Properties

Label 220.3.p.b.41.1
Level $220$
Weight $3$
Character 220.41
Analytic conductor $5.995$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(41,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.41");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 33 x^{14} - 111 x^{13} + 735 x^{12} - 1436 x^{11} + 10633 x^{10} - 25103 x^{9} + \cdots + 75625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 41.1
Root \(1.27755 - 3.93190i\) of defining polynomial
Character \(\chi\) \(=\) 220.41
Dual form 220.3.p.b.161.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.08657 - 3.34411i) q^{3} +(1.80902 + 1.31433i) q^{5} +(-6.54766 - 2.12746i) q^{7} +(-2.72130 + 1.97714i) q^{9} +(-1.85729 - 10.8421i) q^{11} +(-6.20864 - 8.54546i) q^{13} +(2.42964 - 7.47766i) q^{15} +(-14.5133 + 19.9758i) q^{17} +(-2.90795 + 0.944851i) q^{19} +24.2077i q^{21} -28.7662 q^{23} +(1.54508 + 4.75528i) q^{25} +(-16.0334 - 11.6489i) q^{27} +(-14.4752 - 4.70326i) q^{29} +(22.8906 - 16.6310i) q^{31} +(-34.2390 + 17.9916i) q^{33} +(-9.04864 - 12.4544i) q^{35} +(-0.847400 + 2.60803i) q^{37} +(-21.8309 + 30.0476i) q^{39} +(58.6552 - 19.0582i) q^{41} -40.5154i q^{43} -7.52149 q^{45} +(7.00968 + 21.5736i) q^{47} +(-1.29613 - 0.941696i) q^{49} +(82.5711 + 26.8290i) q^{51} +(69.9304 - 50.8074i) q^{53} +(10.8902 - 22.0546i) q^{55} +(6.31938 + 8.69788i) q^{57} +(22.7854 - 70.1263i) q^{59} +(-34.2719 + 47.1712i) q^{61} +(22.0244 - 7.15617i) q^{63} -23.6191i q^{65} +64.6875 q^{67} +(31.2565 + 96.1975i) q^{69} +(49.4251 + 35.9095i) q^{71} +(-80.2137 - 26.0630i) q^{73} +(14.2234 - 10.3339i) q^{75} +(-10.9052 + 74.9415i) q^{77} +(-44.8560 - 61.7390i) q^{79} +(-30.8890 + 95.0665i) q^{81} +(-11.1117 + 15.2939i) q^{83} +(-52.5096 + 17.0614i) q^{85} +53.5169i q^{87} +127.459 q^{89} +(22.4719 + 69.1614i) q^{91} +(-80.4883 - 58.4781i) q^{93} +(-6.50238 - 2.11275i) q^{95} +(71.6814 - 52.0796i) q^{97} +(26.4905 + 25.8324i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 9 q^{3} + 20 q^{5} + 10 q^{7} - 19 q^{9} + 23 q^{11} - 5 q^{13} + 15 q^{15} + 25 q^{17} + 30 q^{19} - 168 q^{23} - 20 q^{25} - 225 q^{27} - 105 q^{29} + 40 q^{31} + 106 q^{33} - 16 q^{37} + 115 q^{39}+ \cdots + 150 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.08657 3.34411i −0.362189 1.11470i −0.951723 0.306960i \(-0.900688\pi\)
0.589533 0.807744i \(-0.299312\pi\)
\(4\) 0 0
\(5\) 1.80902 + 1.31433i 0.361803 + 0.262866i
\(6\) 0 0
\(7\) −6.54766 2.12746i −0.935379 0.303923i −0.198619 0.980077i \(-0.563646\pi\)
−0.736761 + 0.676154i \(0.763646\pi\)
\(8\) 0 0
\(9\) −2.72130 + 1.97714i −0.302367 + 0.219682i
\(10\) 0 0
\(11\) −1.85729 10.8421i −0.168844 0.985643i
\(12\) 0 0
\(13\) −6.20864 8.54546i −0.477588 0.657343i 0.500451 0.865765i \(-0.333167\pi\)
−0.978039 + 0.208422i \(0.933167\pi\)
\(14\) 0 0
\(15\) 2.42964 7.47766i 0.161976 0.498511i
\(16\) 0 0
\(17\) −14.5133 + 19.9758i −0.853724 + 1.17505i 0.129306 + 0.991605i \(0.458725\pi\)
−0.983030 + 0.183445i \(0.941275\pi\)
\(18\) 0 0
\(19\) −2.90795 + 0.944851i −0.153050 + 0.0497290i −0.384540 0.923108i \(-0.625640\pi\)
0.231490 + 0.972837i \(0.425640\pi\)
\(20\) 0 0
\(21\) 24.2077i 1.15275i
\(22\) 0 0
\(23\) −28.7662 −1.25071 −0.625353 0.780342i \(-0.715045\pi\)
−0.625353 + 0.780342i \(0.715045\pi\)
\(24\) 0 0
\(25\) 1.54508 + 4.75528i 0.0618034 + 0.190211i
\(26\) 0 0
\(27\) −16.0334 11.6489i −0.593829 0.431442i
\(28\) 0 0
\(29\) −14.4752 4.70326i −0.499143 0.162181i 0.0486159 0.998818i \(-0.484519\pi\)
−0.547759 + 0.836636i \(0.684519\pi\)
\(30\) 0 0
\(31\) 22.8906 16.6310i 0.738408 0.536485i −0.153804 0.988101i \(-0.549152\pi\)
0.892212 + 0.451617i \(0.149152\pi\)
\(32\) 0 0
\(33\) −34.2390 + 17.9916i −1.03755 + 0.545200i
\(34\) 0 0
\(35\) −9.04864 12.4544i −0.258533 0.355839i
\(36\) 0 0
\(37\) −0.847400 + 2.60803i −0.0229027 + 0.0704872i −0.961855 0.273561i \(-0.911798\pi\)
0.938952 + 0.344048i \(0.111798\pi\)
\(38\) 0 0
\(39\) −21.8309 + 30.0476i −0.559766 + 0.770451i
\(40\) 0 0
\(41\) 58.6552 19.0582i 1.43061 0.464835i 0.511656 0.859190i \(-0.329032\pi\)
0.918958 + 0.394356i \(0.129032\pi\)
\(42\) 0 0
\(43\) 40.5154i 0.942220i −0.882075 0.471110i \(-0.843854\pi\)
0.882075 0.471110i \(-0.156146\pi\)
\(44\) 0 0
\(45\) −7.52149 −0.167144
\(46\) 0 0
\(47\) 7.00968 + 21.5736i 0.149142 + 0.459012i 0.997520 0.0703784i \(-0.0224207\pi\)
−0.848378 + 0.529390i \(0.822421\pi\)
\(48\) 0 0
\(49\) −1.29613 0.941696i −0.0264517 0.0192183i
\(50\) 0 0
\(51\) 82.5711 + 26.8290i 1.61904 + 0.526059i
\(52\) 0 0
\(53\) 69.9304 50.8074i 1.31944 0.958630i 0.319502 0.947585i \(-0.396484\pi\)
0.999939 0.0110448i \(-0.00351575\pi\)
\(54\) 0 0
\(55\) 10.8902 22.0546i 0.198003 0.400992i
\(56\) 0 0
\(57\) 6.31938 + 8.69788i 0.110866 + 0.152594i
\(58\) 0 0
\(59\) 22.7854 70.1263i 0.386194 1.18858i −0.549417 0.835548i \(-0.685150\pi\)
0.935611 0.353033i \(-0.114850\pi\)
\(60\) 0 0
\(61\) −34.2719 + 47.1712i −0.561834 + 0.773299i −0.991558 0.129662i \(-0.958611\pi\)
0.429724 + 0.902960i \(0.358611\pi\)
\(62\) 0 0
\(63\) 22.0244 7.15617i 0.349594 0.113590i
\(64\) 0 0
\(65\) 23.6191i 0.363370i
\(66\) 0 0
\(67\) 64.6875 0.965485 0.482742 0.875762i \(-0.339641\pi\)
0.482742 + 0.875762i \(0.339641\pi\)
\(68\) 0 0
\(69\) 31.2565 + 96.1975i 0.452992 + 1.39417i
\(70\) 0 0
\(71\) 49.4251 + 35.9095i 0.696129 + 0.505767i 0.878669 0.477431i \(-0.158432\pi\)
−0.182541 + 0.983198i \(0.558432\pi\)
\(72\) 0 0
\(73\) −80.2137 26.0630i −1.09882 0.357028i −0.297170 0.954824i \(-0.596043\pi\)
−0.801648 + 0.597797i \(0.796043\pi\)
\(74\) 0 0
\(75\) 14.2234 10.3339i 0.189645 0.137785i
\(76\) 0 0
\(77\) −10.9052 + 74.9415i −0.141626 + 0.973266i
\(78\) 0 0
\(79\) −44.8560 61.7390i −0.567797 0.781506i 0.424494 0.905431i \(-0.360452\pi\)
−0.992292 + 0.123925i \(0.960452\pi\)
\(80\) 0 0
\(81\) −30.8890 + 95.0665i −0.381345 + 1.17366i
\(82\) 0 0
\(83\) −11.1117 + 15.2939i −0.133875 + 0.184264i −0.870692 0.491829i \(-0.836328\pi\)
0.736816 + 0.676093i \(0.236328\pi\)
\(84\) 0 0
\(85\) −52.5096 + 17.0614i −0.617760 + 0.200722i
\(86\) 0 0
\(87\) 53.5169i 0.615137i
\(88\) 0 0
\(89\) 127.459 1.43213 0.716063 0.698036i \(-0.245942\pi\)
0.716063 + 0.698036i \(0.245942\pi\)
\(90\) 0 0
\(91\) 22.4719 + 69.1614i 0.246944 + 0.760015i
\(92\) 0 0
\(93\) −80.4883 58.4781i −0.865465 0.628797i
\(94\) 0 0
\(95\) −6.50238 2.11275i −0.0684461 0.0222395i
\(96\) 0 0
\(97\) 71.6814 52.0796i 0.738984 0.536903i −0.153409 0.988163i \(-0.549025\pi\)
0.892393 + 0.451260i \(0.149025\pi\)
\(98\) 0 0
\(99\) 26.4905 + 25.8324i 0.267581 + 0.260933i
\(100\) 0 0
\(101\) −31.1920 42.9321i −0.308832 0.425070i 0.626185 0.779675i \(-0.284616\pi\)
−0.935016 + 0.354604i \(0.884616\pi\)
\(102\) 0 0
\(103\) −9.27955 + 28.5595i −0.0900928 + 0.277277i −0.985944 0.167078i \(-0.946567\pi\)
0.895851 + 0.444355i \(0.146567\pi\)
\(104\) 0 0
\(105\) −31.8169 + 43.7922i −0.303018 + 0.417068i
\(106\) 0 0
\(107\) 184.806 60.0473i 1.72716 0.561189i 0.734129 0.679010i \(-0.237591\pi\)
0.993035 + 0.117821i \(0.0375909\pi\)
\(108\) 0 0
\(109\) 118.805i 1.08995i 0.838451 + 0.544977i \(0.183462\pi\)
−0.838451 + 0.544977i \(0.816538\pi\)
\(110\) 0 0
\(111\) 9.64229 0.0868675
\(112\) 0 0
\(113\) −55.4791 170.747i −0.490965 1.51104i −0.823151 0.567822i \(-0.807786\pi\)
0.332186 0.943214i \(-0.392214\pi\)
\(114\) 0 0
\(115\) −52.0386 37.8083i −0.452510 0.328768i
\(116\) 0 0
\(117\) 33.7911 + 10.9794i 0.288813 + 0.0938410i
\(118\) 0 0
\(119\) 137.526 99.9185i 1.15568 0.839651i
\(120\) 0 0
\(121\) −114.101 + 40.2737i −0.942983 + 0.332840i
\(122\) 0 0
\(123\) −127.466 175.441i −1.03631 1.42635i
\(124\) 0 0
\(125\) −3.45492 + 10.6331i −0.0276393 + 0.0850651i
\(126\) 0 0
\(127\) −4.57000 + 6.29006i −0.0359842 + 0.0495280i −0.826630 0.562746i \(-0.809745\pi\)
0.790646 + 0.612274i \(0.209745\pi\)
\(128\) 0 0
\(129\) −135.488 + 44.0228i −1.05030 + 0.341262i
\(130\) 0 0
\(131\) 41.8687i 0.319608i 0.987149 + 0.159804i \(0.0510863\pi\)
−0.987149 + 0.159804i \(0.948914\pi\)
\(132\) 0 0
\(133\) 21.0504 0.158274
\(134\) 0 0
\(135\) −13.6941 42.1463i −0.101438 0.312195i
\(136\) 0 0
\(137\) −102.193 74.2477i −0.745935 0.541954i 0.148629 0.988893i \(-0.452514\pi\)
−0.894564 + 0.446939i \(0.852514\pi\)
\(138\) 0 0
\(139\) 60.8595 + 19.7744i 0.437838 + 0.142262i 0.519638 0.854387i \(-0.326067\pi\)
−0.0817999 + 0.996649i \(0.526067\pi\)
\(140\) 0 0
\(141\) 64.5279 46.8823i 0.457645 0.332498i
\(142\) 0 0
\(143\) −81.1192 + 83.1859i −0.567267 + 0.581719i
\(144\) 0 0
\(145\) −20.0042 27.5334i −0.137960 0.189885i
\(146\) 0 0
\(147\) −1.74080 + 5.35763i −0.0118422 + 0.0364465i
\(148\) 0 0
\(149\) 1.07120 1.47437i 0.00718923 0.00989513i −0.805407 0.592722i \(-0.798053\pi\)
0.812596 + 0.582827i \(0.198053\pi\)
\(150\) 0 0
\(151\) −274.114 + 89.0651i −1.81533 + 0.589835i −0.815385 + 0.578919i \(0.803475\pi\)
−0.999940 + 0.0109164i \(0.996525\pi\)
\(152\) 0 0
\(153\) 83.0551i 0.542844i
\(154\) 0 0
\(155\) 63.2682 0.408182
\(156\) 0 0
\(157\) 20.7382 + 63.8257i 0.132091 + 0.406533i 0.995126 0.0986100i \(-0.0314396\pi\)
−0.863035 + 0.505143i \(0.831440\pi\)
\(158\) 0 0
\(159\) −245.890 178.649i −1.54648 1.12358i
\(160\) 0 0
\(161\) 188.351 + 61.1991i 1.16988 + 0.380119i
\(162\) 0 0
\(163\) −131.307 + 95.4002i −0.805565 + 0.585277i −0.912541 0.408984i \(-0.865883\pi\)
0.106976 + 0.994262i \(0.465883\pi\)
\(164\) 0 0
\(165\) −85.5859 12.4542i −0.518702 0.0754798i
\(166\) 0 0
\(167\) −86.1357 118.556i −0.515782 0.709914i 0.469099 0.883146i \(-0.344579\pi\)
−0.984881 + 0.173232i \(0.944579\pi\)
\(168\) 0 0
\(169\) 17.7462 54.6172i 0.105007 0.323179i
\(170\) 0 0
\(171\) 6.04531 8.32065i 0.0353527 0.0486588i
\(172\) 0 0
\(173\) 61.9935 20.1429i 0.358344 0.116433i −0.124312 0.992243i \(-0.539672\pi\)
0.482656 + 0.875810i \(0.339672\pi\)
\(174\) 0 0
\(175\) 34.4231i 0.196703i
\(176\) 0 0
\(177\) −259.268 −1.46479
\(178\) 0 0
\(179\) −9.35484 28.7912i −0.0522617 0.160845i 0.921519 0.388333i \(-0.126949\pi\)
−0.973781 + 0.227488i \(0.926949\pi\)
\(180\) 0 0
\(181\) 132.819 + 96.4986i 0.733807 + 0.533142i 0.890765 0.454463i \(-0.150169\pi\)
−0.156959 + 0.987605i \(0.550169\pi\)
\(182\) 0 0
\(183\) 194.985 + 63.3543i 1.06549 + 0.346198i
\(184\) 0 0
\(185\) −4.96076 + 3.60421i −0.0268149 + 0.0194822i
\(186\) 0 0
\(187\) 243.535 + 120.253i 1.30233 + 0.643066i
\(188\) 0 0
\(189\) 80.1984 + 110.384i 0.424330 + 0.584041i
\(190\) 0 0
\(191\) −81.0189 + 249.350i −0.424183 + 1.30550i 0.479592 + 0.877492i \(0.340785\pi\)
−0.903775 + 0.428008i \(0.859215\pi\)
\(192\) 0 0
\(193\) −79.5903 + 109.547i −0.412385 + 0.567599i −0.963798 0.266633i \(-0.914089\pi\)
0.551413 + 0.834232i \(0.314089\pi\)
\(194\) 0 0
\(195\) −78.9848 + 25.6637i −0.405050 + 0.131609i
\(196\) 0 0
\(197\) 149.591i 0.759344i 0.925121 + 0.379672i \(0.123963\pi\)
−0.925121 + 0.379672i \(0.876037\pi\)
\(198\) 0 0
\(199\) −367.773 −1.84811 −0.924053 0.382264i \(-0.875145\pi\)
−0.924053 + 0.382264i \(0.875145\pi\)
\(200\) 0 0
\(201\) −70.2873 216.322i −0.349688 1.07623i
\(202\) 0 0
\(203\) 84.7723 + 61.5907i 0.417598 + 0.303402i
\(204\) 0 0
\(205\) 131.157 + 42.6155i 0.639790 + 0.207880i
\(206\) 0 0
\(207\) 78.2816 56.8749i 0.378172 0.274758i
\(208\) 0 0
\(209\) 15.6450 + 29.7734i 0.0748567 + 0.142456i
\(210\) 0 0
\(211\) −202.206 278.312i −0.958320 1.31901i −0.947731 0.319071i \(-0.896629\pi\)
−0.0105893 0.999944i \(-0.503371\pi\)
\(212\) 0 0
\(213\) 66.3815 204.301i 0.311650 0.959160i
\(214\) 0 0
\(215\) 53.2506 73.2931i 0.247677 0.340898i
\(216\) 0 0
\(217\) −185.262 + 60.1953i −0.853742 + 0.277398i
\(218\) 0 0
\(219\) 296.563i 1.35417i
\(220\) 0 0
\(221\) 260.811 1.18014
\(222\) 0 0
\(223\) −65.7767 202.440i −0.294963 0.907802i −0.983234 0.182349i \(-0.941630\pi\)
0.688271 0.725454i \(-0.258370\pi\)
\(224\) 0 0
\(225\) −13.6065 9.88570i −0.0604733 0.0439364i
\(226\) 0 0
\(227\) 109.939 + 35.7214i 0.484314 + 0.157363i 0.540989 0.841030i \(-0.318050\pi\)
−0.0566755 + 0.998393i \(0.518050\pi\)
\(228\) 0 0
\(229\) 359.586 261.254i 1.57024 1.14085i 0.643319 0.765598i \(-0.277557\pi\)
0.926924 0.375250i \(-0.122443\pi\)
\(230\) 0 0
\(231\) 262.462 44.9607i 1.13620 0.194635i
\(232\) 0 0
\(233\) 53.1317 + 73.1295i 0.228033 + 0.313861i 0.907667 0.419691i \(-0.137861\pi\)
−0.679634 + 0.733551i \(0.737861\pi\)
\(234\) 0 0
\(235\) −15.6741 + 48.2400i −0.0666983 + 0.205276i
\(236\) 0 0
\(237\) −157.723 + 217.087i −0.665497 + 0.915979i
\(238\) 0 0
\(239\) 5.46686 1.77629i 0.0228739 0.00743218i −0.297558 0.954704i \(-0.596172\pi\)
0.320432 + 0.947272i \(0.396172\pi\)
\(240\) 0 0
\(241\) 227.149i 0.942527i −0.881992 0.471264i \(-0.843798\pi\)
0.881992 0.471264i \(-0.156202\pi\)
\(242\) 0 0
\(243\) 173.111 0.712390
\(244\) 0 0
\(245\) −1.10703 3.40709i −0.00451849 0.0139065i
\(246\) 0 0
\(247\) 26.1286 + 18.9836i 0.105784 + 0.0768565i
\(248\) 0 0
\(249\) 63.2180 + 20.5408i 0.253888 + 0.0824931i
\(250\) 0 0
\(251\) 111.228 80.8118i 0.443139 0.321959i −0.343742 0.939064i \(-0.611695\pi\)
0.786881 + 0.617105i \(0.211695\pi\)
\(252\) 0 0
\(253\) 53.4272 + 311.886i 0.211175 + 1.23275i
\(254\) 0 0
\(255\) 114.111 + 157.060i 0.447492 + 0.615920i
\(256\) 0 0
\(257\) 127.567 392.610i 0.496368 1.52766i −0.318445 0.947941i \(-0.603161\pi\)
0.814813 0.579723i \(-0.196839\pi\)
\(258\) 0 0
\(259\) 11.0970 15.2737i 0.0428454 0.0589717i
\(260\) 0 0
\(261\) 48.6902 15.8204i 0.186553 0.0606146i
\(262\) 0 0
\(263\) 378.661i 1.43978i 0.694090 + 0.719889i \(0.255807\pi\)
−0.694090 + 0.719889i \(0.744193\pi\)
\(264\) 0 0
\(265\) 193.283 0.729369
\(266\) 0 0
\(267\) −138.493 426.238i −0.518701 1.59640i
\(268\) 0 0
\(269\) 52.6784 + 38.2731i 0.195831 + 0.142279i 0.681380 0.731930i \(-0.261380\pi\)
−0.485549 + 0.874209i \(0.661380\pi\)
\(270\) 0 0
\(271\) 504.422 + 163.896i 1.86133 + 0.604784i 0.994311 + 0.106516i \(0.0339696\pi\)
0.867023 + 0.498268i \(0.166030\pi\)
\(272\) 0 0
\(273\) 206.866 150.297i 0.757751 0.550538i
\(274\) 0 0
\(275\) 48.6874 25.5838i 0.177045 0.0930322i
\(276\) 0 0
\(277\) 81.6374 + 112.364i 0.294720 + 0.405647i 0.930540 0.366190i \(-0.119338\pi\)
−0.635820 + 0.771837i \(0.719338\pi\)
\(278\) 0 0
\(279\) −29.4104 + 90.5160i −0.105414 + 0.324430i
\(280\) 0 0
\(281\) 182.823 251.634i 0.650615 0.895495i −0.348510 0.937305i \(-0.613312\pi\)
0.999126 + 0.0418099i \(0.0133124\pi\)
\(282\) 0 0
\(283\) −372.474 + 121.024i −1.31616 + 0.427647i −0.881175 0.472790i \(-0.843247\pi\)
−0.434987 + 0.900437i \(0.643247\pi\)
\(284\) 0 0
\(285\) 24.0403i 0.0843521i
\(286\) 0 0
\(287\) −424.599 −1.47944
\(288\) 0 0
\(289\) −99.0926 304.976i −0.342881 1.05528i
\(290\) 0 0
\(291\) −252.047 183.123i −0.866140 0.629287i
\(292\) 0 0
\(293\) 203.899 + 66.2508i 0.695901 + 0.226112i 0.635544 0.772065i \(-0.280776\pi\)
0.0603575 + 0.998177i \(0.480776\pi\)
\(294\) 0 0
\(295\) 133.388 96.9122i 0.452163 0.328516i
\(296\) 0 0
\(297\) −96.5200 + 195.471i −0.324983 + 0.658150i
\(298\) 0 0
\(299\) 178.599 + 245.821i 0.597322 + 0.822143i
\(300\) 0 0
\(301\) −86.1951 + 265.281i −0.286362 + 0.881333i
\(302\) 0 0
\(303\) −109.678 + 150.958i −0.361972 + 0.498212i
\(304\) 0 0
\(305\) −123.997 + 40.2890i −0.406547 + 0.132095i
\(306\) 0 0
\(307\) 471.912i 1.53717i 0.639745 + 0.768587i \(0.279040\pi\)
−0.639745 + 0.768587i \(0.720960\pi\)
\(308\) 0 0
\(309\) 105.589 0.341712
\(310\) 0 0
\(311\) −1.51952 4.67661i −0.00488593 0.0150373i 0.948584 0.316526i \(-0.102516\pi\)
−0.953470 + 0.301489i \(0.902516\pi\)
\(312\) 0 0
\(313\) 164.376 + 119.426i 0.525161 + 0.381552i 0.818545 0.574443i \(-0.194781\pi\)
−0.293383 + 0.955995i \(0.594781\pi\)
\(314\) 0 0
\(315\) 49.2481 + 16.0017i 0.156343 + 0.0507990i
\(316\) 0 0
\(317\) 0.399646 0.290360i 0.00126071 0.000915962i −0.587155 0.809475i \(-0.699752\pi\)
0.588415 + 0.808559i \(0.299752\pi\)
\(318\) 0 0
\(319\) −24.1086 + 165.676i −0.0755755 + 0.519360i
\(320\) 0 0
\(321\) −401.610 552.768i −1.25112 1.72202i
\(322\) 0 0
\(323\) 23.3298 71.8018i 0.0722285 0.222296i
\(324\) 0 0
\(325\) 31.0432 42.7273i 0.0955175 0.131469i
\(326\) 0 0
\(327\) 397.297 129.090i 1.21498 0.394769i
\(328\) 0 0
\(329\) 156.169i 0.474678i
\(330\) 0 0
\(331\) −490.502 −1.48188 −0.740940 0.671571i \(-0.765620\pi\)
−0.740940 + 0.671571i \(0.765620\pi\)
\(332\) 0 0
\(333\) −2.85041 8.77265i −0.00855978 0.0263443i
\(334\) 0 0
\(335\) 117.021 + 85.0205i 0.349316 + 0.253793i
\(336\) 0 0
\(337\) −359.397 116.775i −1.06646 0.346514i −0.277353 0.960768i \(-0.589457\pi\)
−0.789108 + 0.614254i \(0.789457\pi\)
\(338\) 0 0
\(339\) −510.716 + 371.057i −1.50654 + 1.09456i
\(340\) 0 0
\(341\) −222.829 217.293i −0.653458 0.637224i
\(342\) 0 0
\(343\) 204.770 + 281.842i 0.596998 + 0.821697i
\(344\) 0 0
\(345\) −69.8916 + 215.104i −0.202584 + 0.623490i
\(346\) 0 0
\(347\) 45.1838 62.1902i 0.130213 0.179222i −0.738932 0.673780i \(-0.764670\pi\)
0.869145 + 0.494557i \(0.164670\pi\)
\(348\) 0 0
\(349\) 104.499 33.9538i 0.299424 0.0972888i −0.155452 0.987843i \(-0.549683\pi\)
0.454876 + 0.890555i \(0.349683\pi\)
\(350\) 0 0
\(351\) 209.337i 0.596401i
\(352\) 0 0
\(353\) 497.456 1.40922 0.704612 0.709593i \(-0.251121\pi\)
0.704612 + 0.709593i \(0.251121\pi\)
\(354\) 0 0
\(355\) 42.2141 + 129.922i 0.118913 + 0.365976i
\(356\) 0 0
\(357\) −483.570 351.334i −1.35454 0.984129i
\(358\) 0 0
\(359\) 20.6885 + 6.72211i 0.0576282 + 0.0187245i 0.337689 0.941258i \(-0.390355\pi\)
−0.280061 + 0.959982i \(0.590355\pi\)
\(360\) 0 0
\(361\) −284.492 + 206.695i −0.788066 + 0.572563i
\(362\) 0 0
\(363\) 258.658 + 337.806i 0.712557 + 0.930596i
\(364\) 0 0
\(365\) −110.853 152.576i −0.303706 0.418015i
\(366\) 0 0
\(367\) 165.763 510.167i 0.451671 1.39010i −0.423328 0.905977i \(-0.639138\pi\)
0.874999 0.484125i \(-0.160862\pi\)
\(368\) 0 0
\(369\) −121.937 + 167.833i −0.330454 + 0.454831i
\(370\) 0 0
\(371\) −565.971 + 183.895i −1.52553 + 0.495674i
\(372\) 0 0
\(373\) 332.971i 0.892685i −0.894862 0.446342i \(-0.852726\pi\)
0.894862 0.446342i \(-0.147274\pi\)
\(374\) 0 0
\(375\) 39.3124 0.104833
\(376\) 0 0
\(377\) 49.6795 + 152.898i 0.131776 + 0.405564i
\(378\) 0 0
\(379\) −305.835 222.202i −0.806953 0.586286i 0.105993 0.994367i \(-0.466198\pi\)
−0.912946 + 0.408081i \(0.866198\pi\)
\(380\) 0 0
\(381\) 26.0003 + 8.44800i 0.0682422 + 0.0221732i
\(382\) 0 0
\(383\) 99.8950 72.5779i 0.260822 0.189499i −0.449687 0.893186i \(-0.648465\pi\)
0.710510 + 0.703688i \(0.248465\pi\)
\(384\) 0 0
\(385\) −118.225 + 121.237i −0.307079 + 0.314902i
\(386\) 0 0
\(387\) 80.1047 + 110.255i 0.206989 + 0.284896i
\(388\) 0 0
\(389\) 226.026 695.636i 0.581043 1.78827i −0.0335682 0.999436i \(-0.510687\pi\)
0.614611 0.788830i \(-0.289313\pi\)
\(390\) 0 0
\(391\) 417.493 574.630i 1.06776 1.46964i
\(392\) 0 0
\(393\) 140.014 45.4932i 0.356269 0.115759i
\(394\) 0 0
\(395\) 170.642i 0.432006i
\(396\) 0 0
\(397\) 123.206 0.310344 0.155172 0.987887i \(-0.450407\pi\)
0.155172 + 0.987887i \(0.450407\pi\)
\(398\) 0 0
\(399\) −22.8727 70.3949i −0.0573251 0.176428i
\(400\) 0 0
\(401\) −409.715 297.675i −1.02173 0.742333i −0.0550958 0.998481i \(-0.517546\pi\)
−0.966637 + 0.256148i \(0.917546\pi\)
\(402\) 0 0
\(403\) −284.240 92.3550i −0.705309 0.229169i
\(404\) 0 0
\(405\) −180.827 + 131.379i −0.446487 + 0.324392i
\(406\) 0 0
\(407\) 29.8503 + 4.34371i 0.0733422 + 0.0106725i
\(408\) 0 0
\(409\) −411.171 565.928i −1.00531 1.38369i −0.922011 0.387163i \(-0.873455\pi\)
−0.0832964 0.996525i \(-0.526545\pi\)
\(410\) 0 0
\(411\) −137.253 + 422.420i −0.333948 + 1.02779i
\(412\) 0 0
\(413\) −298.382 + 410.688i −0.722475 + 0.994402i
\(414\) 0 0
\(415\) −40.2024 + 13.0625i −0.0968732 + 0.0314760i
\(416\) 0 0
\(417\) 225.007i 0.539586i
\(418\) 0 0
\(419\) −240.430 −0.573818 −0.286909 0.957958i \(-0.592628\pi\)
−0.286909 + 0.957958i \(0.592628\pi\)
\(420\) 0 0
\(421\) 96.5879 + 297.267i 0.229425 + 0.706097i 0.997812 + 0.0661122i \(0.0210595\pi\)
−0.768387 + 0.639985i \(0.778940\pi\)
\(422\) 0 0
\(423\) −61.7294 44.8490i −0.145932 0.106026i
\(424\) 0 0
\(425\) −117.415 38.1505i −0.276271 0.0897658i
\(426\) 0 0
\(427\) 324.756 235.949i 0.760552 0.552573i
\(428\) 0 0
\(429\) 366.324 + 180.885i 0.853903 + 0.421643i
\(430\) 0 0
\(431\) −429.145 590.668i −0.995696 1.37046i −0.927929 0.372758i \(-0.878412\pi\)
−0.0677677 0.997701i \(-0.521588\pi\)
\(432\) 0 0
\(433\) −133.213 + 409.988i −0.307652 + 0.946855i 0.671022 + 0.741437i \(0.265855\pi\)
−0.978674 + 0.205418i \(0.934145\pi\)
\(434\) 0 0
\(435\) −70.3388 + 96.8131i −0.161698 + 0.222559i
\(436\) 0 0
\(437\) 83.6509 27.1798i 0.191421 0.0621964i
\(438\) 0 0
\(439\) 41.1901i 0.0938270i 0.998899 + 0.0469135i \(0.0149385\pi\)
−0.998899 + 0.0469135i \(0.985061\pi\)
\(440\) 0 0
\(441\) 5.38903 0.0122200
\(442\) 0 0
\(443\) 65.1216 + 200.424i 0.147001 + 0.452424i 0.997263 0.0739366i \(-0.0235563\pi\)
−0.850262 + 0.526360i \(0.823556\pi\)
\(444\) 0 0
\(445\) 230.576 + 167.523i 0.518148 + 0.376457i
\(446\) 0 0
\(447\) −6.09440 1.98019i −0.0136340 0.00442995i
\(448\) 0 0
\(449\) 289.565 210.381i 0.644910 0.468554i −0.216624 0.976255i \(-0.569504\pi\)
0.861533 + 0.507701i \(0.169504\pi\)
\(450\) 0 0
\(451\) −315.570 600.547i −0.699712 1.33159i
\(452\) 0 0
\(453\) 595.687 + 819.893i 1.31498 + 1.80992i
\(454\) 0 0
\(455\) −50.2487 + 154.650i −0.110437 + 0.339889i
\(456\) 0 0
\(457\) 0.558556 0.768786i 0.00122222 0.00168224i −0.808405 0.588626i \(-0.799669\pi\)
0.809628 + 0.586944i \(0.199669\pi\)
\(458\) 0 0
\(459\) 465.395 151.216i 1.01393 0.329447i
\(460\) 0 0
\(461\) 511.859i 1.11032i 0.831743 + 0.555161i \(0.187343\pi\)
−0.831743 + 0.555161i \(0.812657\pi\)
\(462\) 0 0
\(463\) 32.0919 0.0693130 0.0346565 0.999399i \(-0.488966\pi\)
0.0346565 + 0.999399i \(0.488966\pi\)
\(464\) 0 0
\(465\) −68.7452 211.576i −0.147839 0.455002i
\(466\) 0 0
\(467\) 174.032 + 126.442i 0.372660 + 0.270754i 0.758313 0.651890i \(-0.226024\pi\)
−0.385653 + 0.922644i \(0.626024\pi\)
\(468\) 0 0
\(469\) −423.551 137.620i −0.903094 0.293433i
\(470\) 0 0
\(471\) 190.907 138.702i 0.405322 0.294484i
\(472\) 0 0
\(473\) −439.271 + 75.2488i −0.928692 + 0.159088i
\(474\) 0 0
\(475\) −8.98607 12.3683i −0.0189180 0.0260385i
\(476\) 0 0
\(477\) −89.8482 + 276.524i −0.188361 + 0.579715i
\(478\) 0 0
\(479\) −135.851 + 186.983i −0.283615 + 0.390362i −0.926927 0.375242i \(-0.877560\pi\)
0.643312 + 0.765604i \(0.277560\pi\)
\(480\) 0 0
\(481\) 27.5480 8.95088i 0.0572723 0.0186089i
\(482\) 0 0
\(483\) 696.365i 1.44175i
\(484\) 0 0
\(485\) 198.123 0.408500
\(486\) 0 0
\(487\) −0.169372 0.521275i −0.000347787 0.00107038i 0.950882 0.309552i \(-0.100179\pi\)
−0.951230 + 0.308482i \(0.900179\pi\)
\(488\) 0 0
\(489\) 461.703 + 335.447i 0.944178 + 0.685985i
\(490\) 0 0
\(491\) −296.289 96.2700i −0.603439 0.196069i −0.00866552 0.999962i \(-0.502758\pi\)
−0.594774 + 0.803893i \(0.702758\pi\)
\(492\) 0 0
\(493\) 304.034 220.894i 0.616702 0.448060i
\(494\) 0 0
\(495\) 13.9696 + 81.5485i 0.0282213 + 0.164744i
\(496\) 0 0
\(497\) −247.223 340.273i −0.497430 0.684654i
\(498\) 0 0
\(499\) −198.566 + 611.123i −0.397927 + 1.22469i 0.528731 + 0.848790i \(0.322668\pi\)
−0.926658 + 0.375905i \(0.877332\pi\)
\(500\) 0 0
\(501\) −302.871 + 416.866i −0.604532 + 0.832068i
\(502\) 0 0
\(503\) −235.405 + 76.4877i −0.468002 + 0.152063i −0.533518 0.845788i \(-0.679130\pi\)
0.0655166 + 0.997851i \(0.479130\pi\)
\(504\) 0 0
\(505\) 118.661i 0.234973i
\(506\) 0 0
\(507\) −201.929 −0.398281
\(508\) 0 0
\(509\) 232.297 + 714.936i 0.456379 + 1.40459i 0.869509 + 0.493918i \(0.164436\pi\)
−0.413130 + 0.910672i \(0.635564\pi\)
\(510\) 0 0
\(511\) 469.764 + 341.303i 0.919303 + 0.667912i
\(512\) 0 0
\(513\) 57.6309 + 18.7254i 0.112341 + 0.0365018i
\(514\) 0 0
\(515\) −54.3235 + 39.4683i −0.105482 + 0.0766375i
\(516\) 0 0
\(517\) 220.883 116.068i 0.427240 0.224502i
\(518\) 0 0
\(519\) −134.720 185.427i −0.259577 0.357277i
\(520\) 0 0
\(521\) −188.646 + 580.594i −0.362085 + 1.11438i 0.589701 + 0.807622i \(0.299246\pi\)
−0.951786 + 0.306762i \(0.900754\pi\)
\(522\) 0 0
\(523\) 364.492 501.680i 0.696925 0.959235i −0.303055 0.952973i \(-0.598007\pi\)
0.999980 0.00626195i \(-0.00199325\pi\)
\(524\) 0 0
\(525\) −115.115 + 37.4030i −0.219266 + 0.0712438i
\(526\) 0 0
\(527\) 698.631i 1.32568i
\(528\) 0 0
\(529\) 298.497 0.564266
\(530\) 0 0
\(531\) 76.6436 + 235.885i 0.144338 + 0.444227i
\(532\) 0 0
\(533\) −527.030 382.910i −0.988799 0.718405i
\(534\) 0 0
\(535\) 413.240 + 134.270i 0.772411 + 0.250972i
\(536\) 0 0
\(537\) −86.1164 + 62.5673i −0.160366 + 0.116513i
\(538\) 0 0
\(539\) −7.80264 + 15.8018i −0.0144761 + 0.0293168i
\(540\) 0 0
\(541\) 178.045 + 245.058i 0.329103 + 0.452972i 0.941219 0.337796i \(-0.109681\pi\)
−0.612116 + 0.790768i \(0.709681\pi\)
\(542\) 0 0
\(543\) 178.385 549.014i 0.328518 1.01108i
\(544\) 0 0
\(545\) −156.149 + 214.920i −0.286511 + 0.394349i
\(546\) 0 0
\(547\) 743.064 241.436i 1.35844 0.441383i 0.462915 0.886403i \(-0.346803\pi\)
0.895521 + 0.445020i \(0.146803\pi\)
\(548\) 0 0
\(549\) 196.127i 0.357245i
\(550\) 0 0
\(551\) 46.5370 0.0844591
\(552\) 0 0
\(553\) 162.354 + 499.675i 0.293588 + 0.903571i
\(554\) 0 0
\(555\) 17.4431 + 12.6731i 0.0314290 + 0.0228345i
\(556\) 0 0
\(557\) −966.339 313.983i −1.73490 0.563703i −0.740756 0.671774i \(-0.765533\pi\)
−0.994143 + 0.108071i \(0.965533\pi\)
\(558\) 0 0
\(559\) −346.223 + 251.546i −0.619361 + 0.449992i
\(560\) 0 0
\(561\) 137.524 945.071i 0.245140 1.68462i
\(562\) 0 0
\(563\) 472.802 + 650.756i 0.839790 + 1.15587i 0.986021 + 0.166621i \(0.0532857\pi\)
−0.146231 + 0.989250i \(0.546714\pi\)
\(564\) 0 0
\(565\) 124.055 381.802i 0.219566 0.675756i
\(566\) 0 0
\(567\) 404.501 556.748i 0.713405 0.981918i
\(568\) 0 0
\(569\) 871.456 283.153i 1.53156 0.497633i 0.582525 0.812813i \(-0.302065\pi\)
0.949032 + 0.315180i \(0.102065\pi\)
\(570\) 0 0
\(571\) 629.066i 1.10169i −0.834607 0.550846i \(-0.814305\pi\)
0.834607 0.550846i \(-0.185695\pi\)
\(572\) 0 0
\(573\) 921.888 1.60888
\(574\) 0 0
\(575\) −44.4463 136.792i −0.0772979 0.237898i
\(576\) 0 0
\(577\) 820.109 + 595.844i 1.42133 + 1.03266i 0.991550 + 0.129727i \(0.0414100\pi\)
0.429783 + 0.902932i \(0.358590\pi\)
\(578\) 0 0
\(579\) 452.816 + 147.129i 0.782066 + 0.254109i
\(580\) 0 0
\(581\) 105.293 76.4995i 0.181226 0.131669i
\(582\) 0 0
\(583\) −680.738 663.826i −1.16765 1.13864i
\(584\) 0 0
\(585\) 46.6982 + 64.2745i 0.0798260 + 0.109871i
\(586\) 0 0
\(587\) 203.589 626.582i 0.346829 1.06743i −0.613768 0.789487i \(-0.710347\pi\)
0.960597 0.277944i \(-0.0896531\pi\)
\(588\) 0 0
\(589\) −50.8511 + 69.9905i −0.0863346 + 0.118829i
\(590\) 0 0
\(591\) 500.248 162.540i 0.846443 0.275026i
\(592\) 0 0
\(593\) 293.233i 0.494490i −0.968953 0.247245i \(-0.920475\pi\)
0.968953 0.247245i \(-0.0795253\pi\)
\(594\) 0 0
\(595\) 380.112 0.638844
\(596\) 0 0
\(597\) 399.610 + 1229.87i 0.669364 + 2.06009i
\(598\) 0 0
\(599\) 413.099 + 300.134i 0.689648 + 0.501058i 0.876544 0.481321i \(-0.159843\pi\)
−0.186896 + 0.982380i \(0.559843\pi\)
\(600\) 0 0
\(601\) 958.966 + 311.587i 1.59562 + 0.518447i 0.966018 0.258474i \(-0.0832195\pi\)
0.629598 + 0.776921i \(0.283220\pi\)
\(602\) 0 0
\(603\) −176.034 + 127.896i −0.291930 + 0.212100i
\(604\) 0 0
\(605\) −259.343 77.1103i −0.428667 0.127455i
\(606\) 0 0
\(607\) −8.17562 11.2528i −0.0134689 0.0185383i 0.802229 0.597016i \(-0.203647\pi\)
−0.815698 + 0.578478i \(0.803647\pi\)
\(608\) 0 0
\(609\) 113.855 350.410i 0.186954 0.575387i
\(610\) 0 0
\(611\) 140.835 193.843i 0.230500 0.317256i
\(612\) 0 0
\(613\) −397.687 + 129.216i −0.648756 + 0.210794i −0.614865 0.788632i \(-0.710790\pi\)
−0.0338903 + 0.999426i \(0.510790\pi\)
\(614\) 0 0
\(615\) 484.908i 0.788468i
\(616\) 0 0
\(617\) −1045.51 −1.69451 −0.847255 0.531187i \(-0.821746\pi\)
−0.847255 + 0.531187i \(0.821746\pi\)
\(618\) 0 0
\(619\) −190.020 584.820i −0.306978 0.944782i −0.978932 0.204188i \(-0.934544\pi\)
0.671953 0.740593i \(-0.265456\pi\)
\(620\) 0 0
\(621\) 461.220 + 335.096i 0.742706 + 0.539607i
\(622\) 0 0
\(623\) −834.559 271.165i −1.33958 0.435256i
\(624\) 0 0
\(625\) −20.2254 + 14.6946i −0.0323607 + 0.0235114i
\(626\) 0 0
\(627\) 82.5661 84.6696i 0.131684 0.135039i
\(628\) 0 0
\(629\) −39.7990 54.7786i −0.0632735 0.0870884i
\(630\) 0 0
\(631\) 6.93840 21.3542i 0.0109959 0.0338418i −0.945408 0.325889i \(-0.894336\pi\)
0.956404 + 0.292047i \(0.0943364\pi\)
\(632\) 0 0
\(633\) −710.997 + 978.603i −1.12322 + 1.54598i
\(634\) 0 0
\(635\) −16.5344 + 5.37235i −0.0260384 + 0.00846040i
\(636\) 0 0
\(637\) 16.9227i 0.0265662i
\(638\) 0 0
\(639\) −205.499 −0.321594
\(640\) 0 0
\(641\) 227.883 + 701.351i 0.355512 + 1.09415i 0.955712 + 0.294303i \(0.0950874\pi\)
−0.600201 + 0.799849i \(0.704913\pi\)
\(642\) 0 0
\(643\) 232.480 + 168.907i 0.361555 + 0.262685i 0.753701 0.657218i \(-0.228267\pi\)
−0.392145 + 0.919903i \(0.628267\pi\)
\(644\) 0 0
\(645\) −302.961 98.4379i −0.469707 0.152617i
\(646\) 0 0
\(647\) −689.002 + 500.589i −1.06492 + 0.773708i −0.974992 0.222240i \(-0.928663\pi\)
−0.0899263 + 0.995948i \(0.528663\pi\)
\(648\) 0 0
\(649\) −802.634 116.796i −1.23672 0.179964i
\(650\) 0 0
\(651\) 402.599 + 554.130i 0.618432 + 0.851199i
\(652\) 0 0
\(653\) 264.157 812.991i 0.404528 1.24501i −0.516761 0.856130i \(-0.672862\pi\)
0.921289 0.388879i \(-0.127138\pi\)
\(654\) 0 0
\(655\) −55.0292 + 75.7412i −0.0840141 + 0.115635i
\(656\) 0 0
\(657\) 269.816 87.6684i 0.410678 0.133437i
\(658\) 0 0
\(659\) 328.629i 0.498679i −0.968416 0.249339i \(-0.919787\pi\)
0.968416 0.249339i \(-0.0802135\pi\)
\(660\) 0 0
\(661\) −329.541 −0.498550 −0.249275 0.968433i \(-0.580192\pi\)
−0.249275 + 0.968433i \(0.580192\pi\)
\(662\) 0 0
\(663\) −283.388 872.180i −0.427433 1.31550i
\(664\) 0 0
\(665\) 38.0806 + 27.6671i 0.0572640 + 0.0416047i
\(666\) 0 0
\(667\) 416.396 + 135.295i 0.624282 + 0.202841i
\(668\) 0 0
\(669\) −605.511 + 439.929i −0.905098 + 0.657593i
\(670\) 0 0
\(671\) 575.086 + 283.968i 0.857059 + 0.423201i
\(672\) 0 0
\(673\) −130.629 179.795i −0.194100 0.267155i 0.700863 0.713295i \(-0.252798\pi\)
−0.894963 + 0.446140i \(0.852798\pi\)
\(674\) 0 0
\(675\) 30.6210 94.2419i 0.0453645 0.139618i
\(676\) 0 0
\(677\) −488.946 + 672.976i −0.722224 + 0.994057i 0.277223 + 0.960806i \(0.410586\pi\)
−0.999447 + 0.0332509i \(0.989414\pi\)
\(678\) 0 0
\(679\) −580.143 + 188.500i −0.854407 + 0.277614i
\(680\) 0 0
\(681\) 406.463i 0.596861i
\(682\) 0 0
\(683\) 623.160 0.912387 0.456194 0.889881i \(-0.349212\pi\)
0.456194 + 0.889881i \(0.349212\pi\)
\(684\) 0 0
\(685\) −87.2834 268.631i −0.127421 0.392161i
\(686\) 0 0
\(687\) −1264.38 918.624i −1.84043 1.33715i
\(688\) 0 0
\(689\) −868.345 282.142i −1.26030 0.409496i
\(690\) 0 0
\(691\) 126.973 92.2511i 0.183752 0.133504i −0.492106 0.870535i \(-0.663773\pi\)
0.675859 + 0.737031i \(0.263773\pi\)
\(692\) 0 0
\(693\) −118.493 225.499i −0.170986 0.325396i
\(694\) 0 0
\(695\) 84.1058 + 115.762i 0.121015 + 0.166564i
\(696\) 0 0
\(697\) −470.576 + 1448.28i −0.675145 + 2.07788i
\(698\) 0 0
\(699\) 186.822 257.138i 0.267270 0.367866i
\(700\) 0 0
\(701\) 589.968 191.692i 0.841609 0.273455i 0.143682 0.989624i \(-0.454106\pi\)
0.697927 + 0.716169i \(0.254106\pi\)
\(702\) 0 0
\(703\) 8.38469i 0.0119270i
\(704\) 0 0
\(705\) 178.351 0.252980
\(706\) 0 0
\(707\) 112.898 + 347.464i 0.159686 + 0.491463i
\(708\) 0 0
\(709\) 14.7938 + 10.7483i 0.0208657 + 0.0151598i 0.598169 0.801370i \(-0.295895\pi\)
−0.577304 + 0.816530i \(0.695895\pi\)
\(710\) 0 0
\(711\) 244.133 + 79.3236i 0.343366 + 0.111566i
\(712\) 0 0
\(713\) −658.478 + 478.412i −0.923532 + 0.670985i
\(714\) 0 0
\(715\) −256.080 + 43.8674i −0.358153 + 0.0613530i
\(716\) 0 0
\(717\) −11.8802 16.3517i −0.0165694 0.0228058i
\(718\) 0 0
\(719\) −333.234 + 1025.59i −0.463469 + 1.42641i 0.397429 + 0.917633i \(0.369903\pi\)
−0.860898 + 0.508778i \(0.830097\pi\)
\(720\) 0 0
\(721\) 121.519 167.256i 0.168542 0.231978i
\(722\) 0 0
\(723\) −759.612 + 246.813i −1.05064 + 0.341373i
\(724\) 0 0
\(725\) 76.1004i 0.104966i
\(726\) 0 0
\(727\) 739.254 1.01686 0.508428 0.861104i \(-0.330227\pi\)
0.508428 + 0.861104i \(0.330227\pi\)
\(728\) 0 0
\(729\) 89.9043 + 276.697i 0.123326 + 0.379557i
\(730\) 0 0
\(731\) 809.330 + 588.013i 1.10716 + 0.804395i
\(732\) 0 0
\(733\) −1145.11 372.070i −1.56223 0.507599i −0.604827 0.796357i \(-0.706758\pi\)
−0.957402 + 0.288758i \(0.906758\pi\)
\(734\) 0 0
\(735\) −10.1908 + 7.40406i −0.0138651 + 0.0100736i
\(736\) 0 0
\(737\) −120.143 701.346i −0.163016 0.951623i
\(738\) 0 0
\(739\) 178.423 + 245.579i 0.241439 + 0.332312i 0.912490 0.409099i \(-0.134157\pi\)
−0.671051 + 0.741411i \(0.734157\pi\)
\(740\) 0 0
\(741\) 35.0926 108.004i 0.0473584 0.145754i
\(742\) 0 0
\(743\) 114.379 157.429i 0.153942 0.211883i −0.725079 0.688665i \(-0.758197\pi\)
0.879022 + 0.476782i \(0.158197\pi\)
\(744\) 0 0
\(745\) 3.87562 1.25927i 0.00520218 0.00169029i
\(746\) 0 0
\(747\) 63.5886i 0.0851252i
\(748\) 0 0
\(749\) −1337.80 −1.78611
\(750\) 0 0
\(751\) 218.250 + 671.703i 0.290612 + 0.894412i 0.984660 + 0.174483i \(0.0558254\pi\)
−0.694048 + 0.719929i \(0.744175\pi\)
\(752\) 0 0
\(753\) −391.100 284.151i −0.519389 0.377358i
\(754\) 0 0
\(755\) −612.938 199.156i −0.811838 0.263782i
\(756\) 0 0
\(757\) 191.327 139.007i 0.252743 0.183629i −0.454199 0.890900i \(-0.650074\pi\)
0.706942 + 0.707272i \(0.250074\pi\)
\(758\) 0 0
\(759\) 984.928 517.551i 1.29767 0.681886i
\(760\) 0 0
\(761\) −120.129 165.344i −0.157857 0.217271i 0.722761 0.691098i \(-0.242873\pi\)
−0.880618 + 0.473826i \(0.842873\pi\)
\(762\) 0 0
\(763\) 252.753 777.894i 0.331262 1.01952i
\(764\) 0 0
\(765\) 109.162 150.248i 0.142695 0.196403i
\(766\) 0 0
\(767\) −740.728 + 240.677i −0.965747 + 0.313790i
\(768\) 0 0
\(769\) 404.940i 0.526580i 0.964717 + 0.263290i \(0.0848076\pi\)
−0.964717 + 0.263290i \(0.915192\pi\)
\(770\) 0 0
\(771\) −1451.54 −1.88267
\(772\) 0 0
\(773\) −397.622 1223.76i −0.514388 1.58312i −0.784392 0.620265i \(-0.787025\pi\)
0.270004 0.962859i \(-0.412975\pi\)
\(774\) 0 0
\(775\) 114.453 + 83.1552i 0.147682 + 0.107297i
\(776\) 0 0
\(777\) −63.1344 20.5136i −0.0812541 0.0264010i
\(778\) 0 0
\(779\) −152.559 + 110.841i −0.195840 + 0.142286i
\(780\) 0 0
\(781\) 297.536 602.565i 0.380968 0.771530i
\(782\) 0 0
\(783\) 177.298 + 244.029i 0.226434 + 0.311660i
\(784\) 0 0
\(785\) −46.3721 + 142.719i −0.0590727 + 0.181807i
\(786\) 0 0
\(787\) 692.509 953.156i 0.879935 1.21113i −0.0965041 0.995333i \(-0.530766\pi\)
0.976439 0.215794i \(-0.0692339\pi\)
\(788\) 0 0
\(789\) 1266.29 411.441i 1.60493 0.521472i
\(790\) 0 0
\(791\) 1236.02i 1.56261i
\(792\) 0 0
\(793\) 615.881 0.776647
\(794\) 0 0
\(795\) −210.015 646.359i −0.264170 0.813031i
\(796\) 0 0
\(797\) 248.215 + 180.339i 0.311437 + 0.226272i 0.732513 0.680753i \(-0.238347\pi\)
−0.421076 + 0.907025i \(0.638347\pi\)
\(798\) 0 0
\(799\) −532.684 173.079i −0.666688 0.216620i
\(800\) 0 0
\(801\) −346.855 + 252.005i −0.433027 + 0.314613i
\(802\) 0 0
\(803\) −133.597 + 918.089i −0.166373 + 1.14332i
\(804\) 0 0
\(805\) 260.295 + 358.266i 0.323348 + 0.445051i
\(806\) 0 0
\(807\) 70.7509 217.749i 0.0876715 0.269825i
\(808\) 0 0
\(809\) 746.572 1027.57i 0.922833 1.27017i −0.0397571 0.999209i \(-0.512658\pi\)
0.962590 0.270961i \(-0.0873416\pi\)
\(810\) 0 0
\(811\) −739.449 + 240.261i −0.911774 + 0.296253i −0.727088 0.686544i \(-0.759127\pi\)
−0.184686 + 0.982798i \(0.559127\pi\)
\(812\) 0 0
\(813\) 1864.93i 2.29388i
\(814\) 0 0
\(815\) −362.924 −0.445305
\(816\) 0 0
\(817\) 38.2811 + 117.817i 0.0468557 + 0.144207i
\(818\) 0 0
\(819\) −197.894 143.779i −0.241629 0.175554i
\(820\) 0 0
\(821\) −852.150 276.880i −1.03794 0.337248i −0.260016 0.965604i \(-0.583728\pi\)
−0.777925 + 0.628357i \(0.783728\pi\)
\(822\) 0 0
\(823\) −774.630 + 562.802i −0.941227 + 0.683842i −0.948716 0.316130i \(-0.897616\pi\)
0.00748842 + 0.999972i \(0.497616\pi\)
\(824\) 0 0
\(825\) −138.457 135.018i −0.167827 0.163658i
\(826\) 0 0
\(827\) 781.264 + 1075.32i 0.944697 + 1.30026i 0.953843 + 0.300305i \(0.0970886\pi\)
−0.00914635 + 0.999958i \(0.502911\pi\)
\(828\) 0 0
\(829\) −27.1227 + 83.4752i −0.0327174 + 0.100694i −0.966082 0.258237i \(-0.916859\pi\)
0.933364 + 0.358931i \(0.116859\pi\)
\(830\) 0 0
\(831\) 287.054 395.096i 0.345432 0.475446i
\(832\) 0 0
\(833\) 37.6223 12.2242i 0.0451649 0.0146750i
\(834\) 0 0
\(835\) 327.679i 0.392431i
\(836\) 0 0
\(837\) −560.749 −0.669951
\(838\) 0 0
\(839\) −16.6119 51.1260i −0.0197996 0.0609369i 0.940669 0.339327i \(-0.110199\pi\)
−0.960468 + 0.278390i \(0.910199\pi\)
\(840\) 0 0
\(841\) −492.974 358.167i −0.586176 0.425882i
\(842\) 0 0
\(843\) −1040.14 337.963i −1.23386 0.400905i
\(844\) 0 0
\(845\) 103.888 75.4792i 0.122945 0.0893245i
\(846\) 0 0
\(847\) 832.775 20.9525i 0.983205 0.0247374i
\(848\) 0 0
\(849\) 809.436 + 1114.09i 0.953399 + 1.31224i
\(850\) 0 0
\(851\) 24.3765 75.0232i 0.0286445 0.0881588i
\(852\) 0 0
\(853\) 224.528 309.036i 0.263222 0.362294i −0.656865 0.754008i \(-0.728118\pi\)
0.920087 + 0.391715i \(0.128118\pi\)
\(854\) 0 0
\(855\) 21.8721 7.10669i 0.0255814 0.00831191i
\(856\) 0 0
\(857\) 735.176i 0.857849i −0.903340 0.428924i \(-0.858893\pi\)
0.903340 0.428924i \(-0.141107\pi\)
\(858\) 0 0
\(859\) 1221.00 1.42142 0.710710 0.703485i \(-0.248374\pi\)
0.710710 + 0.703485i \(0.248374\pi\)
\(860\) 0 0
\(861\) 461.356 + 1419.91i 0.535837 + 1.64914i
\(862\) 0 0
\(863\) 881.432 + 640.398i 1.02136 + 0.742060i 0.966561 0.256438i \(-0.0825489\pi\)
0.0547969 + 0.998498i \(0.482549\pi\)
\(864\) 0 0
\(865\) 138.622 + 45.0409i 0.160256 + 0.0520704i
\(866\) 0 0
\(867\) −912.202 + 662.754i −1.05214 + 0.764422i
\(868\) 0 0
\(869\) −586.068 + 600.999i −0.674416 + 0.691598i
\(870\) 0 0
\(871\) −401.621 552.784i −0.461103 0.634654i
\(872\) 0 0
\(873\) −92.0979 + 283.448i −0.105496 + 0.324683i
\(874\) 0 0
\(875\) 45.2432 62.2719i 0.0517065 0.0711679i
\(876\) 0 0
\(877\) 953.140 309.694i 1.08682 0.353129i 0.289802 0.957087i \(-0.406411\pi\)
0.797016 + 0.603958i \(0.206411\pi\)
\(878\) 0 0
\(879\) 753.847i 0.857619i
\(880\) 0 0
\(881\) −319.501 −0.362657 −0.181329 0.983423i \(-0.558040\pi\)
−0.181329 + 0.983423i \(0.558040\pi\)
\(882\) 0 0
\(883\) −396.367 1219.89i −0.448886 1.38153i −0.878165 0.478358i \(-0.841232\pi\)
0.429278 0.903172i \(-0.358768\pi\)
\(884\) 0 0
\(885\) −469.020 340.763i −0.529967 0.385043i
\(886\) 0 0
\(887\) 202.927 + 65.9350i 0.228779 + 0.0743349i 0.421163 0.906985i \(-0.361622\pi\)
−0.192384 + 0.981320i \(0.561622\pi\)
\(888\) 0 0
\(889\) 43.3046 31.4627i 0.0487116 0.0353911i
\(890\) 0 0
\(891\) 1088.09 + 158.335i 1.22120 + 0.177705i
\(892\) 0 0
\(893\) −40.7676 56.1118i −0.0456524 0.0628352i
\(894\) 0 0
\(895\) 20.9181 64.3792i 0.0233721 0.0719320i
\(896\) 0 0
\(897\) 627.992 864.357i 0.700102 0.963608i
\(898\) 0 0
\(899\) −409.566 + 133.076i −0.455579 + 0.148027i
\(900\) 0 0
\(901\) 2134.30i 2.36881i
\(902\) 0 0
\(903\) 980.787 1.08614
\(904\) 0 0
\(905\) 113.441 + 349.135i 0.125349 + 0.385785i
\(906\) 0 0
\(907\) 1159.59 + 842.490i 1.27849 + 0.928876i 0.999506 0.0314205i \(-0.0100031\pi\)
0.278982 + 0.960296i \(0.410003\pi\)
\(908\) 0 0
\(909\) 169.766 + 55.1602i 0.186761 + 0.0606823i
\(910\) 0 0
\(911\) −1333.36 + 968.740i −1.46362 + 1.06338i −0.481215 + 0.876602i \(0.659805\pi\)
−0.982402 + 0.186778i \(0.940195\pi\)
\(912\) 0 0
\(913\) 186.455 + 92.0683i 0.204222 + 0.100841i
\(914\) 0 0
\(915\) 269.462 + 370.883i 0.294494 + 0.405336i
\(916\) 0 0
\(917\) 89.0741 274.142i 0.0971364 0.298955i
\(918\) 0 0
\(919\) 234.127 322.249i 0.254763 0.350651i −0.662409 0.749142i \(-0.730466\pi\)
0.917172 + 0.398491i \(0.130466\pi\)
\(920\) 0 0
\(921\) 1578.13 512.765i 1.71349 0.556748i
\(922\) 0 0
\(923\) 645.309i 0.699143i
\(924\) 0 0
\(925\) −13.7112 −0.0148229
\(926\) 0 0
\(927\) −31.2137 96.0660i −0.0336718 0.103631i
\(928\) 0 0
\(929\) 993.882 + 722.097i 1.06984 + 0.777285i 0.975884 0.218292i \(-0.0700484\pi\)
0.0939570 + 0.995576i \(0.470048\pi\)
\(930\) 0 0
\(931\) 4.65886 + 1.51375i 0.00500414 + 0.00162594i
\(932\) 0 0
\(933\) −13.9880 + 10.1629i −0.0149925 + 0.0108927i
\(934\) 0 0
\(935\) 282.506 + 537.625i 0.302146 + 0.575000i
\(936\) 0 0
\(937\) −395.443 544.280i −0.422031 0.580875i 0.544070 0.839040i \(-0.316882\pi\)
−0.966101 + 0.258164i \(0.916882\pi\)
\(938\) 0 0
\(939\) 220.768 679.454i 0.235110 0.723593i
\(940\) 0 0
\(941\) 748.065 1029.62i 0.794968 1.09418i −0.198504 0.980100i \(-0.563608\pi\)
0.993472 0.114079i \(-0.0363918\pi\)
\(942\) 0 0
\(943\) −1687.29 + 548.233i −1.78928 + 0.581372i
\(944\) 0 0
\(945\) 305.093i 0.322850i
\(946\) 0 0
\(947\) −264.005 −0.278780 −0.139390 0.990238i \(-0.544514\pi\)
−0.139390 + 0.990238i \(0.544514\pi\)
\(948\) 0 0
\(949\) 275.298 + 847.279i 0.290092 + 0.892812i
\(950\) 0 0
\(951\) −1.40524 1.02097i −0.00147764 0.00107357i
\(952\) 0 0
\(953\) 814.810 + 264.748i 0.854995 + 0.277805i 0.703537 0.710659i \(-0.251603\pi\)
0.151458 + 0.988464i \(0.451603\pi\)
\(954\) 0 0
\(955\) −474.293 + 344.594i −0.496642 + 0.360831i
\(956\) 0 0
\(957\) 580.234 99.3963i 0.606306 0.103862i
\(958\) 0 0
\(959\) 511.166 + 703.560i 0.533020 + 0.733639i
\(960\) 0 0
\(961\) −49.5747 + 152.575i −0.0515865 + 0.158767i
\(962\) 0 0
\(963\) −384.192 + 528.795i −0.398953 + 0.549112i
\(964\) 0 0
\(965\) −287.960 + 93.5640i −0.298405 + 0.0969575i
\(966\) 0 0
\(967\) 618.200i 0.639297i 0.947536 + 0.319648i \(0.103565\pi\)
−0.947536 + 0.319648i \(0.896435\pi\)
\(968\) 0 0
\(969\) −265.462 −0.273955
\(970\) 0 0
\(971\) −232.670 716.086i −0.239619 0.737472i −0.996475 0.0838903i \(-0.973265\pi\)
0.756856 0.653582i \(-0.226735\pi\)
\(972\) 0 0
\(973\) −356.418 258.953i −0.366308 0.266138i
\(974\) 0 0
\(975\) −176.615 57.3858i −0.181144 0.0588572i
\(976\) 0 0
\(977\) 136.841 99.4211i 0.140063 0.101762i −0.515547 0.856861i \(-0.672411\pi\)
0.655610 + 0.755099i \(0.272411\pi\)
\(978\) 0 0
\(979\) −236.728 1381.92i −0.241806 1.41156i
\(980\) 0 0
\(981\) −234.894 323.304i −0.239443 0.329566i
\(982\) 0 0
\(983\) 320.939 987.748i 0.326489 1.00483i −0.644275 0.764794i \(-0.722841\pi\)
0.970764 0.240036i \(-0.0771594\pi\)
\(984\) 0 0
\(985\) −196.611 + 270.612i −0.199605 + 0.274733i
\(986\) 0 0
\(987\) −522.247 + 169.688i −0.529125 + 0.171923i
\(988\) 0 0
\(989\) 1165.48i 1.17844i
\(990\) 0 0
\(991\) −1226.12 −1.23725 −0.618625 0.785686i \(-0.712310\pi\)
−0.618625 + 0.785686i \(0.712310\pi\)
\(992\) 0 0
\(993\) 532.964 + 1640.29i 0.536721 + 1.65186i
\(994\) 0 0
\(995\) −665.308 483.375i −0.668651 0.485804i
\(996\) 0 0
\(997\) 1720.56 + 559.045i 1.72574 + 0.560727i 0.992823 0.119590i \(-0.0381579\pi\)
0.732918 + 0.680317i \(0.238158\pi\)
\(998\) 0 0
\(999\) 43.9674 31.9442i 0.0440115 0.0319762i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.p.b.41.1 16
11.2 odd 10 2420.3.f.a.241.4 16
11.7 odd 10 inner 220.3.p.b.161.1 yes 16
11.9 even 5 2420.3.f.a.241.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.b.41.1 16 1.1 even 1 trivial
220.3.p.b.161.1 yes 16 11.7 odd 10 inner
2420.3.f.a.241.3 16 11.9 even 5
2420.3.f.a.241.4 16 11.2 odd 10