Properties

Label 220.3.p.a.41.4
Level $220$
Weight $3$
Character 220.41
Analytic conductor $5.995$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(41,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.41");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} + 36 x^{13} + 396 x^{12} + 1918 x^{11} + 8573 x^{10} + 28624 x^{9} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5\cdot 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 41.4
Root \(-0.0370387 - 0.0269102i\) of defining polynomial
Character \(\chi\) \(=\) 220.41
Dual form 220.3.p.a.161.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.59415 + 4.90629i) q^{3} +(-1.80902 - 1.31433i) q^{5} +(-9.66012 - 3.13876i) q^{7} +(-14.2492 + 10.3527i) q^{9} +(-1.51124 + 10.8957i) q^{11} +(-1.96578 - 2.70567i) q^{13} +(3.56463 - 10.9708i) q^{15} +(-11.8653 + 16.3311i) q^{17} +(-5.26038 + 1.70920i) q^{19} -52.3990i q^{21} +34.6484 q^{23} +(1.54508 + 4.75528i) q^{25} +(-35.9469 - 26.1169i) q^{27} +(-42.6710 - 13.8647i) q^{29} +(35.0661 - 25.4770i) q^{31} +(-55.8666 + 9.95478i) q^{33} +(13.3500 + 18.3746i) q^{35} +(-18.3557 + 56.4930i) q^{37} +(10.1411 - 13.9580i) q^{39} +(31.4716 - 10.2257i) q^{41} +65.3574i q^{43} +39.3839 q^{45} +(21.2781 + 65.4871i) q^{47} +(43.8242 + 31.8401i) q^{49} +(-99.0403 - 32.1801i) q^{51} +(2.60431 - 1.89214i) q^{53} +(17.0544 - 17.7242i) q^{55} +(-16.7717 - 23.0842i) q^{57} +(20.4015 - 62.7894i) q^{59} +(-27.8545 + 38.3384i) q^{61} +(170.144 - 55.2831i) q^{63} +7.47829i q^{65} -31.6113 q^{67} +(55.2349 + 169.995i) q^{69} +(-3.04204 - 2.21017i) q^{71} +(21.3156 + 6.92587i) q^{73} +(-20.8677 + 15.1613i) q^{75} +(48.7978 - 100.510i) q^{77} +(-45.9740 - 63.2778i) q^{79} +(21.8480 - 67.2413i) q^{81} +(13.0450 - 17.9550i) q^{83} +(42.9289 - 13.9484i) q^{85} -231.459i q^{87} +68.2014 q^{89} +(10.4973 + 32.3072i) q^{91} +(180.898 + 131.430i) q^{93} +(11.7626 + 3.82189i) q^{95} +(-49.7040 + 36.1121i) q^{97} +(-91.2656 - 170.901i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{3} - 20 q^{5} - 10 q^{7} - 19 q^{9} - 37 q^{11} + 35 q^{13} + 15 q^{15} + 55 q^{17} + 30 q^{19} + 72 q^{23} - 20 q^{25} - 25 q^{27} - 145 q^{29} - 80 q^{31} - 94 q^{33} + 44 q^{37} + 175 q^{39}+ \cdots - 70 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.59415 + 4.90629i 0.531384 + 1.63543i 0.751336 + 0.659920i \(0.229410\pi\)
−0.219952 + 0.975511i \(0.570590\pi\)
\(4\) 0 0
\(5\) −1.80902 1.31433i −0.361803 0.262866i
\(6\) 0 0
\(7\) −9.66012 3.13876i −1.38002 0.448395i −0.477342 0.878718i \(-0.658400\pi\)
−0.902675 + 0.430323i \(0.858400\pi\)
\(8\) 0 0
\(9\) −14.2492 + 10.3527i −1.58325 + 1.15030i
\(10\) 0 0
\(11\) −1.51124 + 10.8957i −0.137386 + 0.990518i
\(12\) 0 0
\(13\) −1.96578 2.70567i −0.151214 0.208128i 0.726689 0.686967i \(-0.241058\pi\)
−0.877903 + 0.478838i \(0.841058\pi\)
\(14\) 0 0
\(15\) 3.56463 10.9708i 0.237642 0.731387i
\(16\) 0 0
\(17\) −11.8653 + 16.3311i −0.697956 + 0.960654i 0.302017 + 0.953303i \(0.402340\pi\)
−0.999973 + 0.00735170i \(0.997660\pi\)
\(18\) 0 0
\(19\) −5.26038 + 1.70920i −0.276862 + 0.0899579i −0.444157 0.895949i \(-0.646497\pi\)
0.167295 + 0.985907i \(0.446497\pi\)
\(20\) 0 0
\(21\) 52.3990i 2.49519i
\(22\) 0 0
\(23\) 34.6484 1.50645 0.753227 0.657761i \(-0.228496\pi\)
0.753227 + 0.657761i \(0.228496\pi\)
\(24\) 0 0
\(25\) 1.54508 + 4.75528i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −35.9469 26.1169i −1.33137 0.967294i
\(28\) 0 0
\(29\) −42.6710 13.8647i −1.47142 0.478092i −0.539880 0.841742i \(-0.681530\pi\)
−0.931536 + 0.363650i \(0.881530\pi\)
\(30\) 0 0
\(31\) 35.0661 25.4770i 1.13116 0.821838i 0.145299 0.989388i \(-0.453585\pi\)
0.985864 + 0.167550i \(0.0535854\pi\)
\(32\) 0 0
\(33\) −55.8666 + 9.95478i −1.69293 + 0.301660i
\(34\) 0 0
\(35\) 13.3500 + 18.3746i 0.381427 + 0.524989i
\(36\) 0 0
\(37\) −18.3557 + 56.4930i −0.496100 + 1.52684i 0.319136 + 0.947709i \(0.396607\pi\)
−0.815236 + 0.579129i \(0.803393\pi\)
\(38\) 0 0
\(39\) 10.1411 13.9580i 0.260027 0.357896i
\(40\) 0 0
\(41\) 31.4716 10.2257i 0.767599 0.249408i 0.101062 0.994880i \(-0.467776\pi\)
0.666537 + 0.745472i \(0.267776\pi\)
\(42\) 0 0
\(43\) 65.3574i 1.51994i 0.649958 + 0.759970i \(0.274787\pi\)
−0.649958 + 0.759970i \(0.725213\pi\)
\(44\) 0 0
\(45\) 39.3839 0.875199
\(46\) 0 0
\(47\) 21.2781 + 65.4871i 0.452725 + 1.39334i 0.873786 + 0.486311i \(0.161658\pi\)
−0.421061 + 0.907032i \(0.638342\pi\)
\(48\) 0 0
\(49\) 43.8242 + 31.8401i 0.894371 + 0.649798i
\(50\) 0 0
\(51\) −99.0403 32.1801i −1.94197 0.630983i
\(52\) 0 0
\(53\) 2.60431 1.89214i 0.0491380 0.0357008i −0.562945 0.826494i \(-0.690332\pi\)
0.612083 + 0.790793i \(0.290332\pi\)
\(54\) 0 0
\(55\) 17.0544 17.7242i 0.310080 0.322259i
\(56\) 0 0
\(57\) −16.7717 23.0842i −0.294240 0.404986i
\(58\) 0 0
\(59\) 20.4015 62.7894i 0.345788 1.06423i −0.615372 0.788237i \(-0.710994\pi\)
0.961160 0.275991i \(-0.0890058\pi\)
\(60\) 0 0
\(61\) −27.8545 + 38.3384i −0.456631 + 0.628499i −0.973806 0.227381i \(-0.926984\pi\)
0.517175 + 0.855880i \(0.326984\pi\)
\(62\) 0 0
\(63\) 170.144 55.2831i 2.70070 0.877510i
\(64\) 0 0
\(65\) 7.47829i 0.115051i
\(66\) 0 0
\(67\) −31.6113 −0.471810 −0.235905 0.971776i \(-0.575805\pi\)
−0.235905 + 0.971776i \(0.575805\pi\)
\(68\) 0 0
\(69\) 55.2349 + 169.995i 0.800505 + 2.46370i
\(70\) 0 0
\(71\) −3.04204 2.21017i −0.0428456 0.0311292i 0.566156 0.824298i \(-0.308430\pi\)
−0.609002 + 0.793169i \(0.708430\pi\)
\(72\) 0 0
\(73\) 21.3156 + 6.92587i 0.291995 + 0.0948749i 0.451352 0.892346i \(-0.350942\pi\)
−0.159357 + 0.987221i \(0.550942\pi\)
\(74\) 0 0
\(75\) −20.8677 + 15.1613i −0.278236 + 0.202150i
\(76\) 0 0
\(77\) 48.7978 100.510i 0.633737 1.30533i
\(78\) 0 0
\(79\) −45.9740 63.2778i −0.581949 0.800984i 0.411958 0.911203i \(-0.364845\pi\)
−0.993907 + 0.110218i \(0.964845\pi\)
\(80\) 0 0
\(81\) 21.8480 67.2413i 0.269729 0.830140i
\(82\) 0 0
\(83\) 13.0450 17.9550i 0.157169 0.216325i −0.723169 0.690671i \(-0.757315\pi\)
0.880339 + 0.474346i \(0.157315\pi\)
\(84\) 0 0
\(85\) 42.9289 13.9484i 0.505046 0.164099i
\(86\) 0 0
\(87\) 231.459i 2.66045i
\(88\) 0 0
\(89\) 68.2014 0.766308 0.383154 0.923684i \(-0.374838\pi\)
0.383154 + 0.923684i \(0.374838\pi\)
\(90\) 0 0
\(91\) 10.4973 + 32.3072i 0.115354 + 0.355024i
\(92\) 0 0
\(93\) 180.898 + 131.430i 1.94514 + 1.41323i
\(94\) 0 0
\(95\) 11.7626 + 3.82189i 0.123816 + 0.0402304i
\(96\) 0 0
\(97\) −49.7040 + 36.1121i −0.512412 + 0.372289i −0.813738 0.581232i \(-0.802571\pi\)
0.301326 + 0.953521i \(0.402571\pi\)
\(98\) 0 0
\(99\) −91.2656 170.901i −0.921875 1.72627i
\(100\) 0 0
\(101\) −4.39224 6.04540i −0.0434875 0.0598554i 0.786719 0.617311i \(-0.211778\pi\)
−0.830207 + 0.557455i \(0.811778\pi\)
\(102\) 0 0
\(103\) −25.5387 + 78.6000i −0.247948 + 0.763107i 0.747189 + 0.664612i \(0.231403\pi\)
−0.995138 + 0.0984954i \(0.968597\pi\)
\(104\) 0 0
\(105\) −68.8695 + 94.7907i −0.655900 + 0.902769i
\(106\) 0 0
\(107\) 150.340 48.8485i 1.40505 0.456528i 0.494228 0.869332i \(-0.335451\pi\)
0.910820 + 0.412804i \(0.135451\pi\)
\(108\) 0 0
\(109\) 79.1292i 0.725956i 0.931798 + 0.362978i \(0.118240\pi\)
−0.931798 + 0.362978i \(0.881760\pi\)
\(110\) 0 0
\(111\) −306.433 −2.76066
\(112\) 0 0
\(113\) 8.72182 + 26.8430i 0.0771843 + 0.237549i 0.982203 0.187823i \(-0.0601432\pi\)
−0.905019 + 0.425372i \(0.860143\pi\)
\(114\) 0 0
\(115\) −62.6796 45.5394i −0.545040 0.395995i
\(116\) 0 0
\(117\) 56.0219 + 18.2026i 0.478820 + 0.155578i
\(118\) 0 0
\(119\) 165.879 120.518i 1.39394 1.01276i
\(120\) 0 0
\(121\) −116.432 32.9321i −0.962250 0.272166i
\(122\) 0 0
\(123\) 100.341 + 138.107i 0.815780 + 1.12282i
\(124\) 0 0
\(125\) 3.45492 10.6331i 0.0276393 0.0850651i
\(126\) 0 0
\(127\) −54.6099 + 75.1641i −0.429999 + 0.591844i −0.967953 0.251131i \(-0.919198\pi\)
0.537954 + 0.842974i \(0.319198\pi\)
\(128\) 0 0
\(129\) −320.663 + 104.190i −2.48576 + 0.807672i
\(130\) 0 0
\(131\) 156.944i 1.19804i 0.800733 + 0.599021i \(0.204444\pi\)
−0.800733 + 0.599021i \(0.795556\pi\)
\(132\) 0 0
\(133\) 56.1806 0.422411
\(134\) 0 0
\(135\) 30.7023 + 94.4919i 0.227424 + 0.699940i
\(136\) 0 0
\(137\) −2.76854 2.01146i −0.0202083 0.0146822i 0.577635 0.816295i \(-0.303976\pi\)
−0.597844 + 0.801613i \(0.703976\pi\)
\(138\) 0 0
\(139\) −107.150 34.8152i −0.770864 0.250469i −0.102929 0.994689i \(-0.532821\pi\)
−0.667935 + 0.744220i \(0.732821\pi\)
\(140\) 0 0
\(141\) −287.379 + 208.793i −2.03815 + 1.48080i
\(142\) 0 0
\(143\) 32.4509 17.3297i 0.226930 0.121186i
\(144\) 0 0
\(145\) 58.9699 + 81.1651i 0.406689 + 0.559760i
\(146\) 0 0
\(147\) −86.3546 + 265.772i −0.587447 + 1.80797i
\(148\) 0 0
\(149\) 78.4143 107.928i 0.526271 0.724349i −0.460286 0.887771i \(-0.652253\pi\)
0.986556 + 0.163421i \(0.0522530\pi\)
\(150\) 0 0
\(151\) 238.890 77.6202i 1.58206 0.514041i 0.619470 0.785020i \(-0.287347\pi\)
0.962585 + 0.270979i \(0.0873475\pi\)
\(152\) 0 0
\(153\) 355.543i 2.32381i
\(154\) 0 0
\(155\) −96.9202 −0.625292
\(156\) 0 0
\(157\) −73.1074 225.002i −0.465653 1.43313i −0.858160 0.513382i \(-0.828392\pi\)
0.392508 0.919749i \(-0.371608\pi\)
\(158\) 0 0
\(159\) 13.4351 + 9.76116i 0.0844974 + 0.0613909i
\(160\) 0 0
\(161\) −334.708 108.753i −2.07893 0.675486i
\(162\) 0 0
\(163\) −159.980 + 116.232i −0.981471 + 0.713081i −0.958037 0.286645i \(-0.907460\pi\)
−0.0234342 + 0.999725i \(0.507460\pi\)
\(164\) 0 0
\(165\) 114.148 + 55.4187i 0.691803 + 0.335871i
\(166\) 0 0
\(167\) −2.44891 3.37064i −0.0146641 0.0201834i 0.801622 0.597831i \(-0.203971\pi\)
−0.816286 + 0.577648i \(0.803971\pi\)
\(168\) 0 0
\(169\) 48.7675 150.091i 0.288565 0.888113i
\(170\) 0 0
\(171\) 57.2616 78.8138i 0.334863 0.460900i
\(172\) 0 0
\(173\) −210.476 + 68.3878i −1.21662 + 0.395305i −0.845852 0.533418i \(-0.820907\pi\)
−0.370773 + 0.928724i \(0.620907\pi\)
\(174\) 0 0
\(175\) 50.7862i 0.290207i
\(176\) 0 0
\(177\) 340.586 1.92422
\(178\) 0 0
\(179\) −7.44534 22.9144i −0.0415941 0.128013i 0.928103 0.372323i \(-0.121439\pi\)
−0.969697 + 0.244310i \(0.921439\pi\)
\(180\) 0 0
\(181\) 44.3948 + 32.2547i 0.245275 + 0.178203i 0.703630 0.710566i \(-0.251561\pi\)
−0.458355 + 0.888769i \(0.651561\pi\)
\(182\) 0 0
\(183\) −232.504 75.5451i −1.27051 0.412815i
\(184\) 0 0
\(185\) 107.456 78.0714i 0.580844 0.422008i
\(186\) 0 0
\(187\) −160.008 153.960i −0.855656 0.823318i
\(188\) 0 0
\(189\) 265.276 + 365.121i 1.40358 + 1.93186i
\(190\) 0 0
\(191\) 70.6739 217.512i 0.370020 1.13881i −0.576757 0.816916i \(-0.695682\pi\)
0.946777 0.321890i \(-0.104318\pi\)
\(192\) 0 0
\(193\) 82.5205 113.580i 0.427567 0.588496i −0.539825 0.841777i \(-0.681510\pi\)
0.967393 + 0.253281i \(0.0815097\pi\)
\(194\) 0 0
\(195\) −36.6907 + 11.9215i −0.188157 + 0.0611360i
\(196\) 0 0
\(197\) 301.867i 1.53232i −0.642651 0.766159i \(-0.722166\pi\)
0.642651 0.766159i \(-0.277834\pi\)
\(198\) 0 0
\(199\) 169.860 0.853570 0.426785 0.904353i \(-0.359646\pi\)
0.426785 + 0.904353i \(0.359646\pi\)
\(200\) 0 0
\(201\) −50.3932 155.094i −0.250712 0.771613i
\(202\) 0 0
\(203\) 368.689 + 267.868i 1.81620 + 1.31955i
\(204\) 0 0
\(205\) −70.3726 22.8654i −0.343281 0.111539i
\(206\) 0 0
\(207\) −493.714 + 358.704i −2.38509 + 1.73287i
\(208\) 0 0
\(209\) −10.6732 59.8985i −0.0510680 0.286596i
\(210\) 0 0
\(211\) 51.1528 + 70.4058i 0.242430 + 0.333677i 0.912842 0.408312i \(-0.133883\pi\)
−0.670412 + 0.741989i \(0.733883\pi\)
\(212\) 0 0
\(213\) 5.99428 18.4485i 0.0281421 0.0866126i
\(214\) 0 0
\(215\) 85.9011 118.233i 0.399540 0.549920i
\(216\) 0 0
\(217\) −418.708 + 136.047i −1.92953 + 0.626943i
\(218\) 0 0
\(219\) 115.622i 0.527952i
\(220\) 0 0
\(221\) 67.5112 0.305480
\(222\) 0 0
\(223\) −7.20191 22.1652i −0.0322956 0.0993956i 0.933609 0.358293i \(-0.116641\pi\)
−0.965905 + 0.258897i \(0.916641\pi\)
\(224\) 0 0
\(225\) −71.2462 51.7634i −0.316650 0.230060i
\(226\) 0 0
\(227\) 375.447 + 121.990i 1.65395 + 0.537401i 0.979591 0.201003i \(-0.0644199\pi\)
0.674359 + 0.738403i \(0.264420\pi\)
\(228\) 0 0
\(229\) −347.641 + 252.576i −1.51808 + 1.10295i −0.555655 + 0.831413i \(0.687532\pi\)
−0.962428 + 0.271538i \(0.912468\pi\)
\(230\) 0 0
\(231\) 570.924 + 79.1877i 2.47153 + 0.342804i
\(232\) 0 0
\(233\) −70.5095 97.0480i −0.302616 0.416515i 0.630445 0.776234i \(-0.282873\pi\)
−0.933061 + 0.359719i \(0.882873\pi\)
\(234\) 0 0
\(235\) 47.5792 146.434i 0.202465 0.623122i
\(236\) 0 0
\(237\) 237.170 326.436i 1.00072 1.37737i
\(238\) 0 0
\(239\) −196.634 + 63.8903i −0.822736 + 0.267323i −0.689983 0.723826i \(-0.742382\pi\)
−0.132754 + 0.991149i \(0.542382\pi\)
\(240\) 0 0
\(241\) 314.829i 1.30634i 0.757209 + 0.653172i \(0.226562\pi\)
−0.757209 + 0.653172i \(0.773438\pi\)
\(242\) 0 0
\(243\) −35.1603 −0.144693
\(244\) 0 0
\(245\) −37.4303 115.199i −0.152777 0.470199i
\(246\) 0 0
\(247\) 14.9653 + 10.8729i 0.0605883 + 0.0440199i
\(248\) 0 0
\(249\) 108.888 + 35.3799i 0.437302 + 0.142088i
\(250\) 0 0
\(251\) 69.0557 50.1719i 0.275122 0.199888i −0.441665 0.897180i \(-0.645612\pi\)
0.716787 + 0.697292i \(0.245612\pi\)
\(252\) 0 0
\(253\) −52.3622 + 377.519i −0.206965 + 1.49217i
\(254\) 0 0
\(255\) 136.870 + 188.386i 0.536746 + 0.738768i
\(256\) 0 0
\(257\) −91.2434 + 280.818i −0.355033 + 1.09268i 0.600958 + 0.799281i \(0.294786\pi\)
−0.955991 + 0.293397i \(0.905214\pi\)
\(258\) 0 0
\(259\) 354.636 488.115i 1.36925 1.88461i
\(260\) 0 0
\(261\) 751.567 244.199i 2.87957 0.935628i
\(262\) 0 0
\(263\) 264.881i 1.00715i −0.863951 0.503577i \(-0.832017\pi\)
0.863951 0.503577i \(-0.167983\pi\)
\(264\) 0 0
\(265\) −7.19814 −0.0271628
\(266\) 0 0
\(267\) 108.723 + 334.616i 0.407204 + 1.25324i
\(268\) 0 0
\(269\) −72.6949 52.8159i −0.270241 0.196342i 0.444409 0.895824i \(-0.353414\pi\)
−0.714650 + 0.699483i \(0.753414\pi\)
\(270\) 0 0
\(271\) 96.2743 + 31.2814i 0.355256 + 0.115430i 0.481207 0.876607i \(-0.340198\pi\)
−0.125952 + 0.992036i \(0.540198\pi\)
\(272\) 0 0
\(273\) −141.774 + 103.005i −0.519320 + 0.377308i
\(274\) 0 0
\(275\) −54.1471 + 9.64838i −0.196899 + 0.0350850i
\(276\) 0 0
\(277\) 151.909 + 209.085i 0.548410 + 0.754821i 0.989795 0.142496i \(-0.0455129\pi\)
−0.441386 + 0.897318i \(0.645513\pi\)
\(278\) 0 0
\(279\) −235.910 + 726.055i −0.845555 + 2.60235i
\(280\) 0 0
\(281\) 225.491 310.362i 0.802459 1.10449i −0.189984 0.981787i \(-0.560844\pi\)
0.992443 0.122703i \(-0.0391563\pi\)
\(282\) 0 0
\(283\) 89.7763 29.1701i 0.317231 0.103075i −0.146074 0.989274i \(-0.546664\pi\)
0.463304 + 0.886199i \(0.346664\pi\)
\(284\) 0 0
\(285\) 63.8032i 0.223871i
\(286\) 0 0
\(287\) −336.115 −1.17113
\(288\) 0 0
\(289\) −36.6154 112.691i −0.126697 0.389933i
\(290\) 0 0
\(291\) −256.412 186.294i −0.881141 0.640187i
\(292\) 0 0
\(293\) −6.26659 2.03614i −0.0213877 0.00694928i 0.298304 0.954471i \(-0.403579\pi\)
−0.319691 + 0.947522i \(0.603579\pi\)
\(294\) 0 0
\(295\) −119.433 + 86.7728i −0.404856 + 0.294145i
\(296\) 0 0
\(297\) 338.887 352.197i 1.14103 1.18585i
\(298\) 0 0
\(299\) −68.1114 93.7473i −0.227797 0.313536i
\(300\) 0 0
\(301\) 205.141 631.360i 0.681533 2.09754i
\(302\) 0 0
\(303\) 22.6586 31.1869i 0.0747809 0.102927i
\(304\) 0 0
\(305\) 100.779 32.7449i 0.330421 0.107360i
\(306\) 0 0
\(307\) 598.880i 1.95075i 0.220557 + 0.975374i \(0.429213\pi\)
−0.220557 + 0.975374i \(0.570787\pi\)
\(308\) 0 0
\(309\) −426.347 −1.37976
\(310\) 0 0
\(311\) 113.489 + 349.284i 0.364918 + 1.12310i 0.950033 + 0.312151i \(0.101049\pi\)
−0.585115 + 0.810950i \(0.698951\pi\)
\(312\) 0 0
\(313\) −301.571 219.104i −0.963484 0.700012i −0.00952693 0.999955i \(-0.503033\pi\)
−0.953957 + 0.299942i \(0.903033\pi\)
\(314\) 0 0
\(315\) −380.453 123.617i −1.20779 0.392434i
\(316\) 0 0
\(317\) 312.109 226.761i 0.984572 0.715333i 0.0258462 0.999666i \(-0.491772\pi\)
0.958726 + 0.284333i \(0.0917720\pi\)
\(318\) 0 0
\(319\) 215.551 443.978i 0.675710 1.39178i
\(320\) 0 0
\(321\) 479.330 + 659.741i 1.49324 + 2.05527i
\(322\) 0 0
\(323\) 34.5026 106.188i 0.106819 0.328755i
\(324\) 0 0
\(325\) 9.82892 13.5284i 0.0302428 0.0416257i
\(326\) 0 0
\(327\) −388.231 + 126.144i −1.18725 + 0.385761i
\(328\) 0 0
\(329\) 699.400i 2.12584i
\(330\) 0 0
\(331\) −617.568 −1.86576 −0.932882 0.360182i \(-0.882715\pi\)
−0.932882 + 0.360182i \(0.882715\pi\)
\(332\) 0 0
\(333\) −323.299 995.013i −0.970869 2.98803i
\(334\) 0 0
\(335\) 57.1854 + 41.5476i 0.170703 + 0.124023i
\(336\) 0 0
\(337\) −162.510 52.8027i −0.482225 0.156685i 0.0578087 0.998328i \(-0.481589\pi\)
−0.540034 + 0.841643i \(0.681589\pi\)
\(338\) 0 0
\(339\) −117.796 + 85.5837i −0.347480 + 0.252459i
\(340\) 0 0
\(341\) 224.596 + 420.571i 0.658639 + 1.23335i
\(342\) 0 0
\(343\) −30.8643 42.4811i −0.0899834 0.123851i
\(344\) 0 0
\(345\) 123.509 380.121i 0.357997 1.10180i
\(346\) 0 0
\(347\) 249.062 342.805i 0.717758 0.987910i −0.281837 0.959462i \(-0.590944\pi\)
0.999595 0.0284473i \(-0.00905628\pi\)
\(348\) 0 0
\(349\) 272.056 88.3964i 0.779530 0.253285i 0.107891 0.994163i \(-0.465590\pi\)
0.671640 + 0.740878i \(0.265590\pi\)
\(350\) 0 0
\(351\) 148.601i 0.423364i
\(352\) 0 0
\(353\) 124.306 0.352142 0.176071 0.984377i \(-0.443661\pi\)
0.176071 + 0.984377i \(0.443661\pi\)
\(354\) 0 0
\(355\) 2.59821 + 7.99647i 0.00731891 + 0.0225253i
\(356\) 0 0
\(357\) 855.735 + 621.728i 2.39702 + 1.74153i
\(358\) 0 0
\(359\) 270.229 + 87.8027i 0.752726 + 0.244576i 0.660154 0.751130i \(-0.270491\pi\)
0.0925724 + 0.995706i \(0.470491\pi\)
\(360\) 0 0
\(361\) −267.305 + 194.208i −0.740457 + 0.537973i
\(362\) 0 0
\(363\) −24.0362 623.750i −0.0662154 1.71832i
\(364\) 0 0
\(365\) −29.4575 40.5447i −0.0807054 0.111081i
\(366\) 0 0
\(367\) −83.0950 + 255.740i −0.226417 + 0.696839i 0.771728 + 0.635953i \(0.219393\pi\)
−0.998145 + 0.0608865i \(0.980607\pi\)
\(368\) 0 0
\(369\) −342.582 + 471.524i −0.928408 + 1.27784i
\(370\) 0 0
\(371\) −31.0970 + 10.1040i −0.0838193 + 0.0272345i
\(372\) 0 0
\(373\) 556.864i 1.49293i 0.665423 + 0.746466i \(0.268251\pi\)
−0.665423 + 0.746466i \(0.731749\pi\)
\(374\) 0 0
\(375\) 57.6769 0.153805
\(376\) 0 0
\(377\) 46.3689 + 142.709i 0.122994 + 0.378538i
\(378\) 0 0
\(379\) 490.846 + 356.621i 1.29511 + 0.940951i 0.999895 0.0144801i \(-0.00460933\pi\)
0.295213 + 0.955431i \(0.404609\pi\)
\(380\) 0 0
\(381\) −455.834 148.109i −1.19641 0.388739i
\(382\) 0 0
\(383\) −551.513 + 400.697i −1.43998 + 1.04621i −0.451934 + 0.892051i \(0.649266\pi\)
−0.988047 + 0.154156i \(0.950734\pi\)
\(384\) 0 0
\(385\) −220.379 + 117.688i −0.572414 + 0.305684i
\(386\) 0 0
\(387\) −676.625 931.294i −1.74838 2.40645i
\(388\) 0 0
\(389\) −40.2985 + 124.026i −0.103595 + 0.318833i −0.989398 0.145228i \(-0.953608\pi\)
0.885803 + 0.464061i \(0.153608\pi\)
\(390\) 0 0
\(391\) −411.113 + 565.848i −1.05144 + 1.44718i
\(392\) 0 0
\(393\) −770.011 + 250.192i −1.95932 + 0.636621i
\(394\) 0 0
\(395\) 174.895i 0.442773i
\(396\) 0 0
\(397\) 47.4096 0.119420 0.0597098 0.998216i \(-0.480982\pi\)
0.0597098 + 0.998216i \(0.480982\pi\)
\(398\) 0 0
\(399\) 89.5604 + 275.639i 0.224462 + 0.690824i
\(400\) 0 0
\(401\) 306.275 + 222.522i 0.763778 + 0.554918i 0.900067 0.435752i \(-0.143517\pi\)
−0.136289 + 0.990669i \(0.543517\pi\)
\(402\) 0 0
\(403\) −137.865 44.7949i −0.342096 0.111154i
\(404\) 0 0
\(405\) −127.901 + 92.9252i −0.315804 + 0.229445i
\(406\) 0 0
\(407\) −587.790 285.373i −1.44420 0.701161i
\(408\) 0 0
\(409\) −0.977980 1.34607i −0.00239115 0.00329113i 0.807820 0.589430i \(-0.200647\pi\)
−0.810211 + 0.586138i \(0.800647\pi\)
\(410\) 0 0
\(411\) 5.45536 16.7899i 0.0132734 0.0408513i
\(412\) 0 0
\(413\) −394.162 + 542.518i −0.954388 + 1.31360i
\(414\) 0 0
\(415\) −47.1974 + 15.3354i −0.113729 + 0.0369527i
\(416\) 0 0
\(417\) 581.210i 1.39379i
\(418\) 0 0
\(419\) 230.024 0.548983 0.274491 0.961590i \(-0.411491\pi\)
0.274491 + 0.961590i \(0.411491\pi\)
\(420\) 0 0
\(421\) 56.9804 + 175.368i 0.135345 + 0.416550i 0.995644 0.0932408i \(-0.0297226\pi\)
−0.860298 + 0.509791i \(0.829723\pi\)
\(422\) 0 0
\(423\) −981.164 712.857i −2.31954 1.68524i
\(424\) 0 0
\(425\) −95.9919 31.1897i −0.225863 0.0733875i
\(426\) 0 0
\(427\) 389.413 282.925i 0.911974 0.662588i
\(428\) 0 0
\(429\) 136.756 + 131.588i 0.318779 + 0.306731i
\(430\) 0 0
\(431\) −57.2541 78.8035i −0.132840 0.182839i 0.737415 0.675440i \(-0.236046\pi\)
−0.870255 + 0.492601i \(0.836046\pi\)
\(432\) 0 0
\(433\) 95.9227 295.220i 0.221530 0.681800i −0.777095 0.629383i \(-0.783308\pi\)
0.998625 0.0524170i \(-0.0166925\pi\)
\(434\) 0 0
\(435\) −304.213 + 418.713i −0.699340 + 0.962559i
\(436\) 0 0
\(437\) −182.264 + 59.2211i −0.417080 + 0.135517i
\(438\) 0 0
\(439\) 124.229i 0.282982i −0.989940 0.141491i \(-0.954810\pi\)
0.989940 0.141491i \(-0.0451896\pi\)
\(440\) 0 0
\(441\) −954.092 −2.16347
\(442\) 0 0
\(443\) 104.077 + 320.315i 0.234936 + 0.723060i 0.997130 + 0.0757105i \(0.0241225\pi\)
−0.762193 + 0.647349i \(0.775878\pi\)
\(444\) 0 0
\(445\) −123.378 89.6390i −0.277253 0.201436i
\(446\) 0 0
\(447\) 654.531 + 212.670i 1.46428 + 0.475772i
\(448\) 0 0
\(449\) −163.977 + 119.136i −0.365204 + 0.265336i −0.755220 0.655472i \(-0.772470\pi\)
0.390015 + 0.920808i \(0.372470\pi\)
\(450\) 0 0
\(451\) 63.8553 + 358.358i 0.141586 + 0.794586i
\(452\) 0 0
\(453\) 761.655 + 1048.33i 1.68136 + 2.31419i
\(454\) 0 0
\(455\) 23.4726 72.2411i 0.0515881 0.158772i
\(456\) 0 0
\(457\) 480.313 661.095i 1.05101 1.44660i 0.163087 0.986612i \(-0.447855\pi\)
0.887927 0.459985i \(-0.152145\pi\)
\(458\) 0 0
\(459\) 853.038 277.169i 1.85847 0.603853i
\(460\) 0 0
\(461\) 572.857i 1.24264i 0.783557 + 0.621320i \(0.213403\pi\)
−0.783557 + 0.621320i \(0.786597\pi\)
\(462\) 0 0
\(463\) 809.225 1.74779 0.873893 0.486119i \(-0.161588\pi\)
0.873893 + 0.486119i \(0.161588\pi\)
\(464\) 0 0
\(465\) −154.505 475.519i −0.332270 1.02262i
\(466\) 0 0
\(467\) 647.652 + 470.547i 1.38683 + 1.00759i 0.996204 + 0.0870466i \(0.0277429\pi\)
0.390630 + 0.920548i \(0.372257\pi\)
\(468\) 0 0
\(469\) 305.369 + 99.2203i 0.651106 + 0.211557i
\(470\) 0 0
\(471\) 987.379 717.373i 2.09635 1.52309i
\(472\) 0 0
\(473\) −712.115 98.7710i −1.50553 0.208818i
\(474\) 0 0
\(475\) −16.2555 22.3737i −0.0342220 0.0471026i
\(476\) 0 0
\(477\) −17.5207 + 53.9232i −0.0367311 + 0.113047i
\(478\) 0 0
\(479\) −389.858 + 536.594i −0.813900 + 1.12024i 0.176810 + 0.984245i \(0.443422\pi\)
−0.990710 + 0.135992i \(0.956578\pi\)
\(480\) 0 0
\(481\) 188.935 61.3886i 0.392796 0.127627i
\(482\) 0 0
\(483\) 1815.54i 3.75889i
\(484\) 0 0
\(485\) 137.378 0.283255
\(486\) 0 0
\(487\) −76.5765 235.678i −0.157241 0.483939i 0.841140 0.540818i \(-0.181885\pi\)
−0.998381 + 0.0568789i \(0.981885\pi\)
\(488\) 0 0
\(489\) −825.301 599.616i −1.68773 1.22621i
\(490\) 0 0
\(491\) −793.666 257.878i −1.61643 0.525209i −0.645332 0.763902i \(-0.723281\pi\)
−0.971095 + 0.238693i \(0.923281\pi\)
\(492\) 0 0
\(493\) 732.728 532.358i 1.48626 1.07983i
\(494\) 0 0
\(495\) −59.5187 + 429.115i −0.120240 + 0.866900i
\(496\) 0 0
\(497\) 22.4493 + 30.8987i 0.0451695 + 0.0621705i
\(498\) 0 0
\(499\) 162.360 499.693i 0.325371 1.00139i −0.645902 0.763420i \(-0.723518\pi\)
0.971273 0.237969i \(-0.0764815\pi\)
\(500\) 0 0
\(501\) 12.6334 17.3884i 0.0252164 0.0347073i
\(502\) 0 0
\(503\) 311.917 101.348i 0.620114 0.201487i 0.0179231 0.999839i \(-0.494295\pi\)
0.602191 + 0.798352i \(0.294295\pi\)
\(504\) 0 0
\(505\) 16.7091i 0.0330873i
\(506\) 0 0
\(507\) 814.133 1.60579
\(508\) 0 0
\(509\) −121.378 373.562i −0.238463 0.733914i −0.996643 0.0818689i \(-0.973911\pi\)
0.758180 0.652045i \(-0.226089\pi\)
\(510\) 0 0
\(511\) −184.173 133.809i −0.360416 0.261858i
\(512\) 0 0
\(513\) 233.733 + 75.9445i 0.455620 + 0.148040i
\(514\) 0 0
\(515\) 149.506 108.623i 0.290303 0.210918i
\(516\) 0 0
\(517\) −745.684 + 132.872i −1.44233 + 0.257006i
\(518\) 0 0
\(519\) −671.061 923.637i −1.29299 1.77965i
\(520\) 0 0
\(521\) −28.6933 + 88.3090i −0.0550736 + 0.169499i −0.974810 0.223038i \(-0.928403\pi\)
0.919736 + 0.392537i \(0.128403\pi\)
\(522\) 0 0
\(523\) −200.411 + 275.843i −0.383196 + 0.527424i −0.956428 0.291969i \(-0.905689\pi\)
0.573232 + 0.819393i \(0.305689\pi\)
\(524\) 0 0
\(525\) 249.172 80.9609i 0.474614 0.154211i
\(526\) 0 0
\(527\) 874.959i 1.66026i
\(528\) 0 0
\(529\) 671.515 1.26940
\(530\) 0 0
\(531\) 359.333 + 1105.91i 0.676709 + 2.08270i
\(532\) 0 0
\(533\) −89.5338 65.0501i −0.167981 0.122045i
\(534\) 0 0
\(535\) −336.171 109.229i −0.628357 0.204165i
\(536\) 0 0
\(537\) 100.556 73.0580i 0.187255 0.136048i
\(538\) 0 0
\(539\) −413.149 + 429.377i −0.766511 + 0.796617i
\(540\) 0 0
\(541\) 109.740 + 151.045i 0.202847 + 0.279195i 0.898306 0.439371i \(-0.144799\pi\)
−0.695458 + 0.718566i \(0.744799\pi\)
\(542\) 0 0
\(543\) −87.4791 + 269.233i −0.161103 + 0.495825i
\(544\) 0 0
\(545\) 104.002 143.146i 0.190829 0.262653i
\(546\) 0 0
\(547\) 76.6547 24.9066i 0.140137 0.0455331i −0.238109 0.971238i \(-0.576528\pi\)
0.378245 + 0.925705i \(0.376528\pi\)
\(548\) 0 0
\(549\) 834.663i 1.52033i
\(550\) 0 0
\(551\) 248.163 0.450387
\(552\) 0 0
\(553\) 245.500 + 755.572i 0.443942 + 1.36631i
\(554\) 0 0
\(555\) 554.342 + 402.753i 0.998815 + 0.725682i
\(556\) 0 0
\(557\) −23.1601 7.52516i −0.0415800 0.0135102i 0.288153 0.957584i \(-0.406959\pi\)
−0.329733 + 0.944074i \(0.606959\pi\)
\(558\) 0 0
\(559\) 176.836 128.479i 0.316343 0.229837i
\(560\) 0 0
\(561\) 500.299 1030.48i 0.891799 1.83686i
\(562\) 0 0
\(563\) 187.899 + 258.621i 0.333746 + 0.459363i 0.942602 0.333919i \(-0.108371\pi\)
−0.608855 + 0.793281i \(0.708371\pi\)
\(564\) 0 0
\(565\) 19.5026 60.0228i 0.0345179 0.106235i
\(566\) 0 0
\(567\) −422.109 + 580.983i −0.744460 + 1.02466i
\(568\) 0 0
\(569\) −707.744 + 229.960i −1.24384 + 0.404148i −0.855709 0.517457i \(-0.826879\pi\)
−0.388129 + 0.921605i \(0.626879\pi\)
\(570\) 0 0
\(571\) 265.828i 0.465549i 0.972531 + 0.232774i \(0.0747804\pi\)
−0.972531 + 0.232774i \(0.925220\pi\)
\(572\) 0 0
\(573\) 1179.84 2.05906
\(574\) 0 0
\(575\) 53.5348 + 164.763i 0.0931040 + 0.286545i
\(576\) 0 0
\(577\) −178.202 129.471i −0.308843 0.224387i 0.422557 0.906336i \(-0.361133\pi\)
−0.731400 + 0.681949i \(0.761133\pi\)
\(578\) 0 0
\(579\) 688.806 + 223.807i 1.18965 + 0.386540i
\(580\) 0 0
\(581\) −182.373 + 132.502i −0.313895 + 0.228058i
\(582\) 0 0
\(583\) 16.6805 + 31.2353i 0.0286114 + 0.0535768i
\(584\) 0 0
\(585\) −77.4203 106.560i −0.132342 0.182154i
\(586\) 0 0
\(587\) −139.600 + 429.644i −0.237819 + 0.731932i 0.758916 + 0.651189i \(0.225729\pi\)
−0.996735 + 0.0807430i \(0.974271\pi\)
\(588\) 0 0
\(589\) −140.915 + 193.953i −0.239245 + 0.329293i
\(590\) 0 0
\(591\) 1481.05 481.221i 2.50600 0.814249i
\(592\) 0 0
\(593\) 337.627i 0.569353i 0.958624 + 0.284677i \(0.0918863\pi\)
−0.958624 + 0.284677i \(0.908114\pi\)
\(594\) 0 0
\(595\) −458.479 −0.770553
\(596\) 0 0
\(597\) 270.783 + 833.385i 0.453573 + 1.39595i
\(598\) 0 0
\(599\) 533.497 + 387.608i 0.890646 + 0.647093i 0.936046 0.351876i \(-0.114456\pi\)
−0.0454000 + 0.998969i \(0.514456\pi\)
\(600\) 0 0
\(601\) 563.792 + 183.187i 0.938090 + 0.304804i 0.737867 0.674946i \(-0.235833\pi\)
0.200223 + 0.979750i \(0.435833\pi\)
\(602\) 0 0
\(603\) 450.437 327.262i 0.746993 0.542722i
\(604\) 0 0
\(605\) 167.344 + 212.605i 0.276602 + 0.351413i
\(606\) 0 0
\(607\) −361.851 498.046i −0.596131 0.820503i 0.399217 0.916857i \(-0.369282\pi\)
−0.995347 + 0.0963532i \(0.969282\pi\)
\(608\) 0 0
\(609\) −726.495 + 2235.92i −1.19293 + 3.67146i
\(610\) 0 0
\(611\) 135.359 186.305i 0.221536 0.304918i
\(612\) 0 0
\(613\) −445.660 + 144.804i −0.727015 + 0.236221i −0.649062 0.760736i \(-0.724838\pi\)
−0.0779528 + 0.996957i \(0.524838\pi\)
\(614\) 0 0
\(615\) 381.719i 0.620682i
\(616\) 0 0
\(617\) −94.7516 −0.153568 −0.0767841 0.997048i \(-0.524465\pi\)
−0.0767841 + 0.997048i \(0.524465\pi\)
\(618\) 0 0
\(619\) −4.71805 14.5207i −0.00762205 0.0234583i 0.947173 0.320723i \(-0.103926\pi\)
−0.954795 + 0.297264i \(0.903926\pi\)
\(620\) 0 0
\(621\) −1245.50 904.911i −2.00564 1.45718i
\(622\) 0 0
\(623\) −658.834 214.068i −1.05752 0.343608i
\(624\) 0 0
\(625\) −20.2254 + 14.6946i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 276.865 147.853i 0.441571 0.235810i
\(628\) 0 0
\(629\) −704.799 970.073i −1.12051 1.54225i
\(630\) 0 0
\(631\) 297.044 914.207i 0.470751 1.44882i −0.380853 0.924636i \(-0.624369\pi\)
0.851603 0.524187i \(-0.175631\pi\)
\(632\) 0 0
\(633\) −263.886 + 363.208i −0.416882 + 0.573788i
\(634\) 0 0
\(635\) 197.581 64.1978i 0.311151 0.101099i
\(636\) 0 0
\(637\) 181.165i 0.284403i
\(638\) 0 0
\(639\) 66.2280 0.103643
\(640\) 0 0
\(641\) 48.7450 + 150.022i 0.0760452 + 0.234043i 0.981852 0.189647i \(-0.0607345\pi\)
−0.905807 + 0.423690i \(0.860734\pi\)
\(642\) 0 0
\(643\) 724.751 + 526.563i 1.12714 + 0.818915i 0.985276 0.170971i \(-0.0546903\pi\)
0.141864 + 0.989886i \(0.454690\pi\)
\(644\) 0 0
\(645\) 717.024 + 232.975i 1.11166 + 0.361202i
\(646\) 0 0
\(647\) 136.729 99.3394i 0.211328 0.153539i −0.477087 0.878856i \(-0.658307\pi\)
0.688414 + 0.725318i \(0.258307\pi\)
\(648\) 0 0
\(649\) 653.303 + 317.179i 1.00663 + 0.488719i
\(650\) 0 0
\(651\) −1334.97 1837.43i −2.05064 2.82247i
\(652\) 0 0
\(653\) 40.7174 125.315i 0.0623543 0.191907i −0.915027 0.403394i \(-0.867831\pi\)
0.977381 + 0.211487i \(0.0678305\pi\)
\(654\) 0 0
\(655\) 206.275 283.914i 0.314924 0.433456i
\(656\) 0 0
\(657\) −375.433 + 121.986i −0.571435 + 0.185670i
\(658\) 0 0
\(659\) 956.323i 1.45117i 0.688131 + 0.725586i \(0.258431\pi\)
−0.688131 + 0.725586i \(0.741569\pi\)
\(660\) 0 0
\(661\) −649.628 −0.982795 −0.491398 0.870935i \(-0.663514\pi\)
−0.491398 + 0.870935i \(0.663514\pi\)
\(662\) 0 0
\(663\) 107.623 + 331.230i 0.162327 + 0.499592i
\(664\) 0 0
\(665\) −101.632 73.8398i −0.152830 0.111037i
\(666\) 0 0
\(667\) −1478.49 480.389i −2.21662 0.720223i
\(668\) 0 0
\(669\) 97.2681 70.6694i 0.145393 0.105634i
\(670\) 0 0
\(671\) −375.629 361.433i −0.559805 0.538648i
\(672\) 0 0
\(673\) −445.913 613.747i −0.662576 0.911957i 0.336987 0.941509i \(-0.390592\pi\)
−0.999563 + 0.0295518i \(0.990592\pi\)
\(674\) 0 0
\(675\) 68.6524 211.290i 0.101707 0.313023i
\(676\) 0 0
\(677\) 83.2729 114.615i 0.123003 0.169299i −0.743075 0.669208i \(-0.766633\pi\)
0.866078 + 0.499909i \(0.166633\pi\)
\(678\) 0 0
\(679\) 593.493 192.838i 0.874070 0.284003i
\(680\) 0 0
\(681\) 2036.52i 2.99049i
\(682\) 0 0
\(683\) 101.169 0.148124 0.0740621 0.997254i \(-0.476404\pi\)
0.0740621 + 0.997254i \(0.476404\pi\)
\(684\) 0 0
\(685\) 2.36462 + 7.27755i 0.00345200 + 0.0106242i
\(686\) 0 0
\(687\) −1793.40 1302.98i −2.61049 1.89663i
\(688\) 0 0
\(689\) −10.2390 3.32686i −0.0148607 0.00482854i
\(690\) 0 0
\(691\) 510.040 370.566i 0.738118 0.536274i −0.154003 0.988070i \(-0.549217\pi\)
0.892121 + 0.451796i \(0.149217\pi\)
\(692\) 0 0
\(693\) 345.219 + 1937.38i 0.498152 + 2.79565i
\(694\) 0 0
\(695\) 148.078 + 203.812i 0.213062 + 0.293254i
\(696\) 0 0
\(697\) −206.421 + 635.297i −0.296156 + 0.911474i
\(698\) 0 0
\(699\) 363.743 500.649i 0.520376 0.716237i
\(700\) 0 0
\(701\) 248.103 80.6134i 0.353927 0.114998i −0.126657 0.991947i \(-0.540425\pi\)
0.480584 + 0.876949i \(0.340425\pi\)
\(702\) 0 0
\(703\) 328.548i 0.467351i
\(704\) 0 0
\(705\) 794.295 1.12666
\(706\) 0 0
\(707\) 23.4545 + 72.1854i 0.0331746 + 0.102101i
\(708\) 0 0
\(709\) 516.303 + 375.116i 0.728213 + 0.529077i 0.888997 0.457912i \(-0.151403\pi\)
−0.160785 + 0.986989i \(0.551403\pi\)
\(710\) 0 0
\(711\) 1310.19 + 425.706i 1.84274 + 0.598743i
\(712\) 0 0
\(713\) 1214.98 882.738i 1.70405 1.23806i
\(714\) 0 0
\(715\) −81.4811 11.3015i −0.113960 0.0158063i
\(716\) 0 0
\(717\) −626.929 862.893i −0.874378 1.20348i
\(718\) 0 0
\(719\) 278.327 856.602i 0.387103 1.19138i −0.547841 0.836583i \(-0.684550\pi\)
0.934943 0.354797i \(-0.115450\pi\)
\(720\) 0 0
\(721\) 493.413 679.125i 0.684346 0.941921i
\(722\) 0 0
\(723\) −1544.64 + 501.885i −2.13644 + 0.694170i
\(724\) 0 0
\(725\) 224.335i 0.309428i
\(726\) 0 0
\(727\) −356.679 −0.490618 −0.245309 0.969445i \(-0.578889\pi\)
−0.245309 + 0.969445i \(0.578889\pi\)
\(728\) 0 0
\(729\) −252.683 777.679i −0.346616 1.06677i
\(730\) 0 0
\(731\) −1067.36 775.483i −1.46014 1.06085i
\(732\) 0 0
\(733\) −174.799 56.7957i −0.238471 0.0774838i 0.187343 0.982294i \(-0.440012\pi\)
−0.425814 + 0.904811i \(0.640012\pi\)
\(734\) 0 0
\(735\) 505.529 367.288i 0.687794 0.499712i
\(736\) 0 0
\(737\) 47.7723 344.427i 0.0648200 0.467336i
\(738\) 0 0
\(739\) 367.548 + 505.886i 0.497358 + 0.684555i 0.981724 0.190311i \(-0.0609496\pi\)
−0.484366 + 0.874866i \(0.660950\pi\)
\(740\) 0 0
\(741\) −29.4888 + 90.7572i −0.0397960 + 0.122479i
\(742\) 0 0
\(743\) −281.333 + 387.221i −0.378644 + 0.521159i −0.955225 0.295881i \(-0.904387\pi\)
0.576580 + 0.817040i \(0.304387\pi\)
\(744\) 0 0
\(745\) −283.706 + 92.1816i −0.380813 + 0.123734i
\(746\) 0 0
\(747\) 390.896i 0.523288i
\(748\) 0 0
\(749\) −1605.63 −2.14369
\(750\) 0 0
\(751\) −224.079 689.645i −0.298374 0.918302i −0.982067 0.188532i \(-0.939627\pi\)
0.683693 0.729770i \(-0.260373\pi\)
\(752\) 0 0
\(753\) 356.243 + 258.826i 0.473099 + 0.343726i
\(754\) 0 0
\(755\) −534.175 173.564i −0.707517 0.229886i
\(756\) 0 0
\(757\) −449.589 + 326.646i −0.593909 + 0.431500i −0.843712 0.536796i \(-0.819634\pi\)
0.249802 + 0.968297i \(0.419634\pi\)
\(758\) 0 0
\(759\) −1935.69 + 344.918i −2.55032 + 0.454437i
\(760\) 0 0
\(761\) −601.445 827.818i −0.790335 1.08780i −0.994066 0.108776i \(-0.965307\pi\)
0.203732 0.979027i \(-0.434693\pi\)
\(762\) 0 0
\(763\) 248.368 764.397i 0.325515 1.00183i
\(764\) 0 0
\(765\) −467.301 + 643.184i −0.610850 + 0.840763i
\(766\) 0 0
\(767\) −209.992 + 68.2307i −0.273784 + 0.0889579i
\(768\) 0 0
\(769\) 500.191i 0.650443i 0.945638 + 0.325222i \(0.105439\pi\)
−0.945638 + 0.325222i \(0.894561\pi\)
\(770\) 0 0
\(771\) −1523.23 −1.97566
\(772\) 0 0
\(773\) −233.354 718.189i −0.301881 0.929094i −0.980823 0.194902i \(-0.937561\pi\)
0.678942 0.734192i \(-0.262439\pi\)
\(774\) 0 0
\(775\) 175.330 + 127.385i 0.226233 + 0.164368i
\(776\) 0 0
\(777\) 2960.18 + 961.820i 3.80975 + 1.23786i
\(778\) 0 0
\(779\) −148.075 + 107.582i −0.190083 + 0.138103i
\(780\) 0 0
\(781\) 28.6786 29.8050i 0.0367204 0.0381626i
\(782\) 0 0
\(783\) 1171.79 + 1612.83i 1.49654 + 2.05981i
\(784\) 0 0
\(785\) −163.473 + 503.119i −0.208246 + 0.640916i
\(786\) 0 0
\(787\) −823.732 + 1133.77i −1.04667 + 1.44062i −0.155015 + 0.987912i \(0.549543\pi\)
−0.891658 + 0.452710i \(0.850457\pi\)
\(788\) 0 0
\(789\) 1299.59 422.261i 1.64713 0.535185i
\(790\) 0 0
\(791\) 286.682i 0.362430i
\(792\) 0 0
\(793\) 158.487 0.199858
\(794\) 0 0
\(795\) −11.4749 35.3162i −0.0144339 0.0444229i
\(796\) 0 0
\(797\) −53.7259 39.0341i −0.0674101 0.0489763i 0.553570 0.832803i \(-0.313265\pi\)
−0.620980 + 0.783826i \(0.713265\pi\)
\(798\) 0 0
\(799\) −1321.95 429.527i −1.65450 0.537581i
\(800\) 0 0
\(801\) −971.819 + 706.068i −1.21326 + 0.881483i
\(802\) 0 0
\(803\) −107.675 + 221.782i −0.134091 + 0.276192i
\(804\) 0 0
\(805\) 462.555 + 636.652i 0.574603 + 0.790873i
\(806\) 0 0
\(807\) 143.244 440.859i 0.177502 0.546294i
\(808\) 0 0
\(809\) −3.74766 + 5.15822i −0.00463246 + 0.00637604i −0.811327 0.584593i \(-0.801254\pi\)
0.806694 + 0.590969i \(0.201254\pi\)
\(810\) 0 0
\(811\) −639.496 + 207.785i −0.788527 + 0.256208i −0.675477 0.737381i \(-0.736062\pi\)
−0.113050 + 0.993589i \(0.536062\pi\)
\(812\) 0 0
\(813\) 522.217i 0.642334i
\(814\) 0 0
\(815\) 442.173 0.542544
\(816\) 0 0
\(817\) −111.709 343.805i −0.136731 0.420814i
\(818\) 0 0
\(819\) −484.044 351.679i −0.591019 0.429400i
\(820\) 0 0
\(821\) −75.7555 24.6145i −0.0922723 0.0299811i 0.262517 0.964927i \(-0.415447\pi\)
−0.354789 + 0.934946i \(0.615447\pi\)
\(822\) 0 0
\(823\) 559.800 406.718i 0.680194 0.494190i −0.193228 0.981154i \(-0.561896\pi\)
0.873422 + 0.486964i \(0.161896\pi\)
\(824\) 0 0
\(825\) −133.656 250.281i −0.162008 0.303370i
\(826\) 0 0
\(827\) 617.430 + 849.819i 0.746590 + 1.02759i 0.998212 + 0.0597676i \(0.0190360\pi\)
−0.251622 + 0.967826i \(0.580964\pi\)
\(828\) 0 0
\(829\) 102.939 316.813i 0.124172 0.382163i −0.869577 0.493797i \(-0.835608\pi\)
0.993749 + 0.111634i \(0.0356085\pi\)
\(830\) 0 0
\(831\) −783.668 + 1078.63i −0.943042 + 1.29799i
\(832\) 0 0
\(833\) −1039.97 + 337.907i −1.24846 + 0.405650i
\(834\) 0 0
\(835\) 9.31621i 0.0111571i
\(836\) 0 0
\(837\) −1925.90 −2.30095
\(838\) 0 0
\(839\) 9.21153 + 28.3502i 0.0109792 + 0.0337904i 0.956396 0.292073i \(-0.0943450\pi\)
−0.945417 + 0.325863i \(0.894345\pi\)
\(840\) 0 0
\(841\) 948.206 + 688.912i 1.12747 + 0.819158i
\(842\) 0 0
\(843\) 1882.19 + 611.562i 2.23273 + 0.725459i
\(844\) 0 0
\(845\) −285.490 + 207.421i −0.337858 + 0.245468i
\(846\) 0 0
\(847\) 1021.38 + 683.581i 1.20588 + 0.807061i
\(848\) 0 0
\(849\) 286.234 + 393.968i 0.337143 + 0.464037i
\(850\) 0 0
\(851\) −635.996 + 1957.39i −0.747351 + 2.30011i
\(852\) 0 0
\(853\) 317.699 437.275i 0.372449 0.512632i −0.581115 0.813821i \(-0.697383\pi\)
0.953564 + 0.301189i \(0.0973835\pi\)
\(854\) 0 0
\(855\) −207.174 + 67.3150i −0.242309 + 0.0787310i
\(856\) 0 0
\(857\) 273.436i 0.319062i −0.987193 0.159531i \(-0.949002\pi\)
0.987193 0.159531i \(-0.0509981\pi\)
\(858\) 0 0
\(859\) −275.966 −0.321264 −0.160632 0.987014i \(-0.551353\pi\)
−0.160632 + 0.987014i \(0.551353\pi\)
\(860\) 0 0
\(861\) −535.818 1649.08i −0.622321 1.91531i
\(862\) 0 0
\(863\) 29.8179 + 21.6639i 0.0345514 + 0.0251031i 0.604927 0.796281i \(-0.293202\pi\)
−0.570376 + 0.821384i \(0.693202\pi\)
\(864\) 0 0
\(865\) 470.639 + 152.920i 0.544091 + 0.176786i
\(866\) 0 0
\(867\) 494.523 359.292i 0.570384 0.414408i
\(868\) 0 0
\(869\) 758.933 405.290i 0.873341 0.466387i
\(870\) 0 0
\(871\) 62.1410 + 85.5297i 0.0713444 + 0.0981971i
\(872\) 0 0
\(873\) 334.388 1029.14i 0.383033 1.17885i
\(874\) 0 0
\(875\) −66.7498 + 91.8732i −0.0762854 + 0.104998i
\(876\) 0 0
\(877\) 426.669 138.633i 0.486509 0.158076i −0.0554835 0.998460i \(-0.517670\pi\)
0.541993 + 0.840383i \(0.317670\pi\)
\(878\) 0 0
\(879\) 33.9916i 0.0386708i
\(880\) 0 0
\(881\) 710.818 0.806831 0.403415 0.915017i \(-0.367823\pi\)
0.403415 + 0.915017i \(0.367823\pi\)
\(882\) 0 0
\(883\) −396.461 1220.18i −0.448993 1.38186i −0.878045 0.478578i \(-0.841152\pi\)
0.429052 0.903280i \(-0.358848\pi\)
\(884\) 0 0
\(885\) −616.127 447.642i −0.696188 0.505810i
\(886\) 0 0
\(887\) 973.403 + 316.278i 1.09741 + 0.356570i 0.801105 0.598523i \(-0.204246\pi\)
0.296305 + 0.955093i \(0.404246\pi\)
\(888\) 0 0
\(889\) 763.461 554.687i 0.858786 0.623944i
\(890\) 0 0
\(891\) 699.623 + 339.667i 0.785211 + 0.381220i
\(892\) 0 0
\(893\) −223.861 308.119i −0.250684 0.345038i
\(894\) 0 0
\(895\) −16.6483 + 51.2381i −0.0186014 + 0.0572493i
\(896\) 0 0
\(897\) 351.372 483.622i 0.391719 0.539155i
\(898\) 0 0
\(899\) −1849.53 + 600.950i −2.05732 + 0.668465i
\(900\) 0 0
\(901\) 64.9821i 0.0721222i
\(902\) 0 0
\(903\) 3424.67 3.79254
\(904\) 0 0
\(905\) −37.9177 116.699i −0.0418980 0.128949i
\(906\) 0 0
\(907\) −1249.82 908.047i −1.37797 1.00115i −0.997066 0.0765405i \(-0.975613\pi\)
−0.380905 0.924614i \(-0.624387\pi\)
\(908\) 0 0
\(909\) 125.172 + 40.6709i 0.137703 + 0.0447425i
\(910\) 0 0
\(911\) 304.683 221.365i 0.334449 0.242991i −0.407867 0.913041i \(-0.633727\pi\)
0.742316 + 0.670050i \(0.233727\pi\)
\(912\) 0 0
\(913\) 175.918 + 169.269i 0.192681 + 0.185399i
\(914\) 0 0
\(915\) 321.312 + 442.249i 0.351161 + 0.483332i
\(916\) 0 0
\(917\) 492.609 1516.09i 0.537196 1.65332i
\(918\) 0 0
\(919\) 832.306 1145.57i 0.905664 1.24654i −0.0629614 0.998016i \(-0.520054\pi\)
0.968626 0.248524i \(-0.0799455\pi\)
\(920\) 0 0
\(921\) −2938.28 + 954.705i −3.19031 + 1.03660i
\(922\) 0 0
\(923\) 12.5755i 0.0136246i
\(924\) 0 0
\(925\) −297.001 −0.321082
\(926\) 0 0
\(927\) −449.814 1384.38i −0.485236 1.49340i
\(928\) 0 0
\(929\) 647.408 + 470.370i 0.696887 + 0.506318i 0.878917 0.476975i \(-0.158267\pi\)
−0.182030 + 0.983293i \(0.558267\pi\)
\(930\) 0 0
\(931\) −284.953 92.5868i −0.306072 0.0994487i
\(932\) 0 0
\(933\) −1532.77 + 1113.62i −1.64284 + 1.19360i
\(934\) 0 0
\(935\) 87.1020 + 488.820i 0.0931572 + 0.522802i
\(936\) 0 0
\(937\) −560.986 772.131i −0.598705 0.824046i 0.396884 0.917869i \(-0.370091\pi\)
−0.995589 + 0.0938225i \(0.970091\pi\)
\(938\) 0 0
\(939\) 594.239 1828.88i 0.632842 1.94769i
\(940\) 0 0
\(941\) 514.157 707.676i 0.546394 0.752047i −0.443123 0.896461i \(-0.646130\pi\)
0.989517 + 0.144414i \(0.0461296\pi\)
\(942\) 0 0
\(943\) 1090.44 354.306i 1.15635 0.375722i
\(944\) 0 0
\(945\) 1009.17i 1.06790i
\(946\) 0 0
\(947\) 614.074 0.648441 0.324221 0.945982i \(-0.394898\pi\)
0.324221 + 0.945982i \(0.394898\pi\)
\(948\) 0 0
\(949\) −23.1628 71.2878i −0.0244076 0.0751189i
\(950\) 0 0
\(951\) 1610.10 + 1169.81i 1.69306 + 1.23008i
\(952\) 0 0
\(953\) 582.761 + 189.351i 0.611502 + 0.198689i 0.598364 0.801225i \(-0.295818\pi\)
0.0131383 + 0.999914i \(0.495818\pi\)
\(954\) 0 0
\(955\) −413.732 + 300.594i −0.433227 + 0.314758i
\(956\) 0 0
\(957\) 2521.91 + 349.791i 2.63522 + 0.365508i
\(958\) 0 0
\(959\) 20.4309 + 28.1208i 0.0213044 + 0.0293230i
\(960\) 0 0
\(961\) 283.586 872.789i 0.295095 0.908209i
\(962\) 0 0
\(963\) −1636.52 + 2252.48i −1.69940 + 2.33902i
\(964\) 0 0
\(965\) −298.562 + 97.0087i −0.309391 + 0.100527i
\(966\) 0 0
\(967\) 200.077i 0.206905i 0.994634 + 0.103452i \(0.0329890\pi\)
−0.994634 + 0.103452i \(0.967011\pi\)
\(968\) 0 0
\(969\) 575.992 0.594419
\(970\) 0 0
\(971\) 292.370 + 899.821i 0.301102 + 0.926695i 0.981103 + 0.193485i \(0.0619790\pi\)
−0.680002 + 0.733211i \(0.738021\pi\)
\(972\) 0 0
\(973\) 925.806 + 672.637i 0.951496 + 0.691302i
\(974\) 0 0
\(975\) 82.0429 + 26.6573i 0.0841465 + 0.0273409i
\(976\) 0 0
\(977\) 277.738 201.789i 0.284277 0.206539i −0.436504 0.899702i \(-0.643783\pi\)
0.720781 + 0.693163i \(0.243783\pi\)
\(978\) 0 0
\(979\) −103.069 + 743.102i −0.105280 + 0.759042i
\(980\) 0 0
\(981\) −819.200 1127.53i −0.835066 1.14937i
\(982\) 0 0
\(983\) −60.4947 + 186.184i −0.0615409 + 0.189404i −0.977100 0.212779i \(-0.931748\pi\)
0.915559 + 0.402183i \(0.131748\pi\)
\(984\) 0 0
\(985\) −396.752 + 546.082i −0.402794 + 0.554398i
\(986\) 0 0
\(987\) 3431.46 1114.95i 3.47666 1.12963i
\(988\) 0 0
\(989\) 2264.53i 2.28972i
\(990\) 0 0
\(991\) −1157.74 −1.16826 −0.584130 0.811660i \(-0.698564\pi\)
−0.584130 + 0.811660i \(0.698564\pi\)
\(992\) 0 0
\(993\) −984.497 3029.97i −0.991437 3.05133i
\(994\) 0 0
\(995\) −307.280 223.252i −0.308824 0.224374i
\(996\) 0 0
\(997\) −1397.23 453.989i −1.40144 0.455355i −0.491782 0.870718i \(-0.663654\pi\)
−0.909655 + 0.415364i \(0.863654\pi\)
\(998\) 0 0
\(999\) 2135.25 1551.35i 2.13739 1.55291i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.p.a.41.4 16
11.2 odd 10 2420.3.f.c.241.16 16
11.7 odd 10 inner 220.3.p.a.161.4 yes 16
11.9 even 5 2420.3.f.c.241.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.a.41.4 16 1.1 even 1 trivial
220.3.p.a.161.4 yes 16 11.7 odd 10 inner
2420.3.f.c.241.15 16 11.9 even 5
2420.3.f.c.241.16 16 11.2 odd 10