Properties

Label 220.3.x.a.37.9
Level $220$
Weight $3$
Character 220.37
Analytic conductor $5.995$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,3,Mod(37,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 220.x (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.99456581593\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 37.9
Character \(\chi\) \(=\) 220.37
Dual form 220.3.x.a.113.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34992 + 2.64938i) q^{3} +(-3.11539 + 3.91080i) q^{5} +(-3.58267 + 7.03139i) q^{7} +(0.0931732 - 0.128242i) q^{9} +(-6.18826 - 9.09425i) q^{11} +(-15.0235 + 2.37948i) q^{13} +(-14.5667 - 2.97454i) q^{15} +(2.16631 + 0.343110i) q^{17} +(19.4291 + 6.31290i) q^{19} -23.4651 q^{21} +(-26.5643 + 26.5643i) q^{23} +(-5.58873 - 24.3673i) q^{25} +(26.8972 + 4.26010i) q^{27} +(7.54043 - 2.45004i) q^{29} +(19.0407 + 13.8339i) q^{31} +(15.7404 - 28.6716i) q^{33} +(-16.3370 - 35.9166i) q^{35} +(-23.1073 + 45.3507i) q^{37} +(-26.5847 - 36.5906i) q^{39} +(-16.8469 + 51.8496i) q^{41} +(-37.5264 + 37.5264i) q^{43} +(0.211258 + 0.763905i) q^{45} +(64.1840 - 32.7034i) q^{47} +(-7.80344 - 10.7405i) q^{49} +(2.01533 + 6.20255i) q^{51} +(32.7376 - 5.18513i) q^{53} +(54.8446 + 4.13103i) q^{55} +(9.50259 + 59.9970i) q^{57} +(68.0751 - 22.1189i) q^{59} +(-43.1118 + 31.3225i) q^{61} +(0.567910 + 1.11459i) q^{63} +(37.4982 - 66.1667i) q^{65} +(2.89959 + 2.89959i) q^{67} +(-106.238 - 34.5190i) q^{69} +(44.2385 - 32.1412i) q^{71} +(2.08514 + 1.06243i) q^{73} +(57.0138 - 47.7007i) q^{75} +(86.1158 - 10.9304i) q^{77} +(52.5752 - 72.3635i) q^{79} +(24.5818 + 75.6549i) q^{81} +(9.81477 - 61.9680i) q^{83} +(-8.09074 + 7.40310i) q^{85} +(16.6701 + 16.6701i) q^{87} -36.0140i q^{89} +(37.0931 - 114.161i) q^{91} +(-10.9476 + 69.1207i) q^{93} +(-85.2177 + 56.3163i) q^{95} +(1.24843 + 7.88225i) q^{97} +(-1.74284 - 0.0537454i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 2 q^{3} + 4 q^{5} - 2 q^{7} - 20 q^{11} - 8 q^{13} + 88 q^{15} + 42 q^{17} + 56 q^{21} - 104 q^{23} - 126 q^{25} - 14 q^{27} - 32 q^{31} + 52 q^{33} + 56 q^{35} - 134 q^{37} + 24 q^{41} + 332 q^{43}+ \cdots - 310 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.34992 + 2.64938i 0.449975 + 0.883125i 0.998883 + 0.0472428i \(0.0150434\pi\)
−0.548909 + 0.835882i \(0.684957\pi\)
\(4\) 0 0
\(5\) −3.11539 + 3.91080i −0.623077 + 0.782160i
\(6\) 0 0
\(7\) −3.58267 + 7.03139i −0.511810 + 1.00448i 0.480060 + 0.877235i \(0.340615\pi\)
−0.991871 + 0.127249i \(0.959385\pi\)
\(8\) 0 0
\(9\) 0.0931732 0.128242i 0.0103526 0.0142491i
\(10\) 0 0
\(11\) −6.18826 9.09425i −0.562570 0.826750i
\(12\) 0 0
\(13\) −15.0235 + 2.37948i −1.15565 + 0.183037i −0.704696 0.709510i \(-0.748916\pi\)
−0.450955 + 0.892547i \(0.648916\pi\)
\(14\) 0 0
\(15\) −14.5667 2.97454i −0.971114 0.198303i
\(16\) 0 0
\(17\) 2.16631 + 0.343110i 0.127430 + 0.0201830i 0.219824 0.975540i \(-0.429452\pi\)
−0.0923935 + 0.995723i \(0.529452\pi\)
\(18\) 0 0
\(19\) 19.4291 + 6.31290i 1.02259 + 0.332258i 0.771855 0.635799i \(-0.219329\pi\)
0.250730 + 0.968057i \(0.419329\pi\)
\(20\) 0 0
\(21\) −23.4651 −1.11739
\(22\) 0 0
\(23\) −26.5643 + 26.5643i −1.15497 + 1.15497i −0.169425 + 0.985543i \(0.554191\pi\)
−0.985543 + 0.169425i \(0.945809\pi\)
\(24\) 0 0
\(25\) −5.58873 24.3673i −0.223549 0.974693i
\(26\) 0 0
\(27\) 26.8972 + 4.26010i 0.996194 + 0.157782i
\(28\) 0 0
\(29\) 7.54043 2.45004i 0.260015 0.0844840i −0.176109 0.984371i \(-0.556351\pi\)
0.436124 + 0.899887i \(0.356351\pi\)
\(30\) 0 0
\(31\) 19.0407 + 13.8339i 0.614217 + 0.446255i 0.850897 0.525333i \(-0.176059\pi\)
−0.236680 + 0.971588i \(0.576059\pi\)
\(32\) 0 0
\(33\) 15.7404 28.6716i 0.476982 0.868836i
\(34\) 0 0
\(35\) −16.3370 35.9166i −0.466770 1.02619i
\(36\) 0 0
\(37\) −23.1073 + 45.3507i −0.624522 + 1.22569i 0.334509 + 0.942393i \(0.391430\pi\)
−0.959031 + 0.283301i \(0.908570\pi\)
\(38\) 0 0
\(39\) −26.5847 36.5906i −0.681658 0.938222i
\(40\) 0 0
\(41\) −16.8469 + 51.8496i −0.410901 + 1.26462i 0.504965 + 0.863140i \(0.331505\pi\)
−0.915866 + 0.401484i \(0.868495\pi\)
\(42\) 0 0
\(43\) −37.5264 + 37.5264i −0.872707 + 0.872707i −0.992767 0.120060i \(-0.961691\pi\)
0.120060 + 0.992767i \(0.461691\pi\)
\(44\) 0 0
\(45\) 0.211258 + 0.763905i 0.00469462 + 0.0169757i
\(46\) 0 0
\(47\) 64.1840 32.7034i 1.36562 0.695816i 0.391145 0.920329i \(-0.372079\pi\)
0.974471 + 0.224513i \(0.0720790\pi\)
\(48\) 0 0
\(49\) −7.80344 10.7405i −0.159254 0.219194i
\(50\) 0 0
\(51\) 2.01533 + 6.20255i 0.0395163 + 0.121619i
\(52\) 0 0
\(53\) 32.7376 5.18513i 0.617690 0.0978326i 0.160255 0.987076i \(-0.448768\pi\)
0.457435 + 0.889243i \(0.348768\pi\)
\(54\) 0 0
\(55\) 54.8446 + 4.13103i 0.997175 + 0.0751096i
\(56\) 0 0
\(57\) 9.50259 + 59.9970i 0.166712 + 1.05258i
\(58\) 0 0
\(59\) 68.0751 22.1189i 1.15382 0.374897i 0.331236 0.943548i \(-0.392534\pi\)
0.822579 + 0.568651i \(0.192534\pi\)
\(60\) 0 0
\(61\) −43.1118 + 31.3225i −0.706750 + 0.513484i −0.882124 0.471018i \(-0.843887\pi\)
0.175374 + 0.984502i \(0.443887\pi\)
\(62\) 0 0
\(63\) 0.567910 + 1.11459i 0.00901444 + 0.0176918i
\(64\) 0 0
\(65\) 37.4982 66.1667i 0.576895 1.01795i
\(66\) 0 0
\(67\) 2.89959 + 2.89959i 0.0432774 + 0.0432774i 0.728414 0.685137i \(-0.240258\pi\)
−0.685137 + 0.728414i \(0.740258\pi\)
\(68\) 0 0
\(69\) −106.238 34.5190i −1.53969 0.500275i
\(70\) 0 0
\(71\) 44.2385 32.1412i 0.623078 0.452693i −0.230917 0.972973i \(-0.574173\pi\)
0.853995 + 0.520281i \(0.174173\pi\)
\(72\) 0 0
\(73\) 2.08514 + 1.06243i 0.0285636 + 0.0145539i 0.468214 0.883615i \(-0.344898\pi\)
−0.439650 + 0.898169i \(0.644898\pi\)
\(74\) 0 0
\(75\) 57.0138 47.7007i 0.760184 0.636009i
\(76\) 0 0
\(77\) 86.1158 10.9304i 1.11839 0.141953i
\(78\) 0 0
\(79\) 52.5752 72.3635i 0.665508 0.915994i −0.334140 0.942524i \(-0.608446\pi\)
0.999648 + 0.0265298i \(0.00844568\pi\)
\(80\) 0 0
\(81\) 24.5818 + 75.6549i 0.303478 + 0.934011i
\(82\) 0 0
\(83\) 9.81477 61.9680i 0.118250 0.746602i −0.855301 0.518132i \(-0.826628\pi\)
0.973551 0.228470i \(-0.0733724\pi\)
\(84\) 0 0
\(85\) −8.09074 + 7.40310i −0.0951852 + 0.0870953i
\(86\) 0 0
\(87\) 16.6701 + 16.6701i 0.191610 + 0.191610i
\(88\) 0 0
\(89\) 36.0140i 0.404652i −0.979318 0.202326i \(-0.935150\pi\)
0.979318 0.202326i \(-0.0648501\pi\)
\(90\) 0 0
\(91\) 37.0931 114.161i 0.407616 1.25451i
\(92\) 0 0
\(93\) −10.9476 + 69.1207i −0.117717 + 0.743234i
\(94\) 0 0
\(95\) −85.2177 + 56.3163i −0.897029 + 0.592803i
\(96\) 0 0
\(97\) 1.24843 + 7.88225i 0.0128704 + 0.0812603i 0.993287 0.115672i \(-0.0369021\pi\)
−0.980417 + 0.196932i \(0.936902\pi\)
\(98\) 0 0
\(99\) −1.74284 0.0537454i −0.0176045 0.000542883i
\(100\) 0 0
\(101\) −149.483 108.606i −1.48003 1.07531i −0.977546 0.210722i \(-0.932419\pi\)
−0.502487 0.864585i \(-0.667581\pi\)
\(102\) 0 0
\(103\) 150.810 + 76.8415i 1.46417 + 0.746034i 0.990864 0.134862i \(-0.0430592\pi\)
0.473310 + 0.880896i \(0.343059\pi\)
\(104\) 0 0
\(105\) 73.1029 91.7675i 0.696219 0.873976i
\(106\) 0 0
\(107\) 40.7795 20.7782i 0.381117 0.194189i −0.252928 0.967485i \(-0.581394\pi\)
0.634045 + 0.773296i \(0.281394\pi\)
\(108\) 0 0
\(109\) 208.005i 1.90830i 0.299322 + 0.954152i \(0.403240\pi\)
−0.299322 + 0.954152i \(0.596760\pi\)
\(110\) 0 0
\(111\) −151.344 −1.36346
\(112\) 0 0
\(113\) 19.2153 + 37.7122i 0.170047 + 0.333736i 0.960265 0.279090i \(-0.0900327\pi\)
−0.790218 + 0.612826i \(0.790033\pi\)
\(114\) 0 0
\(115\) −21.1296 186.646i −0.183736 1.62300i
\(116\) 0 0
\(117\) −1.09463 + 2.14834i −0.00935584 + 0.0183619i
\(118\) 0 0
\(119\) −10.1737 + 14.0029i −0.0854936 + 0.117672i
\(120\) 0 0
\(121\) −44.4108 + 112.555i −0.367031 + 0.930209i
\(122\) 0 0
\(123\) −160.111 + 25.3591i −1.30172 + 0.206172i
\(124\) 0 0
\(125\) 112.707 + 54.0572i 0.901654 + 0.432457i
\(126\) 0 0
\(127\) 89.7535 + 14.2156i 0.706721 + 0.111934i 0.499441 0.866348i \(-0.333539\pi\)
0.207280 + 0.978282i \(0.433539\pi\)
\(128\) 0 0
\(129\) −150.079 48.7637i −1.16341 0.378013i
\(130\) 0 0
\(131\) −177.199 −1.35267 −0.676333 0.736596i \(-0.736432\pi\)
−0.676333 + 0.736596i \(0.736432\pi\)
\(132\) 0 0
\(133\) −113.997 + 113.997i −0.857118 + 0.857118i
\(134\) 0 0
\(135\) −100.456 + 91.9179i −0.744116 + 0.680873i
\(136\) 0 0
\(137\) 94.2000 + 14.9198i 0.687592 + 0.108904i 0.490448 0.871471i \(-0.336833\pi\)
0.197144 + 0.980375i \(0.436833\pi\)
\(138\) 0 0
\(139\) −65.8473 + 21.3951i −0.473722 + 0.153922i −0.536141 0.844128i \(-0.680118\pi\)
0.0624192 + 0.998050i \(0.480118\pi\)
\(140\) 0 0
\(141\) 173.287 + 125.900i 1.22899 + 0.892910i
\(142\) 0 0
\(143\) 114.609 + 121.902i 0.801459 + 0.852463i
\(144\) 0 0
\(145\) −13.9098 + 37.1219i −0.0959294 + 0.256013i
\(146\) 0 0
\(147\) 17.9216 35.1731i 0.121916 0.239273i
\(148\) 0 0
\(149\) −91.5925 126.066i −0.614715 0.846083i 0.382240 0.924063i \(-0.375153\pi\)
−0.996955 + 0.0779806i \(0.975153\pi\)
\(150\) 0 0
\(151\) 7.29942 22.4653i 0.0483405 0.148777i −0.923973 0.382459i \(-0.875077\pi\)
0.972313 + 0.233682i \(0.0750774\pi\)
\(152\) 0 0
\(153\) 0.245843 0.245843i 0.00160682 0.00160682i
\(154\) 0 0
\(155\) −113.421 + 31.3665i −0.731747 + 0.202365i
\(156\) 0 0
\(157\) −28.1663 + 14.3514i −0.179403 + 0.0914104i −0.541385 0.840774i \(-0.682100\pi\)
0.361982 + 0.932185i \(0.382100\pi\)
\(158\) 0 0
\(159\) 57.9306 + 79.7346i 0.364343 + 0.501476i
\(160\) 0 0
\(161\) −91.6127 281.955i −0.569023 1.75127i
\(162\) 0 0
\(163\) −227.560 + 36.0420i −1.39607 + 0.221116i −0.808710 0.588207i \(-0.799834\pi\)
−0.587363 + 0.809323i \(0.699834\pi\)
\(164\) 0 0
\(165\) 63.0915 + 150.881i 0.382372 + 0.914428i
\(166\) 0 0
\(167\) −12.6224 79.6950i −0.0755835 0.477216i −0.996225 0.0868069i \(-0.972334\pi\)
0.920642 0.390409i \(-0.127666\pi\)
\(168\) 0 0
\(169\) 59.3137 19.2722i 0.350969 0.114037i
\(170\) 0 0
\(171\) 2.61985 1.90343i 0.0153208 0.0111312i
\(172\) 0 0
\(173\) −41.4799 81.4089i −0.239768 0.470572i 0.739495 0.673162i \(-0.235064\pi\)
−0.979264 + 0.202590i \(0.935064\pi\)
\(174\) 0 0
\(175\) 191.359 + 48.0035i 1.09348 + 0.274306i
\(176\) 0 0
\(177\) 150.498 + 150.498i 0.850269 + 0.850269i
\(178\) 0 0
\(179\) 56.9862 + 18.5159i 0.318359 + 0.103441i 0.463837 0.885920i \(-0.346472\pi\)
−0.145479 + 0.989361i \(0.546472\pi\)
\(180\) 0 0
\(181\) −168.899 + 122.712i −0.933143 + 0.677968i −0.946760 0.321939i \(-0.895665\pi\)
0.0136175 + 0.999907i \(0.495665\pi\)
\(182\) 0 0
\(183\) −141.183 71.9362i −0.771490 0.393094i
\(184\) 0 0
\(185\) −105.369 231.653i −0.569563 1.25218i
\(186\) 0 0
\(187\) −10.2854 21.8243i −0.0550021 0.116707i
\(188\) 0 0
\(189\) −126.318 + 173.862i −0.668351 + 0.919907i
\(190\) 0 0
\(191\) −19.9880 61.5168i −0.104649 0.322078i 0.884999 0.465594i \(-0.154159\pi\)
−0.989648 + 0.143516i \(0.954159\pi\)
\(192\) 0 0
\(193\) 42.5384 268.577i 0.220406 1.39159i −0.590794 0.806823i \(-0.701185\pi\)
0.811200 0.584769i \(-0.198815\pi\)
\(194\) 0 0
\(195\) 225.920 + 10.0267i 1.15857 + 0.0514189i
\(196\) 0 0
\(197\) −152.219 152.219i −0.772686 0.772686i 0.205890 0.978575i \(-0.433991\pi\)
−0.978575 + 0.205890i \(0.933991\pi\)
\(198\) 0 0
\(199\) 150.100i 0.754269i 0.926159 + 0.377135i \(0.123091\pi\)
−0.926159 + 0.377135i \(0.876909\pi\)
\(200\) 0 0
\(201\) −3.76787 + 11.5963i −0.0187456 + 0.0576931i
\(202\) 0 0
\(203\) −9.78775 + 61.7974i −0.0482155 + 0.304421i
\(204\) 0 0
\(205\) −150.289 227.416i −0.733115 1.10935i
\(206\) 0 0
\(207\) 0.931574 + 5.88173i 0.00450036 + 0.0284141i
\(208\) 0 0
\(209\) −62.8214 215.759i −0.300581 1.03234i
\(210\) 0 0
\(211\) 249.829 + 181.511i 1.18402 + 0.860244i 0.992620 0.121267i \(-0.0386958\pi\)
0.191404 + 0.981511i \(0.438696\pi\)
\(212\) 0 0
\(213\) 144.873 + 73.8163i 0.680154 + 0.346556i
\(214\) 0 0
\(215\) −29.8490 263.668i −0.138833 1.22636i
\(216\) 0 0
\(217\) −165.488 + 84.3204i −0.762618 + 0.388573i
\(218\) 0 0
\(219\) 6.95853i 0.0317741i
\(220\) 0 0
\(221\) −33.3619 −0.150959
\(222\) 0 0
\(223\) −54.1939 106.362i −0.243022 0.476958i 0.736988 0.675906i \(-0.236247\pi\)
−0.980010 + 0.198948i \(0.936247\pi\)
\(224\) 0 0
\(225\) −3.64563 1.55367i −0.0162028 0.00690520i
\(226\) 0 0
\(227\) −95.9036 + 188.221i −0.422483 + 0.829169i 0.577436 + 0.816436i \(0.304053\pi\)
−0.999919 + 0.0127332i \(0.995947\pi\)
\(228\) 0 0
\(229\) 251.849 346.641i 1.09978 1.51371i 0.264100 0.964495i \(-0.414925\pi\)
0.835678 0.549219i \(-0.185075\pi\)
\(230\) 0 0
\(231\) 145.208 + 213.398i 0.628608 + 0.923800i
\(232\) 0 0
\(233\) 101.586 16.0897i 0.435994 0.0690546i 0.0654202 0.997858i \(-0.479161\pi\)
0.370573 + 0.928803i \(0.379161\pi\)
\(234\) 0 0
\(235\) −72.0615 + 352.894i −0.306645 + 1.50168i
\(236\) 0 0
\(237\) 262.691 + 41.6061i 1.10840 + 0.175553i
\(238\) 0 0
\(239\) 407.279 + 132.333i 1.70410 + 0.553695i 0.989333 0.145672i \(-0.0465343\pi\)
0.714764 + 0.699366i \(0.246534\pi\)
\(240\) 0 0
\(241\) 60.3944 0.250599 0.125300 0.992119i \(-0.460011\pi\)
0.125300 + 0.992119i \(0.460011\pi\)
\(242\) 0 0
\(243\) 6.05202 6.05202i 0.0249054 0.0249054i
\(244\) 0 0
\(245\) 66.3147 + 2.94315i 0.270672 + 0.0120129i
\(246\) 0 0
\(247\) −306.914 48.6104i −1.24257 0.196803i
\(248\) 0 0
\(249\) 177.426 57.6491i 0.712553 0.231522i
\(250\) 0 0
\(251\) 368.024 + 267.385i 1.46623 + 1.06528i 0.981685 + 0.190513i \(0.0610150\pi\)
0.484545 + 0.874766i \(0.338985\pi\)
\(252\) 0 0
\(253\) 405.969 + 77.1954i 1.60462 + 0.305120i
\(254\) 0 0
\(255\) −30.5355 11.4418i −0.119747 0.0448697i
\(256\) 0 0
\(257\) 34.3916 67.4972i 0.133819 0.262635i −0.814367 0.580350i \(-0.802916\pi\)
0.948186 + 0.317715i \(0.102916\pi\)
\(258\) 0 0
\(259\) −236.092 324.953i −0.911553 1.25465i
\(260\) 0 0
\(261\) 0.388369 1.19528i 0.00148800 0.00457960i
\(262\) 0 0
\(263\) −101.777 + 101.777i −0.386984 + 0.386984i −0.873610 0.486626i \(-0.838227\pi\)
0.486626 + 0.873610i \(0.338227\pi\)
\(264\) 0 0
\(265\) −81.7123 + 144.184i −0.308348 + 0.544090i
\(266\) 0 0
\(267\) 95.4147 48.6162i 0.357358 0.182083i
\(268\) 0 0
\(269\) 83.8954 + 115.472i 0.311879 + 0.429265i 0.935966 0.352090i \(-0.114529\pi\)
−0.624087 + 0.781355i \(0.714529\pi\)
\(270\) 0 0
\(271\) −20.0339 61.6580i −0.0739258 0.227520i 0.907265 0.420559i \(-0.138166\pi\)
−0.981191 + 0.193038i \(0.938166\pi\)
\(272\) 0 0
\(273\) 352.527 55.8348i 1.29131 0.204523i
\(274\) 0 0
\(275\) −187.018 + 201.617i −0.680065 + 0.733152i
\(276\) 0 0
\(277\) 79.6156 + 502.673i 0.287421 + 1.81470i 0.533891 + 0.845553i \(0.320729\pi\)
−0.246470 + 0.969150i \(0.579271\pi\)
\(278\) 0 0
\(279\) 3.54817 1.15287i 0.0127174 0.00413215i
\(280\) 0 0
\(281\) 427.771 310.794i 1.52232 1.10603i 0.561992 0.827143i \(-0.310035\pi\)
0.960324 0.278885i \(-0.0899649\pi\)
\(282\) 0 0
\(283\) −59.2646 116.313i −0.209415 0.411001i 0.762277 0.647251i \(-0.224081\pi\)
−0.971692 + 0.236250i \(0.924081\pi\)
\(284\) 0 0
\(285\) −264.240 149.751i −0.927160 0.525442i
\(286\) 0 0
\(287\) −304.217 304.217i −1.05999 1.05999i
\(288\) 0 0
\(289\) −270.280 87.8193i −0.935225 0.303873i
\(290\) 0 0
\(291\) −19.1977 + 13.9480i −0.0659716 + 0.0479312i
\(292\) 0 0
\(293\) −116.074 59.1428i −0.396158 0.201853i 0.244551 0.969636i \(-0.421359\pi\)
−0.640709 + 0.767784i \(0.721359\pi\)
\(294\) 0 0
\(295\) −125.577 + 335.137i −0.425686 + 1.13606i
\(296\) 0 0
\(297\) −127.705 270.973i −0.429982 0.912366i
\(298\) 0 0
\(299\) 335.878 462.296i 1.12334 1.54614i
\(300\) 0 0
\(301\) −129.418 398.308i −0.429960 1.32328i
\(302\) 0 0
\(303\) 85.9469 542.647i 0.283653 1.79091i
\(304\) 0 0
\(305\) 11.8136 266.183i 0.0387332 0.872732i
\(306\) 0 0
\(307\) −53.8112 53.8112i −0.175281 0.175281i 0.614014 0.789295i \(-0.289554\pi\)
−0.789295 + 0.614014i \(0.789554\pi\)
\(308\) 0 0
\(309\) 503.282i 1.62875i
\(310\) 0 0
\(311\) 55.3408 170.321i 0.177945 0.547657i −0.821811 0.569760i \(-0.807036\pi\)
0.999756 + 0.0221029i \(0.00703613\pi\)
\(312\) 0 0
\(313\) −20.3142 + 128.259i −0.0649016 + 0.409772i 0.933753 + 0.357918i \(0.116513\pi\)
−0.998655 + 0.0518545i \(0.983487\pi\)
\(314\) 0 0
\(315\) −6.12818 1.25138i −0.0194545 0.00397264i
\(316\) 0 0
\(317\) −17.0787 107.830i −0.0538759 0.340159i −0.999872 0.0159819i \(-0.994913\pi\)
0.945996 0.324177i \(-0.105087\pi\)
\(318\) 0 0
\(319\) −68.9434 53.4131i −0.216124 0.167439i
\(320\) 0 0
\(321\) 110.098 + 79.9912i 0.342986 + 0.249194i
\(322\) 0 0
\(323\) 39.9235 + 20.3421i 0.123602 + 0.0629785i
\(324\) 0 0
\(325\) 141.944 + 352.783i 0.436750 + 1.08549i
\(326\) 0 0
\(327\) −551.084 + 280.791i −1.68527 + 0.858689i
\(328\) 0 0
\(329\) 568.468i 1.72787i
\(330\) 0 0
\(331\) 292.474 0.883607 0.441804 0.897112i \(-0.354339\pi\)
0.441804 + 0.897112i \(0.354339\pi\)
\(332\) 0 0
\(333\) 3.66287 + 7.18879i 0.0109996 + 0.0215880i
\(334\) 0 0
\(335\) −20.3730 + 2.30637i −0.0608151 + 0.00688470i
\(336\) 0 0
\(337\) 101.753 199.701i 0.301937 0.592584i −0.689331 0.724446i \(-0.742096\pi\)
0.991268 + 0.131862i \(0.0420956\pi\)
\(338\) 0 0
\(339\) −73.9745 + 101.817i −0.218214 + 0.300346i
\(340\) 0 0
\(341\) 7.97986 258.769i 0.0234013 0.758853i
\(342\) 0 0
\(343\) −278.446 + 44.1014i −0.811795 + 0.128576i
\(344\) 0 0
\(345\) 465.971 307.938i 1.35064 0.892573i
\(346\) 0 0
\(347\) −157.118 24.8851i −0.452791 0.0717150i −0.0741260 0.997249i \(-0.523617\pi\)
−0.378665 + 0.925534i \(0.623617\pi\)
\(348\) 0 0
\(349\) 623.519 + 202.593i 1.78659 + 0.580497i 0.999346 0.0361497i \(-0.0115093\pi\)
0.787240 + 0.616647i \(0.211509\pi\)
\(350\) 0 0
\(351\) −414.226 −1.18013
\(352\) 0 0
\(353\) 240.681 240.681i 0.681817 0.681817i −0.278593 0.960409i \(-0.589868\pi\)
0.960409 + 0.278593i \(0.0898679\pi\)
\(354\) 0 0
\(355\) −12.1224 + 273.140i −0.0341476 + 0.769410i
\(356\) 0 0
\(357\) −50.8328 8.05113i −0.142389 0.0225522i
\(358\) 0 0
\(359\) −332.050 + 107.889i −0.924930 + 0.300528i −0.732487 0.680780i \(-0.761641\pi\)
−0.192442 + 0.981308i \(0.561641\pi\)
\(360\) 0 0
\(361\) 45.5828 + 33.1179i 0.126268 + 0.0917392i
\(362\) 0 0
\(363\) −358.152 + 34.2803i −0.986645 + 0.0944361i
\(364\) 0 0
\(365\) −10.6510 + 4.84469i −0.0291808 + 0.0132731i
\(366\) 0 0
\(367\) 79.5195 156.066i 0.216674 0.425247i −0.756928 0.653498i \(-0.773301\pi\)
0.973602 + 0.228251i \(0.0733007\pi\)
\(368\) 0 0
\(369\) 5.07960 + 6.99147i 0.0137659 + 0.0189471i
\(370\) 0 0
\(371\) −80.8294 + 248.767i −0.217869 + 0.670532i
\(372\) 0 0
\(373\) −207.975 + 207.975i −0.557573 + 0.557573i −0.928616 0.371042i \(-0.879000\pi\)
0.371042 + 0.928616i \(0.379000\pi\)
\(374\) 0 0
\(375\) 8.92785 + 371.576i 0.0238076 + 0.990868i
\(376\) 0 0
\(377\) −107.454 + 54.7503i −0.285023 + 0.145226i
\(378\) 0 0
\(379\) 66.0392 + 90.8951i 0.174246 + 0.239829i 0.887204 0.461378i \(-0.152645\pi\)
−0.712958 + 0.701207i \(0.752645\pi\)
\(380\) 0 0
\(381\) 83.4981 + 256.981i 0.219155 + 0.674490i
\(382\) 0 0
\(383\) 488.900 77.4342i 1.27650 0.202178i 0.518866 0.854856i \(-0.326354\pi\)
0.757636 + 0.652678i \(0.226354\pi\)
\(384\) 0 0
\(385\) −225.537 + 370.834i −0.585811 + 0.963205i
\(386\) 0 0
\(387\) 1.31600 + 8.30891i 0.00340052 + 0.0214700i
\(388\) 0 0
\(389\) −426.589 + 138.607i −1.09663 + 0.356316i −0.800804 0.598926i \(-0.795594\pi\)
−0.295824 + 0.955242i \(0.595594\pi\)
\(390\) 0 0
\(391\) −66.6610 + 48.4321i −0.170489 + 0.123867i
\(392\) 0 0
\(393\) −239.205 469.467i −0.608665 1.19457i
\(394\) 0 0
\(395\) 119.207 + 431.051i 0.301791 + 1.09127i
\(396\) 0 0
\(397\) −510.808 510.808i −1.28667 1.28667i −0.936798 0.349872i \(-0.886225\pi\)
−0.349872 0.936798i \(-0.613775\pi\)
\(398\) 0 0
\(399\) −455.907 148.133i −1.14262 0.371261i
\(400\) 0 0
\(401\) −117.926 + 85.6783i −0.294080 + 0.213662i −0.725035 0.688712i \(-0.758177\pi\)
0.430955 + 0.902373i \(0.358177\pi\)
\(402\) 0 0
\(403\) −318.975 162.526i −0.791501 0.403290i
\(404\) 0 0
\(405\) −372.453 139.560i −0.919637 0.344592i
\(406\) 0 0
\(407\) 555.425 70.4982i 1.36468 0.173214i
\(408\) 0 0
\(409\) −107.001 + 147.274i −0.261615 + 0.360083i −0.919537 0.393004i \(-0.871436\pi\)
0.657921 + 0.753087i \(0.271436\pi\)
\(410\) 0 0
\(411\) 87.6347 + 269.712i 0.213223 + 0.656233i
\(412\) 0 0
\(413\) −88.3639 + 557.907i −0.213956 + 1.35087i
\(414\) 0 0
\(415\) 211.768 + 231.438i 0.510284 + 0.557682i
\(416\) 0 0
\(417\) −145.573 145.573i −0.349095 0.349095i
\(418\) 0 0
\(419\) 33.8672i 0.0808286i 0.999183 + 0.0404143i \(0.0128678\pi\)
−0.999183 + 0.0404143i \(0.987132\pi\)
\(420\) 0 0
\(421\) 92.2752 283.994i 0.219181 0.674570i −0.779649 0.626216i \(-0.784603\pi\)
0.998830 0.0483532i \(-0.0153973\pi\)
\(422\) 0 0
\(423\) 1.78628 11.2781i 0.00422289 0.0266623i
\(424\) 0 0
\(425\) −3.74627 54.7048i −0.00881475 0.128717i
\(426\) 0 0
\(427\) −65.7856 415.354i −0.154065 0.972726i
\(428\) 0 0
\(429\) −168.252 + 468.200i −0.392195 + 1.09138i
\(430\) 0 0
\(431\) −470.349 341.729i −1.09130 0.792874i −0.111679 0.993744i \(-0.535623\pi\)
−0.979618 + 0.200871i \(0.935623\pi\)
\(432\) 0 0
\(433\) 175.140 + 89.2385i 0.404481 + 0.206093i 0.644382 0.764704i \(-0.277115\pi\)
−0.239901 + 0.970797i \(0.577115\pi\)
\(434\) 0 0
\(435\) −117.127 + 13.2596i −0.269258 + 0.0304819i
\(436\) 0 0
\(437\) −683.818 + 348.423i −1.56480 + 0.797306i
\(438\) 0 0
\(439\) 116.632i 0.265676i 0.991138 + 0.132838i \(0.0424091\pi\)
−0.991138 + 0.132838i \(0.957591\pi\)
\(440\) 0 0
\(441\) −2.10445 −0.00477200
\(442\) 0 0
\(443\) −15.9495 31.3026i −0.0360033 0.0706605i 0.872304 0.488964i \(-0.162625\pi\)
−0.908307 + 0.418303i \(0.862625\pi\)
\(444\) 0 0
\(445\) 140.844 + 112.198i 0.316503 + 0.252129i
\(446\) 0 0
\(447\) 210.354 412.843i 0.470591 0.923586i
\(448\) 0 0
\(449\) −248.055 + 341.418i −0.552460 + 0.760396i −0.990343 0.138635i \(-0.955728\pi\)
0.437883 + 0.899032i \(0.355728\pi\)
\(450\) 0 0
\(451\) 575.786 167.649i 1.27669 0.371726i
\(452\) 0 0
\(453\) 69.3727 10.9875i 0.153141 0.0242551i
\(454\) 0 0
\(455\) 330.901 + 500.718i 0.727254 + 1.10048i
\(456\) 0 0
\(457\) 51.6963 + 8.18788i 0.113121 + 0.0179166i 0.212738 0.977109i \(-0.431762\pi\)
−0.0996173 + 0.995026i \(0.531762\pi\)
\(458\) 0 0
\(459\) 56.8062 + 18.4574i 0.123761 + 0.0402123i
\(460\) 0 0
\(461\) −360.723 −0.782479 −0.391240 0.920289i \(-0.627954\pi\)
−0.391240 + 0.920289i \(0.627954\pi\)
\(462\) 0 0
\(463\) −221.558 + 221.558i −0.478526 + 0.478526i −0.904660 0.426134i \(-0.859875\pi\)
0.426134 + 0.904660i \(0.359875\pi\)
\(464\) 0 0
\(465\) −236.211 258.152i −0.507981 0.555165i
\(466\) 0 0
\(467\) 291.930 + 46.2371i 0.625117 + 0.0990089i 0.460954 0.887424i \(-0.347507\pi\)
0.164164 + 0.986433i \(0.447507\pi\)
\(468\) 0 0
\(469\) −30.7764 + 9.99986i −0.0656213 + 0.0213217i
\(470\) 0 0
\(471\) −76.0447 55.2497i −0.161454 0.117303i
\(472\) 0 0
\(473\) 573.498 + 109.051i 1.21247 + 0.230552i
\(474\) 0 0
\(475\) 45.2444 508.717i 0.0952513 1.07098i
\(476\) 0 0
\(477\) 2.38532 4.68144i 0.00500066 0.00981435i
\(478\) 0 0
\(479\) 150.645 + 207.345i 0.314499 + 0.432871i 0.936778 0.349925i \(-0.113793\pi\)
−0.622279 + 0.782796i \(0.713793\pi\)
\(480\) 0 0
\(481\) 239.241 736.307i 0.497382 1.53078i
\(482\) 0 0
\(483\) 623.334 623.334i 1.29055 1.29055i
\(484\) 0 0
\(485\) −34.7152 19.6739i −0.0715778 0.0405647i
\(486\) 0 0
\(487\) 603.175 307.333i 1.23855 0.631074i 0.292865 0.956154i \(-0.405391\pi\)
0.945686 + 0.325080i \(0.105391\pi\)
\(488\) 0 0
\(489\) −402.678 554.238i −0.823471 1.13341i
\(490\) 0 0
\(491\) 133.739 + 411.608i 0.272382 + 0.838305i 0.989900 + 0.141766i \(0.0452779\pi\)
−0.717518 + 0.696540i \(0.754722\pi\)
\(492\) 0 0
\(493\) 17.1756 2.72034i 0.0348389 0.00551794i
\(494\) 0 0
\(495\) 5.63982 6.64848i 0.0113936 0.0134313i
\(496\) 0 0
\(497\) 67.5050 + 426.210i 0.135825 + 0.857565i
\(498\) 0 0
\(499\) 230.428 74.8705i 0.461779 0.150041i −0.0688828 0.997625i \(-0.521943\pi\)
0.530662 + 0.847584i \(0.321943\pi\)
\(500\) 0 0
\(501\) 194.103 141.024i 0.387430 0.281485i
\(502\) 0 0
\(503\) −184.621 362.339i −0.367039 0.720356i 0.631443 0.775422i \(-0.282463\pi\)
−0.998483 + 0.0550666i \(0.982463\pi\)
\(504\) 0 0
\(505\) 890.435 246.250i 1.76324 0.487624i
\(506\) 0 0
\(507\) 131.128 + 131.128i 0.258636 + 0.258636i
\(508\) 0 0
\(509\) 297.341 + 96.6120i 0.584168 + 0.189808i 0.586167 0.810190i \(-0.300636\pi\)
−0.00199918 + 0.999998i \(0.500636\pi\)
\(510\) 0 0
\(511\) −14.9408 + 10.8551i −0.0292383 + 0.0212429i
\(512\) 0 0
\(513\) 495.696 + 252.570i 0.966269 + 0.492339i
\(514\) 0 0
\(515\) −770.343 + 350.397i −1.49581 + 0.680382i
\(516\) 0 0
\(517\) −694.600 381.328i −1.34352 0.737578i
\(518\) 0 0
\(519\) 159.688 219.792i 0.307684 0.423491i
\(520\) 0 0
\(521\) −33.9003 104.335i −0.0650678 0.200258i 0.913237 0.407429i \(-0.133575\pi\)
−0.978305 + 0.207171i \(0.933575\pi\)
\(522\) 0 0
\(523\) −125.718 + 793.754i −0.240379 + 1.51769i 0.512012 + 0.858978i \(0.328900\pi\)
−0.752391 + 0.658716i \(0.771100\pi\)
\(524\) 0 0
\(525\) 131.140 + 571.782i 0.249791 + 1.08911i
\(526\) 0 0
\(527\) 36.5016 + 36.5016i 0.0692630 + 0.0692630i
\(528\) 0 0
\(529\) 882.321i 1.66790i
\(530\) 0 0
\(531\) 3.50620 10.7910i 0.00660301 0.0203220i
\(532\) 0 0
\(533\) 129.724 819.046i 0.243385 1.53667i
\(534\) 0 0
\(535\) −45.7845 + 224.213i −0.0855786 + 0.419089i
\(536\) 0 0
\(537\) 27.8714 + 175.973i 0.0519020 + 0.327696i
\(538\) 0 0
\(539\) −49.3871 + 137.432i −0.0916274 + 0.254975i
\(540\) 0 0
\(541\) −79.5754 57.8149i −0.147089 0.106867i 0.511807 0.859101i \(-0.328976\pi\)
−0.658896 + 0.752234i \(0.728976\pi\)
\(542\) 0 0
\(543\) −553.111 281.824i −1.01862 0.519013i
\(544\) 0 0
\(545\) −813.467 648.017i −1.49260 1.18902i
\(546\) 0 0
\(547\) 41.9672 21.3834i 0.0767225 0.0390921i −0.415208 0.909726i \(-0.636291\pi\)
0.491931 + 0.870634i \(0.336291\pi\)
\(548\) 0 0
\(549\) 8.44715i 0.0153864i
\(550\) 0 0
\(551\) 161.971 0.293958
\(552\) 0 0
\(553\) 320.457 + 628.931i 0.579487 + 1.13731i
\(554\) 0 0
\(555\) 471.495 591.877i 0.849541 1.06644i
\(556\) 0 0
\(557\) −368.928 + 724.062i −0.662348 + 1.29993i 0.278282 + 0.960499i \(0.410235\pi\)
−0.940630 + 0.339433i \(0.889765\pi\)
\(558\) 0 0
\(559\) 474.483 653.069i 0.848806 1.16828i
\(560\) 0 0
\(561\) 43.9361 56.7110i 0.0783176 0.101089i
\(562\) 0 0
\(563\) −274.336 + 43.4505i −0.487275 + 0.0771767i −0.395238 0.918579i \(-0.629338\pi\)
−0.0920370 + 0.995756i \(0.529338\pi\)
\(564\) 0 0
\(565\) −207.348 42.3407i −0.366988 0.0749394i
\(566\) 0 0
\(567\) −620.027 98.2027i −1.09352 0.173197i
\(568\) 0 0
\(569\) 151.476 + 49.2175i 0.266214 + 0.0864983i 0.439083 0.898447i \(-0.355304\pi\)
−0.172868 + 0.984945i \(0.555304\pi\)
\(570\) 0 0
\(571\) 514.236 0.900588 0.450294 0.892880i \(-0.351319\pi\)
0.450294 + 0.892880i \(0.351319\pi\)
\(572\) 0 0
\(573\) 135.999 135.999i 0.237345 0.237345i
\(574\) 0 0
\(575\) 795.761 + 498.839i 1.38393 + 0.867547i
\(576\) 0 0
\(577\) 948.349 + 150.204i 1.64359 + 0.260319i 0.908571 0.417731i \(-0.137175\pi\)
0.735016 + 0.678050i \(0.237175\pi\)
\(578\) 0 0
\(579\) 768.985 249.858i 1.32813 0.431534i
\(580\) 0 0
\(581\) 400.558 + 291.023i 0.689429 + 0.500899i
\(582\) 0 0
\(583\) −249.744 265.637i −0.428377 0.455638i
\(584\) 0 0
\(585\) −4.99152 10.9738i −0.00853252 0.0187586i
\(586\) 0 0
\(587\) −393.300 + 771.894i −0.670016 + 1.31498i 0.266323 + 0.963884i \(0.414191\pi\)
−0.936339 + 0.351097i \(0.885809\pi\)
\(588\) 0 0
\(589\) 282.612 + 388.983i 0.479817 + 0.660412i
\(590\) 0 0
\(591\) 197.801 608.770i 0.334689 1.03007i
\(592\) 0 0
\(593\) 649.577 649.577i 1.09541 1.09541i 0.100468 0.994940i \(-0.467966\pi\)
0.994940 0.100468i \(-0.0320341\pi\)
\(594\) 0 0
\(595\) −23.0676 83.4121i −0.0387691 0.140188i
\(596\) 0 0
\(597\) −397.670 + 202.623i −0.666114 + 0.339402i
\(598\) 0 0
\(599\) 356.047 + 490.056i 0.594402 + 0.818124i 0.995181 0.0980508i \(-0.0312608\pi\)
−0.400780 + 0.916174i \(0.631261\pi\)
\(600\) 0 0
\(601\) 142.502 + 438.575i 0.237108 + 0.729742i 0.996835 + 0.0795001i \(0.0253324\pi\)
−0.759727 + 0.650242i \(0.774668\pi\)
\(602\) 0 0
\(603\) 0.642012 0.101685i 0.00106470 0.000168631i
\(604\) 0 0
\(605\) −301.825 524.335i −0.498884 0.866669i
\(606\) 0 0
\(607\) −109.412 690.800i −0.180250 1.13806i −0.897426 0.441164i \(-0.854566\pi\)
0.717176 0.696892i \(-0.245434\pi\)
\(608\) 0 0
\(609\) −176.937 + 57.4904i −0.290537 + 0.0944013i
\(610\) 0 0
\(611\) −886.448 + 644.042i −1.45081 + 1.05408i
\(612\) 0 0
\(613\) 187.006 + 367.019i 0.305066 + 0.598726i 0.991744 0.128236i \(-0.0409315\pi\)
−0.686677 + 0.726962i \(0.740932\pi\)
\(614\) 0 0
\(615\) 399.633 705.166i 0.649810 1.14661i
\(616\) 0 0
\(617\) 418.073 + 418.073i 0.677590 + 0.677590i 0.959454 0.281864i \(-0.0909527\pi\)
−0.281864 + 0.959454i \(0.590953\pi\)
\(618\) 0 0
\(619\) −523.296 170.029i −0.845390 0.274684i −0.145876 0.989303i \(-0.546600\pi\)
−0.699514 + 0.714619i \(0.746600\pi\)
\(620\) 0 0
\(621\) −827.672 + 601.339i −1.33280 + 0.968339i
\(622\) 0 0
\(623\) 253.229 + 129.026i 0.406467 + 0.207105i
\(624\) 0 0
\(625\) −562.532 + 272.365i −0.900051 + 0.435784i
\(626\) 0 0
\(627\) 486.823 457.696i 0.776432 0.729978i
\(628\) 0 0
\(629\) −65.6180 + 90.3154i −0.104321 + 0.143586i
\(630\) 0 0
\(631\) 254.599 + 783.575i 0.403485 + 1.24180i 0.922154 + 0.386823i \(0.126428\pi\)
−0.518669 + 0.854975i \(0.673572\pi\)
\(632\) 0 0
\(633\) −143.642 + 906.918i −0.226922 + 1.43273i
\(634\) 0 0
\(635\) −335.211 + 306.721i −0.527892 + 0.483026i
\(636\) 0 0
\(637\) 142.791 + 142.791i 0.224162 + 0.224162i
\(638\) 0 0
\(639\) 8.66793i 0.0135648i
\(640\) 0 0
\(641\) −199.661 + 614.494i −0.311484 + 0.958649i 0.665694 + 0.746225i \(0.268136\pi\)
−0.977178 + 0.212424i \(0.931864\pi\)
\(642\) 0 0
\(643\) −32.3568 + 204.293i −0.0503217 + 0.317719i 0.949668 + 0.313257i \(0.101420\pi\)
−0.999990 + 0.00446153i \(0.998580\pi\)
\(644\) 0 0
\(645\) 658.260 435.012i 1.02056 0.674438i
\(646\) 0 0
\(647\) 56.9385 + 359.495i 0.0880038 + 0.555634i 0.991813 + 0.127699i \(0.0407590\pi\)
−0.903809 + 0.427936i \(0.859241\pi\)
\(648\) 0 0
\(649\) −622.422 482.214i −0.959048 0.743011i
\(650\) 0 0
\(651\) −446.793 324.614i −0.686318 0.498639i
\(652\) 0 0
\(653\) −348.656 177.649i −0.533929 0.272050i 0.166169 0.986097i \(-0.446860\pi\)
−0.700098 + 0.714047i \(0.746860\pi\)
\(654\) 0 0
\(655\) 552.044 692.991i 0.842815 1.05800i
\(656\) 0 0
\(657\) 0.330528 0.168412i 0.000503087 0.000256335i
\(658\) 0 0
\(659\) 1045.08i 1.58586i −0.609312 0.792931i \(-0.708554\pi\)
0.609312 0.792931i \(-0.291446\pi\)
\(660\) 0 0
\(661\) 908.162 1.37392 0.686960 0.726695i \(-0.258945\pi\)
0.686960 + 0.726695i \(0.258945\pi\)
\(662\) 0 0
\(663\) −45.0361 88.3883i −0.0679277 0.133316i
\(664\) 0 0
\(665\) −90.6746 800.962i −0.136353 1.20445i
\(666\) 0 0
\(667\) −135.223 + 265.389i −0.202733 + 0.397885i
\(668\) 0 0
\(669\) 208.634 287.160i 0.311860 0.429238i
\(670\) 0 0
\(671\) 551.642 + 198.237i 0.822119 + 0.295435i
\(672\) 0 0
\(673\) −1251.10 + 198.155i −1.85899 + 0.294435i −0.982398 0.186798i \(-0.940189\pi\)
−0.876593 + 0.481233i \(0.840189\pi\)
\(674\) 0 0
\(675\) −46.5142 679.222i −0.0689099 1.00625i
\(676\) 0 0
\(677\) 1250.03 + 197.985i 1.84642 + 0.292444i 0.978806 0.204791i \(-0.0656515\pi\)
0.867616 + 0.497235i \(0.165651\pi\)
\(678\) 0 0
\(679\) −59.8959 19.4613i −0.0882119 0.0286618i
\(680\) 0 0
\(681\) −628.132 −0.922367
\(682\) 0 0
\(683\) 295.545 295.545i 0.432715 0.432715i −0.456836 0.889551i \(-0.651017\pi\)
0.889551 + 0.456836i \(0.151017\pi\)
\(684\) 0 0
\(685\) −351.818 + 321.917i −0.513603 + 0.469951i
\(686\) 0 0
\(687\) 1258.36 + 199.304i 1.83167 + 0.290108i
\(688\) 0 0
\(689\) −479.494 + 155.797i −0.695927 + 0.226120i
\(690\) 0 0
\(691\) −1042.47 757.400i −1.50864 1.09609i −0.966775 0.255628i \(-0.917718\pi\)
−0.541867 0.840464i \(-0.682282\pi\)
\(692\) 0 0
\(693\) 6.62194 12.0621i 0.00955547 0.0174056i
\(694\) 0 0
\(695\) 121.468 324.170i 0.174774 0.466431i
\(696\) 0 0
\(697\) −54.2859 + 106.542i −0.0778851 + 0.152858i
\(698\) 0 0
\(699\) 179.762 + 247.421i 0.257170 + 0.353964i
\(700\) 0 0
\(701\) 169.091 520.409i 0.241214 0.742382i −0.755022 0.655700i \(-0.772374\pi\)
0.996236 0.0866817i \(-0.0276263\pi\)
\(702\) 0 0
\(703\) −735.249 + 735.249i −1.04587 + 1.04587i
\(704\) 0 0
\(705\) −1032.23 + 285.463i −1.46415 + 0.404912i
\(706\) 0 0
\(707\) 1299.20 661.976i 1.83762 0.936317i
\(708\) 0 0
\(709\) −698.138 960.905i −0.984680 1.35530i −0.934270 0.356567i \(-0.883947\pi\)
−0.0504104 0.998729i \(-0.516053\pi\)
\(710\) 0 0
\(711\) −4.38144 13.4847i −0.00616236 0.0189658i
\(712\) 0 0
\(713\) −873.290 + 138.316i −1.22481 + 0.193991i
\(714\) 0 0
\(715\) −833.786 + 68.4395i −1.16613 + 0.0957195i
\(716\) 0 0
\(717\) 199.196 + 1257.67i 0.277819 + 1.75408i
\(718\) 0 0
\(719\) −760.081 + 246.965i −1.05714 + 0.343485i −0.785466 0.618905i \(-0.787576\pi\)
−0.271671 + 0.962390i \(0.587576\pi\)
\(720\) 0 0
\(721\) −1080.61 + 785.106i −1.49876 + 1.08891i
\(722\) 0 0
\(723\) 81.5278 + 160.007i 0.112763 + 0.221310i
\(724\) 0 0
\(725\) −101.842 170.048i −0.140472 0.234548i
\(726\) 0 0
\(727\) −365.797 365.797i −0.503160 0.503160i 0.409258 0.912419i \(-0.365787\pi\)
−0.912419 + 0.409258i \(0.865787\pi\)
\(728\) 0 0
\(729\) 705.098 + 229.100i 0.967212 + 0.314266i
\(730\) 0 0
\(731\) −94.1696 + 68.4183i −0.128823 + 0.0935954i
\(732\) 0 0
\(733\) −414.599 211.249i −0.565620 0.288198i 0.147705 0.989032i \(-0.452811\pi\)
−0.713325 + 0.700834i \(0.752811\pi\)
\(734\) 0 0
\(735\) 81.7223 + 179.666i 0.111187 + 0.244443i
\(736\) 0 0
\(737\) 8.42616 44.3130i 0.0114331 0.0601262i
\(738\) 0 0
\(739\) 803.504 1105.93i 1.08729 1.49652i 0.236046 0.971742i \(-0.424148\pi\)
0.851239 0.524778i \(-0.175852\pi\)
\(740\) 0 0
\(741\) −285.523 878.750i −0.385322 1.18590i
\(742\) 0 0
\(743\) −126.259 + 797.167i −0.169931 + 1.07290i 0.744340 + 0.667800i \(0.232764\pi\)
−0.914271 + 0.405102i \(0.867236\pi\)
\(744\) 0 0
\(745\) 778.366 + 34.5451i 1.04479 + 0.0463692i
\(746\) 0 0
\(747\) −7.03242 7.03242i −0.00941422 0.00941422i
\(748\) 0 0
\(749\) 361.178i 0.482214i
\(750\) 0 0
\(751\) −162.000 + 498.585i −0.215712 + 0.663894i 0.783390 + 0.621531i \(0.213489\pi\)
−0.999102 + 0.0423638i \(0.986511\pi\)
\(752\) 0 0
\(753\) −211.599 + 1335.98i −0.281008 + 1.77421i
\(754\) 0 0
\(755\) 65.1168 + 98.5346i 0.0862474 + 0.130509i
\(756\) 0 0
\(757\) −64.3815 406.489i −0.0850482 0.536973i −0.993020 0.117943i \(-0.962370\pi\)
0.907972 0.419030i \(-0.137630\pi\)
\(758\) 0 0
\(759\) 343.508 + 1179.77i 0.452579 + 1.55438i
\(760\) 0 0
\(761\) 442.423 + 321.439i 0.581371 + 0.422391i 0.839218 0.543795i \(-0.183013\pi\)
−0.257847 + 0.966186i \(0.583013\pi\)
\(762\) 0 0
\(763\) −1462.57 745.214i −1.91686 0.976690i
\(764\) 0 0
\(765\) 0.195547 + 1.72734i 0.000255618 + 0.00225796i
\(766\) 0 0
\(767\) −970.091 + 494.286i −1.26479 + 0.644441i
\(768\) 0 0
\(769\) 662.450i 0.861443i 0.902485 + 0.430722i \(0.141741\pi\)
−0.902485 + 0.430722i \(0.858259\pi\)
\(770\) 0 0
\(771\) 225.251 0.292155
\(772\) 0 0
\(773\) −173.487 340.487i −0.224433 0.440475i 0.751142 0.660141i \(-0.229503\pi\)
−0.975575 + 0.219666i \(0.929503\pi\)
\(774\) 0 0
\(775\) 230.681 541.285i 0.297653 0.698432i
\(776\) 0 0
\(777\) 542.216 1064.16i 0.697833 1.36957i
\(778\) 0 0
\(779\) −654.643 + 901.038i −0.840363 + 1.15666i
\(780\) 0 0
\(781\) −566.060 203.418i −0.724788 0.260459i
\(782\) 0 0
\(783\) 213.254 33.7761i 0.272355 0.0431368i
\(784\) 0 0
\(785\) 31.6232 154.863i 0.0402844 0.197278i
\(786\) 0 0
\(787\) 355.100 + 56.2423i 0.451207 + 0.0714641i 0.377902 0.925845i \(-0.376646\pi\)
0.0733045 + 0.997310i \(0.476646\pi\)
\(788\) 0 0
\(789\) −407.036 132.254i −0.515889 0.167622i
\(790\) 0 0
\(791\) −334.011 −0.422265
\(792\) 0 0
\(793\) 573.156 573.156i 0.722769 0.722769i
\(794\) 0 0
\(795\) −492.303 21.8491i −0.619249 0.0274832i
\(796\) 0 0
\(797\) −932.508 147.695i −1.17002 0.185313i −0.458970 0.888452i \(-0.651781\pi\)
−0.711053 + 0.703138i \(0.751781\pi\)
\(798\) 0 0
\(799\) 150.263 48.8236i 0.188064 0.0611058i
\(800\) 0 0
\(801\) −4.61851 3.35554i −0.00576592 0.00418919i
\(802\) 0 0
\(803\) −3.24138 25.5374i −0.00403659 0.0318025i
\(804\) 0 0
\(805\) 1388.08 + 520.119i 1.72432 + 0.646111i
\(806\) 0 0
\(807\) −192.677 + 378.149i −0.238757 + 0.468586i
\(808\) 0 0
\(809\) 148.538 + 204.445i 0.183607 + 0.252713i 0.890892 0.454215i \(-0.150080\pi\)
−0.707285 + 0.706929i \(0.750080\pi\)
\(810\) 0 0
\(811\) 16.5757 51.0148i 0.0204386 0.0629035i −0.940317 0.340300i \(-0.889471\pi\)
0.960756 + 0.277396i \(0.0894715\pi\)
\(812\) 0 0
\(813\) 136.311 136.311i 0.167664 0.167664i
\(814\) 0 0
\(815\) 567.985 1002.23i 0.696914 1.22973i
\(816\) 0 0
\(817\) −966.005 + 492.204i −1.18238 + 0.602453i
\(818\) 0 0
\(819\) −11.1841 15.3936i −0.0136558 0.0187956i
\(820\) 0 0
\(821\) 269.289 + 828.788i 0.328002 + 1.00949i 0.970067 + 0.242836i \(0.0780777\pi\)
−0.642066 + 0.766650i \(0.721922\pi\)
\(822\) 0 0
\(823\) 580.731 91.9788i 0.705628 0.111760i 0.206700 0.978404i \(-0.433727\pi\)
0.498927 + 0.866644i \(0.333727\pi\)
\(824\) 0 0
\(825\) −786.618 223.313i −0.953477 0.270683i
\(826\) 0 0
\(827\) 225.805 + 1425.68i 0.273042 + 1.72392i 0.618761 + 0.785579i \(0.287635\pi\)
−0.345719 + 0.938338i \(0.612365\pi\)
\(828\) 0 0
\(829\) 1263.48 410.531i 1.52411 0.495212i 0.577167 0.816626i \(-0.304158\pi\)
0.946939 + 0.321414i \(0.104158\pi\)
\(830\) 0 0
\(831\) −1224.29 + 889.502i −1.47328 + 1.07040i
\(832\) 0 0
\(833\) −13.2195 25.9448i −0.0158698 0.0311462i
\(834\) 0 0
\(835\) 350.995 + 198.917i 0.420353 + 0.238224i
\(836\) 0 0
\(837\) 453.209 + 453.209i 0.541468 + 0.541468i
\(838\) 0 0
\(839\) −216.137 70.2272i −0.257613 0.0837035i 0.177363 0.984145i \(-0.443243\pi\)
−0.434976 + 0.900442i \(0.643243\pi\)
\(840\) 0 0
\(841\) −629.528 + 457.379i −0.748547 + 0.543851i
\(842\) 0 0
\(843\) 1400.87 + 713.778i 1.66176 + 0.846711i
\(844\) 0 0
\(845\) −109.415 + 292.004i −0.129486 + 0.345567i
\(846\) 0 0
\(847\) −632.311 715.518i −0.746530 0.844767i
\(848\) 0 0
\(849\) 228.155 314.028i 0.268734 0.369880i
\(850\) 0 0
\(851\) −590.878 1818.54i −0.694334 2.13694i
\(852\) 0 0
\(853\) −93.0977 + 587.796i −0.109142 + 0.689093i 0.871073 + 0.491154i \(0.163425\pi\)
−0.980214 + 0.197939i \(0.936575\pi\)
\(854\) 0 0
\(855\) −0.717900 + 16.1756i −0.000839649 + 0.0189189i
\(856\) 0 0
\(857\) 1137.02 + 1137.02i 1.32674 + 1.32674i 0.908196 + 0.418544i \(0.137460\pi\)
0.418544 + 0.908196i \(0.362540\pi\)
\(858\) 0 0
\(859\) 678.461i 0.789827i −0.918718 0.394914i \(-0.870775\pi\)
0.918718 0.394914i \(-0.129225\pi\)
\(860\) 0 0
\(861\) 395.316 1216.66i 0.459136 1.41307i
\(862\) 0 0
\(863\) −218.128 + 1377.20i −0.252755 + 1.59583i 0.455737 + 0.890114i \(0.349376\pi\)
−0.708492 + 0.705718i \(0.750624\pi\)
\(864\) 0 0
\(865\) 447.600 + 91.4005i 0.517457 + 0.105665i
\(866\) 0 0
\(867\) −132.191 834.623i −0.152470 0.962656i
\(868\) 0 0
\(869\) −983.441 30.3271i −1.13169 0.0348989i
\(870\) 0 0
\(871\) −50.4613 36.6623i −0.0579349 0.0420922i
\(872\) 0 0
\(873\) 1.12715 + 0.574313i 0.00129113 + 0.000657862i
\(874\) 0 0
\(875\) −783.889 + 598.816i −0.895873 + 0.684362i
\(876\) 0 0
\(877\) −116.459 + 59.3387i −0.132792 + 0.0676610i −0.519124 0.854699i \(-0.673742\pi\)
0.386332 + 0.922360i \(0.373742\pi\)
\(878\) 0 0
\(879\) 387.363i 0.440685i
\(880\) 0 0
\(881\) −211.392 −0.239946 −0.119973 0.992777i \(-0.538281\pi\)
−0.119973 + 0.992777i \(0.538281\pi\)
\(882\) 0 0
\(883\) 246.556 + 483.894i 0.279226 + 0.548011i 0.987442 0.157985i \(-0.0504997\pi\)
−0.708216 + 0.705996i \(0.750500\pi\)
\(884\) 0 0
\(885\) −1057.42 + 119.708i −1.19483 + 0.135263i
\(886\) 0 0
\(887\) −142.193 + 279.069i −0.160307 + 0.314621i −0.957163 0.289548i \(-0.906495\pi\)
0.796856 + 0.604169i \(0.206495\pi\)
\(888\) 0 0
\(889\) −421.513 + 580.162i −0.474142 + 0.652601i
\(890\) 0 0
\(891\) 535.906 691.725i 0.601466 0.776347i
\(892\) 0 0
\(893\) 1453.49 230.210i 1.62765 0.257794i
\(894\) 0 0
\(895\) −249.946 + 165.177i −0.279269 + 0.184556i
\(896\) 0 0
\(897\) 1678.21 + 265.802i 1.87091 + 0.296323i
\(898\) 0 0
\(899\) 177.469 + 57.6631i 0.197407 + 0.0641414i
\(900\) 0 0
\(901\) 72.6990 0.0806870
\(902\) 0 0
\(903\) 880.562 880.562i 0.975151 0.975151i
\(904\) 0 0
\(905\) 46.2822 1042.83i 0.0511405 1.15229i
\(906\) 0 0
\(907\) 1506.41 + 238.592i 1.66087 + 0.263056i 0.915124 0.403173i \(-0.132093\pi\)
0.745747 + 0.666229i \(0.232093\pi\)
\(908\) 0 0
\(909\) −27.8557 + 9.05085i −0.0306443 + 0.00995694i
\(910\) 0 0
\(911\) 771.138 + 560.264i 0.846474 + 0.614999i 0.924172 0.381978i \(-0.124757\pi\)
−0.0776975 + 0.996977i \(0.524757\pi\)
\(912\) 0 0
\(913\) −624.289 + 294.216i −0.683777 + 0.322252i
\(914\) 0 0
\(915\) 721.167 328.029i 0.788161 0.358501i
\(916\) 0 0
\(917\) 634.847 1245.96i 0.692308 1.35873i
\(918\) 0 0
\(919\) −258.510 355.809i −0.281295 0.387170i 0.644867 0.764295i \(-0.276913\pi\)
−0.926162 + 0.377125i \(0.876913\pi\)
\(920\) 0 0
\(921\) 69.9250 215.207i 0.0759229 0.233667i
\(922\) 0 0
\(923\) −588.136 + 588.136i −0.637201 + 0.637201i
\(924\) 0 0
\(925\) 1234.21 + 309.611i 1.33429 + 0.334714i
\(926\) 0 0
\(927\) 23.9057 12.1806i 0.0257883 0.0131398i
\(928\) 0 0
\(929\) −585.018 805.208i −0.629729 0.866747i 0.368287 0.929712i \(-0.379944\pi\)
−0.998016 + 0.0629648i \(0.979944\pi\)
\(930\) 0 0
\(931\) −83.8101 257.941i −0.0900216 0.277058i
\(932\) 0 0
\(933\) 525.951 83.3025i 0.563720 0.0892845i
\(934\) 0 0
\(935\) 117.393 + 27.7669i 0.125554 + 0.0296972i
\(936\) 0 0
\(937\) −169.215 1068.38i −0.180593 1.14022i −0.896835 0.442365i \(-0.854140\pi\)
0.716243 0.697851i \(-0.245860\pi\)
\(938\) 0 0
\(939\) −367.228 + 119.320i −0.391084 + 0.127071i
\(940\) 0 0
\(941\) 871.044 632.850i 0.925657 0.672529i −0.0192683 0.999814i \(-0.506134\pi\)
0.944926 + 0.327285i \(0.106134\pi\)
\(942\) 0 0
\(943\) −929.819 1824.87i −0.986022 1.93518i
\(944\) 0 0
\(945\) −286.411 1035.65i −0.303080 1.09593i
\(946\) 0 0
\(947\) −1103.75 1103.75i −1.16552 1.16552i −0.983248 0.182275i \(-0.941654\pi\)
−0.182275 0.983248i \(-0.558346\pi\)
\(948\) 0 0
\(949\) −33.8541 10.9999i −0.0356734 0.0115910i
\(950\) 0 0
\(951\) 262.628 190.811i 0.276160 0.200642i
\(952\) 0 0
\(953\) −648.844 330.603i −0.680844 0.346907i 0.0791267 0.996865i \(-0.474787\pi\)
−0.759971 + 0.649957i \(0.774787\pi\)
\(954\) 0 0
\(955\) 302.851 + 113.480i 0.317121 + 0.118827i
\(956\) 0 0
\(957\) 48.4430 254.761i 0.0506196 0.266208i
\(958\) 0 0
\(959\) −442.395 + 608.904i −0.461309 + 0.634937i
\(960\) 0 0
\(961\) −125.793 387.151i −0.130898 0.402862i
\(962\) 0 0
\(963\) 1.13492 7.16561i 0.00117853 0.00744093i
\(964\) 0 0
\(965\) 917.828 + 1003.08i 0.951117 + 1.03946i
\(966\) 0 0
\(967\) 485.778 + 485.778i 0.502355 + 0.502355i 0.912169 0.409814i \(-0.134406\pi\)
−0.409814 + 0.912169i \(0.634406\pi\)
\(968\) 0 0
\(969\) 133.233i 0.137495i
\(970\) 0 0
\(971\) −501.435 + 1543.26i −0.516411 + 1.58935i 0.264289 + 0.964444i \(0.414863\pi\)
−0.780700 + 0.624906i \(0.785137\pi\)
\(972\) 0 0
\(973\) 85.4721 539.650i 0.0878439 0.554625i
\(974\) 0 0
\(975\) −743.041 + 852.292i −0.762094 + 0.874146i
\(976\) 0 0
\(977\) −285.484 1802.47i −0.292205 1.84491i −0.499101 0.866544i \(-0.666336\pi\)
0.206897 0.978363i \(-0.433664\pi\)
\(978\) 0 0
\(979\) −327.521 + 222.864i −0.334546 + 0.227645i
\(980\) 0 0
\(981\) 26.6750 + 19.3805i 0.0271916 + 0.0197559i
\(982\) 0 0
\(983\) 504.570 + 257.091i 0.513296 + 0.261537i 0.691397 0.722475i \(-0.256995\pi\)
−0.178101 + 0.984012i \(0.556995\pi\)
\(984\) 0 0
\(985\) 1069.52 121.077i 1.08581 0.122921i
\(986\) 0 0
\(987\) −1506.09 + 767.389i −1.52592 + 0.777496i
\(988\) 0 0
\(989\) 1993.72i 2.01590i
\(990\) 0 0
\(991\) 765.723 0.772677 0.386339 0.922357i \(-0.373740\pi\)
0.386339 + 0.922357i \(0.373740\pi\)
\(992\) 0 0
\(993\) 394.818 + 774.873i 0.397601 + 0.780336i
\(994\) 0 0
\(995\) −587.009 467.618i −0.589959 0.469968i
\(996\) 0 0
\(997\) 523.420 1027.27i 0.524995 1.03036i −0.464471 0.885589i \(-0.653755\pi\)
0.989465 0.144771i \(-0.0462446\pi\)
\(998\) 0 0
\(999\) −814.722 + 1121.37i −0.815537 + 1.12249i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.3.x.a.37.9 96
5.3 odd 4 inner 220.3.x.a.213.4 yes 96
11.3 even 5 inner 220.3.x.a.157.4 yes 96
55.3 odd 20 inner 220.3.x.a.113.9 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.3.x.a.37.9 96 1.1 even 1 trivial
220.3.x.a.113.9 yes 96 55.3 odd 20 inner
220.3.x.a.157.4 yes 96 11.3 even 5 inner
220.3.x.a.213.4 yes 96 5.3 odd 4 inner