Properties

Label 2420.3.f.c.241.16
Level $2420$
Weight $3$
Character 2420.241
Analytic conductor $65.940$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2420,3,Mod(241,2420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2420.241");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2420.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9402239752\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} + 36 x^{13} + 396 x^{12} + 1918 x^{11} + 8573 x^{10} + 28624 x^{9} + \cdots + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5\cdot 11^{2} \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.16
Root \(-0.0370387 + 0.0269102i\) of defining polynomial
Character \(\chi\) \(=\) 2420.241
Dual form 2420.3.f.c.241.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.15878 q^{3} +2.23607 q^{5} +10.1572i q^{7} +17.6130 q^{9} -3.34439i q^{13} +11.5354 q^{15} +20.1864i q^{17} -5.53109i q^{19} +52.3990i q^{21} +34.6484 q^{23} +5.00000 q^{25} +44.4328 q^{27} +44.8670i q^{29} -43.3440 q^{31} +22.7123i q^{35} -59.4002 q^{37} -17.2530i q^{39} +33.0912i q^{41} -65.3574i q^{43} +39.3839 q^{45} +68.8573 q^{47} -54.1697 q^{49} +104.137i q^{51} -3.21911 q^{53} -28.5337i q^{57} +66.0207 q^{59} +47.3889i q^{61} +178.900i q^{63} -7.47829i q^{65} -31.6113 q^{67} +178.744 q^{69} +3.76017 q^{71} -22.4126i q^{73} +25.7939 q^{75} -78.2156i q^{79} +70.7017 q^{81} -22.1936i q^{83} +45.1381i q^{85} +231.459i q^{87} +68.2014 q^{89} +33.9698 q^{91} -223.602 q^{93} -12.3679i q^{95} +61.4375 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 14 q^{3} + 46 q^{9} + 10 q^{15} + 72 q^{23} + 80 q^{25} + 50 q^{27} + 50 q^{31} - 16 q^{37} + 30 q^{45} + 232 q^{47} - 188 q^{49} + 132 q^{53} + 78 q^{59} + 152 q^{67} + 748 q^{69} + 230 q^{71} + 70 q^{75}+ \cdots + 854 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2420\mathbb{Z}\right)^\times\).

\(n\) \(1211\) \(1937\) \(2301\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.15878 1.71959 0.859797 0.510636i \(-0.170590\pi\)
0.859797 + 0.510636i \(0.170590\pi\)
\(4\) 0 0
\(5\) 2.23607 0.447214
\(6\) 0 0
\(7\) 10.1572i 1.45104i 0.688204 + 0.725518i \(0.258400\pi\)
−0.688204 + 0.725518i \(0.741600\pi\)
\(8\) 0 0
\(9\) 17.6130 1.95700
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) − 3.34439i − 0.257261i −0.991693 0.128630i \(-0.958942\pi\)
0.991693 0.128630i \(-0.0410581\pi\)
\(14\) 0 0
\(15\) 11.5354 0.769026
\(16\) 0 0
\(17\) 20.1864i 1.18743i 0.804674 + 0.593717i \(0.202340\pi\)
−0.804674 + 0.593717i \(0.797660\pi\)
\(18\) 0 0
\(19\) − 5.53109i − 0.291110i −0.989350 0.145555i \(-0.953503\pi\)
0.989350 0.145555i \(-0.0464968\pi\)
\(20\) 0 0
\(21\) 52.3990i 2.49519i
\(22\) 0 0
\(23\) 34.6484 1.50645 0.753227 0.657761i \(-0.228496\pi\)
0.753227 + 0.657761i \(0.228496\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 44.4328 1.64566
\(28\) 0 0
\(29\) 44.8670i 1.54714i 0.633712 + 0.773569i \(0.281530\pi\)
−0.633712 + 0.773569i \(0.718470\pi\)
\(30\) 0 0
\(31\) −43.3440 −1.39819 −0.699097 0.715027i \(-0.746415\pi\)
−0.699097 + 0.715027i \(0.746415\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 22.7123i 0.648923i
\(36\) 0 0
\(37\) −59.4002 −1.60541 −0.802706 0.596375i \(-0.796607\pi\)
−0.802706 + 0.596375i \(0.796607\pi\)
\(38\) 0 0
\(39\) − 17.2530i − 0.442384i
\(40\) 0 0
\(41\) 33.0912i 0.807102i 0.914957 + 0.403551i \(0.132224\pi\)
−0.914957 + 0.403551i \(0.867776\pi\)
\(42\) 0 0
\(43\) − 65.3574i − 1.51994i −0.649958 0.759970i \(-0.725213\pi\)
0.649958 0.759970i \(-0.274787\pi\)
\(44\) 0 0
\(45\) 39.3839 0.875199
\(46\) 0 0
\(47\) 68.8573 1.46505 0.732524 0.680741i \(-0.238342\pi\)
0.732524 + 0.680741i \(0.238342\pi\)
\(48\) 0 0
\(49\) −54.1697 −1.10550
\(50\) 0 0
\(51\) 104.137i 2.04190i
\(52\) 0 0
\(53\) −3.21911 −0.0607379 −0.0303689 0.999539i \(-0.509668\pi\)
−0.0303689 + 0.999539i \(0.509668\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 28.5337i − 0.500591i
\(58\) 0 0
\(59\) 66.0207 1.11899 0.559497 0.828832i \(-0.310994\pi\)
0.559497 + 0.828832i \(0.310994\pi\)
\(60\) 0 0
\(61\) 47.3889i 0.776867i 0.921477 + 0.388434i \(0.126984\pi\)
−0.921477 + 0.388434i \(0.873016\pi\)
\(62\) 0 0
\(63\) 178.900i 2.83968i
\(64\) 0 0
\(65\) − 7.47829i − 0.115051i
\(66\) 0 0
\(67\) −31.6113 −0.471810 −0.235905 0.971776i \(-0.575805\pi\)
−0.235905 + 0.971776i \(0.575805\pi\)
\(68\) 0 0
\(69\) 178.744 2.59049
\(70\) 0 0
\(71\) 3.76017 0.0529601 0.0264801 0.999649i \(-0.491570\pi\)
0.0264801 + 0.999649i \(0.491570\pi\)
\(72\) 0 0
\(73\) − 22.4126i − 0.307022i −0.988147 0.153511i \(-0.950942\pi\)
0.988147 0.153511i \(-0.0490580\pi\)
\(74\) 0 0
\(75\) 25.7939 0.343919
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 78.2156i − 0.990071i −0.868873 0.495036i \(-0.835155\pi\)
0.868873 0.495036i \(-0.164845\pi\)
\(80\) 0 0
\(81\) 70.7017 0.872860
\(82\) 0 0
\(83\) − 22.1936i − 0.267392i −0.991022 0.133696i \(-0.957315\pi\)
0.991022 0.133696i \(-0.0426846\pi\)
\(84\) 0 0
\(85\) 45.1381i 0.531037i
\(86\) 0 0
\(87\) 231.459i 2.66045i
\(88\) 0 0
\(89\) 68.2014 0.766308 0.383154 0.923684i \(-0.374838\pi\)
0.383154 + 0.923684i \(0.374838\pi\)
\(90\) 0 0
\(91\) 33.9698 0.373295
\(92\) 0 0
\(93\) −223.602 −2.40433
\(94\) 0 0
\(95\) − 12.3679i − 0.130188i
\(96\) 0 0
\(97\) 61.4375 0.633376 0.316688 0.948530i \(-0.397429\pi\)
0.316688 + 0.948530i \(0.397429\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 7.47252i − 0.0739854i −0.999316 0.0369927i \(-0.988222\pi\)
0.999316 0.0369927i \(-0.0117778\pi\)
\(102\) 0 0
\(103\) −82.6449 −0.802378 −0.401189 0.915995i \(-0.631403\pi\)
−0.401189 + 0.915995i \(0.631403\pi\)
\(104\) 0 0
\(105\) 117.168i 1.11588i
\(106\) 0 0
\(107\) 158.077i 1.47735i 0.674059 + 0.738677i \(0.264549\pi\)
−0.674059 + 0.738677i \(0.735451\pi\)
\(108\) 0 0
\(109\) − 79.1292i − 0.725956i −0.931798 0.362978i \(-0.881760\pi\)
0.931798 0.362978i \(-0.118240\pi\)
\(110\) 0 0
\(111\) −306.433 −2.76066
\(112\) 0 0
\(113\) 28.2244 0.249774 0.124887 0.992171i \(-0.460143\pi\)
0.124887 + 0.992171i \(0.460143\pi\)
\(114\) 0 0
\(115\) 77.4763 0.673707
\(116\) 0 0
\(117\) − 58.9049i − 0.503461i
\(118\) 0 0
\(119\) −205.038 −1.72301
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 170.710i 1.38789i
\(124\) 0 0
\(125\) 11.1803 0.0894427
\(126\) 0 0
\(127\) 92.9080i 0.731559i 0.930702 + 0.365779i \(0.119198\pi\)
−0.930702 + 0.365779i \(0.880802\pi\)
\(128\) 0 0
\(129\) − 337.165i − 2.61368i
\(130\) 0 0
\(131\) − 156.944i − 1.19804i −0.800733 0.599021i \(-0.795556\pi\)
0.800733 0.599021i \(-0.204444\pi\)
\(132\) 0 0
\(133\) 56.1806 0.422411
\(134\) 0 0
\(135\) 99.3547 0.735961
\(136\) 0 0
\(137\) 3.42211 0.0249789 0.0124894 0.999922i \(-0.496024\pi\)
0.0124894 + 0.999922i \(0.496024\pi\)
\(138\) 0 0
\(139\) 112.664i 0.810534i 0.914198 + 0.405267i \(0.132821\pi\)
−0.914198 + 0.405267i \(0.867179\pi\)
\(140\) 0 0
\(141\) 355.220 2.51929
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 100.326i 0.691901i
\(146\) 0 0
\(147\) −279.449 −1.90102
\(148\) 0 0
\(149\) − 133.406i − 0.895345i −0.894198 0.447673i \(-0.852253\pi\)
0.894198 0.447673i \(-0.147747\pi\)
\(150\) 0 0
\(151\) 251.184i 1.66347i 0.555172 + 0.831736i \(0.312653\pi\)
−0.555172 + 0.831736i \(0.687347\pi\)
\(152\) 0 0
\(153\) 355.543i 2.32381i
\(154\) 0 0
\(155\) −96.9202 −0.625292
\(156\) 0 0
\(157\) −236.581 −1.50688 −0.753442 0.657515i \(-0.771608\pi\)
−0.753442 + 0.657515i \(0.771608\pi\)
\(158\) 0 0
\(159\) −16.6067 −0.104444
\(160\) 0 0
\(161\) 351.933i 2.18592i
\(162\) 0 0
\(163\) 197.746 1.21317 0.606583 0.795021i \(-0.292540\pi\)
0.606583 + 0.795021i \(0.292540\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 4.16634i − 0.0249481i −0.999922 0.0124741i \(-0.996029\pi\)
0.999922 0.0124741i \(-0.00397072\pi\)
\(168\) 0 0
\(169\) 157.815 0.933817
\(170\) 0 0
\(171\) − 97.4192i − 0.569703i
\(172\) 0 0
\(173\) − 221.308i − 1.27923i −0.768694 0.639617i \(-0.779093\pi\)
0.768694 0.639617i \(-0.220907\pi\)
\(174\) 0 0
\(175\) 50.7862i 0.290207i
\(176\) 0 0
\(177\) 340.586 1.92422
\(178\) 0 0
\(179\) −24.0936 −0.134601 −0.0673006 0.997733i \(-0.521439\pi\)
−0.0673006 + 0.997733i \(0.521439\pi\)
\(180\) 0 0
\(181\) −54.8750 −0.303177 −0.151589 0.988444i \(-0.548439\pi\)
−0.151589 + 0.988444i \(0.548439\pi\)
\(182\) 0 0
\(183\) 244.469i 1.33590i
\(184\) 0 0
\(185\) −132.823 −0.717962
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 451.315i 2.38791i
\(190\) 0 0
\(191\) 228.706 1.19741 0.598706 0.800969i \(-0.295682\pi\)
0.598706 + 0.800969i \(0.295682\pi\)
\(192\) 0 0
\(193\) − 140.392i − 0.727421i −0.931512 0.363711i \(-0.881510\pi\)
0.931512 0.363711i \(-0.118490\pi\)
\(194\) 0 0
\(195\) − 38.5789i − 0.197840i
\(196\) 0 0
\(197\) 301.867i 1.53232i 0.642651 + 0.766159i \(0.277834\pi\)
−0.642651 + 0.766159i \(0.722166\pi\)
\(198\) 0 0
\(199\) 169.860 0.853570 0.426785 0.904353i \(-0.359646\pi\)
0.426785 + 0.904353i \(0.359646\pi\)
\(200\) 0 0
\(201\) −163.076 −0.811322
\(202\) 0 0
\(203\) −455.725 −2.24495
\(204\) 0 0
\(205\) 73.9941i 0.360947i
\(206\) 0 0
\(207\) 610.264 2.94814
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 87.0263i 0.412447i 0.978505 + 0.206224i \(0.0661174\pi\)
−0.978505 + 0.206224i \(0.933883\pi\)
\(212\) 0 0
\(213\) 19.3979 0.0910699
\(214\) 0 0
\(215\) − 146.144i − 0.679738i
\(216\) 0 0
\(217\) − 440.256i − 2.02883i
\(218\) 0 0
\(219\) − 115.622i − 0.527952i
\(220\) 0 0
\(221\) 67.5112 0.305480
\(222\) 0 0
\(223\) −23.3059 −0.104511 −0.0522553 0.998634i \(-0.516641\pi\)
−0.0522553 + 0.998634i \(0.516641\pi\)
\(224\) 0 0
\(225\) 88.0652 0.391401
\(226\) 0 0
\(227\) − 394.768i − 1.73907i −0.493875 0.869533i \(-0.664420\pi\)
0.493875 0.869533i \(-0.335580\pi\)
\(228\) 0 0
\(229\) 429.708 1.87645 0.938227 0.346022i \(-0.112468\pi\)
0.938227 + 0.346022i \(0.112468\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 119.958i − 0.514841i −0.966300 0.257420i \(-0.917127\pi\)
0.966300 0.257420i \(-0.0828725\pi\)
\(234\) 0 0
\(235\) 153.969 0.655189
\(236\) 0 0
\(237\) − 403.497i − 1.70252i
\(238\) 0 0
\(239\) − 206.753i − 0.865076i −0.901616 0.432538i \(-0.857618\pi\)
0.901616 0.432538i \(-0.142382\pi\)
\(240\) 0 0
\(241\) − 314.829i − 1.30634i −0.757209 0.653172i \(-0.773438\pi\)
0.757209 0.653172i \(-0.226562\pi\)
\(242\) 0 0
\(243\) −35.1603 −0.144693
\(244\) 0 0
\(245\) −121.127 −0.494396
\(246\) 0 0
\(247\) −18.4981 −0.0748912
\(248\) 0 0
\(249\) − 114.492i − 0.459806i
\(250\) 0 0
\(251\) −85.3576 −0.340070 −0.170035 0.985438i \(-0.554388\pi\)
−0.170035 + 0.985438i \(0.554388\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 232.858i 0.913167i
\(256\) 0 0
\(257\) −295.270 −1.14891 −0.574455 0.818536i \(-0.694786\pi\)
−0.574455 + 0.818536i \(0.694786\pi\)
\(258\) 0 0
\(259\) − 603.343i − 2.32951i
\(260\) 0 0
\(261\) 790.244i 3.02775i
\(262\) 0 0
\(263\) 264.881i 1.00715i 0.863951 + 0.503577i \(0.167983\pi\)
−0.863951 + 0.503577i \(0.832017\pi\)
\(264\) 0 0
\(265\) −7.19814 −0.0271628
\(266\) 0 0
\(267\) 351.836 1.31774
\(268\) 0 0
\(269\) 89.8558 0.334036 0.167018 0.985954i \(-0.446586\pi\)
0.167018 + 0.985954i \(0.446586\pi\)
\(270\) 0 0
\(271\) − 101.229i − 0.373538i −0.982404 0.186769i \(-0.940198\pi\)
0.982404 0.186769i \(-0.0598016\pi\)
\(272\) 0 0
\(273\) 175.243 0.641915
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 258.444i 0.933010i 0.884518 + 0.466505i \(0.154487\pi\)
−0.884518 + 0.466505i \(0.845513\pi\)
\(278\) 0 0
\(279\) −763.420 −2.73627
\(280\) 0 0
\(281\) − 383.628i − 1.36523i −0.730780 0.682613i \(-0.760844\pi\)
0.730780 0.682613i \(-0.239156\pi\)
\(282\) 0 0
\(283\) 94.3964i 0.333556i 0.985994 + 0.166778i \(0.0533364\pi\)
−0.985994 + 0.166778i \(0.946664\pi\)
\(284\) 0 0
\(285\) − 63.8032i − 0.223871i
\(286\) 0 0
\(287\) −336.115 −1.17113
\(288\) 0 0
\(289\) −118.490 −0.410000
\(290\) 0 0
\(291\) 316.943 1.08915
\(292\) 0 0
\(293\) 6.58908i 0.0224883i 0.999937 + 0.0112442i \(0.00357921\pi\)
−0.999937 + 0.0112442i \(0.996421\pi\)
\(294\) 0 0
\(295\) 147.627 0.500430
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 115.878i − 0.387552i
\(300\) 0 0
\(301\) 663.852 2.20549
\(302\) 0 0
\(303\) − 38.5491i − 0.127225i
\(304\) 0 0
\(305\) 105.965i 0.347426i
\(306\) 0 0
\(307\) − 598.880i − 1.95075i −0.220557 0.975374i \(-0.570787\pi\)
0.220557 0.975374i \(-0.429213\pi\)
\(308\) 0 0
\(309\) −426.347 −1.37976
\(310\) 0 0
\(311\) 367.259 1.18090 0.590449 0.807075i \(-0.298951\pi\)
0.590449 + 0.807075i \(0.298951\pi\)
\(312\) 0 0
\(313\) 372.762 1.19093 0.595466 0.803380i \(-0.296967\pi\)
0.595466 + 0.803380i \(0.296967\pi\)
\(314\) 0 0
\(315\) 400.032i 1.26994i
\(316\) 0 0
\(317\) −385.788 −1.21700 −0.608499 0.793555i \(-0.708228\pi\)
−0.608499 + 0.793555i \(0.708228\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 815.485i 2.54045i
\(322\) 0 0
\(323\) 111.653 0.345674
\(324\) 0 0
\(325\) − 16.7220i − 0.0514522i
\(326\) 0 0
\(327\) − 408.210i − 1.24835i
\(328\) 0 0
\(329\) 699.400i 2.12584i
\(330\) 0 0
\(331\) −617.568 −1.86576 −0.932882 0.360182i \(-0.882715\pi\)
−0.932882 + 0.360182i \(0.882715\pi\)
\(332\) 0 0
\(333\) −1046.22 −3.14180
\(334\) 0 0
\(335\) −70.6850 −0.211000
\(336\) 0 0
\(337\) 170.873i 0.507042i 0.967330 + 0.253521i \(0.0815887\pi\)
−0.967330 + 0.253521i \(0.918411\pi\)
\(338\) 0 0
\(339\) 145.604 0.429509
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 52.5095i − 0.153089i
\(344\) 0 0
\(345\) 399.683 1.15850
\(346\) 0 0
\(347\) − 423.730i − 1.22112i −0.791969 0.610562i \(-0.790944\pi\)
0.791969 0.610562i \(-0.209056\pi\)
\(348\) 0 0
\(349\) 286.057i 0.819647i 0.912165 + 0.409823i \(0.134410\pi\)
−0.912165 + 0.409823i \(0.865590\pi\)
\(350\) 0 0
\(351\) − 148.601i − 0.423364i
\(352\) 0 0
\(353\) 124.306 0.352142 0.176071 0.984377i \(-0.443661\pi\)
0.176071 + 0.984377i \(0.443661\pi\)
\(354\) 0 0
\(355\) 8.40799 0.0236845
\(356\) 0 0
\(357\) −1057.75 −2.96288
\(358\) 0 0
\(359\) − 284.135i − 0.791463i −0.918366 0.395732i \(-0.870491\pi\)
0.918366 0.395732i \(-0.129509\pi\)
\(360\) 0 0
\(361\) 330.407 0.915255
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 50.1160i − 0.137304i
\(366\) 0 0
\(367\) −268.901 −0.732700 −0.366350 0.930477i \(-0.619393\pi\)
−0.366350 + 0.930477i \(0.619393\pi\)
\(368\) 0 0
\(369\) 582.836i 1.57950i
\(370\) 0 0
\(371\) − 32.6973i − 0.0881328i
\(372\) 0 0
\(373\) − 556.864i − 1.49293i −0.665423 0.746466i \(-0.731749\pi\)
0.665423 0.746466i \(-0.268251\pi\)
\(374\) 0 0
\(375\) 57.6769 0.153805
\(376\) 0 0
\(377\) 150.053 0.398018
\(378\) 0 0
\(379\) −606.719 −1.60084 −0.800421 0.599438i \(-0.795391\pi\)
−0.800421 + 0.599438i \(0.795391\pi\)
\(380\) 0 0
\(381\) 479.292i 1.25798i
\(382\) 0 0
\(383\) 681.707 1.77991 0.889957 0.456044i \(-0.150734\pi\)
0.889957 + 0.456044i \(0.150734\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1151.14i − 2.97453i
\(388\) 0 0
\(389\) −130.409 −0.335241 −0.167620 0.985852i \(-0.553608\pi\)
−0.167620 + 0.985852i \(0.553608\pi\)
\(390\) 0 0
\(391\) 699.427i 1.78882i
\(392\) 0 0
\(393\) − 809.638i − 2.06015i
\(394\) 0 0
\(395\) − 174.895i − 0.442773i
\(396\) 0 0
\(397\) 47.4096 0.119420 0.0597098 0.998216i \(-0.480982\pi\)
0.0597098 + 0.998216i \(0.480982\pi\)
\(398\) 0 0
\(399\) 289.824 0.726375
\(400\) 0 0
\(401\) −378.577 −0.944082 −0.472041 0.881577i \(-0.656483\pi\)
−0.472041 + 0.881577i \(0.656483\pi\)
\(402\) 0 0
\(403\) 144.959i 0.359701i
\(404\) 0 0
\(405\) 158.094 0.390355
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 1.66384i − 0.00406807i −0.999998 0.00203403i \(-0.999353\pi\)
0.999998 0.00203403i \(-0.000647453\pi\)
\(410\) 0 0
\(411\) 17.6539 0.0429536
\(412\) 0 0
\(413\) 670.589i 1.62370i
\(414\) 0 0
\(415\) − 49.6263i − 0.119581i
\(416\) 0 0
\(417\) 581.210i 1.39379i
\(418\) 0 0
\(419\) 230.024 0.548983 0.274491 0.961590i \(-0.411491\pi\)
0.274491 + 0.961590i \(0.411491\pi\)
\(420\) 0 0
\(421\) 184.393 0.437987 0.218994 0.975726i \(-0.429723\pi\)
0.218994 + 0.975726i \(0.429723\pi\)
\(422\) 0 0
\(423\) 1212.79 2.86710
\(424\) 0 0
\(425\) 100.932i 0.237487i
\(426\) 0 0
\(427\) −481.341 −1.12726
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 97.4064i − 0.226001i −0.993595 0.113000i \(-0.963954\pi\)
0.993595 0.113000i \(-0.0360462\pi\)
\(432\) 0 0
\(433\) 310.412 0.716887 0.358444 0.933551i \(-0.383308\pi\)
0.358444 + 0.933551i \(0.383308\pi\)
\(434\) 0 0
\(435\) 517.558i 1.18979i
\(436\) 0 0
\(437\) − 191.644i − 0.438544i
\(438\) 0 0
\(439\) 124.229i 0.282982i 0.989940 + 0.141491i \(0.0451896\pi\)
−0.989940 + 0.141491i \(0.954810\pi\)
\(440\) 0 0
\(441\) −954.092 −2.16347
\(442\) 0 0
\(443\) 336.800 0.760270 0.380135 0.924931i \(-0.375878\pi\)
0.380135 + 0.924931i \(0.375878\pi\)
\(444\) 0 0
\(445\) 152.503 0.342703
\(446\) 0 0
\(447\) − 688.215i − 1.53963i
\(448\) 0 0
\(449\) 202.686 0.451417 0.225709 0.974195i \(-0.427530\pi\)
0.225709 + 0.974195i \(0.427530\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 1295.80i 2.86050i
\(454\) 0 0
\(455\) 75.9588 0.166942
\(456\) 0 0
\(457\) − 817.158i − 1.78809i −0.447976 0.894046i \(-0.647855\pi\)
0.447976 0.894046i \(-0.352145\pi\)
\(458\) 0 0
\(459\) 896.937i 1.95411i
\(460\) 0 0
\(461\) − 572.857i − 1.24264i −0.783557 0.621320i \(-0.786597\pi\)
0.783557 0.621320i \(-0.213403\pi\)
\(462\) 0 0
\(463\) 809.225 1.74779 0.873893 0.486119i \(-0.161588\pi\)
0.873893 + 0.486119i \(0.161588\pi\)
\(464\) 0 0
\(465\) −499.990 −1.07525
\(466\) 0 0
\(467\) −800.542 −1.71422 −0.857111 0.515132i \(-0.827743\pi\)
−0.857111 + 0.515132i \(0.827743\pi\)
\(468\) 0 0
\(469\) − 321.084i − 0.684613i
\(470\) 0 0
\(471\) −1220.47 −2.59123
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 27.6554i − 0.0582220i
\(476\) 0 0
\(477\) −56.6983 −0.118864
\(478\) 0 0
\(479\) 663.266i 1.38469i 0.721567 + 0.692345i \(0.243422\pi\)
−0.721567 + 0.692345i \(0.756578\pi\)
\(480\) 0 0
\(481\) 198.658i 0.413010i
\(482\) 0 0
\(483\) 1815.54i 3.75889i
\(484\) 0 0
\(485\) 137.378 0.283255
\(486\) 0 0
\(487\) −247.807 −0.508843 −0.254422 0.967093i \(-0.581885\pi\)
−0.254422 + 0.967093i \(0.581885\pi\)
\(488\) 0 0
\(489\) 1020.13 2.08615
\(490\) 0 0
\(491\) 834.509i 1.69961i 0.527096 + 0.849806i \(0.323281\pi\)
−0.527096 + 0.849806i \(0.676719\pi\)
\(492\) 0 0
\(493\) −905.702 −1.83712
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 38.1929i 0.0768470i
\(498\) 0 0
\(499\) 525.408 1.05292 0.526461 0.850199i \(-0.323518\pi\)
0.526461 + 0.850199i \(0.323518\pi\)
\(500\) 0 0
\(501\) − 21.4932i − 0.0429006i
\(502\) 0 0
\(503\) 327.969i 0.652026i 0.945365 + 0.326013i \(0.105705\pi\)
−0.945365 + 0.326013i \(0.894295\pi\)
\(504\) 0 0
\(505\) − 16.7091i − 0.0330873i
\(506\) 0 0
\(507\) 814.133 1.60579
\(508\) 0 0
\(509\) −392.787 −0.771683 −0.385842 0.922565i \(-0.626089\pi\)
−0.385842 + 0.922565i \(0.626089\pi\)
\(510\) 0 0
\(511\) 227.650 0.445499
\(512\) 0 0
\(513\) − 245.762i − 0.479067i
\(514\) 0 0
\(515\) −184.800 −0.358834
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) − 1141.68i − 2.19976i
\(520\) 0 0
\(521\) −92.8535 −0.178222 −0.0891109 0.996022i \(-0.528403\pi\)
−0.0891109 + 0.996022i \(0.528403\pi\)
\(522\) 0 0
\(523\) 340.960i 0.651932i 0.945382 + 0.325966i \(0.105689\pi\)
−0.945382 + 0.325966i \(0.894311\pi\)
\(524\) 0 0
\(525\) 261.995i 0.499038i
\(526\) 0 0
\(527\) − 874.959i − 1.66026i
\(528\) 0 0
\(529\) 671.515 1.26940
\(530\) 0 0
\(531\) 1162.82 2.18988
\(532\) 0 0
\(533\) 110.670 0.207636
\(534\) 0 0
\(535\) 353.471i 0.660693i
\(536\) 0 0
\(537\) −124.294 −0.231459
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 186.702i 0.345104i 0.985000 + 0.172552i \(0.0552014\pi\)
−0.985000 + 0.172552i \(0.944799\pi\)
\(542\) 0 0
\(543\) −283.088 −0.521341
\(544\) 0 0
\(545\) − 176.938i − 0.324657i
\(546\) 0 0
\(547\) 80.5995i 0.147348i 0.997282 + 0.0736741i \(0.0234725\pi\)
−0.997282 + 0.0736741i \(0.976528\pi\)
\(548\) 0 0
\(549\) 834.663i 1.52033i
\(550\) 0 0
\(551\) 248.163 0.450387
\(552\) 0 0
\(553\) 794.455 1.43663
\(554\) 0 0
\(555\) −685.205 −1.23460
\(556\) 0 0
\(557\) 24.3519i 0.0437198i 0.999761 + 0.0218599i \(0.00695878\pi\)
−0.999761 + 0.0218599i \(0.993041\pi\)
\(558\) 0 0
\(559\) −218.581 −0.391021
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 319.673i 0.567803i 0.958853 + 0.283902i \(0.0916289\pi\)
−0.958853 + 0.283902i \(0.908371\pi\)
\(564\) 0 0
\(565\) 63.1117 0.111702
\(566\) 0 0
\(567\) 718.135i 1.26655i
\(568\) 0 0
\(569\) − 744.166i − 1.30785i −0.756560 0.653924i \(-0.773121\pi\)
0.756560 0.653924i \(-0.226879\pi\)
\(570\) 0 0
\(571\) − 265.828i − 0.465549i −0.972531 0.232774i \(-0.925220\pi\)
0.972531 0.232774i \(-0.0747804\pi\)
\(572\) 0 0
\(573\) 1179.84 2.05906
\(574\) 0 0
\(575\) 173.242 0.301291
\(576\) 0 0
\(577\) 220.270 0.381750 0.190875 0.981614i \(-0.438867\pi\)
0.190875 + 0.981614i \(0.438867\pi\)
\(578\) 0 0
\(579\) − 724.253i − 1.25087i
\(580\) 0 0
\(581\) 225.425 0.387996
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) − 131.715i − 0.225154i
\(586\) 0 0
\(587\) −451.754 −0.769598 −0.384799 0.923000i \(-0.625729\pi\)
−0.384799 + 0.923000i \(0.625729\pi\)
\(588\) 0 0
\(589\) 239.740i 0.407028i
\(590\) 0 0
\(591\) 1557.26i 2.63496i
\(592\) 0 0
\(593\) − 337.627i − 0.569353i −0.958624 0.284677i \(-0.908114\pi\)
0.958624 0.284677i \(-0.0918863\pi\)
\(594\) 0 0
\(595\) −458.479 −0.770553
\(596\) 0 0
\(597\) 876.273 1.46779
\(598\) 0 0
\(599\) −659.439 −1.10090 −0.550450 0.834868i \(-0.685544\pi\)
−0.550450 + 0.834868i \(0.685544\pi\)
\(600\) 0 0
\(601\) − 592.806i − 0.986367i −0.869925 0.493183i \(-0.835833\pi\)
0.869925 0.493183i \(-0.164167\pi\)
\(602\) 0 0
\(603\) −556.771 −0.923335
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 615.618i − 1.01420i −0.861888 0.507099i \(-0.830718\pi\)
0.861888 0.507099i \(-0.169282\pi\)
\(608\) 0 0
\(609\) −2350.99 −3.86040
\(610\) 0 0
\(611\) − 230.286i − 0.376900i
\(612\) 0 0
\(613\) − 468.595i − 0.764428i −0.924074 0.382214i \(-0.875162\pi\)
0.924074 0.382214i \(-0.124838\pi\)
\(614\) 0 0
\(615\) 381.719i 0.620682i
\(616\) 0 0
\(617\) −94.7516 −0.153568 −0.0767841 0.997048i \(-0.524465\pi\)
−0.0767841 + 0.997048i \(0.524465\pi\)
\(618\) 0 0
\(619\) −15.2679 −0.0246655 −0.0123327 0.999924i \(-0.503926\pi\)
−0.0123327 + 0.999924i \(0.503926\pi\)
\(620\) 0 0
\(621\) 1539.53 2.47911
\(622\) 0 0
\(623\) 692.739i 1.11194i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 1199.08i − 1.90632i
\(630\) 0 0
\(631\) 961.254 1.52338 0.761691 0.647940i \(-0.224369\pi\)
0.761691 + 0.647940i \(0.224369\pi\)
\(632\) 0 0
\(633\) 448.950i 0.709241i
\(634\) 0 0
\(635\) 207.749i 0.327163i
\(636\) 0 0
\(637\) 181.165i 0.284403i
\(638\) 0 0
\(639\) 66.2280 0.103643
\(640\) 0 0
\(641\) 157.742 0.246087 0.123044 0.992401i \(-0.460734\pi\)
0.123044 + 0.992401i \(0.460734\pi\)
\(642\) 0 0
\(643\) −895.842 −1.39322 −0.696611 0.717449i \(-0.745310\pi\)
−0.696611 + 0.717449i \(0.745310\pi\)
\(644\) 0 0
\(645\) − 753.923i − 1.16887i
\(646\) 0 0
\(647\) −169.006 −0.261215 −0.130608 0.991434i \(-0.541693\pi\)
−0.130608 + 0.991434i \(0.541693\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 2271.18i − 3.48876i
\(652\) 0 0
\(653\) 131.764 0.201783 0.100891 0.994897i \(-0.467831\pi\)
0.100891 + 0.994897i \(0.467831\pi\)
\(654\) 0 0
\(655\) − 350.937i − 0.535781i
\(656\) 0 0
\(657\) − 394.753i − 0.600842i
\(658\) 0 0
\(659\) − 956.323i − 1.45117i −0.688131 0.725586i \(-0.741569\pi\)
0.688131 0.725586i \(-0.258431\pi\)
\(660\) 0 0
\(661\) −649.628 −0.982795 −0.491398 0.870935i \(-0.663514\pi\)
−0.491398 + 0.870935i \(0.663514\pi\)
\(662\) 0 0
\(663\) 348.275 0.525302
\(664\) 0 0
\(665\) 125.624 0.188908
\(666\) 0 0
\(667\) 1554.57i 2.33069i
\(668\) 0 0
\(669\) −120.230 −0.179716
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 758.633i − 1.12724i −0.826034 0.563621i \(-0.809408\pi\)
0.826034 0.563621i \(-0.190592\pi\)
\(674\) 0 0
\(675\) 222.164 0.329132
\(676\) 0 0
\(677\) − 141.672i − 0.209265i −0.994511 0.104632i \(-0.966633\pi\)
0.994511 0.104632i \(-0.0333666\pi\)
\(678\) 0 0
\(679\) 624.036i 0.919052i
\(680\) 0 0
\(681\) − 2036.52i − 2.99049i
\(682\) 0 0
\(683\) 101.169 0.148124 0.0740621 0.997254i \(-0.476404\pi\)
0.0740621 + 0.997254i \(0.476404\pi\)
\(684\) 0 0
\(685\) 7.65207 0.0111709
\(686\) 0 0
\(687\) 2216.77 3.22674
\(688\) 0 0
\(689\) 10.7660i 0.0156255i
\(690\) 0 0
\(691\) −630.444 −0.912364 −0.456182 0.889886i \(-0.650783\pi\)
−0.456182 + 0.889886i \(0.650783\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 251.925i 0.362482i
\(696\) 0 0
\(697\) −667.991 −0.958380
\(698\) 0 0
\(699\) − 618.837i − 0.885317i
\(700\) 0 0
\(701\) 260.870i 0.372140i 0.982536 + 0.186070i \(0.0595752\pi\)
−0.982536 + 0.186070i \(0.940425\pi\)
\(702\) 0 0
\(703\) 328.548i 0.467351i
\(704\) 0 0
\(705\) 794.295 1.12666
\(706\) 0 0
\(707\) 75.9003 0.107355
\(708\) 0 0
\(709\) −638.185 −0.900120 −0.450060 0.892998i \(-0.648597\pi\)
−0.450060 + 0.892998i \(0.648597\pi\)
\(710\) 0 0
\(711\) − 1377.61i − 1.93757i
\(712\) 0 0
\(713\) −1501.80 −2.10632
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1066.59i − 1.48758i
\(718\) 0 0
\(719\) 900.685 1.25269 0.626345 0.779546i \(-0.284550\pi\)
0.626345 + 0.779546i \(0.284550\pi\)
\(720\) 0 0
\(721\) − 839.445i − 1.16428i
\(722\) 0 0
\(723\) − 1624.13i − 2.24638i
\(724\) 0 0
\(725\) 224.335i 0.309428i
\(726\) 0 0
\(727\) −356.679 −0.490618 −0.245309 0.969445i \(-0.578889\pi\)
−0.245309 + 0.969445i \(0.578889\pi\)
\(728\) 0 0
\(729\) −817.700 −1.12167
\(730\) 0 0
\(731\) 1319.33 1.80483
\(732\) 0 0
\(733\) 183.795i 0.250743i 0.992110 + 0.125371i \(0.0400123\pi\)
−0.992110 + 0.125371i \(0.959988\pi\)
\(734\) 0 0
\(735\) −624.868 −0.850161
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 625.309i 0.846156i 0.906093 + 0.423078i \(0.139050\pi\)
−0.906093 + 0.423078i \(0.860950\pi\)
\(740\) 0 0
\(741\) −95.4278 −0.128782
\(742\) 0 0
\(743\) 478.632i 0.644188i 0.946708 + 0.322094i \(0.104387\pi\)
−0.946708 + 0.322094i \(0.895613\pi\)
\(744\) 0 0
\(745\) − 298.306i − 0.400411i
\(746\) 0 0
\(747\) − 390.896i − 0.523288i
\(748\) 0 0
\(749\) −1605.63 −2.14369
\(750\) 0 0
\(751\) −725.136 −0.965560 −0.482780 0.875742i \(-0.660373\pi\)
−0.482780 + 0.875742i \(0.660373\pi\)
\(752\) 0 0
\(753\) −440.341 −0.584782
\(754\) 0 0
\(755\) 561.665i 0.743927i
\(756\) 0 0
\(757\) 555.723 0.734112 0.367056 0.930199i \(-0.380366\pi\)
0.367056 + 0.930199i \(0.380366\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 1023.24i − 1.34460i −0.740280 0.672299i \(-0.765307\pi\)
0.740280 0.672299i \(-0.234693\pi\)
\(762\) 0 0
\(763\) 803.735 1.05339
\(764\) 0 0
\(765\) 795.019i 1.03924i
\(766\) 0 0
\(767\) − 220.799i − 0.287874i
\(768\) 0 0
\(769\) − 500.191i − 0.650443i −0.945638 0.325222i \(-0.894561\pi\)
0.945638 0.325222i \(-0.105439\pi\)
\(770\) 0 0
\(771\) −1523.23 −1.97566
\(772\) 0 0
\(773\) −755.149 −0.976907 −0.488453 0.872590i \(-0.662439\pi\)
−0.488453 + 0.872590i \(0.662439\pi\)
\(774\) 0 0
\(775\) −216.720 −0.279639
\(776\) 0 0
\(777\) − 3112.52i − 4.00581i
\(778\) 0 0
\(779\) 183.030 0.234955
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 1993.56i 2.54606i
\(784\) 0 0
\(785\) −529.010 −0.673899
\(786\) 0 0
\(787\) 1401.42i 1.78071i 0.455271 + 0.890353i \(0.349543\pi\)
−0.455271 + 0.890353i \(0.650457\pi\)
\(788\) 0 0
\(789\) 1366.47i 1.73190i
\(790\) 0 0
\(791\) 286.682i 0.362430i
\(792\) 0 0
\(793\) 158.487 0.199858
\(794\) 0 0
\(795\) −37.1337 −0.0467090
\(796\) 0 0
\(797\) 66.4088 0.0833235 0.0416617 0.999132i \(-0.486735\pi\)
0.0416617 + 0.999132i \(0.486735\pi\)
\(798\) 0 0
\(799\) 1389.98i 1.73965i
\(800\) 0 0
\(801\) 1201.23 1.49967
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 786.946i 0.977572i
\(806\) 0 0
\(807\) 463.546 0.574407
\(808\) 0 0
\(809\) 6.37591i 0.00788122i 0.999992 + 0.00394061i \(0.00125434\pi\)
−0.999992 + 0.00394061i \(0.998746\pi\)
\(810\) 0 0
\(811\) − 672.405i − 0.829107i −0.910025 0.414553i \(-0.863938\pi\)
0.910025 0.414553i \(-0.136062\pi\)
\(812\) 0 0
\(813\) − 522.217i − 0.642334i
\(814\) 0 0
\(815\) 442.173 0.542544
\(816\) 0 0
\(817\) −361.498 −0.442470
\(818\) 0 0
\(819\) 598.312 0.730539
\(820\) 0 0
\(821\) 79.6541i 0.0970208i 0.998823 + 0.0485104i \(0.0154474\pi\)
−0.998823 + 0.0485104i \(0.984553\pi\)
\(822\) 0 0
\(823\) −691.951 −0.840766 −0.420383 0.907347i \(-0.638104\pi\)
−0.420383 + 0.907347i \(0.638104\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1050.43i 1.27017i 0.772440 + 0.635087i \(0.219036\pi\)
−0.772440 + 0.635087i \(0.780964\pi\)
\(828\) 0 0
\(829\) 333.117 0.401830 0.200915 0.979609i \(-0.435608\pi\)
0.200915 + 0.979609i \(0.435608\pi\)
\(830\) 0 0
\(831\) 1333.26i 1.60440i
\(832\) 0 0
\(833\) − 1093.49i − 1.31271i
\(834\) 0 0
\(835\) − 9.31621i − 0.0111571i
\(836\) 0 0
\(837\) −1925.90 −2.30095
\(838\) 0 0
\(839\) 29.8091 0.0355294 0.0177647 0.999842i \(-0.494345\pi\)
0.0177647 + 0.999842i \(0.494345\pi\)
\(840\) 0 0
\(841\) −1172.05 −1.39363
\(842\) 0 0
\(843\) − 1979.05i − 2.34763i
\(844\) 0 0
\(845\) 352.885 0.417616
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 486.971i 0.573581i
\(850\) 0 0
\(851\) −2058.13 −2.41848
\(852\) 0 0
\(853\) − 540.502i − 0.633648i −0.948484 0.316824i \(-0.897383\pi\)
0.948484 0.316824i \(-0.102617\pi\)
\(854\) 0 0
\(855\) − 217.836i − 0.254779i
\(856\) 0 0
\(857\) 273.436i 0.319062i 0.987193 + 0.159531i \(0.0509981\pi\)
−0.987193 + 0.159531i \(0.949002\pi\)
\(858\) 0 0
\(859\) −275.966 −0.321264 −0.160632 0.987014i \(-0.551353\pi\)
−0.160632 + 0.987014i \(0.551353\pi\)
\(860\) 0 0
\(861\) −1733.95 −2.01387
\(862\) 0 0
\(863\) −36.8569 −0.0427079 −0.0213539 0.999772i \(-0.506798\pi\)
−0.0213539 + 0.999772i \(0.506798\pi\)
\(864\) 0 0
\(865\) − 494.859i − 0.572091i
\(866\) 0 0
\(867\) −611.264 −0.705033
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 105.721i 0.121378i
\(872\) 0 0
\(873\) 1082.10 1.23952
\(874\) 0 0
\(875\) 113.561i 0.129785i
\(876\) 0 0
\(877\) 448.626i 0.511546i 0.966737 + 0.255773i \(0.0823300\pi\)
−0.966737 + 0.255773i \(0.917670\pi\)
\(878\) 0 0
\(879\) 33.9916i 0.0386708i
\(880\) 0 0
\(881\) 710.818 0.806831 0.403415 0.915017i \(-0.367823\pi\)
0.403415 + 0.915017i \(0.367823\pi\)
\(882\) 0 0
\(883\) −1282.97 −1.45297 −0.726486 0.687182i \(-0.758848\pi\)
−0.726486 + 0.687182i \(0.758848\pi\)
\(884\) 0 0
\(885\) 761.574 0.860536
\(886\) 0 0
\(887\) − 1023.50i − 1.15389i −0.816785 0.576943i \(-0.804246\pi\)
0.816785 0.576943i \(-0.195754\pi\)
\(888\) 0 0
\(889\) −943.689 −1.06152
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 380.856i − 0.426490i
\(894\) 0 0
\(895\) −53.8750 −0.0601955
\(896\) 0 0
\(897\) − 597.789i − 0.666432i
\(898\) 0 0
\(899\) − 1944.72i − 2.16320i
\(900\) 0 0
\(901\) − 64.9821i − 0.0721222i
\(902\) 0 0
\(903\) 3424.67 3.79254
\(904\) 0 0
\(905\) −122.704 −0.135585
\(906\) 0 0
\(907\) 1544.86 1.70327 0.851633 0.524138i \(-0.175613\pi\)
0.851633 + 0.524138i \(0.175613\pi\)
\(908\) 0 0
\(909\) − 131.614i − 0.144790i
\(910\) 0 0
\(911\) −376.609 −0.413401 −0.206701 0.978404i \(-0.566273\pi\)
−0.206701 + 0.978404i \(0.566273\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 546.649i 0.597431i
\(916\) 0 0
\(917\) 1594.11 1.73840
\(918\) 0 0
\(919\) − 1416.00i − 1.54081i −0.637556 0.770404i \(-0.720054\pi\)
0.637556 0.770404i \(-0.279946\pi\)
\(920\) 0 0
\(921\) − 3089.49i − 3.35450i
\(922\) 0 0
\(923\) − 12.5755i − 0.0136246i
\(924\) 0 0
\(925\) −297.001 −0.321082
\(926\) 0 0
\(927\) −1455.63 −1.57026
\(928\) 0 0
\(929\) −800.241 −0.861400 −0.430700 0.902495i \(-0.641733\pi\)
−0.430700 + 0.902495i \(0.641733\pi\)
\(930\) 0 0
\(931\) 299.617i 0.321823i
\(932\) 0 0
\(933\) 1894.61 2.03067
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 954.407i − 1.01858i −0.860596 0.509288i \(-0.829909\pi\)
0.860596 0.509288i \(-0.170091\pi\)
\(938\) 0 0
\(939\) 1923.00 2.04792
\(940\) 0 0
\(941\) − 874.736i − 0.929581i −0.885421 0.464791i \(-0.846130\pi\)
0.885421 0.464791i \(-0.153870\pi\)
\(942\) 0 0
\(943\) 1146.56i 1.21586i
\(944\) 0 0
\(945\) 1009.17i 1.06790i
\(946\) 0 0
\(947\) 614.074 0.648441 0.324221 0.945982i \(-0.394898\pi\)
0.324221 + 0.945982i \(0.394898\pi\)
\(948\) 0 0
\(949\) −74.9564 −0.0789846
\(950\) 0 0
\(951\) −1990.20 −2.09274
\(952\) 0 0
\(953\) − 612.752i − 0.642971i −0.946914 0.321486i \(-0.895818\pi\)
0.946914 0.321486i \(-0.104182\pi\)
\(954\) 0 0
\(955\) 511.401 0.535499
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 34.7592i 0.0362453i
\(960\) 0 0
\(961\) 917.705 0.954948
\(962\) 0 0
\(963\) 2784.22i 2.89119i
\(964\) 0 0
\(965\) − 313.927i − 0.325313i
\(966\) 0 0
\(967\) − 200.077i − 0.206905i −0.994634 0.103452i \(-0.967011\pi\)
0.994634 0.103452i \(-0.0329890\pi\)
\(968\) 0 0
\(969\) 575.992 0.594419
\(970\) 0 0
\(971\) 946.128 0.974385 0.487193 0.873295i \(-0.338021\pi\)
0.487193 + 0.873295i \(0.338021\pi\)
\(972\) 0 0
\(973\) −1144.36 −1.17611
\(974\) 0 0
\(975\) − 86.2650i − 0.0884769i
\(976\) 0 0
\(977\) −343.304 −0.351386 −0.175693 0.984445i \(-0.556217\pi\)
−0.175693 + 0.984445i \(0.556217\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 1393.71i − 1.42070i
\(982\) 0 0
\(983\) −195.765 −0.199151 −0.0995753 0.995030i \(-0.531748\pi\)
−0.0995753 + 0.995030i \(0.531748\pi\)
\(984\) 0 0
\(985\) 674.994i 0.685273i
\(986\) 0 0
\(987\) 3608.05i 3.65558i
\(988\) 0 0
\(989\) − 2264.53i − 2.28972i
\(990\) 0 0
\(991\) −1157.74 −1.16826 −0.584130 0.811660i \(-0.698564\pi\)
−0.584130 + 0.811660i \(0.698564\pi\)
\(992\) 0 0
\(993\) −3185.90 −3.20836
\(994\) 0 0
\(995\) 379.819 0.381728
\(996\) 0 0
\(997\) 1469.14i 1.47356i 0.676133 + 0.736779i \(0.263654\pi\)
−0.676133 + 0.736779i \(0.736346\pi\)
\(998\) 0 0
\(999\) −2639.32 −2.64196
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2420.3.f.c.241.16 16
11.6 odd 10 220.3.p.a.41.4 16
11.9 even 5 220.3.p.a.161.4 yes 16
11.10 odd 2 inner 2420.3.f.c.241.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.a.41.4 16 11.6 odd 10
220.3.p.a.161.4 yes 16 11.9 even 5
2420.3.f.c.241.15 16 11.10 odd 2 inner
2420.3.f.c.241.16 16 1.1 even 1 trivial