q^{53} +(131.919 + 7.34763i) q^{54} +(1.46313 - 54.9805i) q^{55} +(60.7590 + 10.2373i) q^{56} +(-82.1460 + 82.1460i) q^{57} +(-2.82223 - 3.15516i) q^{58} -84.0088 q^{59} +(-15.6896 + 108.509i) q^{60} -87.3519i q^{61} +(-34.7919 + 31.1207i) q^{62} +(-114.645 + 114.645i) q^{63} +(20.9713 - 60.4666i) q^{64} +(-104.559 - 3.38009i) q^{65} +(-80.9155 - 89.4278i) q^{66} +(-55.9563 + 55.9563i) q^{67} +(-20.1122 - 25.1724i) q^{68} +59.2397i q^{69} +(-49.4663 - 59.0344i) q^{70} +24.0536i q^{71} +(97.6417 + 137.212i) q^{72} +(69.0302 + 69.0302i) q^{73} +(1.12020 - 20.1120i) q^{74} +(102.963 - 90.4455i) q^{75} +(-84.2438 - 9.41364i) q^{76} +(84.7198 - 0.483800i) q^{77} +(-170.973 + 152.932i) q^{78} -47.8344i q^{79} +(-69.0035 + 40.4785i) q^{80} -172.683 q^{81} +(-20.0898 + 17.9699i) q^{82} +(11.0631 - 11.0631i) q^{83} +(-167.839 - 18.7548i) q^{84} +(-1.30131 + 40.2543i) q^{85} +(52.0472 + 2.89893i) q^{86} +(8.20451 + 8.20451i) q^{87} +(14.1252 - 86.8590i) q^{88} -90.4306i q^{89} +(18.4918 - 209.696i) q^{90} -161.145i q^{91} +(-33.7706 + 26.9819i) q^{92} +(90.4712 - 90.4712i) q^{93} +(-72.5807 - 4.04261i) q^{94} +(72.4652 + 77.3069i) q^{95} +(-48.1752 + 168.675i) q^{96} +(-88.2136 - 88.2136i) q^{97} +(15.3833 - 13.7601i) q^{98} +(164.670 + 162.800i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 136 q - 8 q^{5} + 8 q^{12} + 16 q^{16} + 80 q^{20} - 96 q^{22} - 8 q^{25} - 160 q^{26} + 80 q^{33} - 104 q^{36} - 8 q^{37} - 16 q^{38} - 168 q^{42} + 192 q^{45} + 32 q^{48} + 136 q^{53} + 264 q^{56} - 248 q^{58}+ \cdots - 168 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33338 1.49067i −0.666689 0.745336i
\(3\) 3.87627 + 3.87627i 1.29209 + 1.29209i 0.933492 + 0.358598i \(0.116745\pi\)
0.358598 + 0.933492i \(0.383255\pi\)
\(4\) −0.444207 + 3.97526i −0.111052 + 0.993815i
\(5\) 3.64792 3.41945i 0.729584 0.683891i
\(6\) 0.609714 10.9468i 0.101619 1.82446i
\(7\) 5.44609 + 5.44609i 0.778012 + 0.778012i 0.979493 0.201480i \(-0.0645752\pi\)
−0.201480 + 0.979493i \(0.564575\pi\)
\(8\) 6.51810 4.63836i 0.814763 0.579794i
\(9\) 21.0509i 2.33899i
\(10\) −9.96134 0.878432i −0.996134 0.0878432i
\(11\) 7.73363 7.82247i 0.703057 0.711133i
\(12\) −17.1310 + 13.6873i −1.42759 + 1.14061i
\(13\) −14.7946 14.7946i −1.13804 1.13804i −0.988801 0.149242i \(-0.952317\pi\)
−0.149242 0.988801i \(-0.547683\pi\)
\(14\) 0.856637 15.3800i 0.0611884 1.09857i
\(15\) 27.3951 + 0.885606i 1.82634 + 0.0590404i
\(16\) −15.6054 3.53167i −0.975335 0.220729i
\(17\) −5.69580 + 5.69580i −0.335047 + 0.335047i −0.854499 0.519452i \(-0.826136\pi\)
0.519452 + 0.854499i \(0.326136\pi\)
\(18\) 31.3800 28.0688i 1.74334 1.55938i
\(19\) 21.1920i 1.11537i 0.830053 + 0.557685i \(0.188310\pi\)
−0.830053 + 0.557685i \(0.811690\pi\)
\(20\) 11.9728 + 16.0204i 0.598639 + 0.801019i
\(21\) 42.2210i 2.01052i
\(22\) −21.9726 1.09800i −0.998754 0.0499093i
\(23\) 7.64133 + 7.64133i 0.332232 + 0.332232i 0.853434 0.521202i \(-0.174516\pi\)
−0.521202 + 0.853434i \(0.674516\pi\)
\(24\) 43.2454 + 7.28640i 1.80189 + 0.303600i
\(25\) 1.61467 24.9478i 0.0645869 0.997912i
\(26\) −2.32710 + 41.7806i −0.0895037 + 1.60694i
\(27\) −46.7126 + 46.7126i −1.73010 + 1.73010i
\(28\) −24.0688 + 19.2304i −0.859600 + 0.686801i
\(29\) 2.11660 0.0729862 0.0364931 0.999334i \(-0.488381\pi\)
0.0364931 + 0.999334i \(0.488381\pi\)
\(30\) −35.2078 42.0179i −1.17359 1.40060i
\(31\) 23.3398i 0.752896i −0.926438 0.376448i \(-0.877145\pi\)
0.926438 0.376448i \(-0.122855\pi\)
\(32\) 15.5433 + 27.9715i 0.485728 + 0.874110i
\(33\) 60.2996 0.344346i 1.82726 0.0104347i
\(34\) 16.0852 + 0.895915i 0.473095 + 0.0263505i
\(35\) 38.4895 + 1.24426i 1.09970 + 0.0355503i
\(36\) −83.6829 9.35096i −2.32452 0.259749i
\(37\) 7.12170 + 7.12170i 0.192478 + 0.192478i 0.796766 0.604288i \(-0.206542\pi\)
−0.604288 + 0.796766i \(0.706542\pi\)
\(38\) 31.5904 28.2570i 0.831326 0.743605i
\(39\) 114.695i 2.94091i
\(40\) 7.91689 39.2087i 0.197922 0.980218i
\(41\) 13.4770i 0.328707i −0.986401 0.164354i \(-0.947446\pi\)
0.986401 0.164354i \(-0.0525538\pi\)
\(42\) 62.9377 56.2965i 1.49852 1.34039i
\(43\) −18.4300 + 18.4300i −0.428604 + 0.428604i −0.888153 0.459548i \(-0.848011\pi\)
0.459548 + 0.888153i \(0.348011\pi\)
\(44\) 27.6610 + 34.2180i 0.628659 + 0.777681i
\(45\) 71.9827 + 76.7922i 1.59962 + 1.70649i
\(46\) 1.20194 21.5795i 0.0261291 0.469120i
\(47\) 25.7009 25.7009i 0.546829 0.546829i −0.378694 0.925522i \(-0.623627\pi\)
0.925522 + 0.378694i \(0.123627\pi\)
\(48\) −46.8009 74.1803i −0.975018 1.54542i
\(49\) 10.3197i 0.210606i
\(50\) −39.3420 + 30.8579i −0.786839 + 0.617158i
\(51\) −44.1569 −0.865821
\(52\) 65.3840 52.2403i 1.25739 1.00462i
\(53\) −10.8004 + 10.8004i −0.203782 + 0.203782i −0.801618 0.597836i \(-0.796027\pi\)
0.597836 + 0.801618i \(0.296027\pi\)
\(54\) 131.919 + 7.34763i 2.44294 + 0.136067i
\(55\) 1.46313 54.9805i 0.0266023 0.999646i
\(56\) 60.7590 + 10.2373i 1.08498 + 0.182808i
\(57\) −82.1460 + 82.1460i −1.44116 + 1.44116i
\(58\) −2.82223 3.15516i −0.0486591 0.0543992i
\(59\) −84.0088 −1.42388 −0.711939 0.702242i \(-0.752183\pi\)
−0.711939 + 0.702242i \(0.752183\pi\)
\(60\) −15.6896 + 108.509i −0.261493 + 1.80848i
\(61\) 87.3519i 1.43200i −0.698101 0.715999i \(-0.745971\pi\)
0.698101 0.715999i \(-0.254029\pi\)
\(62\) −34.7919 + 31.1207i −0.561160 + 0.501947i
\(63\) −114.645 + 114.645i −1.81976 + 1.81976i
\(64\) 20.9713 60.4666i 0.327677 0.944790i
\(65\) −104.559 3.38009i −1.60860 0.0520014i
\(66\) −80.9155 89.4278i −1.22599 1.35497i
\(67\) −55.9563 + 55.9563i −0.835169 + 0.835169i −0.988218 0.153050i \(-0.951091\pi\)
0.153050 + 0.988218i \(0.451091\pi\)
\(68\) −20.1122 25.1724i −0.295767 0.370182i
\(69\) 59.2397i 0.858547i
\(70\) −49.4663 59.0344i −0.706662 0.843348i
\(71\) 24.0536i 0.338784i 0.985549 + 0.169392i \(0.0541804\pi\)
−0.985549 + 0.169392i \(0.945820\pi\)
\(72\) 97.6417 + 137.212i 1.35613 + 1.90572i
\(73\) 69.0302 + 69.0302i 0.945619 + 0.945619i 0.998596 0.0529764i \(-0.0168708\pi\)
−0.0529764 + 0.998596i \(0.516871\pi\)
\(74\) 1.12020 20.1120i 0.0151379 0.271784i
\(75\) 102.963 90.4455i 1.37284 1.20594i
\(76\) −84.2438 9.41364i −1.10847 0.123864i
\(77\) 84.7198 0.483800i 1.10026 0.00628312i
\(78\) −170.973 + 152.932i −2.19196 + 1.96067i
\(79\) 47.8344i 0.605499i −0.953070 0.302749i \(-0.902095\pi\)
0.953070 0.302749i \(-0.0979045\pi\)
\(80\) −69.0035 + 40.4785i −0.862544 + 0.505982i
\(81\) −172.683 −2.13189
\(82\) −20.0898 + 17.9699i −0.244997 + 0.219145i
\(83\) 11.0631 11.0631i 0.133290 0.133290i −0.637314 0.770604i \(-0.719955\pi\)
0.770604 + 0.637314i \(0.219955\pi\)
\(84\) −167.839 18.7548i −1.99809 0.223272i
\(85\) −1.30131 + 40.2543i −0.0153095 + 0.473580i
\(86\) 52.0472 + 2.89893i 0.605200 + 0.0337085i
\(87\) 8.20451 + 8.20451i 0.0943047 + 0.0943047i
\(88\) 14.1252 86.8590i 0.160514 0.987034i
\(89\) 90.4306i 1.01607i −0.861335 0.508037i \(-0.830371\pi\)
0.861335 0.508037i \(-0.169629\pi\)
\(90\) 18.4918 209.696i 0.205465 2.32995i
\(91\) 161.145i 1.77082i
\(92\) −33.7706 + 26.9819i −0.367072 + 0.293282i
\(93\) 90.4712 90.4712i 0.972809 0.972809i
\(94\) −72.5807 4.04261i −0.772136 0.0430065i
\(95\) 72.4652 + 77.3069i 0.762791 + 0.813757i
\(96\) −48.1752 + 168.675i −0.501825 + 1.75703i
\(97\) −88.2136 88.2136i −0.909418 0.909418i 0.0868070 0.996225i \(-0.472334\pi\)
−0.996225 + 0.0868070i \(0.972334\pi\)
\(98\) 15.3833 13.7601i 0.156973 0.140409i
\(99\) 164.670 + 162.800i 1.66333 + 1.64445i
\(100\) 98.4567 + 17.5007i 0.984567 + 0.175007i
\(101\) 52.6106i 0.520897i −0.965488 0.260449i \(-0.916130\pi\)
0.965488 0.260449i \(-0.0838704\pi\)
\(102\) 58.8778 + 65.8234i 0.577234 + 0.645328i
\(103\) 53.2977 + 53.2977i 0.517453 + 0.517453i 0.916800 0.399347i \(-0.130763\pi\)
−0.399347 + 0.916800i \(0.630763\pi\)
\(104\) −165.055 27.8100i −1.58707 0.267404i
\(105\) 144.373 + 154.019i 1.37498 + 1.46685i
\(106\) 30.5010 + 1.69885i 0.287745 + 0.0160269i
\(107\) −47.1165 47.1165i −0.440341 0.440341i 0.451786 0.892127i \(-0.350787\pi\)
−0.892127 + 0.451786i \(0.850787\pi\)
\(108\) −164.945 206.445i −1.52727 1.91153i
\(109\) −178.673 −1.63920 −0.819599 0.572938i \(-0.805804\pi\)
−0.819599 + 0.572938i \(0.805804\pi\)
\(110\) −83.9088 + 71.1288i −0.762808 + 0.646625i
\(111\) 55.2113i 0.497399i
\(112\) −65.7544 104.222i −0.587092 0.930553i
\(113\) −22.6903 + 22.6903i −0.200799 + 0.200799i −0.800342 0.599543i \(-0.795349\pi\)
0.599543 + 0.800342i \(0.295349\pi\)
\(114\) 231.985 + 12.9211i 2.03495 + 0.113343i
\(115\) 54.0042 + 1.74580i 0.469601 + 0.0151809i
\(116\) −0.940207 + 8.41403i −0.00810524 + 0.0725347i
\(117\) 311.439 311.439i 2.66187 2.66187i
\(118\) 112.015 + 125.230i 0.949283 + 1.06127i
\(119\) −62.0396 −0.521341
\(120\) 182.672 121.296i 1.52226 1.01080i
\(121\) −1.38192 120.992i −0.0114208 0.999935i
\(122\) −130.213 + 116.473i −1.06732 + 0.954698i
\(123\) 52.2405 52.2405i 0.424719 0.424719i
\(124\) 92.7816 + 10.3677i 0.748239 + 0.0836103i
\(125\) −79.4176 96.5289i −0.635341 0.772232i
\(126\) 323.764 + 18.0330i 2.56955 + 0.143119i
\(127\) 0.187577 + 0.187577i 0.00147699 + 0.00147699i 0.707845 0.706368i \(-0.249668\pi\)
−0.706368 + 0.707845i \(0.749668\pi\)
\(128\) −118.098 + 49.3634i −0.922644 + 0.385652i
\(129\) −142.879 −1.10759
\(130\) 134.378 + 160.370i 1.03367 + 1.23361i
\(131\) 106.461 0.812681 0.406340 0.913722i \(-0.366805\pi\)
0.406340 + 0.913722i \(0.366805\pi\)
\(132\) −25.4166 + 239.860i −0.192550 + 1.81712i
\(133\) −115.414 + 115.414i −0.867772 + 0.867772i
\(134\) 158.023 + 8.80160i 1.17928 + 0.0656836i
\(135\) −10.6724 + 330.136i −0.0790546 + 2.44545i
\(136\) −10.7067 + 63.5449i −0.0787254 + 0.467242i
\(137\) 63.3415 + 63.3415i 0.462347 + 0.462347i 0.899424 0.437077i \(-0.143986\pi\)
−0.437077 + 0.899424i \(0.643986\pi\)
\(138\) 88.3070 78.9889i 0.639906 0.572384i
\(139\) 224.103i 1.61225i −0.591746 0.806124i \(-0.701561\pi\)
0.591746 0.806124i \(-0.298439\pi\)
\(140\) −22.0436 + 152.453i −0.157454 + 1.08895i
\(141\) 199.248 1.41310
\(142\) 35.8561 32.0726i 0.252508 0.225863i
\(143\) −230.146 + 1.31427i −1.60941 + 0.00919067i
\(144\) 74.3450 328.507i 0.516284 2.28130i
\(145\) 7.72119 7.23761i 0.0532496 0.0499146i
\(146\) 10.8580 194.945i 0.0743702 1.33524i
\(147\) −40.0020 + 40.0020i −0.272122 + 0.272122i
\(148\) −31.4741 + 25.1471i −0.212663 + 0.169913i
\(149\) 160.633 1.07807 0.539037 0.842282i \(-0.318788\pi\)
0.539037 + 0.842282i \(0.318788\pi\)
\(150\) −272.114 32.8865i −1.81409 0.219243i
\(151\) 190.101 1.25895 0.629474 0.777022i \(-0.283271\pi\)
0.629474 + 0.777022i \(0.283271\pi\)
\(152\) 98.2962 + 138.132i 0.646686 + 0.908762i
\(153\) −119.902 119.902i −0.783672 0.783672i
\(154\) −113.685 125.644i −0.738213 0.815873i
\(155\) −79.8093 85.1417i −0.514898 0.549301i
\(156\) 455.944 + 50.9484i 2.92272 + 0.326592i
\(157\) −60.5266 60.5266i −0.385520 0.385520i 0.487566 0.873086i \(-0.337885\pi\)
−0.873086 + 0.487566i \(0.837885\pi\)
\(158\) −71.3054 + 63.7813i −0.451300 + 0.403679i
\(159\) −83.7309 −0.526609
\(160\) 152.348 + 48.8884i 0.952175 + 0.305553i
\(161\) 83.2307i 0.516961i
\(162\) 230.252 + 257.414i 1.42131 + 1.58898i
\(163\) 40.7392 + 40.7392i 0.249934 + 0.249934i 0.820943 0.571010i \(-0.193448\pi\)
−0.571010 + 0.820943i \(0.693448\pi\)
\(164\) 53.5745 + 5.98657i 0.326674 + 0.0365035i
\(165\) 218.791 207.448i 1.32601 1.25726i
\(166\) −31.2428 1.74016i −0.188209 0.0104829i
\(167\) 100.104 + 100.104i 0.599423 + 0.599423i 0.940159 0.340736i \(-0.110676\pi\)
−0.340736 + 0.940159i \(0.610676\pi\)
\(168\) 195.836 + 275.201i 1.16569 + 1.63810i
\(169\) 268.758i 1.59028i
\(170\) 61.7412 51.7344i 0.363183 0.304320i
\(171\) −446.112 −2.60884
\(172\) −65.0772 81.4507i −0.378356 0.473551i
\(173\) 139.979 + 139.979i 0.809126 + 0.809126i 0.984502 0.175376i \(-0.0561141\pi\)
−0.175376 + 0.984502i \(0.556114\pi\)
\(174\) 1.29052 23.1699i 0.00741679 0.133161i
\(175\) 144.662 127.074i 0.826637 0.726138i
\(176\) −148.312 + 94.7597i −0.842685 + 0.538408i
\(177\) −325.641 325.641i −1.83978 1.83978i
\(178\) −134.802 + 120.578i −0.757316 + 0.677405i
\(179\) −106.678 −0.595964 −0.297982 0.954571i \(-0.596314\pi\)
−0.297982 + 0.954571i \(0.596314\pi\)
\(180\) −337.244 + 252.038i −1.87358 + 1.40021i
\(181\) 12.7141 0.0702438 0.0351219 0.999383i \(-0.488818\pi\)
0.0351219 + 0.999383i \(0.488818\pi\)
\(182\) −240.214 + 214.867i −1.31986 + 1.18059i
\(183\) 338.600 338.600i 1.85027 1.85027i
\(184\) 85.2502 + 14.3638i 0.463316 + 0.0780639i
\(185\) 50.3318 + 1.62709i 0.272064 + 0.00879506i
\(186\) −255.495 14.2306i −1.37363 0.0765086i
\(187\) 0.505983 + 88.6044i 0.00270579 + 0.473820i
\(188\) 90.7514 + 113.584i 0.482720 + 0.604172i
\(189\) −508.802 −2.69208
\(190\) 18.6158 211.101i 0.0979777 1.11106i
\(191\) 4.38351i 0.0229503i −0.999934 0.0114751i \(-0.996347\pi\)
0.999934 0.0114751i \(-0.00365273\pi\)
\(192\) 315.675 153.094i 1.64414 0.797366i
\(193\) −194.296 194.296i −1.00672 1.00672i −0.999977 0.00673955i \(-0.997855\pi\)
−0.00673955 0.999977i \(-0.502145\pi\)
\(194\) −13.8755 + 249.119i −0.0715231 + 1.28412i
\(195\) −392.195 418.400i −2.01126 2.14564i
\(196\) −41.0235 4.58408i −0.209304 0.0233882i
\(197\) −119.247 + 119.247i −0.605314 + 0.605314i −0.941718 0.336404i \(-0.890789\pi\)
0.336404 + 0.941718i \(0.390789\pi\)
\(198\) 23.1140 462.543i 0.116737 2.33608i
\(199\) 351.199 1.76482 0.882410 0.470482i \(-0.155920\pi\)
0.882410 + 0.470482i \(0.155920\pi\)
\(200\) −105.192 170.102i −0.525961 0.850509i
\(201\) −433.803 −2.15823
\(202\) −78.4252 + 70.1498i −0.388243 + 0.347276i
\(203\) 11.5272 + 11.5272i 0.0567842 + 0.0567842i
\(204\) 19.6148 175.535i 0.0961509 0.860466i
\(205\) −46.0840 49.1630i −0.224800 0.239820i
\(206\) 8.38341 150.515i 0.0406962 0.730657i
\(207\) −160.857 + 160.857i −0.777088 + 0.777088i
\(208\) 178.625 + 283.124i 0.858773 + 1.36117i
\(209\) 165.774 + 163.891i 0.793177 + 0.784169i
\(210\) 37.0883 420.578i 0.176611 2.00275i
\(211\) −253.350 −1.20071 −0.600355 0.799734i \(-0.704974\pi\)
−0.600355 + 0.799734i \(0.704974\pi\)
\(212\) −38.1369 47.7322i −0.179891 0.225152i
\(213\) −93.2384 + 93.2384i −0.437739 + 0.437739i
\(214\) −7.41114 + 133.059i −0.0346315 + 0.621772i
\(215\) −4.21067 + 130.252i −0.0195845 + 0.605822i
\(216\) −87.8079 + 521.148i −0.406518 + 2.41272i
\(217\) 127.110 127.110i 0.585762 0.585762i
\(218\) 238.238 + 266.342i 1.09283 + 1.22175i
\(219\) 535.159i 2.44365i
\(220\) 217.912 + 30.2390i 0.990509 + 0.137450i
\(221\) 168.534 0.762595
\(222\) 82.3019 73.6175i 0.370729 0.331610i
\(223\) −77.2143 77.2143i −0.346252 0.346252i 0.512459 0.858712i \(-0.328735\pi\)
−0.858712 + 0.512459i \(0.828735\pi\)
\(224\) −67.6853 + 236.985i −0.302167 + 1.05797i
\(225\) 525.174 + 33.9904i 2.33411 + 0.151068i
\(226\) 64.0785 + 3.56905i 0.283533 + 0.0157922i
\(227\) 219.293 + 219.293i 0.966048 + 0.966048i 0.999442 0.0333944i \(-0.0106317\pi\)
−0.0333944 + 0.999442i \(0.510632\pi\)
\(228\) −290.062 363.042i −1.27220 1.59229i
\(229\) 257.724i 1.12543i 0.826650 + 0.562717i \(0.190244\pi\)
−0.826650 + 0.562717i \(0.809756\pi\)
\(230\) −69.4055 82.8303i −0.301763 0.360132i
\(231\) 330.272 + 326.522i 1.42975 + 1.41351i
\(232\) 13.7962 9.81754i 0.0594664 0.0423170i
\(233\) 153.796 + 153.796i 0.660067 + 0.660067i 0.955396 0.295328i \(-0.0954291\pi\)
−0.295328 + 0.955396i \(0.595429\pi\)
\(234\) −879.520 48.9876i −3.75863 0.209349i
\(235\) 5.87186 181.638i 0.0249866 0.772929i
\(236\) 37.3172 333.957i 0.158124 1.41507i
\(237\) 185.419 185.419i 0.782359 0.782359i
\(238\) 82.7222 + 92.4807i 0.347572 + 0.388574i
\(239\) 38.8269i 0.162456i 0.996696 + 0.0812279i \(0.0258842\pi\)
−0.996696 + 0.0812279i \(0.974116\pi\)
\(240\) −424.382 110.571i −1.76826 0.460711i
\(241\) 0.772619i 0.00320589i −0.999999 0.00160294i \(-0.999490\pi\)
0.999999 0.00160294i \(-0.000510233\pi\)
\(242\) −178.517 + 163.388i −0.737673 + 0.675158i
\(243\) −248.953 248.953i −1.02450 1.02450i
\(244\) 347.246 + 38.8023i 1.42314 + 0.159026i
\(245\) 35.2878 + 37.6455i 0.144032 + 0.153655i
\(246\) −147.530 8.21712i −0.599714 0.0334029i
\(247\) 313.527 313.527i 1.26934 1.26934i
\(248\) −108.258 152.131i −0.436525 0.613431i
\(249\) 85.7672 0.344446
\(250\) −37.9993 + 247.095i −0.151997 + 0.988381i
\(251\) 14.8441i 0.0591399i −0.999563 0.0295699i \(-0.990586\pi\)
0.999563 0.0295699i \(-0.00941378\pi\)
\(252\) −404.818 506.670i −1.60642 2.01060i
\(253\) 118.869 0.678814i 0.469839 0.00268306i
\(254\) 0.0295048 0.529727i 0.000116161 0.00208554i
\(255\) −161.081 + 150.992i −0.631690 + 0.592127i
\(256\) 231.055 + 110.226i 0.902557 + 0.430570i
\(257\) −64.3743 64.3743i −0.250484 0.250484i 0.570685 0.821169i \(-0.306678\pi\)
−0.821169 + 0.570685i \(0.806678\pi\)
\(258\) 190.512 + 212.986i 0.738418 + 0.825527i
\(259\) 77.5708i 0.299501i
\(260\) 59.8824 414.146i 0.230317 1.59287i
\(261\) 44.5564i 0.170714i
\(262\) −141.953 158.699i −0.541805 0.605720i
\(263\) −67.4719 + 67.4719i −0.256547 + 0.256547i −0.823648 0.567101i \(-0.808065\pi\)
0.567101 + 0.823648i \(0.308065\pi\)
\(264\) 391.442 281.936i 1.48273 1.06794i
\(265\) −2.46756 + 76.3308i −0.00931156 + 0.288041i
\(266\) 325.934 + 18.1539i 1.22532 + 0.0682477i
\(267\) 350.533 350.533i 1.31286 1.31286i
\(268\) −197.585 247.297i −0.737256 0.922750i
\(269\) 261.542i 0.972275i −0.873882 0.486137i \(-0.838405\pi\)
0.873882 0.486137i \(-0.161595\pi\)
\(270\) 506.355 424.287i 1.87539 1.57143i
\(271\) −383.025 −1.41338 −0.706689 0.707525i \(-0.749812\pi\)
−0.706689 + 0.707525i \(0.749812\pi\)
\(272\) 109.001 68.7693i 0.400738 0.252828i
\(273\) 624.641 624.641i 2.28806 2.28806i
\(274\) 9.96325 178.880i 0.0363622 0.652845i
\(275\) −182.666 205.568i −0.664240 0.747519i
\(276\) −235.493 26.3147i −0.853236 0.0953430i
\(277\) −105.551 + 105.551i −0.381051 + 0.381051i −0.871481 0.490430i \(-0.836840\pi\)
0.490430 + 0.871481i \(0.336840\pi\)
\(278\) −334.063 + 298.813i −1.20167 + 1.07487i
\(279\) 491.324 1.76102
\(280\) 256.650 170.418i 0.916607 0.608636i
\(281\) 198.947i 0.707998i 0.935246 + 0.353999i \(0.115178\pi\)
−0.935246 + 0.353999i \(0.884822\pi\)
\(282\) −265.672 297.013i −0.942100 1.05324i
\(283\) −169.428 + 169.428i −0.598687 + 0.598687i −0.939963 0.341276i \(-0.889141\pi\)
0.341276 + 0.939963i \(0.389141\pi\)
\(284\) −95.6195 10.6848i −0.336688 0.0376225i
\(285\) −18.7678 + 580.557i −0.0658519 + 2.03704i
\(286\) 308.830 + 341.319i 1.07983 + 1.19342i
\(287\) 73.3969 73.3969i 0.255738 0.255738i
\(288\) −588.827 + 327.200i −2.04454 + 1.13611i
\(289\) 224.116i 0.775487i
\(290\) −21.0842 1.85929i −0.0727041 0.00641134i
\(291\) 683.879i 2.35010i
\(292\) −305.077 + 243.749i −1.04478 + 0.834758i
\(293\) 118.377 + 118.377i 0.404016 + 0.404016i 0.879646 0.475629i \(-0.157780\pi\)
−0.475629 + 0.879646i \(0.657780\pi\)
\(294\) 112.968 + 6.29208i 0.384244 + 0.0214016i
\(295\) −306.457 + 287.264i −1.03884 + 0.973777i
\(296\) 79.4530 + 13.3870i 0.268422 + 0.0452263i
\(297\) 4.14969 + 726.666i 0.0139720 + 2.44669i
\(298\) −214.185 239.451i −0.718740 0.803528i
\(299\) 226.100i 0.756188i
\(300\) 313.807 + 449.482i 1.04602 + 1.49827i
\(301\) −200.743 −0.666919
\(302\) −253.477 283.378i −0.839326 0.938339i
\(303\) 203.933 203.933i 0.673046 0.673046i
\(304\) 74.8433 330.709i 0.246195 1.08786i
\(305\) −298.696 318.653i −0.979331 1.04476i
\(306\) −18.8599 + 338.609i −0.0616335 + 1.10656i
\(307\) 195.242 + 195.242i 0.635966 + 0.635966i 0.949558 0.313592i \(-0.101532\pi\)
−0.313592 + 0.949558i \(0.601532\pi\)
\(308\) −35.7099 + 336.998i −0.115941 + 1.09415i
\(309\) 413.192i 1.33719i
\(310\) −20.5024 + 232.495i −0.0661368 + 0.749985i
\(311\) 522.926i 1.68144i 0.541474 + 0.840718i \(0.317867\pi\)
−0.541474 + 0.840718i \(0.682133\pi\)
\(312\) −531.998 747.596i −1.70512 2.39614i
\(313\) −242.759 + 242.759i −0.775587 + 0.775587i −0.979077 0.203490i \(-0.934772\pi\)
0.203490 + 0.979077i \(0.434772\pi\)
\(314\) −9.52047 + 170.930i −0.0303200 + 0.544363i
\(315\) −26.1928 + 810.241i −0.0831518 + 2.57219i
\(316\) 190.154 + 21.2484i 0.601753 + 0.0672416i
\(317\) −33.9249 33.9249i −0.107019 0.107019i 0.651570 0.758589i \(-0.274111\pi\)
−0.758589 + 0.651570i \(0.774111\pi\)
\(318\) 111.645 + 124.815i 0.351085 + 0.392501i
\(319\) 16.3690 16.5570i 0.0513135 0.0519029i
\(320\) −130.261 292.288i −0.407065 0.913399i
\(321\) 365.272i 1.13792i
\(322\) 124.070 110.978i 0.385310 0.344652i
\(323\) −120.706 120.706i −0.373701 0.373701i
\(324\) 76.7070 686.461i 0.236750 2.11871i
\(325\) −392.980 + 345.203i −1.20917 + 1.06216i
\(326\) 6.40803 115.049i 0.0196565 0.352912i
\(327\) −692.583 692.583i −2.11799 2.11799i
\(328\) −62.5111 87.8444i −0.190583 0.267818i
\(329\) 279.939 0.850879
\(330\) −600.968 49.5389i −1.82111 0.150118i
\(331\) 423.596i 1.27975i 0.768480 + 0.639873i \(0.221013\pi\)
−0.768480 + 0.639873i \(0.778987\pi\)
\(332\) 39.0644 + 48.8930i 0.117664 + 0.147268i
\(333\) −149.918 + 149.918i −0.450206 + 0.450206i
\(334\) 15.7457 282.698i 0.0471429 0.846400i
\(335\) −12.7843 + 395.464i −0.0381620 + 1.18049i
\(336\) 149.111 658.874i 0.443782 1.96093i
\(337\) −295.524 + 295.524i −0.876926 + 0.876926i −0.993215 0.116290i \(-0.962900\pi\)
0.116290 + 0.993215i \(0.462900\pi\)
\(338\) 400.630 358.356i 1.18529 1.06022i
\(339\) −175.907 −0.518900
\(340\) −159.443 23.0543i −0.468951 0.0678067i
\(341\) −182.575 180.501i −0.535409 0.529329i
\(342\) 594.836 + 665.007i 1.73929 + 1.94446i
\(343\) 210.656 210.656i 0.614158 0.614158i
\(344\) −34.6437 + 205.613i −0.100708 + 0.597713i
\(345\) 202.567 + 216.102i 0.587152 + 0.626382i
\(346\) 22.0178 395.307i 0.0636354 1.14251i
\(347\) −235.404 235.404i −0.678398 0.678398i 0.281239 0.959638i \(-0.409255\pi\)
−0.959638 + 0.281239i \(0.909255\pi\)
\(348\) −36.2595 + 28.9706i −0.104194 + 0.0832487i
\(349\) −487.495 −1.39683 −0.698416 0.715692i \(-0.746112\pi\)
−0.698416 + 0.715692i \(0.746112\pi\)
\(350\) −382.315 46.2049i −1.09233 0.132014i
\(351\) 1382.19 3.93785
\(352\) 339.012 + 94.7347i 0.963103 + 0.269133i
\(353\) 292.174 292.174i 0.827689 0.827689i −0.159508 0.987197i \(-0.550991\pi\)
0.987197 + 0.159508i \(0.0509907\pi\)
\(354\) −51.2214 + 919.625i −0.144693 + 2.59781i
\(355\) 82.2503 + 87.7458i 0.231691 + 0.247171i
\(356\) 359.485 + 40.1698i 1.00979 + 0.112837i
\(357\) −240.482 240.482i −0.673620 0.673620i
\(358\) 142.242 + 159.021i 0.397323 + 0.444194i
\(359\) 183.518i 0.511193i 0.966784 + 0.255596i \(0.0822718\pi\)
−0.966784 + 0.255596i \(0.917728\pi\)
\(360\) 825.380 + 166.658i 2.29272 + 0.462938i
\(361\) −88.1024 −0.244051
\(362\) −16.9527 18.9526i −0.0468308 0.0523553i
\(363\) 463.641 474.355i 1.27725 1.30676i
\(364\) 640.592 + 71.5816i 1.75987 + 0.196653i
\(365\) 487.862 + 15.7712i 1.33661 + 0.0432089i
\(366\) −956.222 53.2597i −2.61263 0.145518i
\(367\) −309.683 + 309.683i −0.843822 + 0.843822i −0.989354 0.145532i \(-0.953511\pi\)
0.145532 + 0.989354i \(0.453511\pi\)
\(368\) −92.2591 146.232i −0.250704 0.397371i
\(369\) 283.703 0.768843
\(370\) −64.6858 77.1977i −0.174827 0.208642i
\(371\) −117.640 −0.317090
\(372\) 319.459 + 399.834i 0.858760 + 1.07482i
\(373\) −195.281 195.281i −0.523542 0.523542i 0.395097 0.918639i \(-0.370711\pi\)
−0.918639 + 0.395097i \(0.870711\pi\)
\(374\) 131.405 118.897i 0.351351 0.317907i
\(375\) 66.3280 682.016i 0.176875 1.81871i
\(376\) 48.3112 286.731i 0.128487 0.762584i
\(377\) −31.3142 31.3142i −0.0830614 0.0830614i
\(378\) 678.426 + 758.457i 1.79478 + 2.00650i
\(379\) −683.030 −1.80219 −0.901095 0.433621i \(-0.857236\pi\)
−0.901095 + 0.433621i \(0.857236\pi\)
\(380\) −339.504 + 253.728i −0.893433 + 0.667704i
\(381\) 1.45420i 0.00381680i
\(382\) −6.53437 + 5.84487i −0.0171057 + 0.0153007i
\(383\) 283.380 + 283.380i 0.739895 + 0.739895i 0.972557 0.232663i \(-0.0747438\pi\)
−0.232663 + 0.972557i \(0.574744\pi\)
\(384\) −649.127 266.436i −1.69044 0.693843i
\(385\) 307.397 291.460i 0.798434 0.757040i
\(386\) −30.5617 + 548.703i −0.0791753 + 1.42151i
\(387\) −387.968 387.968i −1.00250 1.00250i
\(388\) 389.857 311.487i 1.00479 0.802801i
\(389\) 699.754i 1.79885i −0.437072 0.899427i \(-0.643984\pi\)
0.437072 0.899427i \(-0.356016\pi\)
\(390\) −100.752 + 1142.52i −0.258339 + 2.92954i
\(391\) −87.0469 −0.222626
\(392\) 47.8665 + 67.2650i 0.122108 + 0.171594i
\(393\) 412.672 + 412.672i 1.05006 + 1.05006i
\(394\) 336.759 + 18.7568i 0.854718 + 0.0476062i
\(395\) −163.568 174.496i −0.414095 0.441762i
\(396\) −720.320 + 582.290i −1.81899 + 1.47043i
\(397\) 482.013 + 482.013i 1.21414 + 1.21414i 0.969653 + 0.244487i \(0.0786195\pi\)
0.244487 + 0.969653i \(0.421380\pi\)
\(398\) −468.281 523.523i −1.17659 1.31538i
\(399\) −894.749 −2.24248
\(400\) −113.305 + 383.617i −0.283263 + 0.959042i
\(401\) 615.908 1.53593 0.767965 0.640492i \(-0.221270\pi\)
0.767965 + 0.640492i \(0.221270\pi\)
\(402\) 578.424 + 646.659i 1.43887 + 1.60860i
\(403\) −345.301 + 345.301i −0.856828 + 0.856828i
\(404\) 209.141 + 23.3700i 0.517675 + 0.0578465i
\(405\) −629.935 + 590.482i −1.55540 + 1.45798i
\(406\) 1.81316 32.5533i 0.00446591 0.0801807i
\(407\) 110.786 0.632653i 0.272201 0.00155443i
\(408\) −287.819 + 204.815i −0.705439 + 0.501998i
\(409\) 330.071 0.807019 0.403509 0.914976i \(-0.367790\pi\)
0.403509 + 0.914976i \(0.367790\pi\)
\(410\) −11.8386 + 134.249i −0.0288747 + 0.327436i
\(411\) 491.058i 1.19479i
\(412\) −235.547 + 188.197i −0.571717 + 0.456789i
\(413\) −457.519 457.519i −1.10779 1.10779i
\(414\) 454.269 + 25.3019i 1.09727 + 0.0611157i
\(415\) 2.52757 78.1871i 0.00609054 0.188403i
\(416\) 183.870 643.782i 0.441996 1.54755i
\(417\) 868.682 868.682i 2.08317 2.08317i
\(418\) 23.2690 465.644i 0.0556674 1.11398i
\(419\) 429.690 1.02551 0.512757 0.858534i \(-0.328624\pi\)
0.512757 + 0.858534i \(0.328624\pi\)
\(420\) −676.396 + 505.503i −1.61047 + 1.20358i
\(421\) 261.974 0.622267 0.311134 0.950366i \(-0.399291\pi\)
0.311134 + 0.950366i \(0.399291\pi\)
\(422\) 337.811 + 377.661i 0.800500 + 0.894932i
\(423\) 541.029 + 541.029i 1.27903 + 1.27903i
\(424\) −20.3021 + 120.495i −0.0478823 + 0.284186i
\(425\) 132.901 + 151.294i 0.312708 + 0.355987i
\(426\) 263.310 + 14.6659i 0.618098 + 0.0344269i
\(427\) 475.726 475.726i 1.11411 1.11411i
\(428\) 208.230 166.371i 0.486518 0.388717i
\(429\) −897.201 887.012i −2.09138 2.06763i
\(430\) 199.777 167.398i 0.464597 0.389298i
\(431\) −425.806 −0.987949 −0.493974 0.869476i \(-0.664456\pi\)
−0.493974 + 0.869476i \(0.664456\pi\)
\(432\) 893.941 563.994i 2.06931 1.30554i
\(433\) −441.920 + 441.920i −1.02060 + 1.02060i −0.0208168 + 0.999783i \(0.506627\pi\)
−0.999783 + 0.0208168i \(0.993373\pi\)
\(434\) −358.966 19.9937i −0.827111 0.0460685i
\(435\) 57.9844 + 1.87447i 0.133297 + 0.00430913i
\(436\) 79.3675 710.270i 0.182036 1.62906i
\(437\) −161.935 + 161.935i −0.370561 + 0.370561i
\(438\) 797.747 713.570i 1.82134 1.62915i
\(439\) 39.1211i 0.0891140i 0.999007 + 0.0445570i \(0.0141876\pi\)
−0.999007 + 0.0445570i \(0.985812\pi\)
\(440\) −245.482 365.155i −0.557915 0.829898i
\(441\) −217.240 −0.492607
\(442\) −224.719 251.228i −0.508414 0.568390i
\(443\) 441.330 + 441.330i 0.996231 + 0.996231i 0.999993 0.00376227i \(-0.00119757\pi\)
−0.00376227 + 0.999993i \(0.501198\pi\)
\(444\) −219.479 24.5252i −0.494322 0.0552370i
\(445\) −309.223 329.884i −0.694883 0.741312i
\(446\) −12.1454 + 218.057i −0.0272317 + 0.488917i
\(447\) 622.657 + 622.657i 1.39297 + 1.39297i
\(448\) 443.518 215.095i 0.989995 0.480122i
\(449\) 553.397i 1.23251i 0.787547 + 0.616254i \(0.211351\pi\)
−0.787547 + 0.616254i \(0.788649\pi\)
\(450\) −649.587 828.185i −1.44353 1.84041i
\(451\) −105.423 104.226i −0.233755 0.231100i
\(452\) −80.1205 100.279i −0.177258 0.221856i
\(453\) 736.883 + 736.883i 1.62667 + 1.62667i
\(454\) 34.4935 619.294i 0.0759768 1.36408i
\(455\) −551.027 587.844i −1.21105 1.29196i
\(456\) −154.414 + 916.459i −0.338627 + 2.00978i
\(457\) 154.432 154.432i 0.337925 0.337925i −0.517661 0.855586i \(-0.673197\pi\)
0.855586 + 0.517661i \(0.173197\pi\)
\(458\) 384.182 343.644i 0.838826 0.750314i
\(459\) 532.132i 1.15933i
\(460\) −30.9290 + 213.905i −0.0672370 + 0.465011i
\(461\) 471.965i 1.02379i −0.859049 0.511893i \(-0.828944\pi\)
0.859049 0.511893i \(-0.171056\pi\)
\(462\) 46.3589 927.704i 0.100344 2.00802i
\(463\) 100.365 + 100.365i 0.216771 + 0.216771i 0.807136 0.590365i \(-0.201016\pi\)
−0.590365 + 0.807136i \(0.701016\pi\)
\(464\) −33.0303 7.47513i −0.0711860 0.0161102i
\(465\) 20.6698 639.394i 0.0444513 1.37504i
\(466\) 24.1912 434.327i 0.0519124 0.932032i
\(467\) 239.686 239.686i 0.513247 0.513247i −0.402273 0.915520i \(-0.631780\pi\)
0.915520 + 0.402273i \(0.131780\pi\)
\(468\) 1099.71 + 1376.39i 2.34980 + 2.94101i
\(469\) −609.486 −1.29954
\(470\) −278.592 + 233.439i −0.592750 + 0.496680i
\(471\) 469.235i 0.996252i
\(472\) −547.578 + 389.663i −1.16012 + 0.825556i
\(473\) 1.63722 + 286.699i 0.00346135 + 0.606128i
\(474\) −523.633 29.1653i −1.10471 0.0615302i
\(475\) 528.695 + 34.2182i 1.11304 + 0.0720384i
\(476\) 27.5584 246.623i 0.0578958 0.518117i
\(477\) −227.359 227.359i −0.476645 0.476645i
\(478\) 57.8782 51.7710i 0.121084 0.108307i
\(479\) 400.843i 0.836833i −0.908255 0.418417i \(-0.862585\pi\)
0.908255 0.418417i \(-0.137415\pi\)
\(480\) 401.037 + 780.047i 0.835494 + 1.62510i
\(481\) 210.725i 0.438098i
\(482\) −1.15172 + 1.03019i −0.00238946 + 0.00213733i
\(483\) −322.625 + 322.625i −0.667960 + 0.667960i
\(484\) 481.589 + 48.2520i 0.995018 + 0.0996942i
\(485\) −623.438 20.1540i −1.28544 0.0415547i
\(486\) −39.1588 + 703.056i −0.0805738 + 1.44662i
\(487\) −24.4248 + 24.4248i −0.0501536 + 0.0501536i −0.731739 0.681585i \(-0.761291\pi\)
0.681585 + 0.731739i \(0.261291\pi\)
\(488\) −405.169 569.369i −0.830265 1.16674i
\(489\) 315.832i 0.645873i
\(490\) 9.06517 102.798i 0.0185003 0.209792i
\(491\) 311.219 0.633846 0.316923 0.948451i \(-0.397350\pi\)
0.316923 + 0.948451i \(0.397350\pi\)
\(492\) 184.464 + 230.875i 0.374926 + 0.469258i
\(493\) −12.0557 + 12.0557i −0.0244538 + 0.0244538i
\(494\) −885.415 49.3159i −1.79234 0.0998298i
\(495\) 1157.39 + 30.8002i 2.33816 + 0.0622226i
\(496\) −82.4284 + 364.226i −0.166186 + 0.734326i
\(497\) −130.998 + 130.998i −0.263578 + 0.263578i
\(498\) −114.360 127.851i −0.229639 0.256728i
\(499\) 108.280 0.216994 0.108497 0.994097i \(-0.465396\pi\)
0.108497 + 0.994097i \(0.465396\pi\)
\(500\) 419.005 272.827i 0.838011 0.545654i
\(501\) 776.057i 1.54902i
\(502\) −22.1277 + 19.7928i −0.0440791 + 0.0394279i
\(503\) 22.0758 22.0758i 0.0438882 0.0438882i −0.684822 0.728710i \(-0.740120\pi\)
0.728710 + 0.684822i \(0.240120\pi\)
\(504\) −215.504 + 1279.03i −0.427587 + 2.53777i
\(505\) −179.900 191.919i −0.356237 0.380038i
\(506\) −159.510 176.290i −0.315236 0.348399i
\(507\) −1041.78 + 1041.78i −2.05479 + 2.05479i
\(508\) −0.828991 + 0.662345i −0.00163187 + 0.00130383i
\(509\) 417.953i 0.821125i −0.911832 0.410562i \(-0.865332\pi\)
0.911832 0.410562i \(-0.134668\pi\)
\(510\) 439.862 + 38.7888i 0.862474 + 0.0760565i
\(511\) 751.889i 1.47141i
\(512\) −143.772 491.400i −0.280805 0.959765i
\(513\) −989.936 989.936i −1.92970 1.92970i
\(514\) −10.1257 + 181.796i −0.0196998 + 0.353689i
\(515\) 376.675 + 12.1768i 0.731407 + 0.0236444i
\(516\) 63.4679 567.982i 0.123000 1.10074i
\(517\) −2.28313 399.806i −0.00441611 0.773320i
\(518\) 115.633 103.431i 0.223229 0.199674i
\(519\) 1085.19i 2.09093i
\(520\) −697.202 + 462.949i −1.34077 + 0.890286i
\(521\) 253.019 0.485640 0.242820 0.970071i \(-0.421927\pi\)
0.242820 + 0.970071i \(0.421927\pi\)
\(522\) 66.4190 59.4105i 0.127239 0.113813i
\(523\) −605.834 + 605.834i −1.15838 + 1.15838i −0.173559 + 0.984823i \(0.555527\pi\)
−0.984823 + 0.173559i \(0.944473\pi\)
\(524\) −47.2907 + 423.211i −0.0902495 + 0.807654i
\(525\) 1053.32 + 68.1731i 2.00633 + 0.129854i
\(526\) 190.544 + 10.6129i 0.362251 + 0.0201767i
\(527\) 132.939 + 132.939i 0.252255 + 0.252255i
\(528\) −942.213 207.585i −1.78450 0.393153i
\(529\) 412.220i 0.779244i
\(530\) 117.074 98.0995i 0.220895 0.185093i
\(531\) 1768.46i 3.33044i
\(532\) −407.532 510.067i −0.766037 0.958772i
\(533\) −199.386 + 199.386i −0.374083 + 0.374083i
\(534\) −989.923 55.1368i −1.85379 0.103252i
\(535\) −332.990 10.7646i −0.622411 0.0201208i
\(536\) −105.184 + 624.274i −0.196238 + 1.16469i
\(537\) −413.511 413.511i −0.770040 0.770040i
\(538\) −389.873 + 348.734i −0.724671 + 0.648205i
\(539\) 80.7256 + 79.8089i 0.149769 + 0.148068i
\(540\) −1307.63 189.074i −2.42155 0.350137i
\(541\) 391.623i 0.723887i −0.932200 0.361944i \(-0.882113\pi\)
0.932200 0.361944i \(-0.117887\pi\)
\(542\) 510.718 + 570.965i 0.942283 + 1.05344i
\(543\) 49.2834 + 49.2834i 0.0907613 + 0.0907613i
\(544\) −247.852 70.7888i −0.455609 0.130126i
\(545\) −651.784 + 610.962i −1.19593 + 1.12103i
\(546\) −1764.02 98.2524i −3.23080 0.179949i
\(547\) −166.752 166.752i −0.304847 0.304847i 0.538059 0.842907i \(-0.319158\pi\)
−0.842907 + 0.538059i \(0.819158\pi\)
\(548\) −279.936 + 223.662i −0.510832 + 0.408143i
\(549\) 1838.84 3.34943
\(550\) −62.8714 + 546.395i −0.114312 + 0.993445i
\(551\) 44.8551i 0.0814066i
\(552\) 274.775 + 386.131i 0.497781 + 0.699512i
\(553\) 260.510 260.510i 0.471085 0.471085i
\(554\) 298.082 + 16.6026i 0.538053 + 0.0299685i
\(555\) 188.792 + 201.406i 0.340167 + 0.362895i
\(556\) 890.866 + 99.5478i 1.60228 + 0.179043i
\(557\) −355.499 + 355.499i −0.638238 + 0.638238i −0.950121 0.311883i \(-0.899040\pi\)
0.311883 + 0.950121i \(0.399040\pi\)
\(558\) −655.120 732.403i −1.17405 1.31255i
\(559\) 545.327 0.975540
\(560\) −596.249 155.350i −1.06473 0.277410i
\(561\) −341.493 + 345.416i −0.608722 + 0.615714i
\(562\) 296.565 265.272i 0.527696 0.472014i
\(563\) −608.314 + 608.314i −1.08049 + 1.08049i −0.0840234 + 0.996464i \(0.526777\pi\)
−0.996464 + 0.0840234i \(0.973223\pi\)
\(564\) −88.5071 + 792.060i −0.156927 + 1.40436i
\(565\) −5.18401 + 160.361i −0.00917525 + 0.283824i
\(566\) 478.474 + 26.6501i 0.845361 + 0.0470850i
\(567\) −940.448 940.448i −1.65864 1.65864i
\(568\) 111.569 + 156.784i 0.196425 + 0.276028i
\(569\) 937.364 1.64739 0.823694 0.567035i \(-0.191909\pi\)
0.823694 + 0.567035i \(0.191909\pi\)
\(570\) 890.445 746.125i 1.56218 1.30899i
\(571\) 703.275 1.23166 0.615828 0.787881i \(-0.288822\pi\)
0.615828 + 0.787881i \(0.288822\pi\)
\(572\) 97.0076 915.472i 0.169594 1.60048i
\(573\) 16.9917 16.9917i 0.0296538 0.0296538i
\(574\) −207.276 11.5449i −0.361109 0.0201131i
\(575\) 202.973 178.296i 0.352996 0.310080i
\(576\) 1272.88 + 441.466i 2.20986 + 0.766433i
\(577\) −123.821 123.821i −0.214594 0.214594i 0.591621 0.806216i \(-0.298488\pi\)
−0.806216 + 0.591621i \(0.798488\pi\)
\(578\) 334.083 298.831i 0.577999 0.517009i
\(579\) 1506.29i 2.60154i
\(580\) 25.3416 + 33.9087i 0.0436924 + 0.0584633i
\(581\) 120.501 0.207403
\(582\) −1019.44 + 911.869i −1.75161 + 1.56679i
\(583\) 0.959452 + 168.013i 0.00164572 + 0.288187i
\(584\) 770.133 + 129.759i 1.31872 + 0.222191i
\(585\) 71.1541 2201.06i 0.121631 3.76249i
\(586\) 18.6200 334.302i 0.0317747 0.570481i
\(587\) 37.1908 37.1908i 0.0633573 0.0633573i −0.674718 0.738075i \(-0.735735\pi\)
0.738075 + 0.674718i \(0.235735\pi\)
\(588\) −141.249 176.787i −0.240220 0.300659i
\(589\) 494.617 0.839758
\(590\) 836.840 + 73.7960i 1.41837 + 0.125078i
\(591\) −924.465 −1.56424
\(592\) −85.9852 136.288i −0.145245 0.230217i
\(593\) 113.671 + 113.671i 0.191688 + 0.191688i 0.796425 0.604737i \(-0.206722\pi\)
−0.604737 + 0.796425i \(0.706722\pi\)
\(594\) 1077.69 975.107i 1.81429 1.64159i
\(595\) −226.316 + 212.142i −0.380362 + 0.356540i
\(596\) −71.3543 + 638.558i −0.119722 + 1.07141i
\(597\) 1361.34 + 1361.34i 2.28031 + 2.28031i
\(598\) −337.041 + 301.477i −0.563614 + 0.504142i
\(599\) −811.770 −1.35521 −0.677605 0.735426i \(-0.736982\pi\)
−0.677605 + 0.735426i \(0.736982\pi\)
\(600\) 251.607 1067.11i 0.419345 1.77852i
\(601\) 210.411i 0.350102i 0.984559 + 0.175051i \(0.0560091\pi\)
−0.984559 + 0.175051i \(0.943991\pi\)
\(602\) 267.666 + 299.241i 0.444628 + 0.497079i
\(603\) −1177.93 1177.93i −1.95345 1.95345i
\(604\) −84.4441 + 755.701i −0.139808 + 1.25116i
\(605\) −418.768 436.644i −0.692179 0.721726i
\(606\) −575.917 32.0774i −0.950358 0.0529331i
\(607\) 14.5520 + 14.5520i 0.0239736 + 0.0239736i 0.718992 0.695018i \(-0.244604\pi\)
−0.695018 + 0.718992i \(0.744604\pi\)
\(608\) −592.774 + 329.394i −0.974957 + 0.541766i
\(609\) 89.3649i 0.146740i
\(610\) −76.7327 + 870.142i −0.125791 + 1.42646i
\(611\) −760.468 −1.24463
\(612\) 529.902 423.380i 0.865853 0.691797i
\(613\) −511.327 511.327i −0.834139 0.834139i 0.153941 0.988080i \(-0.450803\pi\)
−0.988080 + 0.153941i \(0.950803\pi\)
\(614\) 30.7104 551.372i 0.0500169 0.898000i
\(615\) 11.9353 369.203i 0.0194070 0.600330i
\(616\) 549.969 396.114i 0.892806 0.643043i
\(617\) −307.862 307.862i −0.498965 0.498965i 0.412151 0.911116i \(-0.364778\pi\)
−0.911116 + 0.412151i \(0.864778\pi\)
\(618\) 615.934 550.942i 0.996657 0.891491i
\(619\) 149.498 0.241515 0.120758 0.992682i \(-0.461468\pi\)
0.120758 + 0.992682i \(0.461468\pi\)
\(620\) 373.912 279.442i 0.603084 0.450713i
\(621\) −713.894 −1.14959
\(622\) 779.512 697.259i 1.25323 1.12099i
\(623\) 492.493 492.493i 0.790518 0.790518i
\(624\) −405.066 + 1789.86i −0.649145 + 2.86837i
\(625\) −619.786 80.5651i −0.991657 0.128904i
\(626\) 685.563 + 38.1845i 1.09515 + 0.0609976i
\(627\) 7.29740 + 1277.87i 0.0116386 + 2.03807i
\(628\) 267.495 213.722i 0.425948 0.340322i
\(629\) −81.1276 −0.128979
\(630\) 1242.73 1041.31i 1.97258 1.65288i
\(631\) 367.025i 0.581655i −0.956775 0.290828i \(-0.906069\pi\)
0.956775 0.290828i \(-0.0939306\pi\)
\(632\) −221.873 311.789i −0.351065 0.493338i
\(633\) −982.052 982.052i −1.55142 1.55142i
\(634\) −5.33619 + 95.8057i −0.00841671 + 0.151113i
\(635\) 1.32568 + 0.0428555i 0.00208768 + 6.74890e-5i
\(636\) 37.1938 332.852i 0.0584808 0.523352i
\(637\) 152.676 152.676i 0.239679 0.239679i
\(638\) −46.5072 2.32404i −0.0728952 0.00364269i
\(639\) −506.352 −0.792413
\(640\) −262.018 + 583.906i −0.409403 + 0.912353i
\(641\) −768.223 −1.19848 −0.599238 0.800571i \(-0.704530\pi\)
−0.599238 + 0.800571i \(0.704530\pi\)
\(642\) −544.501 + 487.046i −0.848133 + 0.758639i
\(643\) −440.590 440.590i −0.685210 0.685210i 0.275959 0.961169i \(-0.411004\pi\)
−0.961169 + 0.275959i \(0.911004\pi\)
\(644\) −330.864 36.9716i −0.513763 0.0574093i
\(645\) −521.212 + 488.569i −0.808081 + 0.757471i
\(646\) −18.9863 + 340.878i −0.0293905 + 0.527676i
\(647\) 93.8740 93.8740i 0.145091 0.145091i −0.630830 0.775921i \(-0.717285\pi\)
0.775921 + 0.630830i \(0.217285\pi\)
\(648\) −1125.57 + 800.966i −1.73699 + 1.23606i
\(649\) −649.693 + 657.156i −1.00107 + 1.01257i
\(650\) 1038.58 + 125.518i 1.59781 + 0.193105i
\(651\) 985.428 1.51371
\(652\) −180.045 + 143.852i −0.276143 + 0.220632i
\(653\) 539.451 539.451i 0.826112 0.826112i −0.160864 0.986977i \(-0.551428\pi\)
0.986977 + 0.160864i \(0.0514281\pi\)
\(654\) −108.939 + 1955.89i −0.166574 + 2.99066i
\(655\) 388.362 364.039i 0.592919 0.555785i
\(656\) −47.5963 + 210.313i −0.0725554 + 0.320600i
\(657\) −1453.15 + 1453.15i −2.21180 + 2.21180i
\(658\) −373.265 417.297i −0.567271 0.634191i
\(659\) 232.233i 0.352402i −0.984354 0.176201i \(-0.943619\pi\)
0.984354 0.176201i \(-0.0563809\pi\)
\(660\) 727.471 + 961.900i 1.10223 + 1.45742i
\(661\) 579.441 0.876613 0.438306 0.898826i \(-0.355578\pi\)
0.438306 + 0.898826i \(0.355578\pi\)
\(662\) 631.443 564.814i 0.953841 0.853193i
\(663\) 653.282 + 653.282i 0.985342 + 0.985342i
\(664\) 20.7958 123.425i 0.0313190 0.185881i
\(665\) −26.3684 + 815.672i −0.0396517 + 1.22657i
\(666\) 423.377 + 23.5813i 0.635702 + 0.0354074i
\(667\) 16.1736 + 16.1736i 0.0242483 + 0.0242483i
\(668\) −442.405 + 353.471i −0.662282 + 0.529148i
\(669\) 598.607i 0.894778i
\(670\) 606.554 508.246i 0.905304 0.758576i
\(671\) −683.307 675.547i −1.01834 1.00678i
\(672\) −1180.99 + 656.253i −1.75742 + 0.976567i
\(673\) 727.635 + 727.635i 1.08118 + 1.08118i 0.996400 + 0.0847817i \(0.0270193\pi\)
0.0847817 + 0.996400i \(0.472981\pi\)
\(674\) 834.574 + 46.4842i 1.23824 + 0.0689676i
\(675\) 1089.95 + 1240.80i 1.61474 + 1.83823i
\(676\) −1068.38 119.384i −1.58045 0.176603i
\(677\) 464.202 464.202i 0.685675 0.685675i −0.275598 0.961273i \(-0.588876\pi\)
0.961273 + 0.275598i \(0.0888757\pi\)
\(678\) 234.551 + 262.220i 0.345945 + 0.386755i
\(679\) 960.837i 1.41508i
\(680\) 178.232 + 268.418i 0.262106 + 0.394732i
\(681\) 1700.08i 2.49644i
\(682\) −25.6272 + 512.835i −0.0375765 + 0.751957i
\(683\) 419.389 + 419.389i 0.614040 + 0.614040i 0.943996 0.329956i \(-0.107034\pi\)
−0.329956 + 0.943996i \(0.607034\pi\)
\(684\) 198.166 1773.41i 0.289716 2.59271i
\(685\) 447.658 + 14.4716i 0.653516 + 0.0211264i
\(686\) −594.904 33.1350i −0.867206 0.0483017i
\(687\) −999.009 + 999.009i −1.45416 + 1.45416i
\(688\) 352.695 222.518i 0.512638 0.323427i
\(689\) 319.576 0.463825
\(690\) 52.0380 590.107i 0.0754175 0.855228i
\(691\) 1091.80i 1.58003i 0.613085 + 0.790017i \(0.289928\pi\)
−0.613085 + 0.790017i \(0.710072\pi\)
\(692\) −618.631 + 494.272i −0.893976 + 0.714266i
\(693\) 10.1844 + 1783.43i 0.0146962 + 2.57349i
\(694\) −37.0277 + 664.793i −0.0533541 + 0.957916i
\(695\) −766.308 817.509i −1.10260 1.17627i
\(696\) 91.5333 + 15.4224i 0.131513 + 0.0221586i
\(697\) 76.7622 + 76.7622i 0.110132 + 0.110132i
\(698\) 650.015 + 726.695i 0.931253 + 1.04111i
\(699\) 1192.31i 1.70573i
\(700\) 440.893 + 631.514i 0.629848 + 0.902163i
\(701\) 1231.26i 1.75643i −0.478262 0.878217i \(-0.658733\pi\)
0.478262 0.878217i \(-0.341267\pi\)
\(702\) −1842.98 2060.39i −2.62532 2.93502i
\(703\) −150.923 + 150.923i −0.214685 + 0.214685i
\(704\) −310.813 631.673i −0.441496 0.897263i
\(705\) 726.840 681.318i 1.03098 0.966408i
\(706\) −825.115 45.9573i −1.16872 0.0650953i
\(707\) 286.522 286.522i 0.405264 0.405264i
\(708\) 1439.16 1149.85i 2.03271 1.62409i
\(709\) 172.519i 0.243327i −0.992571 0.121664i \(-0.961177\pi\)
0.992571 0.121664i \(-0.0388229\pi\)
\(710\) 21.1295 239.607i 0.0297598 0.337474i
\(711\) 1006.96 1.41626
\(712\) −419.449 589.436i −0.589114 0.827859i
\(713\) 178.347 178.347i 0.250136 0.250136i
\(714\) −37.8264 + 679.134i −0.0529782 + 0.951168i
\(715\) −835.059 + 791.766i −1.16791 + 1.10737i
\(716\) 47.3869 424.071i 0.0661828 0.592278i
\(717\) −150.504 + 150.504i −0.209907 + 0.209907i
\(718\) 273.566 244.699i 0.381011 0.340807i
\(719\) 157.766 0.219424 0.109712 0.993963i \(-0.465007\pi\)
0.109712 + 0.993963i \(0.465007\pi\)
\(720\) −852.111 1452.59i −1.18349 2.01748i
\(721\) 580.528i 0.805170i
\(722\) 117.474 + 131.332i 0.162706 + 0.181900i
\(723\) 2.99488 2.99488i 0.00414229 0.00414229i
\(724\) −5.64770 + 50.5420i −0.00780069 + 0.0698093i
\(725\) 3.41762 52.8045i 0.00471396 0.0728338i
\(726\) −1325.32 58.6431i −1.82550 0.0807756i
\(727\) 883.116 883.116i 1.21474 1.21474i 0.245290 0.969450i \(-0.421117\pi\)
0.969450 0.245290i \(-0.0788833\pi\)
\(728\) −747.447 1050.36i −1.02671 1.44280i
\(729\) 375.868i 0.515595i
\(730\) −626.995 748.272i −0.858898 1.02503i
\(731\) 209.947i 0.287205i
\(732\) 1195.61 + 1496.43i 1.63335 + 2.04430i
\(733\) 125.612 + 125.612i 0.171366 + 0.171366i 0.787580 0.616213i \(-0.211334\pi\)
−0.616213 + 0.787580i \(0.711334\pi\)
\(734\) 874.559 + 48.7112i 1.19150 + 0.0663641i
\(735\) −9.13920 + 282.709i −0.0124343 + 0.384638i
\(736\) −94.9684 + 332.511i −0.129033 + 0.451781i
\(737\) 4.97085 + 870.462i 0.00674471 + 1.18109i
\(738\) −378.284 422.909i −0.512579 0.573047i
\(739\) 47.4462i 0.0642033i −0.999485 0.0321016i \(-0.989780\pi\)
0.999485 0.0321016i \(-0.0102200\pi\)
\(740\) −28.8258 + 199.359i −0.0389538 + 0.269404i
\(741\) 2430.63 3.28020
\(742\) 156.859 + 175.363i 0.211400 + 0.236339i
\(743\) 735.075 735.075i 0.989334 0.989334i −0.0106101 0.999944i \(-0.503377\pi\)
0.999944 + 0.0106101i \(0.00337736\pi\)
\(744\) 170.063 1009.34i 0.228579 1.35664i
\(745\) 585.977 549.277i 0.786546 0.737285i
\(746\) −30.7166 + 551.484i −0.0411751 + 0.739255i
\(747\) 232.889 + 232.889i 0.311765 + 0.311765i
\(748\) −352.450 37.3472i −0.471190 0.0499294i
\(749\) 513.201i 0.685181i
\(750\) −1105.10 + 810.512i −1.47347 + 1.08068i
\(751\) 1011.71i 1.34715i 0.739120 + 0.673573i \(0.235241\pi\)
−0.739120 + 0.673573i \(0.764759\pi\)
\(752\) −491.840 + 310.305i −0.654042 + 0.412640i
\(753\) 57.5398 57.5398i 0.0764140 0.0764140i
\(754\) −4.92553 + 88.4327i −0.00653254 + 0.117285i
\(755\) 693.474 650.042i 0.918509 0.860983i
\(756\) 226.013 2022.62i 0.298959 2.67542i
\(757\) −788.218 788.218i −1.04124 1.04124i −0.999112 0.0421273i \(-0.986586\pi\)
−0.0421273 0.999112i \(-0.513414\pi\)
\(758\) 910.737 + 1018.17i 1.20150 + 1.34324i
\(759\) 463.401 + 458.138i 0.610541 + 0.603607i
\(760\) 830.912 + 167.775i 1.09331 + 0.220757i
\(761\) 1401.09i 1.84111i 0.390609 + 0.920557i \(0.372265\pi\)
−0.390609 + 0.920557i \(0.627735\pi\)
\(762\) 2.16774 1.93900i 0.00284480 0.00254462i
\(763\) −973.066 973.066i −1.27532 1.27532i
\(764\) 17.4256 + 1.94718i 0.0228083 + 0.00254867i
\(765\) −847.391 27.3938i −1.10770 0.0358089i
\(766\) 44.5740 800.279i 0.0581906 1.04475i
\(767\) 1242.87 + 1242.87i 1.62043 + 1.62043i
\(768\) 468.364 + 1322.90i 0.609849 + 1.72252i
\(769\) 392.963 0.511005 0.255502 0.966808i \(-0.417759\pi\)
0.255502 + 0.966808i \(0.417759\pi\)
\(770\) −844.348 69.6013i −1.09656 0.0903913i
\(771\) 499.064i 0.647295i
\(772\) 858.686 686.071i 1.11229 0.888692i
\(773\) −147.039 + 147.039i −0.190219 + 0.190219i −0.795791 0.605572i \(-0.792944\pi\)
0.605572 + 0.795791i \(0.292944\pi\)
\(774\) −61.0251 + 1095.64i −0.0788439 + 1.41556i
\(775\) −582.276 37.6861i −0.751324 0.0486272i
\(776\) −984.151 165.819i −1.26824 0.213684i
\(777\) −300.685 + 300.685i −0.386983 + 0.386983i
\(778\) −1043.10 + 933.036i −1.34075 + 1.19928i
\(779\) 285.605 0.366630
\(780\) 1837.46 1373.22i 2.35572 1.76054i
\(781\) 188.159 + 186.022i 0.240920 + 0.238184i
\(782\) 116.066 + 129.758i 0.148423 + 0.165932i
\(783\) −98.8720 + 98.8720i −0.126273 + 0.126273i
\(784\) 36.4458 161.043i 0.0464870 0.205412i
\(785\) −427.764 13.8284i −0.544922 0.0176158i
\(786\) 64.9109 1165.41i 0.0825839 1.48271i
\(787\) 69.9045 + 69.9045i 0.0888240 + 0.0888240i 0.750123 0.661299i \(-0.229994\pi\)
−0.661299 + 0.750123i \(0.729994\pi\)
\(788\) −421.067 527.007i −0.534349 0.668791i
\(789\) −523.078 −0.662963
\(790\) −42.0193 + 476.495i −0.0531889 + 0.603158i
\(791\) −247.146 −0.312448
\(792\) 1828.46 + 297.349i 2.30866 + 0.375441i
\(793\) −1292.33 + 1292.33i −1.62968 + 1.62968i
\(794\) 75.8179 1361.23i 0.0954885 1.71440i
\(795\) −305.444 + 286.314i −0.384206 + 0.360143i
\(796\) −156.005 + 1396.11i −0.195986 + 1.75390i
\(797\) 733.422 + 733.422i 0.920228 + 0.920228i 0.997045 0.0768168i \(-0.0244757\pi\)
−0.0768168 + 0.997045i \(0.524476\pi\)
\(798\) 1193.04 + 1333.78i 1.49504 + 1.67140i
\(799\) 292.775i 0.366426i
\(800\) 722.925 342.606i 0.903657 0.428257i
\(801\) 1903.65 2.37659
\(802\) −821.238 918.116i −1.02399 1.14478i
\(803\) 1073.84 6.13226i 1.33729 0.00763669i
\(804\) 192.698 1724.48i 0.239675 2.14488i
\(805\) 284.604 + 303.619i 0.353545 + 0.377167i
\(806\) 975.149 + 54.3139i 1.20986 + 0.0673870i
\(807\) 1013.81 1013.81i 1.25627 1.25627i
\(808\) −244.027 342.921i −0.302013 0.424408i
\(809\) 641.096 0.792455 0.396227 0.918152i \(-0.370319\pi\)
0.396227 + 0.918152i \(0.370319\pi\)
\(810\) 1720.16 + 151.690i 2.12365 + 0.187272i
\(811\) −1069.33 −1.31853 −0.659264 0.751911i \(-0.729132\pi\)
−0.659264 + 0.751911i \(0.729132\pi\)
\(812\) −50.9440 + 40.7031i −0.0627389 + 0.0501270i
\(813\) −1484.71 1484.71i −1.82621 1.82621i
\(814\) −148.663 164.302i −0.182632 0.201845i
\(815\) 287.919 + 9.30762i 0.353275 + 0.0114204i
\(816\) 689.084 + 155.948i 0.844466 + 0.191112i
\(817\) −390.569 390.569i −0.478053 0.478053i
\(818\) −440.109 492.027i −0.538030 0.601500i
\(819\) 3392.25 4.14194
\(820\) 215.907 161.357i 0.263301 0.196777i
\(821\) 20.6937i 0.0252055i 0.999921 + 0.0126028i \(0.00401169\pi\)
−0.999921 + 0.0126028i \(0.995988\pi\)
\(822\) 732.006 654.765i 0.890518 0.796552i
\(823\) 210.860 + 210.860i 0.256209 + 0.256209i 0.823510 0.567301i \(-0.192012\pi\)
−0.567301 + 0.823510i \(0.692012\pi\)
\(824\) 594.613 + 100.186i 0.721618 + 0.121585i
\(825\) 88.7735 1504.90i 0.107604 1.82412i
\(826\) −71.9651 + 1292.06i −0.0871248 + 1.56423i
\(827\) 127.688 + 127.688i 0.154399 + 0.154399i 0.780080 0.625680i \(-0.215179\pi\)
−0.625680 + 0.780080i \(0.715179\pi\)
\(828\) −567.995 710.902i −0.685984 0.858578i
\(829\) 1285.31i 1.55044i 0.631693 + 0.775219i \(0.282360\pi\)
−0.631693 + 0.775219i \(0.717640\pi\)
\(830\) −119.922 + 100.485i −0.144484 + 0.121067i
\(831\) −818.289 −0.984704
\(832\) −1204.84 + 584.315i −1.44812 + 0.702301i
\(833\) −58.7790 58.7790i −0.0705630 0.0705630i
\(834\) −2453.20 136.639i −2.94149 0.163835i
\(835\) 707.470 + 22.8705i 0.847270 + 0.0273899i
\(836\) −725.149 + 586.193i −0.867403 + 0.701188i
\(837\) 1090.26 + 1090.26i 1.30258 + 1.30258i
\(838\) −572.939 640.527i −0.683698 0.764352i
\(839\) −723.511 −0.862350 −0.431175 0.902268i \(-0.641901\pi\)
−0.431175 + 0.902268i \(0.641901\pi\)
\(840\) 1655.43 + 334.259i 1.97075 + 0.397927i
\(841\) −836.520 −0.994673
\(842\) −349.311 390.518i −0.414859 0.463798i
\(843\) −771.174 + 771.174i −0.914797 + 0.914797i
\(844\) 112.540 1007.13i 0.133341 1.19328i
\(845\) 919.005 + 980.407i 1.08758 + 1.16025i
\(846\) 85.1006 1527.89i 0.100592 1.80602i
\(847\) 651.407 666.460i 0.769076 0.786847i
\(848\) 206.689 130.401i 0.243736 0.153775i
\(849\) −1313.50 −1.54711
\(850\) 48.3235 399.844i 0.0568512 0.470405i
\(851\) 108.839i 0.127895i
\(852\) −329.230 412.064i −0.386420 0.483643i
\(853\) −258.829 258.829i −0.303434 0.303434i 0.538922 0.842356i \(-0.318832\pi\)
−0.842356 + 0.538922i \(0.818832\pi\)
\(854\) −1343.47 74.8289i −1.57315 0.0876217i
\(855\) −1627.38 + 1525.46i −1.90337 + 1.78416i
\(856\) −525.653 88.5670i −0.614081 0.103466i
\(857\) −206.625 + 206.625i −0.241102 + 0.241102i −0.817306 0.576204i \(-0.804533\pi\)
0.576204 + 0.817306i \(0.304533\pi\)
\(858\) −125.936 + 2520.15i −0.146779 + 2.93724i
\(859\) 231.485 0.269482 0.134741 0.990881i \(-0.456980\pi\)
0.134741 + 0.990881i \(0.456980\pi\)
\(860\) −515.914 74.5971i −0.599900 0.0867409i
\(861\) 569.012 0.660874
\(862\) 567.760 + 634.737i 0.658655 + 0.736354i
\(863\) −638.441 638.441i −0.739793 0.739793i 0.232745 0.972538i \(-0.425229\pi\)
−0.972538 + 0.232745i \(0.925229\pi\)
\(864\) −2032.69 580.556i −2.35265 0.671940i
\(865\) 989.282 + 31.9807i 1.14368 + 0.0369720i
\(866\) 1248.00 + 69.5114i 1.44111 + 0.0802672i
\(867\) −868.733 + 868.733i −1.00200 + 1.00200i
\(868\) 448.833 + 561.760i 0.517089 + 0.647189i
\(869\) −374.183 369.934i −0.430590 0.425700i
\(870\) −74.5208 88.9350i −0.0856561 0.102224i
\(871\) 1655.70 1.90092
\(872\) −1164.61 + 828.747i −1.33556 + 0.950398i
\(873\) 1856.98 1856.98i 2.12712 2.12712i
\(874\) 457.314 + 25.4715i 0.523242 + 0.0291436i
\(875\) 93.1896 958.220i 0.106502 1.09511i
\(876\) −2127.40 237.721i −2.42854 0.271371i
\(877\) 481.721 481.721i 0.549282 0.549282i −0.376951 0.926233i \(-0.623027\pi\)
0.926233 + 0.376951i \(0.123027\pi\)
\(878\) 58.3167 52.1632i 0.0664199 0.0594113i
\(879\) 917.721i 1.04405i
\(880\) −217.006 + 852.824i −0.246598 + 0.969118i
\(881\) −878.141 −0.996755 −0.498377 0.866960i \(-0.666071\pi\)
−0.498377 + 0.866960i \(0.666071\pi\)
\(882\) 289.662 + 323.833i 0.328415 + 0.367158i
\(883\) −792.572 792.572i −0.897591 0.897591i 0.0976320 0.995223i \(-0.468873\pi\)
−0.995223 + 0.0976320i \(0.968873\pi\)
\(884\) −74.8637 + 669.965i −0.0846875 + 0.757878i
\(885\) −2301.42 74.3987i −2.60048 0.0840663i
\(886\) 69.4186 1246.34i 0.0783506 1.40670i
\(887\) 395.005 + 395.005i 0.445327 + 0.445327i 0.893798 0.448471i \(-0.148031\pi\)
−0.448471 + 0.893798i \(0.648031\pi\)
\(888\) 256.090 + 359.873i 0.288389 + 0.405262i
\(889\) 2.04312i 0.00229823i
\(890\) −79.4371 + 900.810i −0.0892551 + 1.01215i
\(891\) −1335.47 + 1350.81i −1.49884 + 1.51606i
\(892\) 341.246 272.648i 0.382563 0.305659i
\(893\) 544.655 + 544.655i 0.609916 + 0.609916i
\(894\) 97.9403 1758.41i 0.109553 1.96691i
\(895\) −389.152 + 364.779i −0.434806 + 0.407575i
\(896\) −912.012 374.337i −1.01787 0.417787i
\(897\) 876.425 876.425i 0.977063 0.977063i
\(898\) 824.933 737.887i 0.918633 0.821700i
\(899\) 49.4009i 0.0549510i
\(900\) −368.406 + 2072.61i −0.409340 + 2.30289i
\(901\) 123.034i 0.136553i
\(902\) −14.7978 + 296.124i −0.0164055 + 0.328298i
\(903\) −778.132 778.132i −0.861719 0.861719i
\(904\) −42.6520 + 253.143i −0.0471814 + 0.280025i
\(905\) 46.3802 43.4754i 0.0512488 0.0480391i
\(906\) 115.907 2080.99i 0.127933 2.29690i
\(907\) 948.453 948.453i 1.04570 1.04570i 0.0467987 0.998904i \(-0.485098\pi\)
0.998904 0.0467987i \(-0.0149019\pi\)
\(908\) −969.157 + 774.335i −1.06735 + 0.852791i
\(909\) 1107.50 1.21837
\(910\) −141.555 + 1605.22i −0.155555 + 1.76398i
\(911\) 190.484i 0.209093i −0.994520 0.104546i \(-0.966661\pi\)
0.994520 0.104546i \(-0.0333391\pi\)
\(912\) 1572.03 991.806i 1.72372 1.08751i
\(913\) −0.982785 172.099i −0.00107644 0.188498i
\(914\) −436.123 24.2912i −0.477159 0.0265768i
\(915\) 77.3594 2393.01i 0.0845458 2.61531i
\(916\) −1024.52 114.483i −1.11847 0.124981i
\(917\) 579.797 + 579.797i 0.632276 + 0.632276i
\(918\) −793.234 + 709.532i −0.864089 + 0.772911i
\(919\) 139.794i 0.152115i 0.997103 + 0.0760576i \(0.0242333\pi\)
−0.997103 + 0.0760576i \(0.975767\pi\)
\(920\) 360.102 239.111i 0.391416 0.259903i
\(921\) 1513.62i 1.64345i
\(922\) −703.546 + 629.308i −0.763065 + 0.682547i
\(923\) 355.863 355.863i 0.385550 0.385550i
\(924\) −1444.72 + 1167.87i −1.56355 + 1.26393i
\(925\) 189.170 166.172i 0.204508 0.179645i
\(926\) 15.7868 283.436i 0.0170484 0.306086i
\(927\) −1121.97 + 1121.97i −1.21032 + 1.21032i
\(928\) 32.8989 + 59.2045i 0.0354514 + 0.0637980i
\(929\) 98.0946i 0.105592i −0.998605 0.0527958i \(-0.983187\pi\)
0.998605 0.0527958i \(-0.0168133\pi\)
\(930\) −980.688 + 821.742i −1.05450 + 0.883594i
\(931\) −218.696 −0.234904
\(932\) −679.695 + 543.061i −0.729286 + 0.582683i
\(933\) −2027.00 + 2027.00i −2.17257 + 2.17257i
\(934\) −676.886 37.7013i −0.724717 0.0403654i
\(935\) 304.824 + 321.492i 0.326015 + 0.343841i
\(936\) 585.427 3474.56i 0.625456 3.71213i
\(937\) −1026.90 + 1026.90i −1.09594 + 1.09594i −0.101059 + 0.994880i \(0.532223\pi\)
−0.994880 + 0.101059i \(0.967777\pi\)
\(938\) 812.675 + 908.543i 0.866391 + 0.968596i
\(939\) −1882.00 −2.00426
\(940\) 719.451 + 104.027i 0.765373 + 0.110667i
\(941\) 1528.72i 1.62457i 0.583262 + 0.812284i \(0.301776\pi\)
−0.583262 + 0.812284i \(0.698224\pi\)
\(942\) −699.475 + 625.667i −0.742542 + 0.664190i
\(943\) 102.982 102.982i 0.109207 0.109207i
\(944\) 1310.99 + 296.691i 1.38876 + 0.314292i
\(945\) −1856.07 + 1739.83i −1.96410 + 1.84109i
\(946\) 425.191 384.718i 0.449462 0.406679i
\(947\) −118.985 + 118.985i −0.125644 + 0.125644i −0.767132 0.641489i \(-0.778317\pi\)
0.641489 + 0.767132i \(0.278317\pi\)
\(948\) 654.724 + 819.453i 0.690637 + 0.864402i
\(949\) 2042.54i 2.15231i
\(950\) −653.942 833.736i −0.688360 0.877617i
\(951\) 263.004i 0.276556i
\(952\) −404.380 + 287.762i −0.424769 + 0.302271i
\(953\) 204.792 + 204.792i 0.214892 + 0.214892i 0.806342 0.591450i \(-0.201444\pi\)
−0.591450 + 0.806342i \(0.701444\pi\)
\(954\) −35.7623 + 642.075i −0.0374867 + 0.673034i
\(955\) −14.9892 15.9907i −0.0156955 0.0167442i
\(956\) −154.347 17.2472i −0.161451 0.0180410i
\(957\) 127.630 0.728843i 0.133365 0.000761592i
\(958\) −597.526 + 534.475i −0.623722 + 0.557908i
\(959\) 689.927i 0.719423i
\(960\) 628.060 1637.91i 0.654229 1.70616i
\(961\) 416.255 0.433148
\(962\) −314.122 + 280.976i −0.326530 + 0.292075i
\(963\) 991.846 991.846i 1.02995 1.02995i
\(964\) 3.07136 + 0.343202i 0.00318606 + 0.000356019i
\(965\) −1373.17 44.3906i −1.42297 0.0460006i
\(966\) 911.108 + 50.7470i 0.943176 + 0.0525331i
\(967\) −327.566 327.566i −0.338745 0.338745i 0.517150 0.855895i \(-0.326993\pi\)
−0.855895 + 0.517150i \(0.826993\pi\)
\(968\) −570.212 782.229i −0.589062 0.808088i
\(969\) 935.774i 0.965711i
\(970\) 801.236 + 956.215i 0.826016 + 0.985789i
\(971\) 702.038i 0.723005i −0.932371 0.361503i \(-0.882264\pi\)
0.932371 0.361503i \(-0.117736\pi\)
\(972\) 1100.24 879.066i 1.13193 0.904389i
\(973\) 1220.48 1220.48i 1.25435 1.25435i
\(974\) 68.9769 + 3.84188i 0.0708181 + 0.00394443i
\(975\) −2861.40 185.196i −2.93477 0.189944i
\(976\) −308.498 + 1363.16i −0.316084 + 1.39668i
\(977\) 96.8366 + 96.8366i 0.0991163 + 0.0991163i 0.754926 0.655810i \(-0.227673\pi\)
−0.655810 + 0.754926i \(0.727673\pi\)
\(978\) 470.802 421.123i 0.481393 0.430597i
\(979\) −707.390 699.357i −0.722564 0.714358i
\(980\) −165.326 + 123.556i −0.168700 + 0.126077i
\(981\) 3761.22i 3.83407i
\(982\) −414.972 463.925i −0.422578 0.472429i
\(983\) 374.140 + 374.140i 0.380611 + 0.380611i 0.871322 0.490711i \(-0.163263\pi\)
−0.490711 + 0.871322i \(0.663263\pi\)
\(984\) 98.1988 582.818i 0.0997955 0.592295i
\(985\) −27.2442 + 842.762i −0.0276590 + 0.855596i
\(986\) 34.0460 + 1.89629i 0.0345294 + 0.00192322i
\(987\) 1085.12 + 1085.12i 1.09941 + 1.09941i
\(988\) 1107.08 + 1385.62i 1.12053 + 1.40245i
\(989\) −281.659 −0.284792
\(990\) −1497.33 1766.36i −1.51245 1.78420i
\(991\) 905.275i 0.913496i −0.889596 0.456748i \(-0.849014\pi\)
0.889596 0.456748i \(-0.150986\pi\)
\(992\) 652.849 362.777i 0.658114 0.365702i
\(993\) −1641.97 + 1641.97i −1.65355 + 1.65355i
\(994\) 369.946 + 20.6053i 0.372179 + 0.0207296i
\(995\) 1281.15 1200.91i 1.28758 1.20694i
\(996\) −38.0983 + 340.947i −0.0382513 + 0.342316i
\(997\) 618.290 618.290i 0.620150 0.620150i −0.325419 0.945570i \(-0.605505\pi\)
0.945570 + 0.325419i \(0.105505\pi\)
\(998\) −144.378 161.410i −0.144668 0.161734i
\(999\) −665.347 −0.666013
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.i.a.87.19 yes 136
4.3 odd 2 inner 220.3.i.a.87.53 yes 136
5.3 odd 4 inner 220.3.i.a.43.16 136
11.10 odd 2 inner 220.3.i.a.87.50 yes 136
20.3 even 4 inner 220.3.i.a.43.50 yes 136
44.43 even 2 inner 220.3.i.a.87.16 yes 136
55.43 even 4 inner 220.3.i.a.43.53 yes 136
220.43 odd 4 inner 220.3.i.a.43.19 yes 136
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.i.a.43.16 136 5.3 odd 4 inner
220.3.i.a.43.19 yes 136 220.43 odd 4 inner
220.3.i.a.43.50 yes 136 20.3 even 4 inner
220.3.i.a.43.53 yes 136 55.43 even 4 inner
220.3.i.a.87.16 yes 136 44.43 even 2 inner
220.3.i.a.87.19 yes 136 1.1 even 1 trivial
220.3.i.a.87.50 yes 136 11.10 odd 2 inner
220.3.i.a.87.53 yes 136 4.3 odd 2 inner