Properties

Label 2420.3.f.a.241.3
Level $2420$
Weight $3$
Character 2420.241
Analytic conductor $65.940$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2420,3,Mod(241,2420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2420.241");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2420 = 2^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2420.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.9402239752\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 33 x^{14} - 111 x^{13} + 735 x^{12} - 1436 x^{11} + 10633 x^{10} - 25103 x^{9} + \cdots + 75625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 241.3
Root \(1.27755 + 3.93190i\) of defining polynomial
Character \(\chi\) \(=\) 2420.241
Dual form 2420.3.f.a.241.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.51621 q^{3} -2.23607 q^{5} -6.88461i q^{7} +3.36371 q^{9} +10.5628i q^{13} +7.86248 q^{15} -24.6915i q^{17} +3.05760i q^{19} +24.2077i q^{21} -28.7662 q^{23} +5.00000 q^{25} +19.8184 q^{27} -15.2201i q^{29} -28.2944 q^{31} +15.3945i q^{35} -2.74224 q^{37} -37.1409i q^{39} -61.6737i q^{41} -40.5154i q^{43} -7.52149 q^{45} +22.6838 q^{47} +1.60211 q^{49} +86.8204i q^{51} -86.4387 q^{53} -10.7512i q^{57} +73.7352 q^{59} -58.3068i q^{61} -23.1578i q^{63} -23.6191i q^{65} +64.6875 q^{67} +101.148 q^{69} -61.0928 q^{71} -84.3417i q^{73} -17.5810 q^{75} +76.3135i q^{79} -99.9588 q^{81} -18.9043i q^{83} +55.2119i q^{85} +53.5169i q^{87} +127.459 q^{89} +72.7206 q^{91} +99.4890 q^{93} -6.83701i q^{95} -88.6031 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{3} + 46 q^{9} - 30 q^{15} - 168 q^{23} + 80 q^{25} + 30 q^{27} - 190 q^{31} + 104 q^{37} - 30 q^{45} - 268 q^{47} - 228 q^{49} - 368 q^{53} + 78 q^{59} - 68 q^{67} - 212 q^{69} + 270 q^{71}+ \cdots - 726 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2420\mathbb{Z}\right)^\times\).

\(n\) \(1211\) \(1937\) \(2301\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.51621 −1.17207 −0.586034 0.810286i \(-0.699312\pi\)
−0.586034 + 0.810286i \(0.699312\pi\)
\(4\) 0 0
\(5\) −2.23607 −0.447214
\(6\) 0 0
\(7\) − 6.88461i − 0.983516i −0.870732 0.491758i \(-0.836354\pi\)
0.870732 0.491758i \(-0.163646\pi\)
\(8\) 0 0
\(9\) 3.36371 0.373746
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) 10.5628i 0.812521i 0.913757 + 0.406260i \(0.133167\pi\)
−0.913757 + 0.406260i \(0.866833\pi\)
\(14\) 0 0
\(15\) 7.86248 0.524165
\(16\) 0 0
\(17\) − 24.6915i − 1.45244i −0.687462 0.726221i \(-0.741275\pi\)
0.687462 0.726221i \(-0.258725\pi\)
\(18\) 0 0
\(19\) 3.05760i 0.160926i 0.996758 + 0.0804632i \(0.0256400\pi\)
−0.996758 + 0.0804632i \(0.974360\pi\)
\(20\) 0 0
\(21\) 24.2077i 1.15275i
\(22\) 0 0
\(23\) −28.7662 −1.25071 −0.625353 0.780342i \(-0.715045\pi\)
−0.625353 + 0.780342i \(0.715045\pi\)
\(24\) 0 0
\(25\) 5.00000 0.200000
\(26\) 0 0
\(27\) 19.8184 0.734013
\(28\) 0 0
\(29\) − 15.2201i − 0.524830i −0.964955 0.262415i \(-0.915481\pi\)
0.964955 0.262415i \(-0.0845190\pi\)
\(30\) 0 0
\(31\) −28.2944 −0.912723 −0.456361 0.889795i \(-0.650848\pi\)
−0.456361 + 0.889795i \(0.650848\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 15.3945i 0.439842i
\(36\) 0 0
\(37\) −2.74224 −0.0741147 −0.0370573 0.999313i \(-0.511798\pi\)
−0.0370573 + 0.999313i \(0.511798\pi\)
\(38\) 0 0
\(39\) − 37.1409i − 0.952330i
\(40\) 0 0
\(41\) − 61.6737i − 1.50424i −0.659028 0.752118i \(-0.729032\pi\)
0.659028 0.752118i \(-0.270968\pi\)
\(42\) 0 0
\(43\) − 40.5154i − 0.942220i −0.882075 0.471110i \(-0.843854\pi\)
0.882075 0.471110i \(-0.156146\pi\)
\(44\) 0 0
\(45\) −7.52149 −0.167144
\(46\) 0 0
\(47\) 22.6838 0.482634 0.241317 0.970446i \(-0.422421\pi\)
0.241317 + 0.970446i \(0.422421\pi\)
\(48\) 0 0
\(49\) 1.60211 0.0326961
\(50\) 0 0
\(51\) 86.8204i 1.70236i
\(52\) 0 0
\(53\) −86.4387 −1.63092 −0.815460 0.578814i \(-0.803516\pi\)
−0.815460 + 0.578814i \(0.803516\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 10.7512i − 0.188617i
\(58\) 0 0
\(59\) 73.7352 1.24975 0.624874 0.780725i \(-0.285150\pi\)
0.624874 + 0.780725i \(0.285150\pi\)
\(60\) 0 0
\(61\) − 58.3068i − 0.955850i −0.878401 0.477925i \(-0.841389\pi\)
0.878401 0.477925i \(-0.158611\pi\)
\(62\) 0 0
\(63\) − 23.1578i − 0.367585i
\(64\) 0 0
\(65\) − 23.6191i − 0.363370i
\(66\) 0 0
\(67\) 64.6875 0.965485 0.482742 0.875762i \(-0.339641\pi\)
0.482742 + 0.875762i \(0.339641\pi\)
\(68\) 0 0
\(69\) 101.148 1.46591
\(70\) 0 0
\(71\) −61.0928 −0.860462 −0.430231 0.902719i \(-0.641568\pi\)
−0.430231 + 0.902719i \(0.641568\pi\)
\(72\) 0 0
\(73\) − 84.3417i − 1.15537i −0.816261 0.577683i \(-0.803957\pi\)
0.816261 0.577683i \(-0.196043\pi\)
\(74\) 0 0
\(75\) −17.5810 −0.234414
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 76.3135i 0.965994i 0.875622 + 0.482997i \(0.160452\pi\)
−0.875622 + 0.482997i \(0.839548\pi\)
\(80\) 0 0
\(81\) −99.9588 −1.23406
\(82\) 0 0
\(83\) − 18.9043i − 0.227762i −0.993494 0.113881i \(-0.963672\pi\)
0.993494 0.113881i \(-0.0363283\pi\)
\(84\) 0 0
\(85\) 55.2119i 0.649552i
\(86\) 0 0
\(87\) 53.5169i 0.615137i
\(88\) 0 0
\(89\) 127.459 1.43213 0.716063 0.698036i \(-0.245942\pi\)
0.716063 + 0.698036i \(0.245942\pi\)
\(90\) 0 0
\(91\) 72.7206 0.799127
\(92\) 0 0
\(93\) 99.4890 1.06977
\(94\) 0 0
\(95\) − 6.83701i − 0.0719685i
\(96\) 0 0
\(97\) −88.6031 −0.913434 −0.456717 0.889612i \(-0.650975\pi\)
−0.456717 + 0.889612i \(0.650975\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 53.0670i 0.525416i 0.964875 + 0.262708i \(0.0846156\pi\)
−0.964875 + 0.262708i \(0.915384\pi\)
\(102\) 0 0
\(103\) −30.0293 −0.291546 −0.145773 0.989318i \(-0.546567\pi\)
−0.145773 + 0.989318i \(0.546567\pi\)
\(104\) 0 0
\(105\) − 54.1301i − 0.515525i
\(106\) 0 0
\(107\) − 194.317i − 1.81605i −0.418919 0.908024i \(-0.637591\pi\)
0.418919 0.908024i \(-0.362409\pi\)
\(108\) 0 0
\(109\) 118.805i 1.08995i 0.838451 + 0.544977i \(0.183462\pi\)
−0.838451 + 0.544977i \(0.816538\pi\)
\(110\) 0 0
\(111\) 9.64229 0.0868675
\(112\) 0 0
\(113\) −179.534 −1.58880 −0.794399 0.607397i \(-0.792214\pi\)
−0.794399 + 0.607397i \(0.792214\pi\)
\(114\) 0 0
\(115\) 64.3233 0.559333
\(116\) 0 0
\(117\) 35.5301i 0.303676i
\(118\) 0 0
\(119\) −169.991 −1.42850
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 216.857i 1.76307i
\(124\) 0 0
\(125\) −11.1803 −0.0894427
\(126\) 0 0
\(127\) − 7.77494i − 0.0612200i −0.999531 0.0306100i \(-0.990255\pi\)
0.999531 0.0306100i \(-0.00974499\pi\)
\(128\) 0 0
\(129\) 142.461i 1.10435i
\(130\) 0 0
\(131\) 41.8687i 0.319608i 0.987149 + 0.159804i \(0.0510863\pi\)
−0.987149 + 0.159804i \(0.948914\pi\)
\(132\) 0 0
\(133\) 21.0504 0.158274
\(134\) 0 0
\(135\) −44.3152 −0.328261
\(136\) 0 0
\(137\) 126.318 0.922027 0.461013 0.887393i \(-0.347486\pi\)
0.461013 + 0.887393i \(0.347486\pi\)
\(138\) 0 0
\(139\) 63.9915i 0.460370i 0.973147 + 0.230185i \(0.0739332\pi\)
−0.973147 + 0.230185i \(0.926067\pi\)
\(140\) 0 0
\(141\) −79.7609 −0.565680
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 34.0331i 0.234711i
\(146\) 0 0
\(147\) −5.63334 −0.0383221
\(148\) 0 0
\(149\) 1.82243i 0.0122310i 0.999981 + 0.00611552i \(0.00194664\pi\)
−0.999981 + 0.00611552i \(0.998053\pi\)
\(150\) 0 0
\(151\) 288.221i 1.90875i 0.298616 + 0.954373i \(0.403475\pi\)
−0.298616 + 0.954373i \(0.596525\pi\)
\(152\) 0 0
\(153\) − 83.0551i − 0.542844i
\(154\) 0 0
\(155\) 63.2682 0.408182
\(156\) 0 0
\(157\) 67.1103 0.427454 0.213727 0.976893i \(-0.431440\pi\)
0.213727 + 0.976893i \(0.431440\pi\)
\(158\) 0 0
\(159\) 303.936 1.91155
\(160\) 0 0
\(161\) 198.044i 1.23009i
\(162\) 0 0
\(163\) 162.305 0.995733 0.497867 0.867254i \(-0.334117\pi\)
0.497867 + 0.867254i \(0.334117\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 146.543i 0.877501i 0.898609 + 0.438751i \(0.144579\pi\)
−0.898609 + 0.438751i \(0.855421\pi\)
\(168\) 0 0
\(169\) 57.4280 0.339810
\(170\) 0 0
\(171\) 10.2849i 0.0601456i
\(172\) 0 0
\(173\) − 65.1838i − 0.376785i −0.982094 0.188393i \(-0.939672\pi\)
0.982094 0.188393i \(-0.0603277\pi\)
\(174\) 0 0
\(175\) − 34.4231i − 0.196703i
\(176\) 0 0
\(177\) −259.268 −1.46479
\(178\) 0 0
\(179\) −30.2729 −0.169122 −0.0845612 0.996418i \(-0.526949\pi\)
−0.0845612 + 0.996418i \(0.526949\pi\)
\(180\) 0 0
\(181\) −164.173 −0.907035 −0.453517 0.891247i \(-0.649831\pi\)
−0.453517 + 0.891247i \(0.649831\pi\)
\(182\) 0 0
\(183\) 205.019i 1.12032i
\(184\) 0 0
\(185\) 6.13184 0.0331451
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 136.442i − 0.721914i
\(190\) 0 0
\(191\) −262.183 −1.37268 −0.686342 0.727279i \(-0.740785\pi\)
−0.686342 + 0.727279i \(0.740785\pi\)
\(192\) 0 0
\(193\) − 135.407i − 0.701591i −0.936452 0.350796i \(-0.885911\pi\)
0.936452 0.350796i \(-0.114089\pi\)
\(194\) 0 0
\(195\) 83.0495i 0.425895i
\(196\) 0 0
\(197\) 149.591i 0.759344i 0.925121 + 0.379672i \(0.123963\pi\)
−0.925121 + 0.379672i \(0.876037\pi\)
\(198\) 0 0
\(199\) −367.773 −1.84811 −0.924053 0.382264i \(-0.875145\pi\)
−0.924053 + 0.382264i \(0.875145\pi\)
\(200\) 0 0
\(201\) −227.455 −1.13161
\(202\) 0 0
\(203\) −104.784 −0.516179
\(204\) 0 0
\(205\) 137.907i 0.672715i
\(206\) 0 0
\(207\) −96.7613 −0.467446
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 344.013i 1.63039i 0.579185 + 0.815196i \(0.303371\pi\)
−0.579185 + 0.815196i \(0.696629\pi\)
\(212\) 0 0
\(213\) 214.815 1.00852
\(214\) 0 0
\(215\) 90.5953i 0.421373i
\(216\) 0 0
\(217\) 194.796i 0.897677i
\(218\) 0 0
\(219\) 296.563i 1.35417i
\(220\) 0 0
\(221\) 260.811 1.18014
\(222\) 0 0
\(223\) −212.858 −0.954520 −0.477260 0.878762i \(-0.658370\pi\)
−0.477260 + 0.878762i \(0.658370\pi\)
\(224\) 0 0
\(225\) 16.8186 0.0747491
\(226\) 0 0
\(227\) 115.597i 0.509237i 0.967042 + 0.254619i \(0.0819500\pi\)
−0.967042 + 0.254619i \(0.918050\pi\)
\(228\) 0 0
\(229\) −444.472 −1.94093 −0.970463 0.241248i \(-0.922443\pi\)
−0.970463 + 0.241248i \(0.922443\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 90.3930i − 0.387953i −0.981006 0.193976i \(-0.937861\pi\)
0.981006 0.193976i \(-0.0621385\pi\)
\(234\) 0 0
\(235\) −50.7225 −0.215840
\(236\) 0 0
\(237\) − 268.334i − 1.13221i
\(238\) 0 0
\(239\) − 5.74820i − 0.0240510i −0.999928 0.0120255i \(-0.996172\pi\)
0.999928 0.0120255i \(-0.00382793\pi\)
\(240\) 0 0
\(241\) − 227.149i − 0.942527i −0.881992 0.471264i \(-0.843798\pi\)
0.881992 0.471264i \(-0.156202\pi\)
\(242\) 0 0
\(243\) 173.111 0.712390
\(244\) 0 0
\(245\) −3.58242 −0.0146221
\(246\) 0 0
\(247\) −32.2968 −0.130756
\(248\) 0 0
\(249\) 66.4714i 0.266953i
\(250\) 0 0
\(251\) −137.485 −0.547750 −0.273875 0.961765i \(-0.588305\pi\)
−0.273875 + 0.961765i \(0.588305\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) − 194.136i − 0.761319i
\(256\) 0 0
\(257\) 412.814 1.60628 0.803141 0.595789i \(-0.203161\pi\)
0.803141 + 0.595789i \(0.203161\pi\)
\(258\) 0 0
\(259\) 18.8793i 0.0728930i
\(260\) 0 0
\(261\) − 51.1959i − 0.196153i
\(262\) 0 0
\(263\) 378.661i 1.43978i 0.694090 + 0.719889i \(0.255807\pi\)
−0.694090 + 0.719889i \(0.744193\pi\)
\(264\) 0 0
\(265\) 193.283 0.729369
\(266\) 0 0
\(267\) −448.173 −1.67855
\(268\) 0 0
\(269\) −65.1141 −0.242060 −0.121030 0.992649i \(-0.538620\pi\)
−0.121030 + 0.992649i \(0.538620\pi\)
\(270\) 0 0
\(271\) 530.380i 1.95712i 0.205956 + 0.978561i \(0.433970\pi\)
−0.205956 + 0.978561i \(0.566030\pi\)
\(272\) 0 0
\(273\) −255.701 −0.936632
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 138.890i − 0.501407i −0.968064 0.250704i \(-0.919338\pi\)
0.968064 0.250704i \(-0.0806620\pi\)
\(278\) 0 0
\(279\) −95.1742 −0.341126
\(280\) 0 0
\(281\) 311.037i 1.10689i 0.832885 + 0.553446i \(0.186688\pi\)
−0.832885 + 0.553446i \(0.813312\pi\)
\(282\) 0 0
\(283\) 391.642i 1.38389i 0.721948 + 0.691947i \(0.243247\pi\)
−0.721948 + 0.691947i \(0.756753\pi\)
\(284\) 0 0
\(285\) 24.0403i 0.0843521i
\(286\) 0 0
\(287\) −424.599 −1.47944
\(288\) 0 0
\(289\) −320.670 −1.10959
\(290\) 0 0
\(291\) 311.547 1.07061
\(292\) 0 0
\(293\) 214.392i 0.731714i 0.930671 + 0.365857i \(0.119224\pi\)
−0.930671 + 0.365857i \(0.880776\pi\)
\(294\) 0 0
\(295\) −164.877 −0.558905
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 303.851i − 1.01622i
\(300\) 0 0
\(301\) −278.933 −0.926688
\(302\) 0 0
\(303\) − 186.595i − 0.615824i
\(304\) 0 0
\(305\) 130.378i 0.427469i
\(306\) 0 0
\(307\) 471.912i 1.53717i 0.639745 + 0.768587i \(0.279040\pi\)
−0.639745 + 0.768587i \(0.720960\pi\)
\(308\) 0 0
\(309\) 105.589 0.341712
\(310\) 0 0
\(311\) −4.91728 −0.0158112 −0.00790560 0.999969i \(-0.502516\pi\)
−0.00790560 + 0.999969i \(0.502516\pi\)
\(312\) 0 0
\(313\) −203.179 −0.649135 −0.324568 0.945863i \(-0.605219\pi\)
−0.324568 + 0.945863i \(0.605219\pi\)
\(314\) 0 0
\(315\) 51.7825i 0.164389i
\(316\) 0 0
\(317\) −0.493990 −0.00155833 −0.000779164 1.00000i \(-0.500248\pi\)
−0.000779164 1.00000i \(0.500248\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 683.259i 2.12853i
\(322\) 0 0
\(323\) 75.4968 0.233736
\(324\) 0 0
\(325\) 52.8138i 0.162504i
\(326\) 0 0
\(327\) − 417.743i − 1.27750i
\(328\) 0 0
\(329\) − 156.169i − 0.474678i
\(330\) 0 0
\(331\) −490.502 −1.48188 −0.740940 0.671571i \(-0.765620\pi\)
−0.740940 + 0.671571i \(0.765620\pi\)
\(332\) 0 0
\(333\) −9.22411 −0.0277000
\(334\) 0 0
\(335\) −144.646 −0.431778
\(336\) 0 0
\(337\) − 377.893i − 1.12134i −0.828038 0.560672i \(-0.810543\pi\)
0.828038 0.560672i \(-0.189457\pi\)
\(338\) 0 0
\(339\) 631.279 1.86218
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 348.376i − 1.01567i
\(344\) 0 0
\(345\) −226.174 −0.655577
\(346\) 0 0
\(347\) 76.8713i 0.221531i 0.993847 + 0.110766i \(0.0353303\pi\)
−0.993847 + 0.110766i \(0.964670\pi\)
\(348\) 0 0
\(349\) − 109.877i − 0.314833i −0.987532 0.157417i \(-0.949683\pi\)
0.987532 0.157417i \(-0.0503165\pi\)
\(350\) 0 0
\(351\) 209.337i 0.596401i
\(352\) 0 0
\(353\) 497.456 1.40922 0.704612 0.709593i \(-0.251121\pi\)
0.704612 + 0.709593i \(0.251121\pi\)
\(354\) 0 0
\(355\) 136.608 0.384810
\(356\) 0 0
\(357\) 597.725 1.67430
\(358\) 0 0
\(359\) 21.7532i 0.0605938i 0.999541 + 0.0302969i \(0.00964529\pi\)
−0.999541 + 0.0302969i \(0.990355\pi\)
\(360\) 0 0
\(361\) 351.651 0.974103
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 188.594i 0.516695i
\(366\) 0 0
\(367\) 536.421 1.46164 0.730819 0.682571i \(-0.239138\pi\)
0.730819 + 0.682571i \(0.239138\pi\)
\(368\) 0 0
\(369\) − 207.452i − 0.562202i
\(370\) 0 0
\(371\) 595.097i 1.60404i
\(372\) 0 0
\(373\) − 332.971i − 0.892685i −0.894862 0.446342i \(-0.852726\pi\)
0.894862 0.446342i \(-0.147274\pi\)
\(374\) 0 0
\(375\) 39.3124 0.104833
\(376\) 0 0
\(377\) 160.766 0.426435
\(378\) 0 0
\(379\) 378.033 0.997449 0.498724 0.866761i \(-0.333802\pi\)
0.498724 + 0.866761i \(0.333802\pi\)
\(380\) 0 0
\(381\) 27.3383i 0.0717541i
\(382\) 0 0
\(383\) −123.477 −0.322394 −0.161197 0.986922i \(-0.551535\pi\)
−0.161197 + 0.986922i \(0.551535\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 136.282i − 0.352150i
\(388\) 0 0
\(389\) 731.435 1.88029 0.940147 0.340768i \(-0.110687\pi\)
0.940147 + 0.340768i \(0.110687\pi\)
\(390\) 0 0
\(391\) 710.282i 1.81658i
\(392\) 0 0
\(393\) − 147.219i − 0.374603i
\(394\) 0 0
\(395\) − 170.642i − 0.432006i
\(396\) 0 0
\(397\) 123.206 0.310344 0.155172 0.987887i \(-0.450407\pi\)
0.155172 + 0.987887i \(0.450407\pi\)
\(398\) 0 0
\(399\) −74.0176 −0.185508
\(400\) 0 0
\(401\) 506.436 1.26293 0.631466 0.775404i \(-0.282454\pi\)
0.631466 + 0.775404i \(0.282454\pi\)
\(402\) 0 0
\(403\) − 298.867i − 0.741606i
\(404\) 0 0
\(405\) 223.515 0.551888
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 699.526i 1.71033i 0.518354 + 0.855166i \(0.326545\pi\)
−0.518354 + 0.855166i \(0.673455\pi\)
\(410\) 0 0
\(411\) −444.159 −1.08068
\(412\) 0 0
\(413\) − 507.638i − 1.22915i
\(414\) 0 0
\(415\) 42.2713i 0.101858i
\(416\) 0 0
\(417\) − 225.007i − 0.539586i
\(418\) 0 0
\(419\) −240.430 −0.573818 −0.286909 0.957958i \(-0.592628\pi\)
−0.286909 + 0.957958i \(0.592628\pi\)
\(420\) 0 0
\(421\) 312.565 0.742435 0.371217 0.928546i \(-0.378940\pi\)
0.371217 + 0.928546i \(0.378940\pi\)
\(422\) 0 0
\(423\) 76.3017 0.180382
\(424\) 0 0
\(425\) − 123.458i − 0.290488i
\(426\) 0 0
\(427\) −401.420 −0.940093
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 730.105i 1.69398i 0.531609 + 0.846990i \(0.321588\pi\)
−0.531609 + 0.846990i \(0.678412\pi\)
\(432\) 0 0
\(433\) −431.087 −0.995583 −0.497791 0.867297i \(-0.665855\pi\)
−0.497791 + 0.867297i \(0.665855\pi\)
\(434\) 0 0
\(435\) − 119.668i − 0.275098i
\(436\) 0 0
\(437\) − 87.9558i − 0.201272i
\(438\) 0 0
\(439\) 41.1901i 0.0938270i 0.998899 + 0.0469135i \(0.0149385\pi\)
−0.998899 + 0.0469135i \(0.985061\pi\)
\(440\) 0 0
\(441\) 5.38903 0.0122200
\(442\) 0 0
\(443\) 210.738 0.475707 0.237853 0.971301i \(-0.423556\pi\)
0.237853 + 0.971301i \(0.423556\pi\)
\(444\) 0 0
\(445\) −285.008 −0.640466
\(446\) 0 0
\(447\) − 6.40803i − 0.0143356i
\(448\) 0 0
\(449\) −357.921 −0.797152 −0.398576 0.917135i \(-0.630496\pi\)
−0.398576 + 0.917135i \(0.630496\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 1013.44i − 2.23718i
\(454\) 0 0
\(455\) −162.608 −0.357380
\(456\) 0 0
\(457\) 0.950272i 0.00207937i 0.999999 + 0.00103968i \(0.000330942\pi\)
−0.999999 + 0.00103968i \(0.999669\pi\)
\(458\) 0 0
\(459\) − 489.345i − 1.06611i
\(460\) 0 0
\(461\) 511.859i 1.11032i 0.831743 + 0.555161i \(0.187343\pi\)
−0.831743 + 0.555161i \(0.812657\pi\)
\(462\) 0 0
\(463\) 32.0919 0.0693130 0.0346565 0.999399i \(-0.488966\pi\)
0.0346565 + 0.999399i \(0.488966\pi\)
\(464\) 0 0
\(465\) −222.464 −0.478417
\(466\) 0 0
\(467\) −215.116 −0.460634 −0.230317 0.973116i \(-0.573976\pi\)
−0.230317 + 0.973116i \(0.573976\pi\)
\(468\) 0 0
\(469\) − 445.348i − 0.949570i
\(470\) 0 0
\(471\) −235.974 −0.501006
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 15.2880i 0.0321853i
\(476\) 0 0
\(477\) −290.755 −0.609549
\(478\) 0 0
\(479\) − 231.124i − 0.482514i −0.970461 0.241257i \(-0.922440\pi\)
0.970461 0.241257i \(-0.0775597\pi\)
\(480\) 0 0
\(481\) − 28.9657i − 0.0602197i
\(482\) 0 0
\(483\) − 696.365i − 1.44175i
\(484\) 0 0
\(485\) 198.123 0.408500
\(486\) 0 0
\(487\) −0.548101 −0.00112546 −0.000562732 1.00000i \(-0.500179\pi\)
−0.000562732 1.00000i \(0.500179\pi\)
\(488\) 0 0
\(489\) −570.696 −1.16707
\(490\) 0 0
\(491\) − 311.536i − 0.634494i −0.948343 0.317247i \(-0.897242\pi\)
0.948343 0.317247i \(-0.102758\pi\)
\(492\) 0 0
\(493\) −375.807 −0.762285
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 420.600i 0.846278i
\(498\) 0 0
\(499\) −642.572 −1.28772 −0.643860 0.765143i \(-0.722668\pi\)
−0.643860 + 0.765143i \(0.722668\pi\)
\(500\) 0 0
\(501\) − 515.275i − 1.02849i
\(502\) 0 0
\(503\) 247.519i 0.492086i 0.969259 + 0.246043i \(0.0791305\pi\)
−0.969259 + 0.246043i \(0.920870\pi\)
\(504\) 0 0
\(505\) − 118.661i − 0.234973i
\(506\) 0 0
\(507\) −201.929 −0.398281
\(508\) 0 0
\(509\) 751.728 1.47687 0.738437 0.674323i \(-0.235564\pi\)
0.738437 + 0.674323i \(0.235564\pi\)
\(510\) 0 0
\(511\) −580.660 −1.13632
\(512\) 0 0
\(513\) 60.5967i 0.118122i
\(514\) 0 0
\(515\) 67.1475 0.130383
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 229.200i 0.441618i
\(520\) 0 0
\(521\) −610.473 −1.17173 −0.585866 0.810408i \(-0.699246\pi\)
−0.585866 + 0.810408i \(0.699246\pi\)
\(522\) 0 0
\(523\) 620.110i 1.18568i 0.805320 + 0.592840i \(0.201993\pi\)
−0.805320 + 0.592840i \(0.798007\pi\)
\(524\) 0 0
\(525\) 121.039i 0.230550i
\(526\) 0 0
\(527\) 698.631i 1.32568i
\(528\) 0 0
\(529\) 298.497 0.564266
\(530\) 0 0
\(531\) 248.024 0.467088
\(532\) 0 0
\(533\) 651.445 1.22222
\(534\) 0 0
\(535\) 434.506i 0.812161i
\(536\) 0 0
\(537\) 106.446 0.198223
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 302.908i − 0.559904i −0.960014 0.279952i \(-0.909681\pi\)
0.960014 0.279952i \(-0.0903186\pi\)
\(542\) 0 0
\(543\) 577.267 1.06311
\(544\) 0 0
\(545\) − 265.656i − 0.487442i
\(546\) 0 0
\(547\) − 781.304i − 1.42834i −0.699970 0.714172i \(-0.746803\pi\)
0.699970 0.714172i \(-0.253197\pi\)
\(548\) 0 0
\(549\) − 196.127i − 0.357245i
\(550\) 0 0
\(551\) 46.5370 0.0844591
\(552\) 0 0
\(553\) 525.389 0.950071
\(554\) 0 0
\(555\) −21.5608 −0.0388483
\(556\) 0 0
\(557\) − 1016.07i − 1.82418i −0.409988 0.912091i \(-0.634467\pi\)
0.409988 0.912091i \(-0.365533\pi\)
\(558\) 0 0
\(559\) 427.955 0.765573
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 804.378i − 1.42874i −0.699770 0.714368i \(-0.746714\pi\)
0.699770 0.714368i \(-0.253286\pi\)
\(564\) 0 0
\(565\) 401.450 0.710532
\(566\) 0 0
\(567\) 688.178i 1.21372i
\(568\) 0 0
\(569\) − 916.303i − 1.61037i −0.593021 0.805187i \(-0.702065\pi\)
0.593021 0.805187i \(-0.297935\pi\)
\(570\) 0 0
\(571\) − 629.066i − 1.10169i −0.834607 0.550846i \(-0.814305\pi\)
0.834607 0.550846i \(-0.185695\pi\)
\(572\) 0 0
\(573\) 921.888 1.60888
\(574\) 0 0
\(575\) −143.831 −0.250141
\(576\) 0 0
\(577\) −1013.71 −1.75686 −0.878432 0.477867i \(-0.841410\pi\)
−0.878432 + 0.477867i \(0.841410\pi\)
\(578\) 0 0
\(579\) 476.119i 0.822313i
\(580\) 0 0
\(581\) −130.149 −0.224008
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) − 79.4477i − 0.135808i
\(586\) 0 0
\(587\) 658.827 1.12236 0.561182 0.827693i \(-0.310347\pi\)
0.561182 + 0.827693i \(0.310347\pi\)
\(588\) 0 0
\(589\) − 86.5130i − 0.146881i
\(590\) 0 0
\(591\) − 525.992i − 0.890003i
\(592\) 0 0
\(593\) − 293.233i − 0.494490i −0.968953 0.247245i \(-0.920475\pi\)
0.968953 0.247245i \(-0.0795253\pi\)
\(594\) 0 0
\(595\) 380.112 0.638844
\(596\) 0 0
\(597\) 1293.17 2.16611
\(598\) 0 0
\(599\) −510.619 −0.852452 −0.426226 0.904617i \(-0.640157\pi\)
−0.426226 + 0.904617i \(0.640157\pi\)
\(600\) 0 0
\(601\) 1008.32i 1.67773i 0.544339 + 0.838865i \(0.316780\pi\)
−0.544339 + 0.838865i \(0.683220\pi\)
\(602\) 0 0
\(603\) 217.590 0.360846
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 13.9092i 0.0229147i 0.999934 + 0.0114573i \(0.00364706\pi\)
−0.999934 + 0.0114573i \(0.996353\pi\)
\(608\) 0 0
\(609\) 368.443 0.604997
\(610\) 0 0
\(611\) 239.604i 0.392150i
\(612\) 0 0
\(613\) 418.153i 0.682142i 0.940038 + 0.341071i \(0.110790\pi\)
−0.940038 + 0.341071i \(0.889210\pi\)
\(614\) 0 0
\(615\) − 484.908i − 0.788468i
\(616\) 0 0
\(617\) −1045.51 −1.69451 −0.847255 0.531187i \(-0.821746\pi\)
−0.847255 + 0.531187i \(0.821746\pi\)
\(618\) 0 0
\(619\) −614.916 −0.993403 −0.496701 0.867922i \(-0.665456\pi\)
−0.496701 + 0.867922i \(0.665456\pi\)
\(620\) 0 0
\(621\) −570.100 −0.918035
\(622\) 0 0
\(623\) − 877.508i − 1.40852i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 67.7101i 0.107647i
\(630\) 0 0
\(631\) 22.4531 0.0355834 0.0177917 0.999842i \(-0.494336\pi\)
0.0177917 + 0.999842i \(0.494336\pi\)
\(632\) 0 0
\(633\) − 1209.62i − 1.91093i
\(634\) 0 0
\(635\) 17.3853i 0.0273784i
\(636\) 0 0
\(637\) 16.9227i 0.0265662i
\(638\) 0 0
\(639\) −205.499 −0.321594
\(640\) 0 0
\(641\) 737.445 1.15046 0.575230 0.817992i \(-0.304913\pi\)
0.575230 + 0.817992i \(0.304913\pi\)
\(642\) 0 0
\(643\) −287.361 −0.446907 −0.223453 0.974715i \(-0.571733\pi\)
−0.223453 + 0.974715i \(0.571733\pi\)
\(644\) 0 0
\(645\) − 318.552i − 0.493879i
\(646\) 0 0
\(647\) 851.654 1.31631 0.658156 0.752882i \(-0.271337\pi\)
0.658156 + 0.752882i \(0.271337\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 684.943i − 1.05214i
\(652\) 0 0
\(653\) 854.829 1.30908 0.654540 0.756027i \(-0.272862\pi\)
0.654540 + 0.756027i \(0.272862\pi\)
\(654\) 0 0
\(655\) − 93.6213i − 0.142933i
\(656\) 0 0
\(657\) − 283.701i − 0.431813i
\(658\) 0 0
\(659\) − 328.629i − 0.498679i −0.968416 0.249339i \(-0.919787\pi\)
0.968416 0.249339i \(-0.0802135\pi\)
\(660\) 0 0
\(661\) −329.541 −0.498550 −0.249275 0.968433i \(-0.580192\pi\)
−0.249275 + 0.968433i \(0.580192\pi\)
\(662\) 0 0
\(663\) −917.064 −1.38320
\(664\) 0 0
\(665\) −47.0702 −0.0707822
\(666\) 0 0
\(667\) 437.824i 0.656409i
\(668\) 0 0
\(669\) 748.453 1.11876
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 222.239i 0.330222i 0.986275 + 0.165111i \(0.0527982\pi\)
−0.986275 + 0.165111i \(0.947202\pi\)
\(674\) 0 0
\(675\) 99.0918 0.146803
\(676\) 0 0
\(677\) − 831.844i − 1.22872i −0.789025 0.614361i \(-0.789414\pi\)
0.789025 0.614361i \(-0.210586\pi\)
\(678\) 0 0
\(679\) 609.998i 0.898377i
\(680\) 0 0
\(681\) − 406.463i − 0.596861i
\(682\) 0 0
\(683\) 623.160 0.912387 0.456194 0.889881i \(-0.349212\pi\)
0.456194 + 0.889881i \(0.349212\pi\)
\(684\) 0 0
\(685\) −282.455 −0.412343
\(686\) 0 0
\(687\) 1562.86 2.27490
\(688\) 0 0
\(689\) − 913.032i − 1.32516i
\(690\) 0 0
\(691\) −156.947 −0.227130 −0.113565 0.993531i \(-0.536227\pi\)
−0.113565 + 0.993531i \(0.536227\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 143.089i − 0.205884i
\(696\) 0 0
\(697\) −1522.82 −2.18482
\(698\) 0 0
\(699\) 317.841i 0.454708i
\(700\) 0 0
\(701\) − 620.329i − 0.884920i −0.896788 0.442460i \(-0.854106\pi\)
0.896788 0.442460i \(-0.145894\pi\)
\(702\) 0 0
\(703\) − 8.38469i − 0.0119270i
\(704\) 0 0
\(705\) 178.351 0.252980
\(706\) 0 0
\(707\) 365.346 0.516755
\(708\) 0 0
\(709\) −18.2861 −0.0257914 −0.0128957 0.999917i \(-0.504105\pi\)
−0.0128957 + 0.999917i \(0.504105\pi\)
\(710\) 0 0
\(711\) 256.697i 0.361036i
\(712\) 0 0
\(713\) 813.924 1.14155
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.2118i 0.0281895i
\(718\) 0 0
\(719\) −1078.37 −1.49982 −0.749909 0.661541i \(-0.769903\pi\)
−0.749909 + 0.661541i \(0.769903\pi\)
\(720\) 0 0
\(721\) 206.740i 0.286740i
\(722\) 0 0
\(723\) 798.703i 1.10471i
\(724\) 0 0
\(725\) − 76.1004i − 0.104966i
\(726\) 0 0
\(727\) 739.254 1.01686 0.508428 0.861104i \(-0.330227\pi\)
0.508428 + 0.861104i \(0.330227\pi\)
\(728\) 0 0
\(729\) 290.936 0.399090
\(730\) 0 0
\(731\) −1000.39 −1.36852
\(732\) 0 0
\(733\) − 1204.04i − 1.64263i −0.570478 0.821313i \(-0.693242\pi\)
0.570478 0.821313i \(-0.306758\pi\)
\(734\) 0 0
\(735\) 12.5965 0.0171381
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 303.552i − 0.410761i −0.978682 0.205380i \(-0.934157\pi\)
0.978682 0.205380i \(-0.0658431\pi\)
\(740\) 0 0
\(741\) 113.562 0.153255
\(742\) 0 0
\(743\) 194.593i 0.261902i 0.991389 + 0.130951i \(0.0418031\pi\)
−0.991389 + 0.130951i \(0.958197\pi\)
\(744\) 0 0
\(745\) − 4.07507i − 0.00546989i
\(746\) 0 0
\(747\) − 63.5886i − 0.0851252i
\(748\) 0 0
\(749\) −1337.80 −1.78611
\(750\) 0 0
\(751\) 706.270 0.940440 0.470220 0.882549i \(-0.344175\pi\)
0.470220 + 0.882549i \(0.344175\pi\)
\(752\) 0 0
\(753\) 483.426 0.642001
\(754\) 0 0
\(755\) − 644.481i − 0.853617i
\(756\) 0 0
\(757\) −236.493 −0.312408 −0.156204 0.987725i \(-0.549926\pi\)
−0.156204 + 0.987725i \(0.549926\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 204.376i 0.268562i 0.990943 + 0.134281i \(0.0428725\pi\)
−0.990943 + 0.134281i \(0.957127\pi\)
\(762\) 0 0
\(763\) 817.926 1.07199
\(764\) 0 0
\(765\) 185.717i 0.242767i
\(766\) 0 0
\(767\) 778.847i 1.01545i
\(768\) 0 0
\(769\) 404.940i 0.526580i 0.964717 + 0.263290i \(0.0848076\pi\)
−0.964717 + 0.263290i \(0.915192\pi\)
\(770\) 0 0
\(771\) −1451.54 −1.88267
\(772\) 0 0
\(773\) −1286.73 −1.66460 −0.832298 0.554329i \(-0.812975\pi\)
−0.832298 + 0.554329i \(0.812975\pi\)
\(774\) 0 0
\(775\) −141.472 −0.182545
\(776\) 0 0
\(777\) − 66.3835i − 0.0854356i
\(778\) 0 0
\(779\) 188.574 0.242071
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 301.637i − 0.385232i
\(784\) 0 0
\(785\) −150.063 −0.191163
\(786\) 0 0
\(787\) 1178.17i 1.49703i 0.663115 + 0.748517i \(0.269234\pi\)
−0.663115 + 0.748517i \(0.730766\pi\)
\(788\) 0 0
\(789\) − 1331.45i − 1.68752i
\(790\) 0 0
\(791\) 1236.02i 1.56261i
\(792\) 0 0
\(793\) 615.881 0.776647
\(794\) 0 0
\(795\) −679.623 −0.854871
\(796\) 0 0
\(797\) −306.811 −0.384958 −0.192479 0.981301i \(-0.561653\pi\)
−0.192479 + 0.981301i \(0.561653\pi\)
\(798\) 0 0
\(799\) − 560.097i − 0.700997i
\(800\) 0 0
\(801\) 428.736 0.535251
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 442.841i − 0.550113i
\(806\) 0 0
\(807\) 228.955 0.283711
\(808\) 0 0
\(809\) 1270.14i 1.57002i 0.619485 + 0.785009i \(0.287342\pi\)
−0.619485 + 0.785009i \(0.712658\pi\)
\(810\) 0 0
\(811\) 777.502i 0.958696i 0.877625 + 0.479348i \(0.159127\pi\)
−0.877625 + 0.479348i \(0.840873\pi\)
\(812\) 0 0
\(813\) − 1864.93i − 2.29388i
\(814\) 0 0
\(815\) −362.924 −0.445305
\(816\) 0 0
\(817\) 123.880 0.151628
\(818\) 0 0
\(819\) 244.611 0.298670
\(820\) 0 0
\(821\) − 896.003i − 1.09136i −0.837995 0.545678i \(-0.816272\pi\)
0.837995 0.545678i \(-0.183728\pi\)
\(822\) 0 0
\(823\) 957.496 1.16342 0.581711 0.813396i \(-0.302384\pi\)
0.581711 + 0.813396i \(0.302384\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1329.17i − 1.60721i −0.595160 0.803607i \(-0.702911\pi\)
0.595160 0.803607i \(-0.297089\pi\)
\(828\) 0 0
\(829\) −87.7710 −0.105876 −0.0529379 0.998598i \(-0.516859\pi\)
−0.0529379 + 0.998598i \(0.516859\pi\)
\(830\) 0 0
\(831\) 488.365i 0.587684i
\(832\) 0 0
\(833\) − 39.5585i − 0.0474892i
\(834\) 0 0
\(835\) − 327.679i − 0.392431i
\(836\) 0 0
\(837\) −560.749 −0.669951
\(838\) 0 0
\(839\) −53.7571 −0.0640728 −0.0320364 0.999487i \(-0.510199\pi\)
−0.0320364 + 0.999487i \(0.510199\pi\)
\(840\) 0 0
\(841\) 609.349 0.724553
\(842\) 0 0
\(843\) − 1093.67i − 1.29735i
\(844\) 0 0
\(845\) −128.413 −0.151968
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) − 1377.10i − 1.62202i
\(850\) 0 0
\(851\) 78.8840 0.0926957
\(852\) 0 0
\(853\) 381.990i 0.447819i 0.974610 + 0.223910i \(0.0718821\pi\)
−0.974610 + 0.223910i \(0.928118\pi\)
\(854\) 0 0
\(855\) − 22.9977i − 0.0268979i
\(856\) 0 0
\(857\) − 735.176i − 0.857849i −0.903340 0.428924i \(-0.858893\pi\)
0.903340 0.428924i \(-0.141107\pi\)
\(858\) 0 0
\(859\) 1221.00 1.42142 0.710710 0.703485i \(-0.248374\pi\)
0.710710 + 0.703485i \(0.248374\pi\)
\(860\) 0 0
\(861\) 1492.98 1.73401
\(862\) 0 0
\(863\) −1089.51 −1.26247 −0.631234 0.775593i \(-0.717451\pi\)
−0.631234 + 0.775593i \(0.717451\pi\)
\(864\) 0 0
\(865\) 145.756i 0.168503i
\(866\) 0 0
\(867\) 1127.54 1.30051
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 683.279i 0.784476i
\(872\) 0 0
\(873\) −298.035 −0.341392
\(874\) 0 0
\(875\) 76.9723i 0.0879684i
\(876\) 0 0
\(877\) − 1002.19i − 1.14275i −0.820690 0.571374i \(-0.806411\pi\)
0.820690 0.571374i \(-0.193589\pi\)
\(878\) 0 0
\(879\) − 753.847i − 0.857619i
\(880\) 0 0
\(881\) −319.501 −0.362657 −0.181329 0.983423i \(-0.558040\pi\)
−0.181329 + 0.983423i \(0.558040\pi\)
\(882\) 0 0
\(883\) −1282.67 −1.45263 −0.726313 0.687364i \(-0.758768\pi\)
−0.726313 + 0.687364i \(0.758768\pi\)
\(884\) 0 0
\(885\) 579.741 0.655075
\(886\) 0 0
\(887\) 213.370i 0.240553i 0.992740 + 0.120276i \(0.0383781\pi\)
−0.992740 + 0.120276i \(0.961622\pi\)
\(888\) 0 0
\(889\) −53.5275 −0.0602109
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 69.3580i 0.0776686i
\(894\) 0 0
\(895\) 67.6923 0.0756338
\(896\) 0 0
\(897\) 1068.40i 1.19109i
\(898\) 0 0
\(899\) 430.643i 0.479024i
\(900\) 0 0
\(901\) 2134.30i 2.36881i
\(902\) 0 0
\(903\) 980.787 1.08614
\(904\) 0 0
\(905\) 367.103 0.405638
\(906\) 0 0
\(907\) −1433.33 −1.58030 −0.790149 0.612915i \(-0.789997\pi\)
−0.790149 + 0.612915i \(0.789997\pi\)
\(908\) 0 0
\(909\) 178.502i 0.196372i
\(910\) 0 0
\(911\) 1648.12 1.80913 0.904565 0.426335i \(-0.140195\pi\)
0.904565 + 0.426335i \(0.140195\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 458.436i − 0.501023i
\(916\) 0 0
\(917\) 288.250 0.314340
\(918\) 0 0
\(919\) 398.321i 0.433429i 0.976235 + 0.216714i \(0.0695341\pi\)
−0.976235 + 0.216714i \(0.930466\pi\)
\(920\) 0 0
\(921\) − 1659.34i − 1.80167i
\(922\) 0 0
\(923\) − 645.309i − 0.699143i
\(924\) 0 0
\(925\) −13.7112 −0.0148229
\(926\) 0 0
\(927\) −101.010 −0.108964
\(928\) 0 0
\(929\) −1228.51 −1.32240 −0.661198 0.750212i \(-0.729952\pi\)
−0.661198 + 0.750212i \(0.729952\pi\)
\(930\) 0 0
\(931\) 4.89861i 0.00526167i
\(932\) 0 0
\(933\) 17.2902 0.0185318
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 672.767i 0.718001i 0.933337 + 0.359001i \(0.116882\pi\)
−0.933337 + 0.359001i \(0.883118\pi\)
\(938\) 0 0
\(939\) 714.420 0.760831
\(940\) 0 0
\(941\) 1272.68i 1.35248i 0.736681 + 0.676240i \(0.236392\pi\)
−0.736681 + 0.676240i \(0.763608\pi\)
\(942\) 0 0
\(943\) 1774.12i 1.88136i
\(944\) 0 0
\(945\) 305.093i 0.322850i
\(946\) 0 0
\(947\) −264.005 −0.278780 −0.139390 0.990238i \(-0.544514\pi\)
−0.139390 + 0.990238i \(0.544514\pi\)
\(948\) 0 0
\(949\) 890.881 0.938758
\(950\) 0 0
\(951\) 1.73697 0.00182647
\(952\) 0 0
\(953\) 856.742i 0.898995i 0.893282 + 0.449498i \(0.148397\pi\)
−0.893282 + 0.449498i \(0.851603\pi\)
\(954\) 0 0
\(955\) 586.258 0.613883
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 869.648i − 0.906828i
\(960\) 0 0
\(961\) −160.427 −0.166938
\(962\) 0 0
\(963\) − 653.626i − 0.678740i
\(964\) 0 0
\(965\) 302.779i 0.313761i
\(966\) 0 0
\(967\) 618.200i 0.639297i 0.947536 + 0.319648i \(0.103565\pi\)
−0.947536 + 0.319648i \(0.896435\pi\)
\(968\) 0 0
\(969\) −265.462 −0.273955
\(970\) 0 0
\(971\) −752.937 −0.775424 −0.387712 0.921780i \(-0.626735\pi\)
−0.387712 + 0.921780i \(0.626735\pi\)
\(972\) 0 0
\(973\) 440.556 0.452782
\(974\) 0 0
\(975\) − 185.704i − 0.190466i
\(976\) 0 0
\(977\) −169.145 −0.173127 −0.0865636 0.996246i \(-0.527589\pi\)
−0.0865636 + 0.996246i \(0.527589\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 399.625i 0.407365i
\(982\) 0 0
\(983\) 1038.58 1.05654 0.528271 0.849076i \(-0.322841\pi\)
0.528271 + 0.849076i \(0.322841\pi\)
\(984\) 0 0
\(985\) − 334.495i − 0.339589i
\(986\) 0 0
\(987\) 549.123i 0.556355i
\(988\) 0 0
\(989\) 1165.48i 1.17844i
\(990\) 0 0
\(991\) −1226.12 −1.23725 −0.618625 0.785686i \(-0.712310\pi\)
−0.618625 + 0.785686i \(0.712310\pi\)
\(992\) 0 0
\(993\) 1724.71 1.73687
\(994\) 0 0
\(995\) 822.366 0.826498
\(996\) 0 0
\(997\) 1809.11i 1.81455i 0.420536 + 0.907276i \(0.361842\pi\)
−0.420536 + 0.907276i \(0.638158\pi\)
\(998\) 0 0
\(999\) −54.3468 −0.0544012
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2420.3.f.a.241.3 16
11.2 odd 10 220.3.p.b.161.1 yes 16
11.5 even 5 220.3.p.b.41.1 16
11.10 odd 2 inner 2420.3.f.a.241.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.b.41.1 16 11.5 even 5
220.3.p.b.161.1 yes 16 11.2 odd 10
2420.3.f.a.241.3 16 1.1 even 1 trivial
2420.3.f.a.241.4 16 11.10 odd 2 inner