Properties

Label 2200.2.a.s.1.2
Level $2200$
Weight $2$
Character 2200.1
Self dual yes
Analytic conductor $17.567$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2200,2,Mod(1,2200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2200 = 2^{3} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.5670884447\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.56155\) of defining polynomial
Character \(\chi\) \(=\) 2200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.56155 q^{3} +2.56155 q^{7} +3.56155 q^{9} +1.00000 q^{11} -2.00000 q^{13} +0.561553 q^{17} +2.56155 q^{19} +6.56155 q^{21} -5.12311 q^{23} +1.43845 q^{27} +9.68466 q^{29} +6.56155 q^{31} +2.56155 q^{33} +5.68466 q^{37} -5.12311 q^{39} +2.00000 q^{41} -10.2462 q^{43} +13.1231 q^{47} -0.438447 q^{49} +1.43845 q^{51} -4.56155 q^{53} +6.56155 q^{57} +1.12311 q^{59} +2.31534 q^{61} +9.12311 q^{63} -6.24621 q^{67} -13.1231 q^{69} +3.68466 q^{71} +2.00000 q^{73} +2.56155 q^{77} -15.3693 q^{79} -7.00000 q^{81} -5.12311 q^{83} +24.8078 q^{87} -12.5616 q^{89} -5.12311 q^{91} +16.8078 q^{93} -7.12311 q^{97} +3.56155 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + q^{7} + 3 q^{9} + 2 q^{11} - 4 q^{13} - 3 q^{17} + q^{19} + 9 q^{21} - 2 q^{23} + 7 q^{27} + 7 q^{29} + 9 q^{31} + q^{33} - q^{37} - 2 q^{39} + 4 q^{41} - 4 q^{43} + 18 q^{47} - 5 q^{49}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.56155 1.47891 0.739457 0.673204i \(-0.235083\pi\)
0.739457 + 0.673204i \(0.235083\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.56155 0.968176 0.484088 0.875019i \(-0.339151\pi\)
0.484088 + 0.875019i \(0.339151\pi\)
\(8\) 0 0
\(9\) 3.56155 1.18718
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.561553 0.136197 0.0680983 0.997679i \(-0.478307\pi\)
0.0680983 + 0.997679i \(0.478307\pi\)
\(18\) 0 0
\(19\) 2.56155 0.587661 0.293830 0.955858i \(-0.405070\pi\)
0.293830 + 0.955858i \(0.405070\pi\)
\(20\) 0 0
\(21\) 6.56155 1.43185
\(22\) 0 0
\(23\) −5.12311 −1.06824 −0.534121 0.845408i \(-0.679357\pi\)
−0.534121 + 0.845408i \(0.679357\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.43845 0.276829
\(28\) 0 0
\(29\) 9.68466 1.79840 0.899198 0.437542i \(-0.144151\pi\)
0.899198 + 0.437542i \(0.144151\pi\)
\(30\) 0 0
\(31\) 6.56155 1.17849 0.589245 0.807955i \(-0.299425\pi\)
0.589245 + 0.807955i \(0.299425\pi\)
\(32\) 0 0
\(33\) 2.56155 0.445909
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.68466 0.934552 0.467276 0.884111i \(-0.345235\pi\)
0.467276 + 0.884111i \(0.345235\pi\)
\(38\) 0 0
\(39\) −5.12311 −0.820353
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −10.2462 −1.56253 −0.781266 0.624198i \(-0.785426\pi\)
−0.781266 + 0.624198i \(0.785426\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.1231 1.91420 0.957101 0.289755i \(-0.0935738\pi\)
0.957101 + 0.289755i \(0.0935738\pi\)
\(48\) 0 0
\(49\) −0.438447 −0.0626353
\(50\) 0 0
\(51\) 1.43845 0.201423
\(52\) 0 0
\(53\) −4.56155 −0.626577 −0.313289 0.949658i \(-0.601431\pi\)
−0.313289 + 0.949658i \(0.601431\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 6.56155 0.869099
\(58\) 0 0
\(59\) 1.12311 0.146216 0.0731079 0.997324i \(-0.476708\pi\)
0.0731079 + 0.997324i \(0.476708\pi\)
\(60\) 0 0
\(61\) 2.31534 0.296449 0.148225 0.988954i \(-0.452644\pi\)
0.148225 + 0.988954i \(0.452644\pi\)
\(62\) 0 0
\(63\) 9.12311 1.14940
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.24621 −0.763096 −0.381548 0.924349i \(-0.624609\pi\)
−0.381548 + 0.924349i \(0.624609\pi\)
\(68\) 0 0
\(69\) −13.1231 −1.57984
\(70\) 0 0
\(71\) 3.68466 0.437289 0.218644 0.975805i \(-0.429837\pi\)
0.218644 + 0.975805i \(0.429837\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.56155 0.291916
\(78\) 0 0
\(79\) −15.3693 −1.72918 −0.864592 0.502475i \(-0.832423\pi\)
−0.864592 + 0.502475i \(0.832423\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) −5.12311 −0.562334 −0.281167 0.959659i \(-0.590721\pi\)
−0.281167 + 0.959659i \(0.590721\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 24.8078 2.65967
\(88\) 0 0
\(89\) −12.5616 −1.33152 −0.665761 0.746165i \(-0.731893\pi\)
−0.665761 + 0.746165i \(0.731893\pi\)
\(90\) 0 0
\(91\) −5.12311 −0.537047
\(92\) 0 0
\(93\) 16.8078 1.74288
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.12311 −0.723242 −0.361621 0.932325i \(-0.617777\pi\)
−0.361621 + 0.932325i \(0.617777\pi\)
\(98\) 0 0
\(99\) 3.56155 0.357950
\(100\) 0 0
\(101\) −4.24621 −0.422514 −0.211257 0.977431i \(-0.567756\pi\)
−0.211257 + 0.977431i \(0.567756\pi\)
\(102\) 0 0
\(103\) −10.2462 −1.00959 −0.504795 0.863239i \(-0.668432\pi\)
−0.504795 + 0.863239i \(0.668432\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 0 0
\(109\) 18.4924 1.77125 0.885626 0.464398i \(-0.153729\pi\)
0.885626 + 0.464398i \(0.153729\pi\)
\(110\) 0 0
\(111\) 14.5616 1.38212
\(112\) 0 0
\(113\) 19.1231 1.79895 0.899475 0.436972i \(-0.143949\pi\)
0.899475 + 0.436972i \(0.143949\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −7.12311 −0.658531
\(118\) 0 0
\(119\) 1.43845 0.131862
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 5.12311 0.461935
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −14.2462 −1.26415 −0.632073 0.774909i \(-0.717796\pi\)
−0.632073 + 0.774909i \(0.717796\pi\)
\(128\) 0 0
\(129\) −26.2462 −2.31085
\(130\) 0 0
\(131\) −7.68466 −0.671412 −0.335706 0.941967i \(-0.608975\pi\)
−0.335706 + 0.941967i \(0.608975\pi\)
\(132\) 0 0
\(133\) 6.56155 0.568959
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −19.6155 −1.67587 −0.837934 0.545772i \(-0.816237\pi\)
−0.837934 + 0.545772i \(0.816237\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 33.6155 2.83094
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.12311 −0.0926322
\(148\) 0 0
\(149\) 2.31534 0.189680 0.0948401 0.995493i \(-0.469766\pi\)
0.0948401 + 0.995493i \(0.469766\pi\)
\(150\) 0 0
\(151\) 13.1231 1.06794 0.533972 0.845502i \(-0.320699\pi\)
0.533972 + 0.845502i \(0.320699\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −14.8078 −1.18179 −0.590894 0.806749i \(-0.701225\pi\)
−0.590894 + 0.806749i \(0.701225\pi\)
\(158\) 0 0
\(159\) −11.6847 −0.926654
\(160\) 0 0
\(161\) −13.1231 −1.03425
\(162\) 0 0
\(163\) −3.19224 −0.250035 −0.125018 0.992155i \(-0.539899\pi\)
−0.125018 + 0.992155i \(0.539899\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.5616 0.817277 0.408639 0.912696i \(-0.366004\pi\)
0.408639 + 0.912696i \(0.366004\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 9.12311 0.697661
\(172\) 0 0
\(173\) −4.24621 −0.322833 −0.161417 0.986886i \(-0.551606\pi\)
−0.161417 + 0.986886i \(0.551606\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.87689 0.216241
\(178\) 0 0
\(179\) −6.24621 −0.466864 −0.233432 0.972373i \(-0.574996\pi\)
−0.233432 + 0.972373i \(0.574996\pi\)
\(180\) 0 0
\(181\) −4.24621 −0.315618 −0.157809 0.987470i \(-0.550443\pi\)
−0.157809 + 0.987470i \(0.550443\pi\)
\(182\) 0 0
\(183\) 5.93087 0.438423
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0.561553 0.0410648
\(188\) 0 0
\(189\) 3.68466 0.268019
\(190\) 0 0
\(191\) 10.2462 0.741390 0.370695 0.928755i \(-0.379120\pi\)
0.370695 + 0.928755i \(0.379120\pi\)
\(192\) 0 0
\(193\) −5.19224 −0.373745 −0.186873 0.982384i \(-0.559835\pi\)
−0.186873 + 0.982384i \(0.559835\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.36932 0.382548 0.191274 0.981537i \(-0.438738\pi\)
0.191274 + 0.981537i \(0.438738\pi\)
\(198\) 0 0
\(199\) −0.807764 −0.0572609 −0.0286304 0.999590i \(-0.509115\pi\)
−0.0286304 + 0.999590i \(0.509115\pi\)
\(200\) 0 0
\(201\) −16.0000 −1.12855
\(202\) 0 0
\(203\) 24.8078 1.74116
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −18.2462 −1.26820
\(208\) 0 0
\(209\) 2.56155 0.177186
\(210\) 0 0
\(211\) 8.31534 0.572452 0.286226 0.958162i \(-0.407599\pi\)
0.286226 + 0.958162i \(0.407599\pi\)
\(212\) 0 0
\(213\) 9.43845 0.646712
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.8078 1.14099
\(218\) 0 0
\(219\) 5.12311 0.346187
\(220\) 0 0
\(221\) −1.12311 −0.0755483
\(222\) 0 0
\(223\) −13.1231 −0.878788 −0.439394 0.898294i \(-0.644807\pi\)
−0.439394 + 0.898294i \(0.644807\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.87689 −0.190946 −0.0954731 0.995432i \(-0.530436\pi\)
−0.0954731 + 0.995432i \(0.530436\pi\)
\(228\) 0 0
\(229\) −24.7386 −1.63477 −0.817387 0.576088i \(-0.804578\pi\)
−0.817387 + 0.576088i \(0.804578\pi\)
\(230\) 0 0
\(231\) 6.56155 0.431718
\(232\) 0 0
\(233\) −19.9309 −1.30571 −0.652857 0.757481i \(-0.726430\pi\)
−0.652857 + 0.757481i \(0.726430\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −39.3693 −2.55731
\(238\) 0 0
\(239\) 25.6155 1.65693 0.828465 0.560040i \(-0.189214\pi\)
0.828465 + 0.560040i \(0.189214\pi\)
\(240\) 0 0
\(241\) −16.2462 −1.04651 −0.523255 0.852176i \(-0.675283\pi\)
−0.523255 + 0.852176i \(0.675283\pi\)
\(242\) 0 0
\(243\) −22.2462 −1.42710
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.12311 −0.325975
\(248\) 0 0
\(249\) −13.1231 −0.831643
\(250\) 0 0
\(251\) −29.6155 −1.86932 −0.934658 0.355549i \(-0.884294\pi\)
−0.934658 + 0.355549i \(0.884294\pi\)
\(252\) 0 0
\(253\) −5.12311 −0.322087
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.7386 1.79267 0.896333 0.443381i \(-0.146221\pi\)
0.896333 + 0.443381i \(0.146221\pi\)
\(258\) 0 0
\(259\) 14.5616 0.904811
\(260\) 0 0
\(261\) 34.4924 2.13503
\(262\) 0 0
\(263\) −4.80776 −0.296459 −0.148230 0.988953i \(-0.547357\pi\)
−0.148230 + 0.988953i \(0.547357\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −32.1771 −1.96921
\(268\) 0 0
\(269\) −19.6155 −1.19598 −0.597990 0.801504i \(-0.704034\pi\)
−0.597990 + 0.801504i \(0.704034\pi\)
\(270\) 0 0
\(271\) 28.4924 1.73079 0.865396 0.501089i \(-0.167067\pi\)
0.865396 + 0.501089i \(0.167067\pi\)
\(272\) 0 0
\(273\) −13.1231 −0.794246
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7.12311 −0.427986 −0.213993 0.976835i \(-0.568647\pi\)
−0.213993 + 0.976835i \(0.568647\pi\)
\(278\) 0 0
\(279\) 23.3693 1.39908
\(280\) 0 0
\(281\) −8.24621 −0.491928 −0.245964 0.969279i \(-0.579104\pi\)
−0.245964 + 0.969279i \(0.579104\pi\)
\(282\) 0 0
\(283\) 23.3693 1.38916 0.694581 0.719415i \(-0.255590\pi\)
0.694581 + 0.719415i \(0.255590\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.12311 0.302407
\(288\) 0 0
\(289\) −16.6847 −0.981450
\(290\) 0 0
\(291\) −18.2462 −1.06961
\(292\) 0 0
\(293\) −14.4924 −0.846656 −0.423328 0.905976i \(-0.639138\pi\)
−0.423328 + 0.905976i \(0.639138\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.43845 0.0834672
\(298\) 0 0
\(299\) 10.2462 0.592554
\(300\) 0 0
\(301\) −26.2462 −1.51281
\(302\) 0 0
\(303\) −10.8769 −0.624861
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 25.6155 1.46196 0.730978 0.682401i \(-0.239064\pi\)
0.730978 + 0.682401i \(0.239064\pi\)
\(308\) 0 0
\(309\) −26.2462 −1.49309
\(310\) 0 0
\(311\) −25.4384 −1.44248 −0.721241 0.692684i \(-0.756428\pi\)
−0.721241 + 0.692684i \(0.756428\pi\)
\(312\) 0 0
\(313\) −30.4924 −1.72353 −0.861767 0.507305i \(-0.830642\pi\)
−0.861767 + 0.507305i \(0.830642\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.1922 −0.740950 −0.370475 0.928842i \(-0.620805\pi\)
−0.370475 + 0.928842i \(0.620805\pi\)
\(318\) 0 0
\(319\) 9.68466 0.542237
\(320\) 0 0
\(321\) 40.9848 2.28755
\(322\) 0 0
\(323\) 1.43845 0.0800373
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 47.3693 2.61953
\(328\) 0 0
\(329\) 33.6155 1.85328
\(330\) 0 0
\(331\) −8.49242 −0.466786 −0.233393 0.972383i \(-0.574983\pi\)
−0.233393 + 0.972383i \(0.574983\pi\)
\(332\) 0 0
\(333\) 20.2462 1.10949
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −2.31534 −0.126125 −0.0630623 0.998010i \(-0.520087\pi\)
−0.0630623 + 0.998010i \(0.520087\pi\)
\(338\) 0 0
\(339\) 48.9848 2.66049
\(340\) 0 0
\(341\) 6.56155 0.355328
\(342\) 0 0
\(343\) −19.0540 −1.02882
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.8769 1.01336 0.506682 0.862133i \(-0.330872\pi\)
0.506682 + 0.862133i \(0.330872\pi\)
\(348\) 0 0
\(349\) 10.4924 0.561646 0.280823 0.959760i \(-0.409393\pi\)
0.280823 + 0.959760i \(0.409393\pi\)
\(350\) 0 0
\(351\) −2.87689 −0.153557
\(352\) 0 0
\(353\) 34.4924 1.83585 0.917923 0.396758i \(-0.129865\pi\)
0.917923 + 0.396758i \(0.129865\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.68466 0.195013
\(358\) 0 0
\(359\) 26.2462 1.38522 0.692611 0.721311i \(-0.256460\pi\)
0.692611 + 0.721311i \(0.256460\pi\)
\(360\) 0 0
\(361\) −12.4384 −0.654655
\(362\) 0 0
\(363\) 2.56155 0.134447
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 14.7386 0.769350 0.384675 0.923052i \(-0.374313\pi\)
0.384675 + 0.923052i \(0.374313\pi\)
\(368\) 0 0
\(369\) 7.12311 0.370814
\(370\) 0 0
\(371\) −11.6847 −0.606637
\(372\) 0 0
\(373\) −2.00000 −0.103556 −0.0517780 0.998659i \(-0.516489\pi\)
−0.0517780 + 0.998659i \(0.516489\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −19.3693 −0.997571
\(378\) 0 0
\(379\) −25.1231 −1.29049 −0.645244 0.763977i \(-0.723244\pi\)
−0.645244 + 0.763977i \(0.723244\pi\)
\(380\) 0 0
\(381\) −36.4924 −1.86956
\(382\) 0 0
\(383\) 31.3693 1.60290 0.801449 0.598064i \(-0.204063\pi\)
0.801449 + 0.598064i \(0.204063\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −36.4924 −1.85501
\(388\) 0 0
\(389\) 32.2462 1.63495 0.817474 0.575966i \(-0.195374\pi\)
0.817474 + 0.575966i \(0.195374\pi\)
\(390\) 0 0
\(391\) −2.87689 −0.145491
\(392\) 0 0
\(393\) −19.6847 −0.992960
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.0000 0.903394 0.451697 0.892171i \(-0.350819\pi\)
0.451697 + 0.892171i \(0.350819\pi\)
\(398\) 0 0
\(399\) 16.8078 0.841441
\(400\) 0 0
\(401\) −7.43845 −0.371458 −0.185729 0.982601i \(-0.559465\pi\)
−0.185729 + 0.982601i \(0.559465\pi\)
\(402\) 0 0
\(403\) −13.1231 −0.653708
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.68466 0.281778
\(408\) 0 0
\(409\) 7.12311 0.352215 0.176107 0.984371i \(-0.443649\pi\)
0.176107 + 0.984371i \(0.443649\pi\)
\(410\) 0 0
\(411\) −50.2462 −2.47846
\(412\) 0 0
\(413\) 2.87689 0.141563
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 30.7386 1.50528
\(418\) 0 0
\(419\) −26.7386 −1.30627 −0.653134 0.757242i \(-0.726546\pi\)
−0.653134 + 0.757242i \(0.726546\pi\)
\(420\) 0 0
\(421\) 7.61553 0.371158 0.185579 0.982629i \(-0.440584\pi\)
0.185579 + 0.982629i \(0.440584\pi\)
\(422\) 0 0
\(423\) 46.7386 2.27251
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.93087 0.287015
\(428\) 0 0
\(429\) −5.12311 −0.247346
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) −33.3693 −1.60363 −0.801814 0.597574i \(-0.796131\pi\)
−0.801814 + 0.597574i \(0.796131\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −13.1231 −0.627763
\(438\) 0 0
\(439\) −34.2462 −1.63448 −0.817241 0.576296i \(-0.804498\pi\)
−0.817241 + 0.576296i \(0.804498\pi\)
\(440\) 0 0
\(441\) −1.56155 −0.0743597
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5.93087 0.280521
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 2.00000 0.0941763
\(452\) 0 0
\(453\) 33.6155 1.57940
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −28.5616 −1.33605 −0.668027 0.744137i \(-0.732861\pi\)
−0.668027 + 0.744137i \(0.732861\pi\)
\(458\) 0 0
\(459\) 0.807764 0.0377032
\(460\) 0 0
\(461\) 20.5616 0.957647 0.478823 0.877911i \(-0.341063\pi\)
0.478823 + 0.877911i \(0.341063\pi\)
\(462\) 0 0
\(463\) 7.36932 0.342481 0.171241 0.985229i \(-0.445222\pi\)
0.171241 + 0.985229i \(0.445222\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.93087 −0.459546 −0.229773 0.973244i \(-0.573798\pi\)
−0.229773 + 0.973244i \(0.573798\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) −37.9309 −1.74776
\(472\) 0 0
\(473\) −10.2462 −0.471121
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −16.2462 −0.743863
\(478\) 0 0
\(479\) −32.9848 −1.50712 −0.753558 0.657381i \(-0.771664\pi\)
−0.753558 + 0.657381i \(0.771664\pi\)
\(480\) 0 0
\(481\) −11.3693 −0.518396
\(482\) 0 0
\(483\) −33.6155 −1.52956
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2.24621 0.101786 0.0508928 0.998704i \(-0.483793\pi\)
0.0508928 + 0.998704i \(0.483793\pi\)
\(488\) 0 0
\(489\) −8.17708 −0.369780
\(490\) 0 0
\(491\) 7.05398 0.318341 0.159171 0.987251i \(-0.449118\pi\)
0.159171 + 0.987251i \(0.449118\pi\)
\(492\) 0 0
\(493\) 5.43845 0.244935
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9.43845 0.423372
\(498\) 0 0
\(499\) 16.4924 0.738302 0.369151 0.929369i \(-0.379648\pi\)
0.369151 + 0.929369i \(0.379648\pi\)
\(500\) 0 0
\(501\) 27.0540 1.20868
\(502\) 0 0
\(503\) 14.2462 0.635207 0.317604 0.948224i \(-0.397122\pi\)
0.317604 + 0.948224i \(0.397122\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −23.0540 −1.02386
\(508\) 0 0
\(509\) 21.3693 0.947178 0.473589 0.880746i \(-0.342958\pi\)
0.473589 + 0.880746i \(0.342958\pi\)
\(510\) 0 0
\(511\) 5.12311 0.226633
\(512\) 0 0
\(513\) 3.68466 0.162682
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 13.1231 0.577154
\(518\) 0 0
\(519\) −10.8769 −0.477443
\(520\) 0 0
\(521\) 8.73863 0.382846 0.191423 0.981508i \(-0.438690\pi\)
0.191423 + 0.981508i \(0.438690\pi\)
\(522\) 0 0
\(523\) 3.50758 0.153376 0.0766878 0.997055i \(-0.475566\pi\)
0.0766878 + 0.997055i \(0.475566\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.68466 0.160506
\(528\) 0 0
\(529\) 3.24621 0.141140
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) −4.00000 −0.173259
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −16.0000 −0.690451
\(538\) 0 0
\(539\) −0.438447 −0.0188853
\(540\) 0 0
\(541\) −33.5464 −1.44227 −0.721136 0.692793i \(-0.756380\pi\)
−0.721136 + 0.692793i \(0.756380\pi\)
\(542\) 0 0
\(543\) −10.8769 −0.466772
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) 0 0
\(549\) 8.24621 0.351940
\(550\) 0 0
\(551\) 24.8078 1.05685
\(552\) 0 0
\(553\) −39.3693 −1.67415
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −46.4924 −1.96995 −0.984974 0.172705i \(-0.944749\pi\)
−0.984974 + 0.172705i \(0.944749\pi\)
\(558\) 0 0
\(559\) 20.4924 0.866737
\(560\) 0 0
\(561\) 1.43845 0.0607313
\(562\) 0 0
\(563\) 2.87689 0.121247 0.0606233 0.998161i \(-0.480691\pi\)
0.0606233 + 0.998161i \(0.480691\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −17.9309 −0.753026
\(568\) 0 0
\(569\) −28.1080 −1.17835 −0.589173 0.808007i \(-0.700546\pi\)
−0.589173 + 0.808007i \(0.700546\pi\)
\(570\) 0 0
\(571\) 30.4233 1.27318 0.636588 0.771204i \(-0.280345\pi\)
0.636588 + 0.771204i \(0.280345\pi\)
\(572\) 0 0
\(573\) 26.2462 1.09645
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.7386 −1.02988 −0.514941 0.857225i \(-0.672186\pi\)
−0.514941 + 0.857225i \(0.672186\pi\)
\(578\) 0 0
\(579\) −13.3002 −0.552737
\(580\) 0 0
\(581\) −13.1231 −0.544438
\(582\) 0 0
\(583\) −4.56155 −0.188920
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.3153 −1.33380 −0.666898 0.745149i \(-0.732379\pi\)
−0.666898 + 0.745149i \(0.732379\pi\)
\(588\) 0 0
\(589\) 16.8078 0.692552
\(590\) 0 0
\(591\) 13.7538 0.565755
\(592\) 0 0
\(593\) −1.50758 −0.0619088 −0.0309544 0.999521i \(-0.509855\pi\)
−0.0309544 + 0.999521i \(0.509855\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.06913 −0.0846839
\(598\) 0 0
\(599\) −17.4384 −0.712516 −0.356258 0.934388i \(-0.615948\pi\)
−0.356258 + 0.934388i \(0.615948\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) −22.2462 −0.905936
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20.8078 −0.844561 −0.422281 0.906465i \(-0.638770\pi\)
−0.422281 + 0.906465i \(0.638770\pi\)
\(608\) 0 0
\(609\) 63.5464 2.57503
\(610\) 0 0
\(611\) −26.2462 −1.06181
\(612\) 0 0
\(613\) −16.7386 −0.676067 −0.338034 0.941134i \(-0.609762\pi\)
−0.338034 + 0.941134i \(0.609762\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.63068 0.266941 0.133471 0.991053i \(-0.457388\pi\)
0.133471 + 0.991053i \(0.457388\pi\)
\(618\) 0 0
\(619\) −8.49242 −0.341339 −0.170670 0.985328i \(-0.554593\pi\)
−0.170670 + 0.985328i \(0.554593\pi\)
\(620\) 0 0
\(621\) −7.36932 −0.295720
\(622\) 0 0
\(623\) −32.1771 −1.28915
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6.56155 0.262043
\(628\) 0 0
\(629\) 3.19224 0.127283
\(630\) 0 0
\(631\) −16.8078 −0.669107 −0.334553 0.942377i \(-0.608585\pi\)
−0.334553 + 0.942377i \(0.608585\pi\)
\(632\) 0 0
\(633\) 21.3002 0.846606
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.876894 0.0347438
\(638\) 0 0
\(639\) 13.1231 0.519142
\(640\) 0 0
\(641\) −38.1771 −1.50790 −0.753952 0.656929i \(-0.771855\pi\)
−0.753952 + 0.656929i \(0.771855\pi\)
\(642\) 0 0
\(643\) −23.6847 −0.934032 −0.467016 0.884249i \(-0.654671\pi\)
−0.467016 + 0.884249i \(0.654671\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.1231 0.515923 0.257961 0.966155i \(-0.416949\pi\)
0.257961 + 0.966155i \(0.416949\pi\)
\(648\) 0 0
\(649\) 1.12311 0.0440858
\(650\) 0 0
\(651\) 43.0540 1.68742
\(652\) 0 0
\(653\) 10.8078 0.422940 0.211470 0.977384i \(-0.432175\pi\)
0.211470 + 0.977384i \(0.432175\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 7.12311 0.277899
\(658\) 0 0
\(659\) 19.1922 0.747623 0.373812 0.927505i \(-0.378051\pi\)
0.373812 + 0.927505i \(0.378051\pi\)
\(660\) 0 0
\(661\) 16.2462 0.631904 0.315952 0.948775i \(-0.397676\pi\)
0.315952 + 0.948775i \(0.397676\pi\)
\(662\) 0 0
\(663\) −2.87689 −0.111729
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −49.6155 −1.92112
\(668\) 0 0
\(669\) −33.6155 −1.29965
\(670\) 0 0
\(671\) 2.31534 0.0893828
\(672\) 0 0
\(673\) 35.7926 1.37970 0.689852 0.723951i \(-0.257676\pi\)
0.689852 + 0.723951i \(0.257676\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27.6155 −1.06135 −0.530675 0.847575i \(-0.678062\pi\)
−0.530675 + 0.847575i \(0.678062\pi\)
\(678\) 0 0
\(679\) −18.2462 −0.700225
\(680\) 0 0
\(681\) −7.36932 −0.282393
\(682\) 0 0
\(683\) 25.9309 0.992217 0.496109 0.868260i \(-0.334762\pi\)
0.496109 + 0.868260i \(0.334762\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −63.3693 −2.41769
\(688\) 0 0
\(689\) 9.12311 0.347563
\(690\) 0 0
\(691\) 3.36932 0.128175 0.0640874 0.997944i \(-0.479586\pi\)
0.0640874 + 0.997944i \(0.479586\pi\)
\(692\) 0 0
\(693\) 9.12311 0.346558
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.12311 0.0425407
\(698\) 0 0
\(699\) −51.0540 −1.93104
\(700\) 0 0
\(701\) 34.3153 1.29607 0.648036 0.761609i \(-0.275591\pi\)
0.648036 + 0.761609i \(0.275591\pi\)
\(702\) 0 0
\(703\) 14.5616 0.549199
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.8769 −0.409068
\(708\) 0 0
\(709\) 1.50758 0.0566183 0.0283091 0.999599i \(-0.490988\pi\)
0.0283091 + 0.999599i \(0.490988\pi\)
\(710\) 0 0
\(711\) −54.7386 −2.05286
\(712\) 0 0
\(713\) −33.6155 −1.25891
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 65.6155 2.45046
\(718\) 0 0
\(719\) 7.82292 0.291746 0.145873 0.989303i \(-0.453401\pi\)
0.145873 + 0.989303i \(0.453401\pi\)
\(720\) 0 0
\(721\) −26.2462 −0.977460
\(722\) 0 0
\(723\) −41.6155 −1.54770
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −17.6155 −0.653324 −0.326662 0.945141i \(-0.605924\pi\)
−0.326662 + 0.945141i \(0.605924\pi\)
\(728\) 0 0
\(729\) −35.9848 −1.33277
\(730\) 0 0
\(731\) −5.75379 −0.212812
\(732\) 0 0
\(733\) 19.1231 0.706328 0.353164 0.935561i \(-0.385106\pi\)
0.353164 + 0.935561i \(0.385106\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.24621 −0.230082
\(738\) 0 0
\(739\) −42.7386 −1.57217 −0.786083 0.618121i \(-0.787894\pi\)
−0.786083 + 0.618121i \(0.787894\pi\)
\(740\) 0 0
\(741\) −13.1231 −0.482089
\(742\) 0 0
\(743\) 2.56155 0.0939743 0.0469871 0.998895i \(-0.485038\pi\)
0.0469871 + 0.998895i \(0.485038\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −18.2462 −0.667594
\(748\) 0 0
\(749\) 40.9848 1.49755
\(750\) 0 0
\(751\) −16.1771 −0.590310 −0.295155 0.955449i \(-0.595371\pi\)
−0.295155 + 0.955449i \(0.595371\pi\)
\(752\) 0 0
\(753\) −75.8617 −2.76456
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) −13.1231 −0.476339
\(760\) 0 0
\(761\) −36.7386 −1.33177 −0.665887 0.746052i \(-0.731947\pi\)
−0.665887 + 0.746052i \(0.731947\pi\)
\(762\) 0 0
\(763\) 47.3693 1.71488
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.24621 −0.0811060
\(768\) 0 0
\(769\) 24.7386 0.892098 0.446049 0.895009i \(-0.352831\pi\)
0.446049 + 0.895009i \(0.352831\pi\)
\(770\) 0 0
\(771\) 73.6155 2.65120
\(772\) 0 0
\(773\) 37.6847 1.35542 0.677711 0.735328i \(-0.262972\pi\)
0.677711 + 0.735328i \(0.262972\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 37.3002 1.33814
\(778\) 0 0
\(779\) 5.12311 0.183554
\(780\) 0 0
\(781\) 3.68466 0.131847
\(782\) 0 0
\(783\) 13.9309 0.497849
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 54.7386 1.95122 0.975611 0.219508i \(-0.0704451\pi\)
0.975611 + 0.219508i \(0.0704451\pi\)
\(788\) 0 0
\(789\) −12.3153 −0.438438
\(790\) 0 0
\(791\) 48.9848 1.74170
\(792\) 0 0
\(793\) −4.63068 −0.164440
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.7538 0.841402 0.420701 0.907199i \(-0.361784\pi\)
0.420701 + 0.907199i \(0.361784\pi\)
\(798\) 0 0
\(799\) 7.36932 0.260708
\(800\) 0 0
\(801\) −44.7386 −1.58076
\(802\) 0 0
\(803\) 2.00000 0.0705785
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −50.2462 −1.76875
\(808\) 0 0
\(809\) 6.49242 0.228261 0.114131 0.993466i \(-0.463592\pi\)
0.114131 + 0.993466i \(0.463592\pi\)
\(810\) 0 0
\(811\) 27.1922 0.954849 0.477424 0.878673i \(-0.341570\pi\)
0.477424 + 0.878673i \(0.341570\pi\)
\(812\) 0 0
\(813\) 72.9848 2.55969
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −26.2462 −0.918239
\(818\) 0 0
\(819\) −18.2462 −0.637574
\(820\) 0 0
\(821\) −2.00000 −0.0698005 −0.0349002 0.999391i \(-0.511111\pi\)
−0.0349002 + 0.999391i \(0.511111\pi\)
\(822\) 0 0
\(823\) 52.4924 1.82977 0.914885 0.403714i \(-0.132281\pi\)
0.914885 + 0.403714i \(0.132281\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.49242 0.156217 0.0781084 0.996945i \(-0.475112\pi\)
0.0781084 + 0.996945i \(0.475112\pi\)
\(828\) 0 0
\(829\) 5.36932 0.186484 0.0932420 0.995643i \(-0.470277\pi\)
0.0932420 + 0.995643i \(0.470277\pi\)
\(830\) 0 0
\(831\) −18.2462 −0.632954
\(832\) 0 0
\(833\) −0.246211 −0.00853071
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 9.43845 0.326240
\(838\) 0 0
\(839\) 11.5076 0.397286 0.198643 0.980072i \(-0.436347\pi\)
0.198643 + 0.980072i \(0.436347\pi\)
\(840\) 0 0
\(841\) 64.7926 2.23423
\(842\) 0 0
\(843\) −21.1231 −0.727518
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 2.56155 0.0880160
\(848\) 0 0
\(849\) 59.8617 2.05445
\(850\) 0 0
\(851\) −29.1231 −0.998327
\(852\) 0 0
\(853\) 3.75379 0.128527 0.0642636 0.997933i \(-0.479530\pi\)
0.0642636 + 0.997933i \(0.479530\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −32.4233 −1.10756 −0.553779 0.832664i \(-0.686815\pi\)
−0.553779 + 0.832664i \(0.686815\pi\)
\(858\) 0 0
\(859\) −38.8769 −1.32646 −0.663231 0.748415i \(-0.730815\pi\)
−0.663231 + 0.748415i \(0.730815\pi\)
\(860\) 0 0
\(861\) 13.1231 0.447234
\(862\) 0 0
\(863\) −9.61553 −0.327316 −0.163658 0.986517i \(-0.552329\pi\)
−0.163658 + 0.986517i \(0.552329\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −42.7386 −1.45148
\(868\) 0 0
\(869\) −15.3693 −0.521368
\(870\) 0 0
\(871\) 12.4924 0.423290
\(872\) 0 0
\(873\) −25.3693 −0.858621
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.2462 1.08888 0.544439 0.838801i \(-0.316743\pi\)
0.544439 + 0.838801i \(0.316743\pi\)
\(878\) 0 0
\(879\) −37.1231 −1.25213
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) −6.06913 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.2462 1.01557 0.507784 0.861484i \(-0.330465\pi\)
0.507784 + 0.861484i \(0.330465\pi\)
\(888\) 0 0
\(889\) −36.4924 −1.22392
\(890\) 0 0
\(891\) −7.00000 −0.234509
\(892\) 0 0
\(893\) 33.6155 1.12490
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 26.2462 0.876335
\(898\) 0 0
\(899\) 63.5464 2.11939
\(900\) 0 0
\(901\) −2.56155 −0.0853377
\(902\) 0 0
\(903\) −67.2311 −2.23731
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.94602 −0.297048 −0.148524 0.988909i \(-0.547452\pi\)
−0.148524 + 0.988909i \(0.547452\pi\)
\(908\) 0 0
\(909\) −15.1231 −0.501602
\(910\) 0 0
\(911\) −2.06913 −0.0685533 −0.0342767 0.999412i \(-0.510913\pi\)
−0.0342767 + 0.999412i \(0.510913\pi\)
\(912\) 0 0
\(913\) −5.12311 −0.169550
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.6847 −0.650045
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) 65.6155 2.16211
\(922\) 0 0
\(923\) −7.36932 −0.242564
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −36.4924 −1.19857
\(928\) 0 0
\(929\) 45.0540 1.47817 0.739086 0.673611i \(-0.235257\pi\)
0.739086 + 0.673611i \(0.235257\pi\)
\(930\) 0 0
\(931\) −1.12311 −0.0368083
\(932\) 0 0
\(933\) −65.1619 −2.13331
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 42.0000 1.37208 0.686040 0.727564i \(-0.259347\pi\)
0.686040 + 0.727564i \(0.259347\pi\)
\(938\) 0 0
\(939\) −78.1080 −2.54896
\(940\) 0 0
\(941\) −4.06913 −0.132650 −0.0663249 0.997798i \(-0.521127\pi\)
−0.0663249 + 0.997798i \(0.521127\pi\)
\(942\) 0 0
\(943\) −10.2462 −0.333663
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 39.6847 1.28958 0.644789 0.764361i \(-0.276945\pi\)
0.644789 + 0.764361i \(0.276945\pi\)
\(948\) 0 0
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) −33.7926 −1.09580
\(952\) 0 0
\(953\) 34.1771 1.10710 0.553552 0.832815i \(-0.313272\pi\)
0.553552 + 0.832815i \(0.313272\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 24.8078 0.801921
\(958\) 0 0
\(959\) −50.2462 −1.62253
\(960\) 0 0
\(961\) 12.0540 0.388838
\(962\) 0 0
\(963\) 56.9848 1.83631
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −11.5464 −0.371307 −0.185654 0.982615i \(-0.559440\pi\)
−0.185654 + 0.982615i \(0.559440\pi\)
\(968\) 0 0
\(969\) 3.68466 0.118368
\(970\) 0 0
\(971\) 6.24621 0.200450 0.100225 0.994965i \(-0.468044\pi\)
0.100225 + 0.994965i \(0.468044\pi\)
\(972\) 0 0
\(973\) 30.7386 0.985435
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.8769 0.795882 0.397941 0.917411i \(-0.369725\pi\)
0.397941 + 0.917411i \(0.369725\pi\)
\(978\) 0 0
\(979\) −12.5616 −0.401469
\(980\) 0 0
\(981\) 65.8617 2.10280
\(982\) 0 0
\(983\) −18.8769 −0.602079 −0.301040 0.953612i \(-0.597334\pi\)
−0.301040 + 0.953612i \(0.597334\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 86.1080 2.74085
\(988\) 0 0
\(989\) 52.4924 1.66916
\(990\) 0 0
\(991\) 32.0000 1.01651 0.508257 0.861206i \(-0.330290\pi\)
0.508257 + 0.861206i \(0.330290\pi\)
\(992\) 0 0
\(993\) −21.7538 −0.690336
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −13.8617 −0.439006 −0.219503 0.975612i \(-0.570444\pi\)
−0.219503 + 0.975612i \(0.570444\pi\)
\(998\) 0 0
\(999\) 8.17708 0.258711
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2200.2.a.s.1.2 2
4.3 odd 2 4400.2.a.bj.1.1 2
5.2 odd 4 2200.2.b.i.1849.1 4
5.3 odd 4 2200.2.b.i.1849.4 4
5.4 even 2 440.2.a.e.1.1 2
15.14 odd 2 3960.2.a.w.1.1 2
20.3 even 4 4400.2.b.t.4049.1 4
20.7 even 4 4400.2.b.t.4049.4 4
20.19 odd 2 880.2.a.o.1.2 2
40.19 odd 2 3520.2.a.bk.1.1 2
40.29 even 2 3520.2.a.bp.1.2 2
55.54 odd 2 4840.2.a.j.1.1 2
60.59 even 2 7920.2.a.bu.1.2 2
220.219 even 2 9680.2.a.bs.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.a.e.1.1 2 5.4 even 2
880.2.a.o.1.2 2 20.19 odd 2
2200.2.a.s.1.2 2 1.1 even 1 trivial
2200.2.b.i.1849.1 4 5.2 odd 4
2200.2.b.i.1849.4 4 5.3 odd 4
3520.2.a.bk.1.1 2 40.19 odd 2
3520.2.a.bp.1.2 2 40.29 even 2
3960.2.a.w.1.1 2 15.14 odd 2
4400.2.a.bj.1.1 2 4.3 odd 2
4400.2.b.t.4049.1 4 20.3 even 4
4400.2.b.t.4049.4 4 20.7 even 4
4840.2.a.j.1.1 2 55.54 odd 2
7920.2.a.bu.1.2 2 60.59 even 2
9680.2.a.bs.1.2 2 220.219 even 2