Properties

Label 220.3.x.a.157.4
Level $220$
Weight $3$
Character 220.157
Analytic conductor $5.995$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(37,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.x (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 157.4
Character \(\chi\) \(=\) 220.157
Dual form 220.3.x.a.213.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.64938 - 1.34992i) q^{3} +(-4.68210 - 1.75440i) q^{5} +(7.03139 - 3.58267i) q^{7} +(-0.0931732 - 0.128242i) q^{9} +(-6.18826 + 9.09425i) q^{11} +(-2.37948 + 15.0235i) q^{13} +(10.0363 + 10.9686i) q^{15} +(0.343110 + 2.16631i) q^{17} +(-19.4291 + 6.31290i) q^{19} -23.4651 q^{21} +(-26.5643 + 26.5643i) q^{23} +(18.8441 + 16.4286i) q^{25} +(4.26010 + 26.8972i) q^{27} +(-7.54043 - 2.45004i) q^{29} +(19.0407 - 13.8339i) q^{31} +(28.6716 - 15.7404i) q^{33} +(-39.2071 + 4.43853i) q^{35} +(45.3507 - 23.1073i) q^{37} +(26.5847 - 36.5906i) q^{39} +(-16.8469 - 51.8496i) q^{41} +(-37.5264 + 37.5264i) q^{43} +(0.211258 + 0.763905i) q^{45} +(-32.7034 + 64.1840i) q^{47} +(7.80344 - 10.7405i) q^{49} +(2.01533 - 6.20255i) q^{51} +(5.18513 - 32.7376i) q^{53} +(44.9291 - 31.7235i) q^{55} +(59.9970 + 9.50259i) q^{57} +(-68.0751 - 22.1189i) q^{59} +(-43.1118 - 31.3225i) q^{61} +(-1.11459 - 0.567910i) q^{63} +(37.4982 - 66.1667i) q^{65} +(2.89959 + 2.89959i) q^{67} +(106.238 - 34.5190i) q^{69} +(44.2385 + 32.1412i) q^{71} +(-1.06243 - 2.08514i) q^{73} +(-27.7478 - 68.9637i) q^{75} +(-10.9304 + 86.1158i) q^{77} +(-52.5752 - 72.3635i) q^{79} +(24.5818 - 75.6549i) q^{81} +(61.9680 - 9.81477i) q^{83} +(2.19411 - 10.7449i) q^{85} +(16.6701 + 16.6701i) q^{87} -36.0140i q^{89} +(37.0931 + 114.161i) q^{91} +(-69.1207 + 10.9476i) q^{93} +(102.044 + 4.52889i) q^{95} +(7.88225 + 1.24843i) q^{97} +(1.74284 - 0.0537454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 2 q^{3} + 4 q^{5} - 2 q^{7} - 20 q^{11} - 8 q^{13} + 88 q^{15} + 42 q^{17} + 56 q^{21} - 104 q^{23} - 126 q^{25} - 14 q^{27} - 32 q^{31} + 52 q^{33} + 56 q^{35} - 134 q^{37} + 24 q^{41} + 332 q^{43}+ \cdots - 310 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.64938 1.34992i −0.883125 0.449975i −0.0472428 0.998883i \(-0.515043\pi\)
−0.835882 + 0.548909i \(0.815043\pi\)
\(4\) 0 0
\(5\) −4.68210 1.75440i −0.936420 0.350881i
\(6\) 0 0
\(7\) 7.03139 3.58267i 1.00448 0.511810i 0.127249 0.991871i \(-0.459385\pi\)
0.877235 + 0.480060i \(0.159385\pi\)
\(8\) 0 0
\(9\) −0.0931732 0.128242i −0.0103526 0.0142491i
\(10\) 0 0
\(11\) −6.18826 + 9.09425i −0.562570 + 0.826750i
\(12\) 0 0
\(13\) −2.37948 + 15.0235i −0.183037 + 1.15565i 0.709510 + 0.704696i \(0.248916\pi\)
−0.892547 + 0.450955i \(0.851084\pi\)
\(14\) 0 0
\(15\) 10.0363 + 10.9686i 0.669089 + 0.731237i
\(16\) 0 0
\(17\) 0.343110 + 2.16631i 0.0201830 + 0.127430i 0.995723 0.0923935i \(-0.0294518\pi\)
−0.975540 + 0.219824i \(0.929452\pi\)
\(18\) 0 0
\(19\) −19.4291 + 6.31290i −1.02259 + 0.332258i −0.771855 0.635799i \(-0.780671\pi\)
−0.250730 + 0.968057i \(0.580671\pi\)
\(20\) 0 0
\(21\) −23.4651 −1.11739
\(22\) 0 0
\(23\) −26.5643 + 26.5643i −1.15497 + 1.15497i −0.169425 + 0.985543i \(0.554191\pi\)
−0.985543 + 0.169425i \(0.945809\pi\)
\(24\) 0 0
\(25\) 18.8441 + 16.4286i 0.753765 + 0.657144i
\(26\) 0 0
\(27\) 4.26010 + 26.8972i 0.157782 + 0.996194i
\(28\) 0 0
\(29\) −7.54043 2.45004i −0.260015 0.0844840i 0.176109 0.984371i \(-0.443649\pi\)
−0.436124 + 0.899887i \(0.643649\pi\)
\(30\) 0 0
\(31\) 19.0407 13.8339i 0.614217 0.446255i −0.236680 0.971588i \(-0.576059\pi\)
0.850897 + 0.525333i \(0.176059\pi\)
\(32\) 0 0
\(33\) 28.6716 15.7404i 0.868836 0.476982i
\(34\) 0 0
\(35\) −39.2071 + 4.43853i −1.12020 + 0.126815i
\(36\) 0 0
\(37\) 45.3507 23.1073i 1.22569 0.624522i 0.283301 0.959031i \(-0.408570\pi\)
0.942393 + 0.334509i \(0.108570\pi\)
\(38\) 0 0
\(39\) 26.5847 36.5906i 0.681658 0.938222i
\(40\) 0 0
\(41\) −16.8469 51.8496i −0.410901 1.26462i −0.915866 0.401484i \(-0.868495\pi\)
0.504965 0.863140i \(-0.331505\pi\)
\(42\) 0 0
\(43\) −37.5264 + 37.5264i −0.872707 + 0.872707i −0.992767 0.120060i \(-0.961691\pi\)
0.120060 + 0.992767i \(0.461691\pi\)
\(44\) 0 0
\(45\) 0.211258 + 0.763905i 0.00469462 + 0.0169757i
\(46\) 0 0
\(47\) −32.7034 + 64.1840i −0.695816 + 1.36562i 0.224513 + 0.974471i \(0.427921\pi\)
−0.920329 + 0.391145i \(0.872079\pi\)
\(48\) 0 0
\(49\) 7.80344 10.7405i 0.159254 0.219194i
\(50\) 0 0
\(51\) 2.01533 6.20255i 0.0395163 0.121619i
\(52\) 0 0
\(53\) 5.18513 32.7376i 0.0978326 0.617690i −0.889243 0.457435i \(-0.848768\pi\)
0.987076 0.160255i \(-0.0512318\pi\)
\(54\) 0 0
\(55\) 44.9291 31.7235i 0.816892 0.576790i
\(56\) 0 0
\(57\) 59.9970 + 9.50259i 1.05258 + 0.166712i
\(58\) 0 0
\(59\) −68.0751 22.1189i −1.15382 0.374897i −0.331236 0.943548i \(-0.607466\pi\)
−0.822579 + 0.568651i \(0.807466\pi\)
\(60\) 0 0
\(61\) −43.1118 31.3225i −0.706750 0.513484i 0.175374 0.984502i \(-0.443887\pi\)
−0.882124 + 0.471018i \(0.843887\pi\)
\(62\) 0 0
\(63\) −1.11459 0.567910i −0.0176918 0.00901444i
\(64\) 0 0
\(65\) 37.4982 66.1667i 0.576895 1.01795i
\(66\) 0 0
\(67\) 2.89959 + 2.89959i 0.0432774 + 0.0432774i 0.728414 0.685137i \(-0.240258\pi\)
−0.685137 + 0.728414i \(0.740258\pi\)
\(68\) 0 0
\(69\) 106.238 34.5190i 1.53969 0.500275i
\(70\) 0 0
\(71\) 44.2385 + 32.1412i 0.623078 + 0.452693i 0.853995 0.520281i \(-0.174173\pi\)
−0.230917 + 0.972973i \(0.574173\pi\)
\(72\) 0 0
\(73\) −1.06243 2.08514i −0.0145539 0.0285636i 0.883615 0.468214i \(-0.155102\pi\)
−0.898169 + 0.439650i \(0.855102\pi\)
\(74\) 0 0
\(75\) −27.7478 68.9637i −0.369971 0.919516i
\(76\) 0 0
\(77\) −10.9304 + 86.1158i −0.141953 + 1.11839i
\(78\) 0 0
\(79\) −52.5752 72.3635i −0.665508 0.915994i 0.334140 0.942524i \(-0.391554\pi\)
−0.999648 + 0.0265298i \(0.991554\pi\)
\(80\) 0 0
\(81\) 24.5818 75.6549i 0.303478 0.934011i
\(82\) 0 0
\(83\) 61.9680 9.81477i 0.746602 0.118250i 0.228470 0.973551i \(-0.426628\pi\)
0.518132 + 0.855301i \(0.326628\pi\)
\(84\) 0 0
\(85\) 2.19411 10.7449i 0.0258131 0.126410i
\(86\) 0 0
\(87\) 16.6701 + 16.6701i 0.191610 + 0.191610i
\(88\) 0 0
\(89\) 36.0140i 0.404652i −0.979318 0.202326i \(-0.935150\pi\)
0.979318 0.202326i \(-0.0648501\pi\)
\(90\) 0 0
\(91\) 37.0931 + 114.161i 0.407616 + 1.25451i
\(92\) 0 0
\(93\) −69.1207 + 10.9476i −0.743234 + 0.117717i
\(94\) 0 0
\(95\) 102.044 + 4.52889i 1.07415 + 0.0476725i
\(96\) 0 0
\(97\) 7.88225 + 1.24843i 0.0812603 + 0.0128704i 0.196932 0.980417i \(-0.436902\pi\)
−0.115672 + 0.993287i \(0.536902\pi\)
\(98\) 0 0
\(99\) 1.74284 0.0537454i 0.0176045 0.000542883i
\(100\) 0 0
\(101\) −149.483 + 108.606i −1.48003 + 1.07531i −0.502487 + 0.864585i \(0.667581\pi\)
−0.977546 + 0.210722i \(0.932419\pi\)
\(102\) 0 0
\(103\) −76.8415 150.810i −0.746034 1.46417i −0.880896 0.473310i \(-0.843059\pi\)
0.134862 0.990864i \(-0.456941\pi\)
\(104\) 0 0
\(105\) 109.866 + 41.1673i 1.04634 + 0.392070i
\(106\) 0 0
\(107\) −20.7782 + 40.7795i −0.194189 + 0.381117i −0.967485 0.252928i \(-0.918606\pi\)
0.773296 + 0.634045i \(0.218606\pi\)
\(108\) 0 0
\(109\) 208.005i 1.90830i 0.299322 + 0.954152i \(0.403240\pi\)
−0.299322 + 0.954152i \(0.596760\pi\)
\(110\) 0 0
\(111\) −151.344 −1.36346
\(112\) 0 0
\(113\) −37.7122 19.2153i −0.333736 0.170047i 0.279090 0.960265i \(-0.409967\pi\)
−0.612826 + 0.790218i \(0.709967\pi\)
\(114\) 0 0
\(115\) 170.981 77.7721i 1.48679 0.676279i
\(116\) 0 0
\(117\) 2.14834 1.09463i 0.0183619 0.00935584i
\(118\) 0 0
\(119\) 10.1737 + 14.0029i 0.0854936 + 0.117672i
\(120\) 0 0
\(121\) −44.4108 112.555i −0.367031 0.930209i
\(122\) 0 0
\(123\) −25.3591 + 160.111i −0.206172 + 1.30172i
\(124\) 0 0
\(125\) −59.4077 109.981i −0.475262 0.879845i
\(126\) 0 0
\(127\) 14.2156 + 89.7535i 0.111934 + 0.706721i 0.978282 + 0.207280i \(0.0664611\pi\)
−0.866348 + 0.499441i \(0.833539\pi\)
\(128\) 0 0
\(129\) 150.079 48.7637i 1.16341 0.378013i
\(130\) 0 0
\(131\) −177.199 −1.35267 −0.676333 0.736596i \(-0.736432\pi\)
−0.676333 + 0.736596i \(0.736432\pi\)
\(132\) 0 0
\(133\) −113.997 + 113.997i −0.857118 + 0.857118i
\(134\) 0 0
\(135\) 27.2424 133.409i 0.201796 0.988218i
\(136\) 0 0
\(137\) 14.9198 + 94.2000i 0.108904 + 0.687592i 0.980375 + 0.197144i \(0.0631667\pi\)
−0.871471 + 0.490448i \(0.836833\pi\)
\(138\) 0 0
\(139\) 65.8473 + 21.3951i 0.473722 + 0.153922i 0.536141 0.844128i \(-0.319882\pi\)
−0.0624192 + 0.998050i \(0.519882\pi\)
\(140\) 0 0
\(141\) 173.287 125.900i 1.22899 0.892910i
\(142\) 0 0
\(143\) −121.902 114.609i −0.852463 0.801459i
\(144\) 0 0
\(145\) 31.0067 + 24.7003i 0.213839 + 0.170347i
\(146\) 0 0
\(147\) −35.1731 + 17.9216i −0.239273 + 0.121916i
\(148\) 0 0
\(149\) 91.5925 126.066i 0.614715 0.846083i −0.382240 0.924063i \(-0.624847\pi\)
0.996955 + 0.0779806i \(0.0248472\pi\)
\(150\) 0 0
\(151\) 7.29942 + 22.4653i 0.0483405 + 0.148777i 0.972313 0.233682i \(-0.0750774\pi\)
−0.923973 + 0.382459i \(0.875077\pi\)
\(152\) 0 0
\(153\) 0.245843 0.245843i 0.00160682 0.00160682i
\(154\) 0 0
\(155\) −113.421 + 31.3665i −0.731747 + 0.202365i
\(156\) 0 0
\(157\) 14.3514 28.1663i 0.0914104 0.179403i −0.840774 0.541385i \(-0.817900\pi\)
0.932185 + 0.361982i \(0.117900\pi\)
\(158\) 0 0
\(159\) −57.9306 + 79.7346i −0.364343 + 0.501476i
\(160\) 0 0
\(161\) −91.6127 + 281.955i −0.569023 + 1.75127i
\(162\) 0 0
\(163\) −36.0420 + 227.560i −0.221116 + 1.39607i 0.588207 + 0.808710i \(0.299834\pi\)
−0.809323 + 0.587363i \(0.800166\pi\)
\(164\) 0 0
\(165\) −161.858 + 23.3965i −0.980959 + 0.141797i
\(166\) 0 0
\(167\) −79.6950 12.6224i −0.477216 0.0755835i −0.0868069 0.996225i \(-0.527666\pi\)
−0.390409 + 0.920642i \(0.627666\pi\)
\(168\) 0 0
\(169\) −59.3137 19.2722i −0.350969 0.114037i
\(170\) 0 0
\(171\) 2.61985 + 1.90343i 0.0153208 + 0.0111312i
\(172\) 0 0
\(173\) 81.4089 + 41.4799i 0.470572 + 0.239768i 0.673162 0.739495i \(-0.264936\pi\)
−0.202590 + 0.979264i \(0.564936\pi\)
\(174\) 0 0
\(175\) 191.359 + 48.0035i 1.09348 + 0.274306i
\(176\) 0 0
\(177\) 150.498 + 150.498i 0.850269 + 0.850269i
\(178\) 0 0
\(179\) −56.9862 + 18.5159i −0.318359 + 0.103441i −0.463837 0.885920i \(-0.653528\pi\)
0.145479 + 0.989361i \(0.453528\pi\)
\(180\) 0 0
\(181\) −168.899 122.712i −0.933143 0.677968i 0.0136175 0.999907i \(-0.495665\pi\)
−0.946760 + 0.321939i \(0.895665\pi\)
\(182\) 0 0
\(183\) 71.9362 + 141.183i 0.393094 + 0.771490i
\(184\) 0 0
\(185\) −252.876 + 28.6274i −1.36690 + 0.154743i
\(186\) 0 0
\(187\) −21.8243 10.2854i −0.116707 0.0550021i
\(188\) 0 0
\(189\) 126.318 + 173.862i 0.668351 + 0.919907i
\(190\) 0 0
\(191\) −19.9880 + 61.5168i −0.104649 + 0.322078i −0.989648 0.143516i \(-0.954159\pi\)
0.884999 + 0.465594i \(0.154159\pi\)
\(192\) 0 0
\(193\) 268.577 42.5384i 1.39159 0.220406i 0.584769 0.811200i \(-0.301185\pi\)
0.806823 + 0.590794i \(0.201185\pi\)
\(194\) 0 0
\(195\) −188.667 + 124.681i −0.967522 + 0.639389i
\(196\) 0 0
\(197\) −152.219 152.219i −0.772686 0.772686i 0.205890 0.978575i \(-0.433991\pi\)
−0.978575 + 0.205890i \(0.933991\pi\)
\(198\) 0 0
\(199\) 150.100i 0.754269i 0.926159 + 0.377135i \(0.123091\pi\)
−0.926159 + 0.377135i \(0.876909\pi\)
\(200\) 0 0
\(201\) −3.76787 11.5963i −0.0187456 0.0576931i
\(202\) 0 0
\(203\) −61.7974 + 9.78775i −0.304421 + 0.0482155i
\(204\) 0 0
\(205\) −12.0860 + 272.321i −0.0589562 + 1.32840i
\(206\) 0 0
\(207\) 5.88173 + 0.931574i 0.0284141 + 0.00450036i
\(208\) 0 0
\(209\) 62.8214 215.759i 0.300581 1.03234i
\(210\) 0 0
\(211\) 249.829 181.511i 1.18402 0.860244i 0.191404 0.981511i \(-0.438696\pi\)
0.992620 + 0.121267i \(0.0386958\pi\)
\(212\) 0 0
\(213\) −73.8163 144.873i −0.346556 0.680154i
\(214\) 0 0
\(215\) 241.539 109.866i 1.12344 0.511004i
\(216\) 0 0
\(217\) 84.3204 165.488i 0.388573 0.762618i
\(218\) 0 0
\(219\) 6.95853i 0.0317741i
\(220\) 0 0
\(221\) −33.3619 −0.150959
\(222\) 0 0
\(223\) 106.362 + 54.1939i 0.476958 + 0.243022i 0.675906 0.736988i \(-0.263753\pi\)
−0.198948 + 0.980010i \(0.563753\pi\)
\(224\) 0 0
\(225\) 0.351067 3.94731i 0.00156030 0.0175436i
\(226\) 0 0
\(227\) 188.221 95.9036i 0.829169 0.422483i 0.0127332 0.999919i \(-0.495947\pi\)
0.816436 + 0.577436i \(0.195947\pi\)
\(228\) 0 0
\(229\) −251.849 346.641i −1.09978 1.51371i −0.835678 0.549219i \(-0.814925\pi\)
−0.264100 0.964495i \(-0.585075\pi\)
\(230\) 0 0
\(231\) 145.208 213.398i 0.628608 0.923800i
\(232\) 0 0
\(233\) 16.0897 101.586i 0.0690546 0.435994i −0.928803 0.370573i \(-0.879161\pi\)
0.997858 0.0654202i \(-0.0208388\pi\)
\(234\) 0 0
\(235\) 265.725 243.141i 1.13075 1.03464i
\(236\) 0 0
\(237\) 41.6061 + 262.691i 0.175553 + 1.10840i
\(238\) 0 0
\(239\) −407.279 + 132.333i −1.70410 + 0.553695i −0.989333 0.145672i \(-0.953466\pi\)
−0.714764 + 0.699366i \(0.753466\pi\)
\(240\) 0 0
\(241\) 60.3944 0.250599 0.125300 0.992119i \(-0.460011\pi\)
0.125300 + 0.992119i \(0.460011\pi\)
\(242\) 0 0
\(243\) 6.05202 6.05202i 0.0249054 0.0249054i
\(244\) 0 0
\(245\) −55.3797 + 36.5978i −0.226040 + 0.149379i
\(246\) 0 0
\(247\) −48.6104 306.914i −0.196803 1.24257i
\(248\) 0 0
\(249\) −177.426 57.6491i −0.712553 0.231522i
\(250\) 0 0
\(251\) 368.024 267.385i 1.46623 1.06528i 0.484545 0.874766i \(-0.338985\pi\)
0.981685 0.190513i \(-0.0610150\pi\)
\(252\) 0 0
\(253\) −77.1954 405.969i −0.305120 1.60462i
\(254\) 0 0
\(255\) −20.3178 + 25.5053i −0.0796775 + 0.100021i
\(256\) 0 0
\(257\) −67.4972 + 34.3916i −0.262635 + 0.133819i −0.580350 0.814367i \(-0.697084\pi\)
0.317715 + 0.948186i \(0.397084\pi\)
\(258\) 0 0
\(259\) 236.092 324.953i 0.911553 1.25465i
\(260\) 0 0
\(261\) 0.388369 + 1.19528i 0.00148800 + 0.00457960i
\(262\) 0 0
\(263\) −101.777 + 101.777i −0.386984 + 0.386984i −0.873610 0.486626i \(-0.838227\pi\)
0.486626 + 0.873610i \(0.338227\pi\)
\(264\) 0 0
\(265\) −81.7123 + 144.184i −0.308348 + 0.544090i
\(266\) 0 0
\(267\) −48.6162 + 95.4147i −0.182083 + 0.357358i
\(268\) 0 0
\(269\) −83.8954 + 115.472i −0.311879 + 0.429265i −0.935966 0.352090i \(-0.885471\pi\)
0.624087 + 0.781355i \(0.285471\pi\)
\(270\) 0 0
\(271\) −20.0339 + 61.6580i −0.0739258 + 0.227520i −0.981191 0.193038i \(-0.938166\pi\)
0.907265 + 0.420559i \(0.138166\pi\)
\(272\) 0 0
\(273\) 55.8348 352.527i 0.204523 1.29131i
\(274\) 0 0
\(275\) −266.018 + 69.7087i −0.967339 + 0.253486i
\(276\) 0 0
\(277\) 502.673 + 79.6156i 1.81470 + 0.287421i 0.969150 0.246470i \(-0.0792706\pi\)
0.845553 + 0.533891i \(0.179271\pi\)
\(278\) 0 0
\(279\) −3.54817 1.15287i −0.0127174 0.00413215i
\(280\) 0 0
\(281\) 427.771 + 310.794i 1.52232 + 1.10603i 0.960324 + 0.278885i \(0.0899649\pi\)
0.561992 + 0.827143i \(0.310035\pi\)
\(282\) 0 0
\(283\) 116.313 + 59.2646i 0.411001 + 0.209415i 0.647251 0.762277i \(-0.275919\pi\)
−0.236250 + 0.971692i \(0.575919\pi\)
\(284\) 0 0
\(285\) −264.240 149.751i −0.927160 0.525442i
\(286\) 0 0
\(287\) −304.217 304.217i −1.05999 1.05999i
\(288\) 0 0
\(289\) 270.280 87.8193i 0.935225 0.303873i
\(290\) 0 0
\(291\) −19.1977 13.9480i −0.0659716 0.0479312i
\(292\) 0 0
\(293\) 59.1428 + 116.074i 0.201853 + 0.396158i 0.969636 0.244551i \(-0.0786406\pi\)
−0.767784 + 0.640709i \(0.778641\pi\)
\(294\) 0 0
\(295\) 279.929 + 222.994i 0.948911 + 0.755913i
\(296\) 0 0
\(297\) −270.973 127.705i −0.912366 0.429982i
\(298\) 0 0
\(299\) −335.878 462.296i −1.12334 1.54614i
\(300\) 0 0
\(301\) −129.418 + 398.308i −0.429960 + 1.32328i
\(302\) 0 0
\(303\) 542.647 85.9469i 1.79091 0.283653i
\(304\) 0 0
\(305\) 146.901 + 222.291i 0.481643 + 0.728822i
\(306\) 0 0
\(307\) −53.8112 53.8112i −0.175281 0.175281i 0.614014 0.789295i \(-0.289554\pi\)
−0.789295 + 0.614014i \(0.789554\pi\)
\(308\) 0 0
\(309\) 503.282i 1.62875i
\(310\) 0 0
\(311\) 55.3408 + 170.321i 0.177945 + 0.547657i 0.999756 0.0221029i \(-0.00703613\pi\)
−0.821811 + 0.569760i \(0.807036\pi\)
\(312\) 0 0
\(313\) −128.259 + 20.3142i −0.409772 + 0.0649016i −0.357918 0.933753i \(-0.616513\pi\)
−0.0518545 + 0.998655i \(0.516513\pi\)
\(314\) 0 0
\(315\) 4.22226 + 4.61444i 0.0134040 + 0.0146490i
\(316\) 0 0
\(317\) −107.830 17.0787i −0.340159 0.0538759i −0.0159819 0.999872i \(-0.505087\pi\)
−0.324177 + 0.945996i \(0.605087\pi\)
\(318\) 0 0
\(319\) 68.9434 53.4131i 0.216124 0.167439i
\(320\) 0 0
\(321\) 110.098 79.9912i 0.342986 0.249194i
\(322\) 0 0
\(323\) −20.3421 39.9235i −0.0629785 0.123602i
\(324\) 0 0
\(325\) −291.654 + 244.012i −0.897395 + 0.750807i
\(326\) 0 0
\(327\) 280.791 551.084i 0.858689 1.68527i
\(328\) 0 0
\(329\) 568.468i 1.72787i
\(330\) 0 0
\(331\) 292.474 0.883607 0.441804 0.897112i \(-0.354339\pi\)
0.441804 + 0.897112i \(0.354339\pi\)
\(332\) 0 0
\(333\) −7.18879 3.66287i −0.0215880 0.0109996i
\(334\) 0 0
\(335\) −8.48911 18.6632i −0.0253406 0.0557111i
\(336\) 0 0
\(337\) −199.701 + 101.753i −0.592584 + 0.301937i −0.724446 0.689331i \(-0.757904\pi\)
0.131862 + 0.991268i \(0.457904\pi\)
\(338\) 0 0
\(339\) 73.9745 + 101.817i 0.218214 + 0.300346i
\(340\) 0 0
\(341\) 7.97986 + 258.769i 0.0234013 + 0.758853i
\(342\) 0 0
\(343\) −44.1014 + 278.446i −0.128576 + 0.811795i
\(344\) 0 0
\(345\) −557.979 24.7640i −1.61733 0.0717796i
\(346\) 0 0
\(347\) −24.8851 157.118i −0.0717150 0.452791i −0.997249 0.0741260i \(-0.976383\pi\)
0.925534 0.378665i \(-0.123617\pi\)
\(348\) 0 0
\(349\) −623.519 + 202.593i −1.78659 + 0.580497i −0.999346 0.0361497i \(-0.988491\pi\)
−0.787240 + 0.616647i \(0.788491\pi\)
\(350\) 0 0
\(351\) −414.226 −1.18013
\(352\) 0 0
\(353\) 240.681 240.681i 0.681817 0.681817i −0.278593 0.960409i \(-0.589868\pi\)
0.960409 + 0.278593i \(0.0898679\pi\)
\(354\) 0 0
\(355\) −150.741 228.101i −0.424622 0.642537i
\(356\) 0 0
\(357\) −8.05113 50.8328i −0.0225522 0.142389i
\(358\) 0 0
\(359\) 332.050 + 107.889i 0.924930 + 0.300528i 0.732487 0.680780i \(-0.238359\pi\)
0.192442 + 0.981308i \(0.438359\pi\)
\(360\) 0 0
\(361\) 45.5828 33.1179i 0.126268 0.0917392i
\(362\) 0 0
\(363\) −34.2803 + 358.152i −0.0944361 + 0.986645i
\(364\) 0 0
\(365\) 1.31624 + 11.6268i 0.00360613 + 0.0318542i
\(366\) 0 0
\(367\) −156.066 + 79.5195i −0.425247 + 0.216674i −0.653498 0.756928i \(-0.726699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(368\) 0 0
\(369\) −5.07960 + 6.99147i −0.0137659 + 0.0189471i
\(370\) 0 0
\(371\) −80.8294 248.767i −0.217869 0.670532i
\(372\) 0 0
\(373\) −207.975 + 207.975i −0.557573 + 0.557573i −0.928616 0.371042i \(-0.879000\pi\)
0.371042 + 0.928616i \(0.379000\pi\)
\(374\) 0 0
\(375\) 8.92785 + 371.576i 0.0238076 + 0.990868i
\(376\) 0 0
\(377\) 54.7503 107.454i 0.145226 0.285023i
\(378\) 0 0
\(379\) −66.0392 + 90.8951i −0.174246 + 0.239829i −0.887204 0.461378i \(-0.847355\pi\)
0.712958 + 0.701207i \(0.247355\pi\)
\(380\) 0 0
\(381\) 83.4981 256.981i 0.219155 0.674490i
\(382\) 0 0
\(383\) 77.4342 488.900i 0.202178 1.27650i −0.652678 0.757636i \(-0.726354\pi\)
0.854856 0.518866i \(-0.173646\pi\)
\(384\) 0 0
\(385\) 202.259 384.026i 0.525348 0.997471i
\(386\) 0 0
\(387\) 8.30891 + 1.31600i 0.0214700 + 0.00340052i
\(388\) 0 0
\(389\) 426.589 + 138.607i 1.09663 + 0.356316i 0.800804 0.598926i \(-0.204406\pi\)
0.295824 + 0.955242i \(0.404406\pi\)
\(390\) 0 0
\(391\) −66.6610 48.4321i −0.170489 0.123867i
\(392\) 0 0
\(393\) 469.467 + 239.205i 1.19457 + 0.608665i
\(394\) 0 0
\(395\) 119.207 + 431.051i 0.301791 + 1.09127i
\(396\) 0 0
\(397\) −510.808 510.808i −1.28667 1.28667i −0.936798 0.349872i \(-0.886225\pi\)
−0.349872 0.936798i \(-0.613775\pi\)
\(398\) 0 0
\(399\) 455.907 148.133i 1.14262 0.371261i
\(400\) 0 0
\(401\) −117.926 85.6783i −0.294080 0.213662i 0.430955 0.902373i \(-0.358177\pi\)
−0.725035 + 0.688712i \(0.758177\pi\)
\(402\) 0 0
\(403\) 162.526 + 318.975i 0.403290 + 0.791501i
\(404\) 0 0
\(405\) −247.823 + 311.097i −0.611910 + 0.768142i
\(406\) 0 0
\(407\) −70.4982 + 555.425i −0.173214 + 1.36468i
\(408\) 0 0
\(409\) 107.001 + 147.274i 0.261615 + 0.360083i 0.919537 0.393004i \(-0.128564\pi\)
−0.657921 + 0.753087i \(0.728564\pi\)
\(410\) 0 0
\(411\) 87.6347 269.712i 0.213223 0.656233i
\(412\) 0 0
\(413\) −557.907 + 88.3639i −1.35087 + 0.213956i
\(414\) 0 0
\(415\) −307.359 62.7632i −0.740625 0.151237i
\(416\) 0 0
\(417\) −145.573 145.573i −0.349095 0.349095i
\(418\) 0 0
\(419\) 33.8672i 0.0808286i 0.999183 + 0.0404143i \(0.0128678\pi\)
−0.999183 + 0.0404143i \(0.987132\pi\)
\(420\) 0 0
\(421\) 92.2752 + 283.994i 0.219181 + 0.674570i 0.998830 + 0.0483532i \(0.0153973\pi\)
−0.779649 + 0.626216i \(0.784603\pi\)
\(422\) 0 0
\(423\) 11.2781 1.78628i 0.0266623 0.00422289i
\(424\) 0 0
\(425\) −29.1239 + 46.4591i −0.0685268 + 0.109316i
\(426\) 0 0
\(427\) −415.354 65.7856i −0.972726 0.154065i
\(428\) 0 0
\(429\) 168.252 + 468.200i 0.392195 + 1.09138i
\(430\) 0 0
\(431\) −470.349 + 341.729i −1.09130 + 0.792874i −0.979618 0.200871i \(-0.935623\pi\)
−0.111679 + 0.993744i \(0.535623\pi\)
\(432\) 0 0
\(433\) −89.2385 175.140i −0.206093 0.404481i 0.764704 0.644382i \(-0.222885\pi\)
−0.970797 + 0.239901i \(0.922885\pi\)
\(434\) 0 0
\(435\) −48.8049 107.297i −0.112195 0.246660i
\(436\) 0 0
\(437\) 348.423 683.818i 0.797306 1.56480i
\(438\) 0 0
\(439\) 116.632i 0.265676i 0.991138 + 0.132838i \(0.0424091\pi\)
−0.991138 + 0.132838i \(0.957591\pi\)
\(440\) 0 0
\(441\) −2.10445 −0.00477200
\(442\) 0 0
\(443\) 31.3026 + 15.9495i 0.0706605 + 0.0360033i 0.488964 0.872304i \(-0.337375\pi\)
−0.418303 + 0.908307i \(0.637375\pi\)
\(444\) 0 0
\(445\) −63.1832 + 168.621i −0.141985 + 0.378924i
\(446\) 0 0
\(447\) −412.843 + 210.354i −0.923586 + 0.470591i
\(448\) 0 0
\(449\) 248.055 + 341.418i 0.552460 + 0.760396i 0.990343 0.138635i \(-0.0442716\pi\)
−0.437883 + 0.899032i \(0.644272\pi\)
\(450\) 0 0
\(451\) 575.786 + 167.649i 1.27669 + 0.371726i
\(452\) 0 0
\(453\) 10.9875 69.3727i 0.0242551 0.153141i
\(454\) 0 0
\(455\) 26.6106 599.588i 0.0584849 1.31778i
\(456\) 0 0
\(457\) 8.18788 + 51.6963i 0.0179166 + 0.113121i 0.995026 0.0996173i \(-0.0317618\pi\)
−0.977109 + 0.212738i \(0.931762\pi\)
\(458\) 0 0
\(459\) −56.8062 + 18.4574i −0.123761 + 0.0402123i
\(460\) 0 0
\(461\) −360.723 −0.782479 −0.391240 0.920289i \(-0.627954\pi\)
−0.391240 + 0.920289i \(0.627954\pi\)
\(462\) 0 0
\(463\) −221.558 + 221.558i −0.478526 + 0.478526i −0.904660 0.426134i \(-0.859875\pi\)
0.426134 + 0.904660i \(0.359875\pi\)
\(464\) 0 0
\(465\) 342.837 + 70.0077i 0.737283 + 0.150554i
\(466\) 0 0
\(467\) 46.2371 + 291.930i 0.0990089 + 0.625117i 0.986433 + 0.164164i \(0.0524925\pi\)
−0.887424 + 0.460954i \(0.847507\pi\)
\(468\) 0 0
\(469\) 30.7764 + 9.99986i 0.0656213 + 0.0213217i
\(470\) 0 0
\(471\) −76.0447 + 55.2497i −0.161454 + 0.117303i
\(472\) 0 0
\(473\) −109.051 573.498i −0.230552 1.21247i
\(474\) 0 0
\(475\) −469.837 200.232i −0.989131 0.421541i
\(476\) 0 0
\(477\) −4.68144 + 2.38532i −0.00981435 + 0.00500066i
\(478\) 0 0
\(479\) −150.645 + 207.345i −0.314499 + 0.432871i −0.936778 0.349925i \(-0.886207\pi\)
0.622279 + 0.782796i \(0.286207\pi\)
\(480\) 0 0
\(481\) 239.241 + 736.307i 0.497382 + 1.53078i
\(482\) 0 0
\(483\) 623.334 623.334i 1.29055 1.29055i
\(484\) 0 0
\(485\) −34.7152 19.6739i −0.0715778 0.0405647i
\(486\) 0 0
\(487\) −307.333 + 603.175i −0.631074 + 1.23855i 0.325080 + 0.945686i \(0.394609\pi\)
−0.956154 + 0.292865i \(0.905391\pi\)
\(488\) 0 0
\(489\) 402.678 554.238i 0.823471 1.13341i
\(490\) 0 0
\(491\) 133.739 411.608i 0.272382 0.838305i −0.717518 0.696540i \(-0.754722\pi\)
0.989900 0.141766i \(-0.0452779\pi\)
\(492\) 0 0
\(493\) 2.72034 17.1756i 0.00551794 0.0348389i
\(494\) 0 0
\(495\) −8.25446 2.80601i −0.0166757 0.00566871i
\(496\) 0 0
\(497\) 426.210 + 67.5050i 0.857565 + 0.135825i
\(498\) 0 0
\(499\) −230.428 74.8705i −0.461779 0.150041i 0.0688828 0.997625i \(-0.478057\pi\)
−0.530662 + 0.847584i \(0.678057\pi\)
\(500\) 0 0
\(501\) 194.103 + 141.024i 0.387430 + 0.281485i
\(502\) 0 0
\(503\) 362.339 + 184.621i 0.720356 + 0.367039i 0.775422 0.631443i \(-0.217537\pi\)
−0.0550666 + 0.998483i \(0.517537\pi\)
\(504\) 0 0
\(505\) 890.435 246.250i 1.76324 0.487624i
\(506\) 0 0
\(507\) 131.128 + 131.128i 0.258636 + 0.258636i
\(508\) 0 0
\(509\) −297.341 + 96.6120i −0.584168 + 0.189808i −0.586167 0.810190i \(-0.699364\pi\)
0.00199918 + 0.999998i \(0.499364\pi\)
\(510\) 0 0
\(511\) −14.9408 10.8551i −0.0292383 0.0212429i
\(512\) 0 0
\(513\) −252.570 495.696i −0.492339 0.966269i
\(514\) 0 0
\(515\) 95.1979 + 840.918i 0.184850 + 1.63285i
\(516\) 0 0
\(517\) −381.328 694.600i −0.737578 1.34352i
\(518\) 0 0
\(519\) −159.688 219.792i −0.307684 0.423491i
\(520\) 0 0
\(521\) −33.9003 + 104.335i −0.0650678 + 0.200258i −0.978305 0.207171i \(-0.933575\pi\)
0.913237 + 0.407429i \(0.133575\pi\)
\(522\) 0 0
\(523\) −793.754 + 125.718i −1.51769 + 0.240379i −0.858978 0.512012i \(-0.828900\pi\)
−0.658716 + 0.752391i \(0.728900\pi\)
\(524\) 0 0
\(525\) −442.180 385.499i −0.842247 0.734284i
\(526\) 0 0
\(527\) 36.5016 + 36.5016i 0.0692630 + 0.0692630i
\(528\) 0 0
\(529\) 882.321i 1.66790i
\(530\) 0 0
\(531\) 3.50620 + 10.7910i 0.00660301 + 0.0203220i
\(532\) 0 0
\(533\) 819.046 129.724i 1.53667 0.243385i
\(534\) 0 0
\(535\) 168.829 154.480i 0.315569 0.288748i
\(536\) 0 0
\(537\) 175.973 + 27.8714i 0.327696 + 0.0519020i
\(538\) 0 0
\(539\) 49.3871 + 137.432i 0.0916274 + 0.254975i
\(540\) 0 0
\(541\) −79.5754 + 57.8149i −0.147089 + 0.106867i −0.658896 0.752234i \(-0.728976\pi\)
0.511807 + 0.859101i \(0.328976\pi\)
\(542\) 0 0
\(543\) 281.824 + 553.111i 0.519013 + 1.01862i
\(544\) 0 0
\(545\) 364.925 973.901i 0.669588 1.78697i
\(546\) 0 0
\(547\) −21.3834 + 41.9672i −0.0390921 + 0.0767225i −0.909726 0.415208i \(-0.863709\pi\)
0.870634 + 0.491931i \(0.163709\pi\)
\(548\) 0 0
\(549\) 8.44715i 0.0153864i
\(550\) 0 0
\(551\) 161.971 0.293958
\(552\) 0 0
\(553\) −628.931 320.457i −1.13731 0.579487i
\(554\) 0 0
\(555\) 708.608 + 265.519i 1.27677 + 0.478412i
\(556\) 0 0
\(557\) 724.062 368.928i 1.29993 0.662348i 0.339433 0.940630i \(-0.389765\pi\)
0.960499 + 0.278282i \(0.0897650\pi\)
\(558\) 0 0
\(559\) −474.483 653.069i −0.848806 1.16828i
\(560\) 0 0
\(561\) 43.9361 + 56.7110i 0.0783176 + 0.101089i
\(562\) 0 0
\(563\) −43.4505 + 274.336i −0.0771767 + 0.487275i 0.918579 + 0.395238i \(0.129338\pi\)
−0.995756 + 0.0920370i \(0.970662\pi\)
\(564\) 0 0
\(565\) 142.861 + 156.130i 0.252851 + 0.276337i
\(566\) 0 0
\(567\) −98.2027 620.027i −0.173197 1.09352i
\(568\) 0 0
\(569\) −151.476 + 49.2175i −0.266214 + 0.0864983i −0.439083 0.898447i \(-0.644696\pi\)
0.172868 + 0.984945i \(0.444696\pi\)
\(570\) 0 0
\(571\) 514.236 0.900588 0.450294 0.892880i \(-0.351319\pi\)
0.450294 + 0.892880i \(0.351319\pi\)
\(572\) 0 0
\(573\) 135.999 135.999i 0.237345 0.237345i
\(574\) 0 0
\(575\) −936.994 + 64.1668i −1.62956 + 0.111594i
\(576\) 0 0
\(577\) 150.204 + 948.349i 0.260319 + 1.64359i 0.678050 + 0.735016i \(0.262825\pi\)
−0.417731 + 0.908571i \(0.637175\pi\)
\(578\) 0 0
\(579\) −768.985 249.858i −1.32813 0.431534i
\(580\) 0 0
\(581\) 400.558 291.023i 0.689429 0.500899i
\(582\) 0 0
\(583\) 265.637 + 249.744i 0.455638 + 0.428377i
\(584\) 0 0
\(585\) −11.9792 + 1.35613i −0.0204772 + 0.00231817i
\(586\) 0 0
\(587\) 771.894 393.300i 1.31498 0.670016i 0.351097 0.936339i \(-0.385809\pi\)
0.963884 + 0.266323i \(0.0858087\pi\)
\(588\) 0 0
\(589\) −282.612 + 388.983i −0.479817 + 0.660412i
\(590\) 0 0
\(591\) 197.801 + 608.770i 0.334689 + 1.03007i
\(592\) 0 0
\(593\) 649.577 649.577i 1.09541 1.09541i 0.100468 0.994940i \(-0.467966\pi\)
0.994940 0.100468i \(-0.0320341\pi\)
\(594\) 0 0
\(595\) −23.0676 83.4121i −0.0387691 0.140188i
\(596\) 0 0
\(597\) 202.623 397.670i 0.339402 0.666114i
\(598\) 0 0
\(599\) −356.047 + 490.056i −0.594402 + 0.818124i −0.995181 0.0980508i \(-0.968739\pi\)
0.400780 + 0.916174i \(0.368739\pi\)
\(600\) 0 0
\(601\) 142.502 438.575i 0.237108 0.729742i −0.759727 0.650242i \(-0.774668\pi\)
0.996835 0.0795001i \(-0.0253324\pi\)
\(602\) 0 0
\(603\) 0.101685 0.642012i 0.000168631 0.00106470i
\(604\) 0 0
\(605\) 10.4682 + 604.909i 0.0173027 + 0.999850i
\(606\) 0 0
\(607\) −690.800 109.412i −1.13806 0.180250i −0.441164 0.897426i \(-0.645434\pi\)
−0.696892 + 0.717176i \(0.745434\pi\)
\(608\) 0 0
\(609\) 176.937 + 57.4904i 0.290537 + 0.0944013i
\(610\) 0 0
\(611\) −886.448 644.042i −1.45081 1.05408i
\(612\) 0 0
\(613\) −367.019 187.006i −0.598726 0.305066i 0.128236 0.991744i \(-0.459068\pi\)
−0.726962 + 0.686677i \(0.759068\pi\)
\(614\) 0 0
\(615\) 399.633 705.166i 0.649810 1.14661i
\(616\) 0 0
\(617\) 418.073 + 418.073i 0.677590 + 0.677590i 0.959454 0.281864i \(-0.0909527\pi\)
−0.281864 + 0.959454i \(0.590953\pi\)
\(618\) 0 0
\(619\) 523.296 170.029i 0.845390 0.274684i 0.145876 0.989303i \(-0.453400\pi\)
0.699514 + 0.714619i \(0.253400\pi\)
\(620\) 0 0
\(621\) −827.672 601.339i −1.33280 0.968339i
\(622\) 0 0
\(623\) −129.026 253.229i −0.207105 0.406467i
\(624\) 0 0
\(625\) 85.2024 + 619.165i 0.136324 + 0.990664i
\(626\) 0 0
\(627\) −457.696 + 486.823i −0.729978 + 0.776432i
\(628\) 0 0
\(629\) 65.6180 + 90.3154i 0.104321 + 0.143586i
\(630\) 0 0
\(631\) 254.599 783.575i 0.403485 1.24180i −0.518669 0.854975i \(-0.673572\pi\)
0.922154 0.386823i \(-0.126428\pi\)
\(632\) 0 0
\(633\) −906.918 + 143.642i −1.43273 + 0.226922i
\(634\) 0 0
\(635\) 90.9053 445.175i 0.143158 0.701063i
\(636\) 0 0
\(637\) 142.791 + 142.791i 0.224162 + 0.224162i
\(638\) 0 0
\(639\) 8.66793i 0.0135648i
\(640\) 0 0
\(641\) −199.661 614.494i −0.311484 0.958649i −0.977178 0.212424i \(-0.931864\pi\)
0.665694 0.746225i \(-0.268136\pi\)
\(642\) 0 0
\(643\) −204.293 + 32.3568i −0.317719 + 0.0503217i −0.313257 0.949668i \(-0.601420\pi\)
−0.00446153 + 0.999990i \(0.501420\pi\)
\(644\) 0 0
\(645\) −788.238 34.9832i −1.22207 0.0542375i
\(646\) 0 0
\(647\) 359.495 + 56.9385i 0.555634 + 0.0880038i 0.427936 0.903809i \(-0.359241\pi\)
0.127699 + 0.991813i \(0.459241\pi\)
\(648\) 0 0
\(649\) 622.422 482.214i 0.959048 0.743011i
\(650\) 0 0
\(651\) −446.793 + 324.614i −0.686318 + 0.498639i
\(652\) 0 0
\(653\) 177.649 + 348.656i 0.272050 + 0.533929i 0.986097 0.166169i \(-0.0531397\pi\)
−0.714047 + 0.700098i \(0.753140\pi\)
\(654\) 0 0
\(655\) 829.664 + 310.879i 1.26666 + 0.474625i
\(656\) 0 0
\(657\) −0.168412 + 0.330528i −0.000256335 + 0.000503087i
\(658\) 0 0
\(659\) 1045.08i 1.58586i −0.609312 0.792931i \(-0.708554\pi\)
0.609312 0.792931i \(-0.291446\pi\)
\(660\) 0 0
\(661\) 908.162 1.37392 0.686960 0.726695i \(-0.258945\pi\)
0.686960 + 0.726695i \(0.258945\pi\)
\(662\) 0 0
\(663\) 88.3883 + 45.0361i 0.133316 + 0.0679277i
\(664\) 0 0
\(665\) 733.740 333.748i 1.10337 0.501876i
\(666\) 0 0
\(667\) 265.389 135.223i 0.397885 0.202733i
\(668\) 0 0
\(669\) −208.634 287.160i −0.311860 0.429238i
\(670\) 0 0
\(671\) 551.642 198.237i 0.822119 0.295435i
\(672\) 0 0
\(673\) −198.155 + 1251.10i −0.294435 + 1.85899i 0.186798 + 0.982398i \(0.440189\pi\)
−0.481233 + 0.876593i \(0.659811\pi\)
\(674\) 0 0
\(675\) −361.606 + 576.842i −0.535712 + 0.854581i
\(676\) 0 0
\(677\) 197.985 + 1250.03i 0.292444 + 1.84642i 0.497235 + 0.867616i \(0.334349\pi\)
−0.204791 + 0.978806i \(0.565651\pi\)
\(678\) 0 0
\(679\) 59.8959 19.4613i 0.0882119 0.0286618i
\(680\) 0 0
\(681\) −628.132 −0.922367
\(682\) 0 0
\(683\) 295.545 295.545i 0.432715 0.432715i −0.456836 0.889551i \(-0.651017\pi\)
0.889551 + 0.456836i \(0.151017\pi\)
\(684\) 0 0
\(685\) 95.4089 467.229i 0.139283 0.682087i
\(686\) 0 0
\(687\) 199.304 + 1258.36i 0.290108 + 1.83167i
\(688\) 0 0
\(689\) 479.494 + 155.797i 0.695927 + 0.226120i
\(690\) 0 0
\(691\) −1042.47 + 757.400i −1.50864 + 1.09609i −0.541867 + 0.840464i \(0.682282\pi\)
−0.966775 + 0.255628i \(0.917718\pi\)
\(692\) 0 0
\(693\) 12.0621 6.62194i 0.0174056 0.00955547i
\(694\) 0 0
\(695\) −270.768 215.697i −0.389594 0.310355i
\(696\) 0 0
\(697\) 106.542 54.2859i 0.152858 0.0778851i
\(698\) 0 0
\(699\) −179.762 + 247.421i −0.257170 + 0.353964i
\(700\) 0 0
\(701\) 169.091 + 520.409i 0.241214 + 0.742382i 0.996236 + 0.0866817i \(0.0276263\pi\)
−0.755022 + 0.655700i \(0.772374\pi\)
\(702\) 0 0
\(703\) −735.249 + 735.249i −1.04587 + 1.04587i
\(704\) 0 0
\(705\) −1032.23 + 285.463i −1.46415 + 0.404912i
\(706\) 0 0
\(707\) −661.976 + 1299.20i −0.936317 + 1.83762i
\(708\) 0 0
\(709\) 698.138 960.905i 0.984680 1.35530i 0.0504104 0.998729i \(-0.483947\pi\)
0.934270 0.356567i \(-0.116053\pi\)
\(710\) 0 0
\(711\) −4.38144 + 13.4847i −0.00616236 + 0.0189658i
\(712\) 0 0
\(713\) −138.316 + 873.290i −0.193991 + 1.22481i
\(714\) 0 0
\(715\) 369.688 + 750.475i 0.517046 + 1.04962i
\(716\) 0 0
\(717\) 1257.67 + 199.196i 1.75408 + 0.277819i
\(718\) 0 0
\(719\) 760.081 + 246.965i 1.05714 + 0.343485i 0.785466 0.618905i \(-0.212424\pi\)
0.271671 + 0.962390i \(0.412424\pi\)
\(720\) 0 0
\(721\) −1080.61 785.106i −1.49876 1.08891i
\(722\) 0 0
\(723\) −160.007 81.5278i −0.221310 0.112763i
\(724\) 0 0
\(725\) −101.842 170.048i −0.140472 0.234548i
\(726\) 0 0
\(727\) −365.797 365.797i −0.503160 0.503160i 0.409258 0.912419i \(-0.365787\pi\)
−0.912419 + 0.409258i \(0.865787\pi\)
\(728\) 0 0
\(729\) −705.098 + 229.100i −0.967212 + 0.314266i
\(730\) 0 0
\(731\) −94.1696 68.4183i −0.128823 0.0935954i
\(732\) 0 0
\(733\) 211.249 + 414.599i 0.288198 + 0.565620i 0.989032 0.147705i \(-0.0471885\pi\)
−0.700834 + 0.713325i \(0.747189\pi\)
\(734\) 0 0
\(735\) 196.126 22.2028i 0.266838 0.0302079i
\(736\) 0 0
\(737\) −44.3130 + 8.42616i −0.0601262 + 0.0114331i
\(738\) 0 0
\(739\) −803.504 1105.93i −1.08729 1.49652i −0.851239 0.524778i \(-0.824148\pi\)
−0.236046 0.971742i \(-0.575852\pi\)
\(740\) 0 0
\(741\) −285.523 + 878.750i −0.385322 + 1.18590i
\(742\) 0 0
\(743\) −797.167 + 126.259i −1.07290 + 0.169931i −0.667800 0.744340i \(-0.732764\pi\)
−0.405102 + 0.914271i \(0.632764\pi\)
\(744\) 0 0
\(745\) −650.017 + 429.565i −0.872506 + 0.576597i
\(746\) 0 0
\(747\) −7.03242 7.03242i −0.00941422 0.00941422i
\(748\) 0 0
\(749\) 361.178i 0.482214i
\(750\) 0 0
\(751\) −162.000 498.585i −0.215712 0.663894i −0.999102 0.0423638i \(-0.986511\pi\)
0.783390 0.621531i \(-0.213489\pi\)
\(752\) 0 0
\(753\) −1335.98 + 211.599i −1.77421 + 0.281008i
\(754\) 0 0
\(755\) 5.23662 117.991i 0.00693591 0.156279i
\(756\) 0 0
\(757\) −406.489 64.3815i −0.536973 0.0850482i −0.117943 0.993020i \(-0.537630\pi\)
−0.419030 + 0.907972i \(0.637630\pi\)
\(758\) 0 0
\(759\) −343.508 + 1179.77i −0.452579 + 1.55438i
\(760\) 0 0
\(761\) 442.423 321.439i 0.581371 0.422391i −0.257847 0.966186i \(-0.583013\pi\)
0.839218 + 0.543795i \(0.183013\pi\)
\(762\) 0 0
\(763\) 745.214 + 1462.57i 0.976690 + 1.91686i
\(764\) 0 0
\(765\) −1.58237 + 0.719755i −0.00206846 + 0.000940856i
\(766\) 0 0
\(767\) 494.286 970.091i 0.644441 1.26479i
\(768\) 0 0
\(769\) 662.450i 0.861443i 0.902485 + 0.430722i \(0.141741\pi\)
−0.902485 + 0.430722i \(0.858259\pi\)
\(770\) 0 0
\(771\) 225.251 0.292155
\(772\) 0 0
\(773\) 340.487 + 173.487i 0.440475 + 0.224433i 0.660141 0.751142i \(-0.270497\pi\)
−0.219666 + 0.975575i \(0.570497\pi\)
\(774\) 0 0
\(775\) 586.077 + 52.1247i 0.756229 + 0.0672576i
\(776\) 0 0
\(777\) −1064.16 + 542.216i −1.36957 + 0.697833i
\(778\) 0 0
\(779\) 654.643 + 901.038i 0.840363 + 1.15666i
\(780\) 0 0
\(781\) −566.060 + 203.418i −0.724788 + 0.260459i
\(782\) 0 0
\(783\) 33.7761 213.254i 0.0431368 0.272355i
\(784\) 0 0
\(785\) −116.610 + 106.699i −0.148548 + 0.135922i
\(786\) 0 0
\(787\) 56.2423 + 355.100i 0.0714641 + 0.451207i 0.997310 + 0.0733045i \(0.0233545\pi\)
−0.925845 + 0.377902i \(0.876646\pi\)
\(788\) 0 0
\(789\) 407.036 132.254i 0.515889 0.167622i
\(790\) 0 0
\(791\) −334.011 −0.422265
\(792\) 0 0
\(793\) 573.156 573.156i 0.722769 0.722769i
\(794\) 0 0
\(795\) 411.124 271.692i 0.517137 0.341751i
\(796\) 0 0
\(797\) −147.695 932.508i −0.185313 1.17002i −0.888452 0.458970i \(-0.848219\pi\)
0.703138 0.711053i \(-0.251781\pi\)
\(798\) 0 0
\(799\) −150.263 48.8236i −0.188064 0.0611058i
\(800\) 0 0
\(801\) −4.61851 + 3.35554i −0.00576592 + 0.00418919i
\(802\) 0 0
\(803\) 25.5374 + 3.24138i 0.0318025 + 0.00403659i
\(804\) 0 0
\(805\) 923.603 1159.42i 1.14733 1.44027i
\(806\) 0 0
\(807\) 378.149 192.677i 0.468586 0.238757i
\(808\) 0 0
\(809\) −148.538 + 204.445i −0.183607 + 0.252713i −0.890892 0.454215i \(-0.849920\pi\)
0.707285 + 0.706929i \(0.249920\pi\)
\(810\) 0 0
\(811\) 16.5757 + 51.0148i 0.0204386 + 0.0629035i 0.960756 0.277396i \(-0.0894715\pi\)
−0.940317 + 0.340300i \(0.889471\pi\)
\(812\) 0 0
\(813\) 136.311 136.311i 0.167664 0.167664i
\(814\) 0 0
\(815\) 567.985 1002.23i 0.696914 1.22973i
\(816\) 0 0
\(817\) 492.204 966.005i 0.602453 1.18238i
\(818\) 0 0
\(819\) 11.1841 15.3936i 0.0136558 0.0187956i
\(820\) 0 0
\(821\) 269.289 828.788i 0.328002 1.00949i −0.642066 0.766650i \(-0.721922\pi\)
0.970067 0.242836i \(-0.0780777\pi\)
\(822\) 0 0
\(823\) 91.9788 580.731i 0.111760 0.705628i −0.866644 0.498927i \(-0.833727\pi\)
0.978404 0.206700i \(-0.0662725\pi\)
\(824\) 0 0
\(825\) 798.884 + 174.420i 0.968344 + 0.211418i
\(826\) 0 0
\(827\) 1425.68 + 225.805i 1.72392 + 0.273042i 0.938338 0.345719i \(-0.112365\pi\)
0.785579 + 0.618761i \(0.212365\pi\)
\(828\) 0 0
\(829\) −1263.48 410.531i −1.52411 0.495212i −0.577167 0.816626i \(-0.695842\pi\)
−0.946939 + 0.321414i \(0.895842\pi\)
\(830\) 0 0
\(831\) −1224.29 889.502i −1.47328 1.07040i
\(832\) 0 0
\(833\) 25.9448 + 13.2195i 0.0311462 + 0.0158698i
\(834\) 0 0
\(835\) 350.995 + 198.917i 0.420353 + 0.238224i
\(836\) 0 0
\(837\) 453.209 + 453.209i 0.541468 + 0.541468i
\(838\) 0 0
\(839\) 216.137 70.2272i 0.257613 0.0837035i −0.177363 0.984145i \(-0.556757\pi\)
0.434976 + 0.900442i \(0.356757\pi\)
\(840\) 0 0
\(841\) −629.528 457.379i −0.748547 0.543851i
\(842\) 0 0
\(843\) −713.778 1400.87i −0.846711 1.66176i
\(844\) 0 0
\(845\) 243.901 + 194.294i 0.288641 + 0.229934i
\(846\) 0 0
\(847\) −715.518 632.311i −0.844767 0.746530i
\(848\) 0 0
\(849\) −228.155 314.028i −0.268734 0.369880i
\(850\) 0 0
\(851\) −590.878 + 1818.54i −0.694334 + 2.13694i
\(852\) 0 0
\(853\) −587.796 + 93.0977i −0.689093 + 0.109142i −0.491154 0.871073i \(-0.663425\pi\)
−0.197939 + 0.980214i \(0.563425\pi\)
\(854\) 0 0
\(855\) −8.92701 13.5083i −0.0104410 0.0157992i
\(856\) 0 0
\(857\) 1137.02 + 1137.02i 1.32674 + 1.32674i 0.908196 + 0.418544i \(0.137460\pi\)
0.418544 + 0.908196i \(0.362540\pi\)
\(858\) 0 0
\(859\) 678.461i 0.789827i −0.918718 0.394914i \(-0.870775\pi\)
0.918718 0.394914i \(-0.129225\pi\)
\(860\) 0 0
\(861\) 395.316 + 1216.66i 0.459136 + 1.41307i
\(862\) 0 0
\(863\) −1377.20 + 218.128i −1.59583 + 0.252755i −0.890114 0.455737i \(-0.849376\pi\)
−0.705718 + 0.708492i \(0.749376\pi\)
\(864\) 0 0
\(865\) −308.392 337.037i −0.356523 0.389638i
\(866\) 0 0
\(867\) −834.623 132.191i −0.962656 0.152470i
\(868\) 0 0
\(869\) 983.441 30.3271i 1.13169 0.0348989i
\(870\) 0 0
\(871\) −50.4613 + 36.6623i −0.0579349 + 0.0420922i
\(872\) 0 0
\(873\) −0.574313 1.12715i −0.000657862 0.00129113i
\(874\) 0 0
\(875\) −811.743 560.478i −0.927706 0.640546i
\(876\) 0 0
\(877\) 59.3387 116.459i 0.0676610 0.132792i −0.854699 0.519124i \(-0.826258\pi\)
0.922360 + 0.386332i \(0.126258\pi\)
\(878\) 0 0
\(879\) 387.363i 0.440685i
\(880\) 0 0
\(881\) −211.392 −0.239946 −0.119973 0.992777i \(-0.538281\pi\)
−0.119973 + 0.992777i \(0.538281\pi\)
\(882\) 0 0
\(883\) −483.894 246.556i −0.548011 0.279226i 0.157985 0.987442i \(-0.449500\pi\)
−0.705996 + 0.708216i \(0.749500\pi\)
\(884\) 0 0
\(885\) −440.611 968.678i −0.497866 1.09455i
\(886\) 0 0
\(887\) 279.069 142.193i 0.314621 0.160307i −0.289548 0.957163i \(-0.593505\pi\)
0.604169 + 0.796856i \(0.293505\pi\)
\(888\) 0 0
\(889\) 421.513 + 580.162i 0.474142 + 0.652601i
\(890\) 0 0
\(891\) 535.906 + 691.725i 0.601466 + 0.776347i
\(892\) 0 0
\(893\) 230.210 1453.49i 0.257794 1.62765i
\(894\) 0 0
\(895\) 299.299 + 13.2834i 0.334413 + 0.0148417i
\(896\) 0 0
\(897\) 265.802 + 1678.21i 0.296323 + 1.87091i
\(898\) 0 0
\(899\) −177.469 + 57.6631i −0.197407 + 0.0641414i
\(900\) 0 0
\(901\) 72.6990 0.0806870
\(902\) 0 0
\(903\) 880.562 880.562i 0.975151 0.975151i
\(904\) 0 0
\(905\) 575.515 + 870.868i 0.635928 + 0.962285i
\(906\) 0 0
\(907\) 238.592 + 1506.41i 0.263056 + 1.66087i 0.666229 + 0.745747i \(0.267907\pi\)
−0.403173 + 0.915124i \(0.632093\pi\)
\(908\) 0 0
\(909\) 27.8557 + 9.05085i 0.0306443 + 0.00995694i
\(910\) 0 0
\(911\) 771.138 560.264i 0.846474 0.614999i −0.0776975 0.996977i \(-0.524757\pi\)
0.924172 + 0.381978i \(0.124757\pi\)
\(912\) 0 0
\(913\) −294.216 + 624.289i −0.322252 + 0.683777i
\(914\) 0 0
\(915\) −89.1208 787.237i −0.0973998 0.860368i
\(916\) 0 0
\(917\) −1245.96 + 634.847i −1.35873 + 0.692308i
\(918\) 0 0
\(919\) 258.510 355.809i 0.281295 0.387170i −0.644867 0.764295i \(-0.723087\pi\)
0.926162 + 0.377125i \(0.123087\pi\)
\(920\) 0 0
\(921\) 69.9250 + 215.207i 0.0759229 + 0.233667i
\(922\) 0 0
\(923\) −588.136 + 588.136i −0.637201 + 0.637201i
\(924\) 0 0
\(925\) 1234.21 + 309.611i 1.33429 + 0.334714i
\(926\) 0 0
\(927\) −12.1806 + 23.9057i −0.0131398 + 0.0257883i
\(928\) 0 0
\(929\) 585.018 805.208i 0.629729 0.866747i −0.368287 0.929712i \(-0.620056\pi\)
0.998016 + 0.0629648i \(0.0200556\pi\)
\(930\) 0 0
\(931\) −83.8101 + 257.941i −0.0900216 + 0.277058i
\(932\) 0 0
\(933\) 83.3025 525.951i 0.0892845 0.563720i
\(934\) 0 0
\(935\) 84.1386 + 86.4458i 0.0899878 + 0.0924554i
\(936\) 0 0
\(937\) −1068.38 169.215i −1.14022 0.180593i −0.442365 0.896835i \(-0.645860\pi\)
−0.697851 + 0.716243i \(0.745860\pi\)
\(938\) 0 0
\(939\) 367.228 + 119.320i 0.391084 + 0.127071i
\(940\) 0 0
\(941\) 871.044 + 632.850i 0.925657 + 0.672529i 0.944926 0.327285i \(-0.106134\pi\)
−0.0192683 + 0.999814i \(0.506134\pi\)
\(942\) 0 0
\(943\) 1824.87 + 929.819i 1.93518 + 0.986022i
\(944\) 0 0
\(945\) −286.411 1035.65i −0.303080 1.09593i
\(946\) 0 0
\(947\) −1103.75 1103.75i −1.16552 1.16552i −0.983248 0.182275i \(-0.941654\pi\)
−0.182275 0.983248i \(-0.558346\pi\)
\(948\) 0 0
\(949\) 33.8541 10.9999i 0.0356734 0.0115910i
\(950\) 0 0
\(951\) 262.628 + 190.811i 0.276160 + 0.200642i
\(952\) 0 0
\(953\) 330.603 + 648.844i 0.346907 + 0.680844i 0.996865 0.0791267i \(-0.0252132\pi\)
−0.649957 + 0.759971i \(0.725213\pi\)
\(954\) 0 0
\(955\) 201.511 252.961i 0.211007 0.264881i
\(956\) 0 0
\(957\) −254.761 + 48.4430i −0.266208 + 0.0506196i
\(958\) 0 0
\(959\) 442.395 + 608.904i 0.461309 + 0.634937i
\(960\) 0 0
\(961\) −125.793 + 387.151i −0.130898 + 0.402862i
\(962\) 0 0
\(963\) 7.16561 1.13492i 0.00744093 0.00117853i
\(964\) 0 0
\(965\) −1332.13 272.024i −1.38045 0.281890i
\(966\) 0 0
\(967\) 485.778 + 485.778i 0.502355 + 0.502355i 0.912169 0.409814i \(-0.134406\pi\)
−0.409814 + 0.912169i \(0.634406\pi\)
\(968\) 0 0
\(969\) 133.233i 0.137495i
\(970\) 0 0
\(971\) −501.435 1543.26i −0.516411 1.58935i −0.780700 0.624906i \(-0.785137\pi\)
0.264289 0.964444i \(-0.414863\pi\)
\(972\) 0 0
\(973\) 539.650 85.4721i 0.554625 0.0878439i
\(974\) 0 0
\(975\) 1102.10 252.770i 1.13036 0.259251i
\(976\) 0 0
\(977\) −1802.47 285.484i −1.84491 0.292205i −0.866544 0.499101i \(-0.833664\pi\)
−0.978363 + 0.206897i \(0.933664\pi\)
\(978\) 0 0
\(979\) 327.521 + 222.864i 0.334546 + 0.227645i
\(980\) 0 0
\(981\) 26.6750 19.3805i 0.0271916 0.0197559i
\(982\) 0 0
\(983\) −257.091 504.570i −0.261537 0.513296i 0.722475 0.691397i \(-0.243005\pi\)
−0.984012 + 0.178101i \(0.943005\pi\)
\(984\) 0 0
\(985\) 445.651 + 979.759i 0.452438 + 0.994679i
\(986\) 0 0
\(987\) 767.389 1506.09i 0.777496 1.52592i
\(988\) 0 0
\(989\) 1993.72i 2.01590i
\(990\) 0 0
\(991\) 765.723 0.772677 0.386339 0.922357i \(-0.373740\pi\)
0.386339 + 0.922357i \(0.373740\pi\)
\(992\) 0 0
\(993\) −774.873 394.818i −0.780336 0.397601i
\(994\) 0 0
\(995\) 263.335 702.781i 0.264659 0.706313i
\(996\) 0 0
\(997\) −1027.27 + 523.420i −1.03036 + 0.524995i −0.885589 0.464471i \(-0.846245\pi\)
−0.144771 + 0.989465i \(0.546245\pi\)
\(998\) 0 0
\(999\) 814.722 + 1121.37i 0.815537 + 1.12249i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.x.a.157.4 yes 96
5.3 odd 4 inner 220.3.x.a.113.9 yes 96
11.4 even 5 inner 220.3.x.a.37.9 96
55.48 odd 20 inner 220.3.x.a.213.4 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.x.a.37.9 96 11.4 even 5 inner
220.3.x.a.113.9 yes 96 5.3 odd 4 inner
220.3.x.a.157.4 yes 96 1.1 even 1 trivial
220.3.x.a.213.4 yes 96 55.48 odd 20 inner