Properties

Label 2420.3.f.a.241.3
Level 24202420
Weight 33
Character 2420.241
Analytic conductor 65.94065.940
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2420,3,Mod(241,2420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2420.241");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 2420=225112 2420 = 2^{2} \cdot 5 \cdot 11^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 2420.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 65.940223975265.9402239752
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x163x15+33x14111x13+735x121436x11+10633x1025103x9++75625 x^{16} - 3 x^{15} + 33 x^{14} - 111 x^{13} + 735 x^{12} - 1436 x^{11} + 10633 x^{10} - 25103 x^{9} + \cdots + 75625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 285 2^{8}\cdot 5
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 241.3
Root 1.27755+3.93190i1.27755 + 3.93190i of defining polynomial
Character χ\chi == 2420.241
Dual form 2420.3.f.a.241.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q3.51621q32.23607q56.88461iq7+3.36371q9+10.5628iq13+7.86248q1524.6915iq17+3.05760iq19+24.2077iq2128.7662q23+5.00000q25+19.8184q2715.2201iq2928.2944q31+15.3945iq352.74224q3737.1409iq3961.6737iq4140.5154iq437.52149q45+22.6838q47+1.60211q49+86.8204iq5186.4387q5310.7512iq57+73.7352q5958.3068iq6123.1578iq6323.6191iq65+64.6875q67+101.148q6961.0928q7184.3417iq7317.5810q75+76.3135iq7999.9588q8118.9043iq83+55.2119iq85+53.5169iq87+127.459q89+72.7206q91+99.4890q936.83701iq9588.6031q97+O(q100)q-3.51621 q^{3} -2.23607 q^{5} -6.88461i q^{7} +3.36371 q^{9} +10.5628i q^{13} +7.86248 q^{15} -24.6915i q^{17} +3.05760i q^{19} +24.2077i q^{21} -28.7662 q^{23} +5.00000 q^{25} +19.8184 q^{27} -15.2201i q^{29} -28.2944 q^{31} +15.3945i q^{35} -2.74224 q^{37} -37.1409i q^{39} -61.6737i q^{41} -40.5154i q^{43} -7.52149 q^{45} +22.6838 q^{47} +1.60211 q^{49} +86.8204i q^{51} -86.4387 q^{53} -10.7512i q^{57} +73.7352 q^{59} -58.3068i q^{61} -23.1578i q^{63} -23.6191i q^{65} +64.6875 q^{67} +101.148 q^{69} -61.0928 q^{71} -84.3417i q^{73} -17.5810 q^{75} +76.3135i q^{79} -99.9588 q^{81} -18.9043i q^{83} +55.2119i q^{85} +53.5169i q^{87} +127.459 q^{89} +72.7206 q^{91} +99.4890 q^{93} -6.83701i q^{95} -88.6031 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q6q3+46q930q15168q23+80q25+30q27190q31+104q3730q45268q47228q49368q53+78q5968q67212q69+270q71+726q97+O(q100) 16 q - 6 q^{3} + 46 q^{9} - 30 q^{15} - 168 q^{23} + 80 q^{25} + 30 q^{27} - 190 q^{31} + 104 q^{37} - 30 q^{45} - 268 q^{47} - 228 q^{49} - 368 q^{53} + 78 q^{59} - 68 q^{67} - 212 q^{69} + 270 q^{71}+ \cdots - 726 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2420Z)×\left(\mathbb{Z}/2420\mathbb{Z}\right)^\times.

nn 12111211 19371937 23012301
χ(n)\chi(n) 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −3.51621 −1.17207 −0.586034 0.810286i 0.699312π-0.699312\pi
−0.586034 + 0.810286i 0.699312π0.699312\pi
44 0 0
55 −2.23607 −0.447214
66 0 0
77 − 6.88461i − 0.983516i −0.870732 0.491758i 0.836354π-0.836354\pi
0.870732 0.491758i 0.163646π-0.163646\pi
88 0 0
99 3.36371 0.373746
1010 0 0
1111 0 0
1212 0 0
1313 10.5628i 0.812521i 0.913757 + 0.406260i 0.133167π0.133167\pi
−0.913757 + 0.406260i 0.866833π0.866833\pi
1414 0 0
1515 7.86248 0.524165
1616 0 0
1717 − 24.6915i − 1.45244i −0.687462 0.726221i 0.741275π-0.741275\pi
0.687462 0.726221i 0.258725π-0.258725\pi
1818 0 0
1919 3.05760i 0.160926i 0.996758 + 0.0804632i 0.0256400π0.0256400\pi
−0.996758 + 0.0804632i 0.974360π0.974360\pi
2020 0 0
2121 24.2077i 1.15275i
2222 0 0
2323 −28.7662 −1.25071 −0.625353 0.780342i 0.715045π-0.715045\pi
−0.625353 + 0.780342i 0.715045π0.715045\pi
2424 0 0
2525 5.00000 0.200000
2626 0 0
2727 19.8184 0.734013
2828 0 0
2929 − 15.2201i − 0.524830i −0.964955 0.262415i 0.915481π-0.915481\pi
0.964955 0.262415i 0.0845190π-0.0845190\pi
3030 0 0
3131 −28.2944 −0.912723 −0.456361 0.889795i 0.650848π-0.650848\pi
−0.456361 + 0.889795i 0.650848π0.650848\pi
3232 0 0
3333 0 0
3434 0 0
3535 15.3945i 0.439842i
3636 0 0
3737 −2.74224 −0.0741147 −0.0370573 0.999313i 0.511798π-0.511798\pi
−0.0370573 + 0.999313i 0.511798π0.511798\pi
3838 0 0
3939 − 37.1409i − 0.952330i
4040 0 0
4141 − 61.6737i − 1.50424i −0.659028 0.752118i 0.729032π-0.729032\pi
0.659028 0.752118i 0.270968π-0.270968\pi
4242 0 0
4343 − 40.5154i − 0.942220i −0.882075 0.471110i 0.843854π-0.843854\pi
0.882075 0.471110i 0.156146π-0.156146\pi
4444 0 0
4545 −7.52149 −0.167144
4646 0 0
4747 22.6838 0.482634 0.241317 0.970446i 0.422421π-0.422421\pi
0.241317 + 0.970446i 0.422421π0.422421\pi
4848 0 0
4949 1.60211 0.0326961
5050 0 0
5151 86.8204i 1.70236i
5252 0 0
5353 −86.4387 −1.63092 −0.815460 0.578814i 0.803516π-0.803516\pi
−0.815460 + 0.578814i 0.803516π0.803516\pi
5454 0 0
5555 0 0
5656 0 0
5757 − 10.7512i − 0.188617i
5858 0 0
5959 73.7352 1.24975 0.624874 0.780725i 0.285150π-0.285150\pi
0.624874 + 0.780725i 0.285150π0.285150\pi
6060 0 0
6161 − 58.3068i − 0.955850i −0.878401 0.477925i 0.841389π-0.841389\pi
0.878401 0.477925i 0.158611π-0.158611\pi
6262 0 0
6363 − 23.1578i − 0.367585i
6464 0 0
6565 − 23.6191i − 0.363370i
6666 0 0
6767 64.6875 0.965485 0.482742 0.875762i 0.339641π-0.339641\pi
0.482742 + 0.875762i 0.339641π0.339641\pi
6868 0 0
6969 101.148 1.46591
7070 0 0
7171 −61.0928 −0.860462 −0.430231 0.902719i 0.641568π-0.641568\pi
−0.430231 + 0.902719i 0.641568π0.641568\pi
7272 0 0
7373 − 84.3417i − 1.15537i −0.816261 0.577683i 0.803957π-0.803957\pi
0.816261 0.577683i 0.196043π-0.196043\pi
7474 0 0
7575 −17.5810 −0.234414
7676 0 0
7777 0 0
7878 0 0
7979 76.3135i 0.965994i 0.875622 + 0.482997i 0.160452π0.160452\pi
−0.875622 + 0.482997i 0.839548π0.839548\pi
8080 0 0
8181 −99.9588 −1.23406
8282 0 0
8383 − 18.9043i − 0.227762i −0.993494 0.113881i 0.963672π-0.963672\pi
0.993494 0.113881i 0.0363283π-0.0363283\pi
8484 0 0
8585 55.2119i 0.649552i
8686 0 0
8787 53.5169i 0.615137i
8888 0 0
8989 127.459 1.43213 0.716063 0.698036i 0.245942π-0.245942\pi
0.716063 + 0.698036i 0.245942π0.245942\pi
9090 0 0
9191 72.7206 0.799127
9292 0 0
9393 99.4890 1.06977
9494 0 0
9595 − 6.83701i − 0.0719685i
9696 0 0
9797 −88.6031 −0.913434 −0.456717 0.889612i 0.650975π-0.650975\pi
−0.456717 + 0.889612i 0.650975π0.650975\pi
9898 0 0
9999 0 0
100100 0 0
101101 53.0670i 0.525416i 0.964875 + 0.262708i 0.0846156π0.0846156\pi
−0.964875 + 0.262708i 0.915384π0.915384\pi
102102 0 0
103103 −30.0293 −0.291546 −0.145773 0.989318i 0.546567π-0.546567\pi
−0.145773 + 0.989318i 0.546567π0.546567\pi
104104 0 0
105105 − 54.1301i − 0.515525i
106106 0 0
107107 − 194.317i − 1.81605i −0.418919 0.908024i 0.637591π-0.637591\pi
0.418919 0.908024i 0.362409π-0.362409\pi
108108 0 0
109109 118.805i 1.08995i 0.838451 + 0.544977i 0.183462π0.183462\pi
−0.838451 + 0.544977i 0.816538π0.816538\pi
110110 0 0
111111 9.64229 0.0868675
112112 0 0
113113 −179.534 −1.58880 −0.794399 0.607397i 0.792214π-0.792214\pi
−0.794399 + 0.607397i 0.792214π0.792214\pi
114114 0 0
115115 64.3233 0.559333
116116 0 0
117117 35.5301i 0.303676i
118118 0 0
119119 −169.991 −1.42850
120120 0 0
121121 0 0
122122 0 0
123123 216.857i 1.76307i
124124 0 0
125125 −11.1803 −0.0894427
126126 0 0
127127 − 7.77494i − 0.0612200i −0.999531 0.0306100i 0.990255π-0.990255\pi
0.999531 0.0306100i 0.00974499π-0.00974499\pi
128128 0 0
129129 142.461i 1.10435i
130130 0 0
131131 41.8687i 0.319608i 0.987149 + 0.159804i 0.0510863π0.0510863\pi
−0.987149 + 0.159804i 0.948914π0.948914\pi
132132 0 0
133133 21.0504 0.158274
134134 0 0
135135 −44.3152 −0.328261
136136 0 0
137137 126.318 0.922027 0.461013 0.887393i 0.347486π-0.347486\pi
0.461013 + 0.887393i 0.347486π0.347486\pi
138138 0 0
139139 63.9915i 0.460370i 0.973147 + 0.230185i 0.0739332π0.0739332\pi
−0.973147 + 0.230185i 0.926067π0.926067\pi
140140 0 0
141141 −79.7609 −0.565680
142142 0 0
143143 0 0
144144 0 0
145145 34.0331i 0.234711i
146146 0 0
147147 −5.63334 −0.0383221
148148 0 0
149149 1.82243i 0.0122310i 0.999981 + 0.00611552i 0.00194664π0.00194664\pi
−0.999981 + 0.00611552i 0.998053π0.998053\pi
150150 0 0
151151 288.221i 1.90875i 0.298616 + 0.954373i 0.403475π0.403475\pi
−0.298616 + 0.954373i 0.596525π0.596525\pi
152152 0 0
153153 − 83.0551i − 0.542844i
154154 0 0
155155 63.2682 0.408182
156156 0 0
157157 67.1103 0.427454 0.213727 0.976893i 0.431440π-0.431440\pi
0.213727 + 0.976893i 0.431440π0.431440\pi
158158 0 0
159159 303.936 1.91155
160160 0 0
161161 198.044i 1.23009i
162162 0 0
163163 162.305 0.995733 0.497867 0.867254i 0.334117π-0.334117\pi
0.497867 + 0.867254i 0.334117π0.334117\pi
164164 0 0
165165 0 0
166166 0 0
167167 146.543i 0.877501i 0.898609 + 0.438751i 0.144579π0.144579\pi
−0.898609 + 0.438751i 0.855421π0.855421\pi
168168 0 0
169169 57.4280 0.339810
170170 0 0
171171 10.2849i 0.0601456i
172172 0 0
173173 − 65.1838i − 0.376785i −0.982094 0.188393i 0.939672π-0.939672\pi
0.982094 0.188393i 0.0603277π-0.0603277\pi
174174 0 0
175175 − 34.4231i − 0.196703i
176176 0 0
177177 −259.268 −1.46479
178178 0 0
179179 −30.2729 −0.169122 −0.0845612 0.996418i 0.526949π-0.526949\pi
−0.0845612 + 0.996418i 0.526949π0.526949\pi
180180 0 0
181181 −164.173 −0.907035 −0.453517 0.891247i 0.649831π-0.649831\pi
−0.453517 + 0.891247i 0.649831π0.649831\pi
182182 0 0
183183 205.019i 1.12032i
184184 0 0
185185 6.13184 0.0331451
186186 0 0
187187 0 0
188188 0 0
189189 − 136.442i − 0.721914i
190190 0 0
191191 −262.183 −1.37268 −0.686342 0.727279i 0.740785π-0.740785\pi
−0.686342 + 0.727279i 0.740785π0.740785\pi
192192 0 0
193193 − 135.407i − 0.701591i −0.936452 0.350796i 0.885911π-0.885911\pi
0.936452 0.350796i 0.114089π-0.114089\pi
194194 0 0
195195 83.0495i 0.425895i
196196 0 0
197197 149.591i 0.759344i 0.925121 + 0.379672i 0.123963π0.123963\pi
−0.925121 + 0.379672i 0.876037π0.876037\pi
198198 0 0
199199 −367.773 −1.84811 −0.924053 0.382264i 0.875145π-0.875145\pi
−0.924053 + 0.382264i 0.875145π0.875145\pi
200200 0 0
201201 −227.455 −1.13161
202202 0 0
203203 −104.784 −0.516179
204204 0 0
205205 137.907i 0.672715i
206206 0 0
207207 −96.7613 −0.467446
208208 0 0
209209 0 0
210210 0 0
211211 344.013i 1.63039i 0.579185 + 0.815196i 0.303371π0.303371\pi
−0.579185 + 0.815196i 0.696629π0.696629\pi
212212 0 0
213213 214.815 1.00852
214214 0 0
215215 90.5953i 0.421373i
216216 0 0
217217 194.796i 0.897677i
218218 0 0
219219 296.563i 1.35417i
220220 0 0
221221 260.811 1.18014
222222 0 0
223223 −212.858 −0.954520 −0.477260 0.878762i 0.658370π-0.658370\pi
−0.477260 + 0.878762i 0.658370π0.658370\pi
224224 0 0
225225 16.8186 0.0747491
226226 0 0
227227 115.597i 0.509237i 0.967042 + 0.254619i 0.0819500π0.0819500\pi
−0.967042 + 0.254619i 0.918050π0.918050\pi
228228 0 0
229229 −444.472 −1.94093 −0.970463 0.241248i 0.922443π-0.922443\pi
−0.970463 + 0.241248i 0.922443π0.922443\pi
230230 0 0
231231 0 0
232232 0 0
233233 − 90.3930i − 0.387953i −0.981006 0.193976i 0.937861π-0.937861\pi
0.981006 0.193976i 0.0621385π-0.0621385\pi
234234 0 0
235235 −50.7225 −0.215840
236236 0 0
237237 − 268.334i − 1.13221i
238238 0 0
239239 − 5.74820i − 0.0240510i −0.999928 0.0120255i 0.996172π-0.996172\pi
0.999928 0.0120255i 0.00382793π-0.00382793\pi
240240 0 0
241241 − 227.149i − 0.942527i −0.881992 0.471264i 0.843798π-0.843798\pi
0.881992 0.471264i 0.156202π-0.156202\pi
242242 0 0
243243 173.111 0.712390
244244 0 0
245245 −3.58242 −0.0146221
246246 0 0
247247 −32.2968 −0.130756
248248 0 0
249249 66.4714i 0.266953i
250250 0 0
251251 −137.485 −0.547750 −0.273875 0.961765i 0.588305π-0.588305\pi
−0.273875 + 0.961765i 0.588305π0.588305\pi
252252 0 0
253253 0 0
254254 0 0
255255 − 194.136i − 0.761319i
256256 0 0
257257 412.814 1.60628 0.803141 0.595789i 0.203161π-0.203161\pi
0.803141 + 0.595789i 0.203161π0.203161\pi
258258 0 0
259259 18.8793i 0.0728930i
260260 0 0
261261 − 51.1959i − 0.196153i
262262 0 0
263263 378.661i 1.43978i 0.694090 + 0.719889i 0.255807π0.255807\pi
−0.694090 + 0.719889i 0.744193π0.744193\pi
264264 0 0
265265 193.283 0.729369
266266 0 0
267267 −448.173 −1.67855
268268 0 0
269269 −65.1141 −0.242060 −0.121030 0.992649i 0.538620π-0.538620\pi
−0.121030 + 0.992649i 0.538620π0.538620\pi
270270 0 0
271271 530.380i 1.95712i 0.205956 + 0.978561i 0.433970π0.433970\pi
−0.205956 + 0.978561i 0.566030π0.566030\pi
272272 0 0
273273 −255.701 −0.936632
274274 0 0
275275 0 0
276276 0 0
277277 − 138.890i − 0.501407i −0.968064 0.250704i 0.919338π-0.919338\pi
0.968064 0.250704i 0.0806620π-0.0806620\pi
278278 0 0
279279 −95.1742 −0.341126
280280 0 0
281281 311.037i 1.10689i 0.832885 + 0.553446i 0.186688π0.186688\pi
−0.832885 + 0.553446i 0.813312π0.813312\pi
282282 0 0
283283 391.642i 1.38389i 0.721948 + 0.691947i 0.243247π0.243247\pi
−0.721948 + 0.691947i 0.756753π0.756753\pi
284284 0 0
285285 24.0403i 0.0843521i
286286 0 0
287287 −424.599 −1.47944
288288 0 0
289289 −320.670 −1.10959
290290 0 0
291291 311.547 1.07061
292292 0 0
293293 214.392i 0.731714i 0.930671 + 0.365857i 0.119224π0.119224\pi
−0.930671 + 0.365857i 0.880776π0.880776\pi
294294 0 0
295295 −164.877 −0.558905
296296 0 0
297297 0 0
298298 0 0
299299 − 303.851i − 1.01622i
300300 0 0
301301 −278.933 −0.926688
302302 0 0
303303 − 186.595i − 0.615824i
304304 0 0
305305 130.378i 0.427469i
306306 0 0
307307 471.912i 1.53717i 0.639745 + 0.768587i 0.279040π0.279040\pi
−0.639745 + 0.768587i 0.720960π0.720960\pi
308308 0 0
309309 105.589 0.341712
310310 0 0
311311 −4.91728 −0.0158112 −0.00790560 0.999969i 0.502516π-0.502516\pi
−0.00790560 + 0.999969i 0.502516π0.502516\pi
312312 0 0
313313 −203.179 −0.649135 −0.324568 0.945863i 0.605219π-0.605219\pi
−0.324568 + 0.945863i 0.605219π0.605219\pi
314314 0 0
315315 51.7825i 0.164389i
316316 0 0
317317 −0.493990 −0.00155833 −0.000779164 1.00000i 0.500248π-0.500248\pi
−0.000779164 1.00000i 0.500248π0.500248\pi
318318 0 0
319319 0 0
320320 0 0
321321 683.259i 2.12853i
322322 0 0
323323 75.4968 0.233736
324324 0 0
325325 52.8138i 0.162504i
326326 0 0
327327 − 417.743i − 1.27750i
328328 0 0
329329 − 156.169i − 0.474678i
330330 0 0
331331 −490.502 −1.48188 −0.740940 0.671571i 0.765620π-0.765620\pi
−0.740940 + 0.671571i 0.765620π0.765620\pi
332332 0 0
333333 −9.22411 −0.0277000
334334 0 0
335335 −144.646 −0.431778
336336 0 0
337337 − 377.893i − 1.12134i −0.828038 0.560672i 0.810543π-0.810543\pi
0.828038 0.560672i 0.189457π-0.189457\pi
338338 0 0
339339 631.279 1.86218
340340 0 0
341341 0 0
342342 0 0
343343 − 348.376i − 1.01567i
344344 0 0
345345 −226.174 −0.655577
346346 0 0
347347 76.8713i 0.221531i 0.993847 + 0.110766i 0.0353303π0.0353303\pi
−0.993847 + 0.110766i 0.964670π0.964670\pi
348348 0 0
349349 − 109.877i − 0.314833i −0.987532 0.157417i 0.949683π-0.949683\pi
0.987532 0.157417i 0.0503165π-0.0503165\pi
350350 0 0
351351 209.337i 0.596401i
352352 0 0
353353 497.456 1.40922 0.704612 0.709593i 0.251121π-0.251121\pi
0.704612 + 0.709593i 0.251121π0.251121\pi
354354 0 0
355355 136.608 0.384810
356356 0 0
357357 597.725 1.67430
358358 0 0
359359 21.7532i 0.0605938i 0.999541 + 0.0302969i 0.00964529π0.00964529\pi
−0.999541 + 0.0302969i 0.990355π0.990355\pi
360360 0 0
361361 351.651 0.974103
362362 0 0
363363 0 0
364364 0 0
365365 188.594i 0.516695i
366366 0 0
367367 536.421 1.46164 0.730819 0.682571i 0.239138π-0.239138\pi
0.730819 + 0.682571i 0.239138π0.239138\pi
368368 0 0
369369 − 207.452i − 0.562202i
370370 0 0
371371 595.097i 1.60404i
372372 0 0
373373 − 332.971i − 0.892685i −0.894862 0.446342i 0.852726π-0.852726\pi
0.894862 0.446342i 0.147274π-0.147274\pi
374374 0 0
375375 39.3124 0.104833
376376 0 0
377377 160.766 0.426435
378378 0 0
379379 378.033 0.997449 0.498724 0.866761i 0.333802π-0.333802\pi
0.498724 + 0.866761i 0.333802π0.333802\pi
380380 0 0
381381 27.3383i 0.0717541i
382382 0 0
383383 −123.477 −0.322394 −0.161197 0.986922i 0.551535π-0.551535\pi
−0.161197 + 0.986922i 0.551535π0.551535\pi
384384 0 0
385385 0 0
386386 0 0
387387 − 136.282i − 0.352150i
388388 0 0
389389 731.435 1.88029 0.940147 0.340768i 0.110687π-0.110687\pi
0.940147 + 0.340768i 0.110687π0.110687\pi
390390 0 0
391391 710.282i 1.81658i
392392 0 0
393393 − 147.219i − 0.374603i
394394 0 0
395395 − 170.642i − 0.432006i
396396 0 0
397397 123.206 0.310344 0.155172 0.987887i 0.450407π-0.450407\pi
0.155172 + 0.987887i 0.450407π0.450407\pi
398398 0 0
399399 −74.0176 −0.185508
400400 0 0
401401 506.436 1.26293 0.631466 0.775404i 0.282454π-0.282454\pi
0.631466 + 0.775404i 0.282454π0.282454\pi
402402 0 0
403403 − 298.867i − 0.741606i
404404 0 0
405405 223.515 0.551888
406406 0 0
407407 0 0
408408 0 0
409409 699.526i 1.71033i 0.518354 + 0.855166i 0.326545π0.326545\pi
−0.518354 + 0.855166i 0.673455π0.673455\pi
410410 0 0
411411 −444.159 −1.08068
412412 0 0
413413 − 507.638i − 1.22915i
414414 0 0
415415 42.2713i 0.101858i
416416 0 0
417417 − 225.007i − 0.539586i
418418 0 0
419419 −240.430 −0.573818 −0.286909 0.957958i 0.592628π-0.592628\pi
−0.286909 + 0.957958i 0.592628π0.592628\pi
420420 0 0
421421 312.565 0.742435 0.371217 0.928546i 0.378940π-0.378940\pi
0.371217 + 0.928546i 0.378940π0.378940\pi
422422 0 0
423423 76.3017 0.180382
424424 0 0
425425 − 123.458i − 0.290488i
426426 0 0
427427 −401.420 −0.940093
428428 0 0
429429 0 0
430430 0 0
431431 730.105i 1.69398i 0.531609 + 0.846990i 0.321588π0.321588\pi
−0.531609 + 0.846990i 0.678412π0.678412\pi
432432 0 0
433433 −431.087 −0.995583 −0.497791 0.867297i 0.665855π-0.665855\pi
−0.497791 + 0.867297i 0.665855π0.665855\pi
434434 0 0
435435 − 119.668i − 0.275098i
436436 0 0
437437 − 87.9558i − 0.201272i
438438 0 0
439439 41.1901i 0.0938270i 0.998899 + 0.0469135i 0.0149385π0.0149385\pi
−0.998899 + 0.0469135i 0.985061π0.985061\pi
440440 0 0
441441 5.38903 0.0122200
442442 0 0
443443 210.738 0.475707 0.237853 0.971301i 0.423556π-0.423556\pi
0.237853 + 0.971301i 0.423556π0.423556\pi
444444 0 0
445445 −285.008 −0.640466
446446 0 0
447447 − 6.40803i − 0.0143356i
448448 0 0
449449 −357.921 −0.797152 −0.398576 0.917135i 0.630496π-0.630496\pi
−0.398576 + 0.917135i 0.630496π0.630496\pi
450450 0 0
451451 0 0
452452 0 0
453453 − 1013.44i − 2.23718i
454454 0 0
455455 −162.608 −0.357380
456456 0 0
457457 0.950272i 0.00207937i 0.999999 + 0.00103968i 0.000330942π0.000330942\pi
−0.999999 + 0.00103968i 0.999669π0.999669\pi
458458 0 0
459459 − 489.345i − 1.06611i
460460 0 0
461461 511.859i 1.11032i 0.831743 + 0.555161i 0.187343π0.187343\pi
−0.831743 + 0.555161i 0.812657π0.812657\pi
462462 0 0
463463 32.0919 0.0693130 0.0346565 0.999399i 0.488966π-0.488966\pi
0.0346565 + 0.999399i 0.488966π0.488966\pi
464464 0 0
465465 −222.464 −0.478417
466466 0 0
467467 −215.116 −0.460634 −0.230317 0.973116i 0.573976π-0.573976\pi
−0.230317 + 0.973116i 0.573976π0.573976\pi
468468 0 0
469469 − 445.348i − 0.949570i
470470 0 0
471471 −235.974 −0.501006
472472 0 0
473473 0 0
474474 0 0
475475 15.2880i 0.0321853i
476476 0 0
477477 −290.755 −0.609549
478478 0 0
479479 − 231.124i − 0.482514i −0.970461 0.241257i 0.922440π-0.922440\pi
0.970461 0.241257i 0.0775597π-0.0775597\pi
480480 0 0
481481 − 28.9657i − 0.0602197i
482482 0 0
483483 − 696.365i − 1.44175i
484484 0 0
485485 198.123 0.408500
486486 0 0
487487 −0.548101 −0.00112546 −0.000562732 1.00000i 0.500179π-0.500179\pi
−0.000562732 1.00000i 0.500179π0.500179\pi
488488 0 0
489489 −570.696 −1.16707
490490 0 0
491491 − 311.536i − 0.634494i −0.948343 0.317247i 0.897242π-0.897242\pi
0.948343 0.317247i 0.102758π-0.102758\pi
492492 0 0
493493 −375.807 −0.762285
494494 0 0
495495 0 0
496496 0 0
497497 420.600i 0.846278i
498498 0 0
499499 −642.572 −1.28772 −0.643860 0.765143i 0.722668π-0.722668\pi
−0.643860 + 0.765143i 0.722668π0.722668\pi
500500 0 0
501501 − 515.275i − 1.02849i
502502 0 0
503503 247.519i 0.492086i 0.969259 + 0.246043i 0.0791305π0.0791305\pi
−0.969259 + 0.246043i 0.920870π0.920870\pi
504504 0 0
505505 − 118.661i − 0.234973i
506506 0 0
507507 −201.929 −0.398281
508508 0 0
509509 751.728 1.47687 0.738437 0.674323i 0.235564π-0.235564\pi
0.738437 + 0.674323i 0.235564π0.235564\pi
510510 0 0
511511 −580.660 −1.13632
512512 0 0
513513 60.5967i 0.118122i
514514 0 0
515515 67.1475 0.130383
516516 0 0
517517 0 0
518518 0 0
519519 229.200i 0.441618i
520520 0 0
521521 −610.473 −1.17173 −0.585866 0.810408i 0.699246π-0.699246\pi
−0.585866 + 0.810408i 0.699246π0.699246\pi
522522 0 0
523523 620.110i 1.18568i 0.805320 + 0.592840i 0.201993π0.201993\pi
−0.805320 + 0.592840i 0.798007π0.798007\pi
524524 0 0
525525 121.039i 0.230550i
526526 0 0
527527 698.631i 1.32568i
528528 0 0
529529 298.497 0.564266
530530 0 0
531531 248.024 0.467088
532532 0 0
533533 651.445 1.22222
534534 0 0
535535 434.506i 0.812161i
536536 0 0
537537 106.446 0.198223
538538 0 0
539539 0 0
540540 0 0
541541 − 302.908i − 0.559904i −0.960014 0.279952i 0.909681π-0.909681\pi
0.960014 0.279952i 0.0903186π-0.0903186\pi
542542 0 0
543543 577.267 1.06311
544544 0 0
545545 − 265.656i − 0.487442i
546546 0 0
547547 − 781.304i − 1.42834i −0.699970 0.714172i 0.746803π-0.746803\pi
0.699970 0.714172i 0.253197π-0.253197\pi
548548 0 0
549549 − 196.127i − 0.357245i
550550 0 0
551551 46.5370 0.0844591
552552 0 0
553553 525.389 0.950071
554554 0 0
555555 −21.5608 −0.0388483
556556 0 0
557557 − 1016.07i − 1.82418i −0.409988 0.912091i 0.634467π-0.634467\pi
0.409988 0.912091i 0.365533π-0.365533\pi
558558 0 0
559559 427.955 0.765573
560560 0 0
561561 0 0
562562 0 0
563563 − 804.378i − 1.42874i −0.699770 0.714368i 0.746714π-0.746714\pi
0.699770 0.714368i 0.253286π-0.253286\pi
564564 0 0
565565 401.450 0.710532
566566 0 0
567567 688.178i 1.21372i
568568 0 0
569569 − 916.303i − 1.61037i −0.593021 0.805187i 0.702065π-0.702065\pi
0.593021 0.805187i 0.297935π-0.297935\pi
570570 0 0
571571 − 629.066i − 1.10169i −0.834607 0.550846i 0.814305π-0.814305\pi
0.834607 0.550846i 0.185695π-0.185695\pi
572572 0 0
573573 921.888 1.60888
574574 0 0
575575 −143.831 −0.250141
576576 0 0
577577 −1013.71 −1.75686 −0.878432 0.477867i 0.841410π-0.841410\pi
−0.878432 + 0.477867i 0.841410π0.841410\pi
578578 0 0
579579 476.119i 0.822313i
580580 0 0
581581 −130.149 −0.224008
582582 0 0
583583 0 0
584584 0 0
585585 − 79.4477i − 0.135808i
586586 0 0
587587 658.827 1.12236 0.561182 0.827693i 0.310347π-0.310347\pi
0.561182 + 0.827693i 0.310347π0.310347\pi
588588 0 0
589589 − 86.5130i − 0.146881i
590590 0 0
591591 − 525.992i − 0.890003i
592592 0 0
593593 − 293.233i − 0.494490i −0.968953 0.247245i 0.920475π-0.920475\pi
0.968953 0.247245i 0.0795253π-0.0795253\pi
594594 0 0
595595 380.112 0.638844
596596 0 0
597597 1293.17 2.16611
598598 0 0
599599 −510.619 −0.852452 −0.426226 0.904617i 0.640157π-0.640157\pi
−0.426226 + 0.904617i 0.640157π0.640157\pi
600600 0 0
601601 1008.32i 1.67773i 0.544339 + 0.838865i 0.316780π0.316780\pi
−0.544339 + 0.838865i 0.683220π0.683220\pi
602602 0 0
603603 217.590 0.360846
604604 0 0
605605 0 0
606606 0 0
607607 13.9092i 0.0229147i 0.999934 + 0.0114573i 0.00364706π0.00364706\pi
−0.999934 + 0.0114573i 0.996353π0.996353\pi
608608 0 0
609609 368.443 0.604997
610610 0 0
611611 239.604i 0.392150i
612612 0 0
613613 418.153i 0.682142i 0.940038 + 0.341071i 0.110790π0.110790\pi
−0.940038 + 0.341071i 0.889210π0.889210\pi
614614 0 0
615615 − 484.908i − 0.788468i
616616 0 0
617617 −1045.51 −1.69451 −0.847255 0.531187i 0.821746π-0.821746\pi
−0.847255 + 0.531187i 0.821746π0.821746\pi
618618 0 0
619619 −614.916 −0.993403 −0.496701 0.867922i 0.665456π-0.665456\pi
−0.496701 + 0.867922i 0.665456π0.665456\pi
620620 0 0
621621 −570.100 −0.918035
622622 0 0
623623 − 877.508i − 1.40852i
624624 0 0
625625 25.0000 0.0400000
626626 0 0
627627 0 0
628628 0 0
629629 67.7101i 0.107647i
630630 0 0
631631 22.4531 0.0355834 0.0177917 0.999842i 0.494336π-0.494336\pi
0.0177917 + 0.999842i 0.494336π0.494336\pi
632632 0 0
633633 − 1209.62i − 1.91093i
634634 0 0
635635 17.3853i 0.0273784i
636636 0 0
637637 16.9227i 0.0265662i
638638 0 0
639639 −205.499 −0.321594
640640 0 0
641641 737.445 1.15046 0.575230 0.817992i 0.304913π-0.304913\pi
0.575230 + 0.817992i 0.304913π0.304913\pi
642642 0 0
643643 −287.361 −0.446907 −0.223453 0.974715i 0.571733π-0.571733\pi
−0.223453 + 0.974715i 0.571733π0.571733\pi
644644 0 0
645645 − 318.552i − 0.493879i
646646 0 0
647647 851.654 1.31631 0.658156 0.752882i 0.271337π-0.271337\pi
0.658156 + 0.752882i 0.271337π0.271337\pi
648648 0 0
649649 0 0
650650 0 0
651651 − 684.943i − 1.05214i
652652 0 0
653653 854.829 1.30908 0.654540 0.756027i 0.272862π-0.272862\pi
0.654540 + 0.756027i 0.272862π0.272862\pi
654654 0 0
655655 − 93.6213i − 0.142933i
656656 0 0
657657 − 283.701i − 0.431813i
658658 0 0
659659 − 328.629i − 0.498679i −0.968416 0.249339i 0.919787π-0.919787\pi
0.968416 0.249339i 0.0802135π-0.0802135\pi
660660 0 0
661661 −329.541 −0.498550 −0.249275 0.968433i 0.580192π-0.580192\pi
−0.249275 + 0.968433i 0.580192π0.580192\pi
662662 0 0
663663 −917.064 −1.38320
664664 0 0
665665 −47.0702 −0.0707822
666666 0 0
667667 437.824i 0.656409i
668668 0 0
669669 748.453 1.11876
670670 0 0
671671 0 0
672672 0 0
673673 222.239i 0.330222i 0.986275 + 0.165111i 0.0527982π0.0527982\pi
−0.986275 + 0.165111i 0.947202π0.947202\pi
674674 0 0
675675 99.0918 0.146803
676676 0 0
677677 − 831.844i − 1.22872i −0.789025 0.614361i 0.789414π-0.789414\pi
0.789025 0.614361i 0.210586π-0.210586\pi
678678 0 0
679679 609.998i 0.898377i
680680 0 0
681681 − 406.463i − 0.596861i
682682 0 0
683683 623.160 0.912387 0.456194 0.889881i 0.349212π-0.349212\pi
0.456194 + 0.889881i 0.349212π0.349212\pi
684684 0 0
685685 −282.455 −0.412343
686686 0 0
687687 1562.86 2.27490
688688 0 0
689689 − 913.032i − 1.32516i
690690 0 0
691691 −156.947 −0.227130 −0.113565 0.993531i 0.536227π-0.536227\pi
−0.113565 + 0.993531i 0.536227π0.536227\pi
692692 0 0
693693 0 0
694694 0 0
695695 − 143.089i − 0.205884i
696696 0 0
697697 −1522.82 −2.18482
698698 0 0
699699 317.841i 0.454708i
700700 0 0
701701 − 620.329i − 0.884920i −0.896788 0.442460i 0.854106π-0.854106\pi
0.896788 0.442460i 0.145894π-0.145894\pi
702702 0 0
703703 − 8.38469i − 0.0119270i
704704 0 0
705705 178.351 0.252980
706706 0 0
707707 365.346 0.516755
708708 0 0
709709 −18.2861 −0.0257914 −0.0128957 0.999917i 0.504105π-0.504105\pi
−0.0128957 + 0.999917i 0.504105π0.504105\pi
710710 0 0
711711 256.697i 0.361036i
712712 0 0
713713 813.924 1.14155
714714 0 0
715715 0 0
716716 0 0
717717 20.2118i 0.0281895i
718718 0 0
719719 −1078.37 −1.49982 −0.749909 0.661541i 0.769903π-0.769903\pi
−0.749909 + 0.661541i 0.769903π0.769903\pi
720720 0 0
721721 206.740i 0.286740i
722722 0 0
723723 798.703i 1.10471i
724724 0 0
725725 − 76.1004i − 0.104966i
726726 0 0
727727 739.254 1.01686 0.508428 0.861104i 0.330227π-0.330227\pi
0.508428 + 0.861104i 0.330227π0.330227\pi
728728 0 0
729729 290.936 0.399090
730730 0 0
731731 −1000.39 −1.36852
732732 0 0
733733 − 1204.04i − 1.64263i −0.570478 0.821313i 0.693242π-0.693242\pi
0.570478 0.821313i 0.306758π-0.306758\pi
734734 0 0
735735 12.5965 0.0171381
736736 0 0
737737 0 0
738738 0 0
739739 − 303.552i − 0.410761i −0.978682 0.205380i 0.934157π-0.934157\pi
0.978682 0.205380i 0.0658431π-0.0658431\pi
740740 0 0
741741 113.562 0.153255
742742 0 0
743743 194.593i 0.261902i 0.991389 + 0.130951i 0.0418031π0.0418031\pi
−0.991389 + 0.130951i 0.958197π0.958197\pi
744744 0 0
745745 − 4.07507i − 0.00546989i
746746 0 0
747747 − 63.5886i − 0.0851252i
748748 0 0
749749 −1337.80 −1.78611
750750 0 0
751751 706.270 0.940440 0.470220 0.882549i 0.344175π-0.344175\pi
0.470220 + 0.882549i 0.344175π0.344175\pi
752752 0 0
753753 483.426 0.642001
754754 0 0
755755 − 644.481i − 0.853617i
756756 0 0
757757 −236.493 −0.312408 −0.156204 0.987725i 0.549926π-0.549926\pi
−0.156204 + 0.987725i 0.549926π0.549926\pi
758758 0 0
759759 0 0
760760 0 0
761761 204.376i 0.268562i 0.990943 + 0.134281i 0.0428725π0.0428725\pi
−0.990943 + 0.134281i 0.957127π0.957127\pi
762762 0 0
763763 817.926 1.07199
764764 0 0
765765 185.717i 0.242767i
766766 0 0
767767 778.847i 1.01545i
768768 0 0
769769 404.940i 0.526580i 0.964717 + 0.263290i 0.0848076π0.0848076\pi
−0.964717 + 0.263290i 0.915192π0.915192\pi
770770 0 0
771771 −1451.54 −1.88267
772772 0 0
773773 −1286.73 −1.66460 −0.832298 0.554329i 0.812975π-0.812975\pi
−0.832298 + 0.554329i 0.812975π0.812975\pi
774774 0 0
775775 −141.472 −0.182545
776776 0 0
777777 − 66.3835i − 0.0854356i
778778 0 0
779779 188.574 0.242071
780780 0 0
781781 0 0
782782 0 0
783783 − 301.637i − 0.385232i
784784 0 0
785785 −150.063 −0.191163
786786 0 0
787787 1178.17i 1.49703i 0.663115 + 0.748517i 0.269234π0.269234\pi
−0.663115 + 0.748517i 0.730766π0.730766\pi
788788 0 0
789789 − 1331.45i − 1.68752i
790790 0 0
791791 1236.02i 1.56261i
792792 0 0
793793 615.881 0.776647
794794 0 0
795795 −679.623 −0.854871
796796 0 0
797797 −306.811 −0.384958 −0.192479 0.981301i 0.561653π-0.561653\pi
−0.192479 + 0.981301i 0.561653π0.561653\pi
798798 0 0
799799 − 560.097i − 0.700997i
800800 0 0
801801 428.736 0.535251
802802 0 0
803803 0 0
804804 0 0
805805 − 442.841i − 0.550113i
806806 0 0
807807 228.955 0.283711
808808 0 0
809809 1270.14i 1.57002i 0.619485 + 0.785009i 0.287342π0.287342\pi
−0.619485 + 0.785009i 0.712658π0.712658\pi
810810 0 0
811811 777.502i 0.958696i 0.877625 + 0.479348i 0.159127π0.159127\pi
−0.877625 + 0.479348i 0.840873π0.840873\pi
812812 0 0
813813 − 1864.93i − 2.29388i
814814 0 0
815815 −362.924 −0.445305
816816 0 0
817817 123.880 0.151628
818818 0 0
819819 244.611 0.298670
820820 0 0
821821 − 896.003i − 1.09136i −0.837995 0.545678i 0.816272π-0.816272\pi
0.837995 0.545678i 0.183728π-0.183728\pi
822822 0 0
823823 957.496 1.16342 0.581711 0.813396i 0.302384π-0.302384\pi
0.581711 + 0.813396i 0.302384π0.302384\pi
824824 0 0
825825 0 0
826826 0 0
827827 − 1329.17i − 1.60721i −0.595160 0.803607i 0.702911π-0.702911\pi
0.595160 0.803607i 0.297089π-0.297089\pi
828828 0 0
829829 −87.7710 −0.105876 −0.0529379 0.998598i 0.516859π-0.516859\pi
−0.0529379 + 0.998598i 0.516859π0.516859\pi
830830 0 0
831831 488.365i 0.587684i
832832 0 0
833833 − 39.5585i − 0.0474892i
834834 0 0
835835 − 327.679i − 0.392431i
836836 0 0
837837 −560.749 −0.669951
838838 0 0
839839 −53.7571 −0.0640728 −0.0320364 0.999487i 0.510199π-0.510199\pi
−0.0320364 + 0.999487i 0.510199π0.510199\pi
840840 0 0
841841 609.349 0.724553
842842 0 0
843843 − 1093.67i − 1.29735i
844844 0 0
845845 −128.413 −0.151968
846846 0 0
847847 0 0
848848 0 0
849849 − 1377.10i − 1.62202i
850850 0 0
851851 78.8840 0.0926957
852852 0 0
853853 381.990i 0.447819i 0.974610 + 0.223910i 0.0718821π0.0718821\pi
−0.974610 + 0.223910i 0.928118π0.928118\pi
854854 0 0
855855 − 22.9977i − 0.0268979i
856856 0 0
857857 − 735.176i − 0.857849i −0.903340 0.428924i 0.858893π-0.858893\pi
0.903340 0.428924i 0.141107π-0.141107\pi
858858 0 0
859859 1221.00 1.42142 0.710710 0.703485i 0.248374π-0.248374\pi
0.710710 + 0.703485i 0.248374π0.248374\pi
860860 0 0
861861 1492.98 1.73401
862862 0 0
863863 −1089.51 −1.26247 −0.631234 0.775593i 0.717451π-0.717451\pi
−0.631234 + 0.775593i 0.717451π0.717451\pi
864864 0 0
865865 145.756i 0.168503i
866866 0 0
867867 1127.54 1.30051
868868 0 0
869869 0 0
870870 0 0
871871 683.279i 0.784476i
872872 0 0
873873 −298.035 −0.341392
874874 0 0
875875 76.9723i 0.0879684i
876876 0 0
877877 − 1002.19i − 1.14275i −0.820690 0.571374i 0.806411π-0.806411\pi
0.820690 0.571374i 0.193589π-0.193589\pi
878878 0 0
879879 − 753.847i − 0.857619i
880880 0 0
881881 −319.501 −0.362657 −0.181329 0.983423i 0.558040π-0.558040\pi
−0.181329 + 0.983423i 0.558040π0.558040\pi
882882 0 0
883883 −1282.67 −1.45263 −0.726313 0.687364i 0.758768π-0.758768\pi
−0.726313 + 0.687364i 0.758768π0.758768\pi
884884 0 0
885885 579.741 0.655075
886886 0 0
887887 213.370i 0.240553i 0.992740 + 0.120276i 0.0383781π0.0383781\pi
−0.992740 + 0.120276i 0.961622π0.961622\pi
888888 0 0
889889 −53.5275 −0.0602109
890890 0 0
891891 0 0
892892 0 0
893893 69.3580i 0.0776686i
894894 0 0
895895 67.6923 0.0756338
896896 0 0
897897 1068.40i 1.19109i
898898 0 0
899899 430.643i 0.479024i
900900 0 0
901901 2134.30i 2.36881i
902902 0 0
903903 980.787 1.08614
904904 0 0
905905 367.103 0.405638
906906 0 0
907907 −1433.33 −1.58030 −0.790149 0.612915i 0.789997π-0.789997\pi
−0.790149 + 0.612915i 0.789997π0.789997\pi
908908 0 0
909909 178.502i 0.196372i
910910 0 0
911911 1648.12 1.80913 0.904565 0.426335i 0.140195π-0.140195\pi
0.904565 + 0.426335i 0.140195π0.140195\pi
912912 0 0
913913 0 0
914914 0 0
915915 − 458.436i − 0.501023i
916916 0 0
917917 288.250 0.314340
918918 0 0
919919 398.321i 0.433429i 0.976235 + 0.216714i 0.0695341π0.0695341\pi
−0.976235 + 0.216714i 0.930466π0.930466\pi
920920 0 0
921921 − 1659.34i − 1.80167i
922922 0 0
923923 − 645.309i − 0.699143i
924924 0 0
925925 −13.7112 −0.0148229
926926 0 0
927927 −101.010 −0.108964
928928 0 0
929929 −1228.51 −1.32240 −0.661198 0.750212i 0.729952π-0.729952\pi
−0.661198 + 0.750212i 0.729952π0.729952\pi
930930 0 0
931931 4.89861i 0.00526167i
932932 0 0
933933 17.2902 0.0185318
934934 0 0
935935 0 0
936936 0 0
937937 672.767i 0.718001i 0.933337 + 0.359001i 0.116882π0.116882\pi
−0.933337 + 0.359001i 0.883118π0.883118\pi
938938 0 0
939939 714.420 0.760831
940940 0 0
941941 1272.68i 1.35248i 0.736681 + 0.676240i 0.236392π0.236392\pi
−0.736681 + 0.676240i 0.763608π0.763608\pi
942942 0 0
943943 1774.12i 1.88136i
944944 0 0
945945 305.093i 0.322850i
946946 0 0
947947 −264.005 −0.278780 −0.139390 0.990238i 0.544514π-0.544514\pi
−0.139390 + 0.990238i 0.544514π0.544514\pi
948948 0 0
949949 890.881 0.938758
950950 0 0
951951 1.73697 0.00182647
952952 0 0
953953 856.742i 0.898995i 0.893282 + 0.449498i 0.148397π0.148397\pi
−0.893282 + 0.449498i 0.851603π0.851603\pi
954954 0 0
955955 586.258 0.613883
956956 0 0
957957 0 0
958958 0 0
959959 − 869.648i − 0.906828i
960960 0 0
961961 −160.427 −0.166938
962962 0 0
963963 − 653.626i − 0.678740i
964964 0 0
965965 302.779i 0.313761i
966966 0 0
967967 618.200i 0.639297i 0.947536 + 0.319648i 0.103565π0.103565\pi
−0.947536 + 0.319648i 0.896435π0.896435\pi
968968 0 0
969969 −265.462 −0.273955
970970 0 0
971971 −752.937 −0.775424 −0.387712 0.921780i 0.626735π-0.626735\pi
−0.387712 + 0.921780i 0.626735π0.626735\pi
972972 0 0
973973 440.556 0.452782
974974 0 0
975975 − 185.704i − 0.190466i
976976 0 0
977977 −169.145 −0.173127 −0.0865636 0.996246i 0.527589π-0.527589\pi
−0.0865636 + 0.996246i 0.527589π0.527589\pi
978978 0 0
979979 0 0
980980 0 0
981981 399.625i 0.407365i
982982 0 0
983983 1038.58 1.05654 0.528271 0.849076i 0.322841π-0.322841\pi
0.528271 + 0.849076i 0.322841π0.322841\pi
984984 0 0
985985 − 334.495i − 0.339589i
986986 0 0
987987 549.123i 0.556355i
988988 0 0
989989 1165.48i 1.17844i
990990 0 0
991991 −1226.12 −1.23725 −0.618625 0.785686i 0.712310π-0.712310\pi
−0.618625 + 0.785686i 0.712310π0.712310\pi
992992 0 0
993993 1724.71 1.73687
994994 0 0
995995 822.366 0.826498
996996 0 0
997997 1809.11i 1.81455i 0.420536 + 0.907276i 0.361842π0.361842\pi
−0.420536 + 0.907276i 0.638158π0.638158\pi
998998 0 0
999999 −54.3468 −0.0544012
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2420.3.f.a.241.3 16
11.2 odd 10 220.3.p.b.161.1 yes 16
11.5 even 5 220.3.p.b.41.1 16
11.10 odd 2 inner 2420.3.f.a.241.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.p.b.41.1 16 11.5 even 5
220.3.p.b.161.1 yes 16 11.2 odd 10
2420.3.f.a.241.3 16 1.1 even 1 trivial
2420.3.f.a.241.4 16 11.10 odd 2 inner