Properties

Label 2200.4.a.m.1.2
Level $2200$
Weight $4$
Character 2200.1
Self dual yes
Analytic conductor $129.804$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2200,4,Mod(1,2200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2200.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2200 = 2^{3} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(129.804202013\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.11109.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.56976\) of defining polynomial
Character \(\chi\) \(=\) 2200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82655 q^{3} +4.62596 q^{7} -19.0106 q^{9} +11.0000 q^{11} -85.1298 q^{13} +6.08908 q^{17} +52.0891 q^{19} -13.0755 q^{21} +183.964 q^{23} +130.051 q^{27} +140.498 q^{29} -250.685 q^{31} -31.0920 q^{33} +203.522 q^{37} +240.624 q^{39} -22.3275 q^{41} +117.409 q^{43} +275.744 q^{47} -321.601 q^{49} -17.2111 q^{51} -26.6548 q^{53} -147.232 q^{57} +515.922 q^{59} -693.071 q^{61} -87.9423 q^{63} -341.545 q^{67} -519.983 q^{69} +831.425 q^{71} -251.591 q^{73} +50.8855 q^{77} -917.036 q^{79} +145.690 q^{81} +456.749 q^{83} -397.124 q^{87} +91.4974 q^{89} -393.807 q^{91} +708.574 q^{93} -146.569 q^{97} -209.117 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} - 24 q^{7} + 89 q^{9} + 33 q^{11} - 66 q^{13} - 210 q^{17} - 72 q^{19} + 200 q^{21} + 50 q^{23} + 286 q^{27} - 50 q^{29} - 298 q^{31} - 22 q^{33} + 4 q^{37} - 876 q^{39} + 254 q^{41} + 112 q^{43}+ \cdots + 979 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.82655 −0.543970 −0.271985 0.962302i \(-0.587680\pi\)
−0.271985 + 0.962302i \(0.587680\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.62596 0.249778 0.124889 0.992171i \(-0.460142\pi\)
0.124889 + 0.992171i \(0.460142\pi\)
\(8\) 0 0
\(9\) −19.0106 −0.704097
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −85.1298 −1.81621 −0.908106 0.418741i \(-0.862472\pi\)
−0.908106 + 0.418741i \(0.862472\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.08908 0.0868717 0.0434358 0.999056i \(-0.486170\pi\)
0.0434358 + 0.999056i \(0.486170\pi\)
\(18\) 0 0
\(19\) 52.0891 0.628950 0.314475 0.949266i \(-0.398172\pi\)
0.314475 + 0.949266i \(0.398172\pi\)
\(20\) 0 0
\(21\) −13.0755 −0.135872
\(22\) 0 0
\(23\) 183.964 1.66779 0.833894 0.551924i \(-0.186106\pi\)
0.833894 + 0.551924i \(0.186106\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 130.051 0.926977
\(28\) 0 0
\(29\) 140.498 0.899649 0.449824 0.893117i \(-0.351487\pi\)
0.449824 + 0.893117i \(0.351487\pi\)
\(30\) 0 0
\(31\) −250.685 −1.45240 −0.726199 0.687484i \(-0.758715\pi\)
−0.726199 + 0.687484i \(0.758715\pi\)
\(32\) 0 0
\(33\) −31.0920 −0.164013
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 203.522 0.904293 0.452146 0.891944i \(-0.350658\pi\)
0.452146 + 0.891944i \(0.350658\pi\)
\(38\) 0 0
\(39\) 240.624 0.987964
\(40\) 0 0
\(41\) −22.3275 −0.0850479 −0.0425239 0.999095i \(-0.513540\pi\)
−0.0425239 + 0.999095i \(0.513540\pi\)
\(42\) 0 0
\(43\) 117.409 0.416388 0.208194 0.978088i \(-0.433241\pi\)
0.208194 + 0.978088i \(0.433241\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 275.744 0.855774 0.427887 0.903832i \(-0.359258\pi\)
0.427887 + 0.903832i \(0.359258\pi\)
\(48\) 0 0
\(49\) −321.601 −0.937611
\(50\) 0 0
\(51\) −17.2111 −0.0472556
\(52\) 0 0
\(53\) −26.6548 −0.0690815 −0.0345408 0.999403i \(-0.510997\pi\)
−0.0345408 + 0.999403i \(0.510997\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −147.232 −0.342130
\(58\) 0 0
\(59\) 515.922 1.13843 0.569214 0.822189i \(-0.307248\pi\)
0.569214 + 0.822189i \(0.307248\pi\)
\(60\) 0 0
\(61\) −693.071 −1.45473 −0.727366 0.686249i \(-0.759256\pi\)
−0.727366 + 0.686249i \(0.759256\pi\)
\(62\) 0 0
\(63\) −87.9423 −0.175868
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −341.545 −0.622782 −0.311391 0.950282i \(-0.600795\pi\)
−0.311391 + 0.950282i \(0.600795\pi\)
\(68\) 0 0
\(69\) −519.983 −0.907227
\(70\) 0 0
\(71\) 831.425 1.38975 0.694873 0.719133i \(-0.255461\pi\)
0.694873 + 0.719133i \(0.255461\pi\)
\(72\) 0 0
\(73\) −251.591 −0.403377 −0.201688 0.979450i \(-0.564643\pi\)
−0.201688 + 0.979450i \(0.564643\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 50.8855 0.0753109
\(78\) 0 0
\(79\) −917.036 −1.30601 −0.653004 0.757355i \(-0.726491\pi\)
−0.653004 + 0.757355i \(0.726491\pi\)
\(80\) 0 0
\(81\) 145.690 0.199849
\(82\) 0 0
\(83\) 456.749 0.604033 0.302017 0.953303i \(-0.402340\pi\)
0.302017 + 0.953303i \(0.402340\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −397.124 −0.489382
\(88\) 0 0
\(89\) 91.4974 0.108974 0.0544871 0.998514i \(-0.482648\pi\)
0.0544871 + 0.998514i \(0.482648\pi\)
\(90\) 0 0
\(91\) −393.807 −0.453650
\(92\) 0 0
\(93\) 708.574 0.790061
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −146.569 −0.153421 −0.0767104 0.997053i \(-0.524442\pi\)
−0.0767104 + 0.997053i \(0.524442\pi\)
\(98\) 0 0
\(99\) −209.117 −0.212293
\(100\) 0 0
\(101\) −1163.16 −1.14593 −0.572963 0.819581i \(-0.694206\pi\)
−0.572963 + 0.819581i \(0.694206\pi\)
\(102\) 0 0
\(103\) −1703.51 −1.62963 −0.814815 0.579721i \(-0.803161\pi\)
−0.814815 + 0.579721i \(0.803161\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1997.18 −1.80444 −0.902218 0.431281i \(-0.858062\pi\)
−0.902218 + 0.431281i \(0.858062\pi\)
\(108\) 0 0
\(109\) 1350.72 1.18694 0.593468 0.804858i \(-0.297758\pi\)
0.593468 + 0.804858i \(0.297758\pi\)
\(110\) 0 0
\(111\) −575.265 −0.491908
\(112\) 0 0
\(113\) 451.353 0.375750 0.187875 0.982193i \(-0.439840\pi\)
0.187875 + 0.982193i \(0.439840\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1618.37 1.27879
\(118\) 0 0
\(119\) 28.1678 0.0216986
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 63.1097 0.0462635
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2737.44 1.91267 0.956333 0.292279i \(-0.0944135\pi\)
0.956333 + 0.292279i \(0.0944135\pi\)
\(128\) 0 0
\(129\) −331.862 −0.226502
\(130\) 0 0
\(131\) 978.943 0.652906 0.326453 0.945213i \(-0.394147\pi\)
0.326453 + 0.945213i \(0.394147\pi\)
\(132\) 0 0
\(133\) 240.962 0.157098
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1104.14 0.688565 0.344283 0.938866i \(-0.388122\pi\)
0.344283 + 0.938866i \(0.388122\pi\)
\(138\) 0 0
\(139\) −129.542 −0.0790474 −0.0395237 0.999219i \(-0.512584\pi\)
−0.0395237 + 0.999219i \(0.512584\pi\)
\(140\) 0 0
\(141\) −779.404 −0.465515
\(142\) 0 0
\(143\) −936.428 −0.547608
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 909.020 0.510032
\(148\) 0 0
\(149\) 1891.15 1.03979 0.519897 0.854229i \(-0.325970\pi\)
0.519897 + 0.854229i \(0.325970\pi\)
\(150\) 0 0
\(151\) 7.13044 0.00384283 0.00192141 0.999998i \(-0.499388\pi\)
0.00192141 + 0.999998i \(0.499388\pi\)
\(152\) 0 0
\(153\) −115.757 −0.0611661
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.2914 0.00828151 0.00414075 0.999991i \(-0.498682\pi\)
0.00414075 + 0.999991i \(0.498682\pi\)
\(158\) 0 0
\(159\) 75.3412 0.0375783
\(160\) 0 0
\(161\) 851.009 0.416577
\(162\) 0 0
\(163\) −2947.53 −1.41637 −0.708186 0.706026i \(-0.750486\pi\)
−0.708186 + 0.706026i \(0.750486\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3567.73 −1.65317 −0.826585 0.562813i \(-0.809719\pi\)
−0.826585 + 0.562813i \(0.809719\pi\)
\(168\) 0 0
\(169\) 5050.08 2.29863
\(170\) 0 0
\(171\) −990.246 −0.442842
\(172\) 0 0
\(173\) 647.739 0.284663 0.142331 0.989819i \(-0.454540\pi\)
0.142331 + 0.989819i \(0.454540\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1458.28 −0.619270
\(178\) 0 0
\(179\) 3061.71 1.27845 0.639225 0.769019i \(-0.279255\pi\)
0.639225 + 0.769019i \(0.279255\pi\)
\(180\) 0 0
\(181\) −4403.36 −1.80828 −0.904141 0.427233i \(-0.859488\pi\)
−0.904141 + 0.427233i \(0.859488\pi\)
\(182\) 0 0
\(183\) 1959.00 0.791330
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 66.9799 0.0261928
\(188\) 0 0
\(189\) 601.612 0.231539
\(190\) 0 0
\(191\) 904.321 0.342588 0.171294 0.985220i \(-0.445205\pi\)
0.171294 + 0.985220i \(0.445205\pi\)
\(192\) 0 0
\(193\) −1344.72 −0.501530 −0.250765 0.968048i \(-0.580682\pi\)
−0.250765 + 0.968048i \(0.580682\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5213.66 −1.88557 −0.942787 0.333395i \(-0.891806\pi\)
−0.942787 + 0.333395i \(0.891806\pi\)
\(198\) 0 0
\(199\) −3145.18 −1.12038 −0.560192 0.828363i \(-0.689272\pi\)
−0.560192 + 0.828363i \(0.689272\pi\)
\(200\) 0 0
\(201\) 965.394 0.338774
\(202\) 0 0
\(203\) 649.937 0.224713
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3497.27 −1.17429
\(208\) 0 0
\(209\) 572.980 0.189636
\(210\) 0 0
\(211\) −3878.22 −1.26535 −0.632673 0.774419i \(-0.718042\pi\)
−0.632673 + 0.774419i \(0.718042\pi\)
\(212\) 0 0
\(213\) −2350.06 −0.755980
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1159.66 −0.362777
\(218\) 0 0
\(219\) 711.135 0.219425
\(220\) 0 0
\(221\) −518.362 −0.157777
\(222\) 0 0
\(223\) 367.736 0.110428 0.0552140 0.998475i \(-0.482416\pi\)
0.0552140 + 0.998475i \(0.482416\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6061.59 −1.77234 −0.886171 0.463358i \(-0.846644\pi\)
−0.886171 + 0.463358i \(0.846644\pi\)
\(228\) 0 0
\(229\) −4244.17 −1.22473 −0.612365 0.790576i \(-0.709782\pi\)
−0.612365 + 0.790576i \(0.709782\pi\)
\(230\) 0 0
\(231\) −143.830 −0.0409669
\(232\) 0 0
\(233\) 5000.36 1.40594 0.702971 0.711218i \(-0.251856\pi\)
0.702971 + 0.711218i \(0.251856\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2592.05 0.710429
\(238\) 0 0
\(239\) −733.915 −0.198632 −0.0993160 0.995056i \(-0.531665\pi\)
−0.0993160 + 0.995056i \(0.531665\pi\)
\(240\) 0 0
\(241\) 424.106 0.113357 0.0566785 0.998392i \(-0.481949\pi\)
0.0566785 + 0.998392i \(0.481949\pi\)
\(242\) 0 0
\(243\) −3923.19 −1.03569
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4434.33 −1.14231
\(248\) 0 0
\(249\) −1291.02 −0.328576
\(250\) 0 0
\(251\) −950.127 −0.238930 −0.119465 0.992838i \(-0.538118\pi\)
−0.119465 + 0.992838i \(0.538118\pi\)
\(252\) 0 0
\(253\) 2023.60 0.502857
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4822.67 1.17054 0.585272 0.810837i \(-0.300988\pi\)
0.585272 + 0.810837i \(0.300988\pi\)
\(258\) 0 0
\(259\) 941.485 0.225873
\(260\) 0 0
\(261\) −2670.95 −0.633440
\(262\) 0 0
\(263\) 1628.73 0.381871 0.190935 0.981603i \(-0.438848\pi\)
0.190935 + 0.981603i \(0.438848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −258.622 −0.0592787
\(268\) 0 0
\(269\) 8432.58 1.91131 0.955657 0.294483i \(-0.0951475\pi\)
0.955657 + 0.294483i \(0.0951475\pi\)
\(270\) 0 0
\(271\) −5763.53 −1.29192 −0.645958 0.763373i \(-0.723542\pi\)
−0.645958 + 0.763373i \(0.723542\pi\)
\(272\) 0 0
\(273\) 1113.11 0.246772
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5869.73 −1.27320 −0.636602 0.771192i \(-0.719661\pi\)
−0.636602 + 0.771192i \(0.719661\pi\)
\(278\) 0 0
\(279\) 4765.68 1.02263
\(280\) 0 0
\(281\) −4339.50 −0.921256 −0.460628 0.887593i \(-0.652376\pi\)
−0.460628 + 0.887593i \(0.652376\pi\)
\(282\) 0 0
\(283\) −1177.65 −0.247364 −0.123682 0.992322i \(-0.539470\pi\)
−0.123682 + 0.992322i \(0.539470\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −103.286 −0.0212431
\(288\) 0 0
\(289\) −4875.92 −0.992453
\(290\) 0 0
\(291\) 414.284 0.0834562
\(292\) 0 0
\(293\) −6012.35 −1.19879 −0.599394 0.800454i \(-0.704592\pi\)
−0.599394 + 0.800454i \(0.704592\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1430.56 0.279494
\(298\) 0 0
\(299\) −15660.8 −3.02906
\(300\) 0 0
\(301\) 543.128 0.104005
\(302\) 0 0
\(303\) 3287.72 0.623349
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 203.484 0.0378287 0.0189144 0.999821i \(-0.493979\pi\)
0.0189144 + 0.999821i \(0.493979\pi\)
\(308\) 0 0
\(309\) 4815.06 0.886469
\(310\) 0 0
\(311\) −4801.67 −0.875492 −0.437746 0.899099i \(-0.644223\pi\)
−0.437746 + 0.899099i \(0.644223\pi\)
\(312\) 0 0
\(313\) −731.096 −0.132026 −0.0660128 0.997819i \(-0.521028\pi\)
−0.0660128 + 0.997819i \(0.521028\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1344.21 0.238165 0.119083 0.992884i \(-0.462005\pi\)
0.119083 + 0.992884i \(0.462005\pi\)
\(318\) 0 0
\(319\) 1545.48 0.271254
\(320\) 0 0
\(321\) 5645.13 0.981558
\(322\) 0 0
\(323\) 317.175 0.0546380
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3817.89 −0.645657
\(328\) 0 0
\(329\) 1275.58 0.213754
\(330\) 0 0
\(331\) −1953.29 −0.324359 −0.162179 0.986761i \(-0.551852\pi\)
−0.162179 + 0.986761i \(0.551852\pi\)
\(332\) 0 0
\(333\) −3869.08 −0.636710
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6114.96 −0.988436 −0.494218 0.869338i \(-0.664546\pi\)
−0.494218 + 0.869338i \(0.664546\pi\)
\(338\) 0 0
\(339\) −1275.77 −0.204397
\(340\) 0 0
\(341\) −2757.53 −0.437915
\(342\) 0 0
\(343\) −3074.41 −0.483973
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5262.87 −0.814195 −0.407098 0.913385i \(-0.633459\pi\)
−0.407098 + 0.913385i \(0.633459\pi\)
\(348\) 0 0
\(349\) 6426.98 0.985755 0.492877 0.870099i \(-0.335945\pi\)
0.492877 + 0.870099i \(0.335945\pi\)
\(350\) 0 0
\(351\) −11071.2 −1.68359
\(352\) 0 0
\(353\) −4196.42 −0.632728 −0.316364 0.948638i \(-0.602462\pi\)
−0.316364 + 0.948638i \(0.602462\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −79.6177 −0.0118034
\(358\) 0 0
\(359\) 4010.77 0.589639 0.294820 0.955553i \(-0.404740\pi\)
0.294820 + 0.955553i \(0.404740\pi\)
\(360\) 0 0
\(361\) −4145.73 −0.604422
\(362\) 0 0
\(363\) −342.013 −0.0494518
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 3543.59 0.504016 0.252008 0.967725i \(-0.418909\pi\)
0.252008 + 0.967725i \(0.418909\pi\)
\(368\) 0 0
\(369\) 424.459 0.0598820
\(370\) 0 0
\(371\) −123.304 −0.0172551
\(372\) 0 0
\(373\) 3804.50 0.528122 0.264061 0.964506i \(-0.414938\pi\)
0.264061 + 0.964506i \(0.414938\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11960.6 −1.63395
\(378\) 0 0
\(379\) 328.702 0.0445496 0.0222748 0.999752i \(-0.492909\pi\)
0.0222748 + 0.999752i \(0.492909\pi\)
\(380\) 0 0
\(381\) −7737.51 −1.04043
\(382\) 0 0
\(383\) 6321.67 0.843400 0.421700 0.906735i \(-0.361434\pi\)
0.421700 + 0.906735i \(0.361434\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2232.01 −0.293177
\(388\) 0 0
\(389\) −9498.91 −1.23808 −0.619041 0.785359i \(-0.712479\pi\)
−0.619041 + 0.785359i \(0.712479\pi\)
\(390\) 0 0
\(391\) 1120.17 0.144884
\(392\) 0 0
\(393\) −2767.03 −0.355161
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5007.59 0.633057 0.316529 0.948583i \(-0.397483\pi\)
0.316529 + 0.948583i \(0.397483\pi\)
\(398\) 0 0
\(399\) −681.090 −0.0854566
\(400\) 0 0
\(401\) −5614.60 −0.699202 −0.349601 0.936899i \(-0.613683\pi\)
−0.349601 + 0.936899i \(0.613683\pi\)
\(402\) 0 0
\(403\) 21340.8 2.63786
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2238.74 0.272655
\(408\) 0 0
\(409\) 10346.6 1.25087 0.625437 0.780274i \(-0.284921\pi\)
0.625437 + 0.780274i \(0.284921\pi\)
\(410\) 0 0
\(411\) −3120.92 −0.374559
\(412\) 0 0
\(413\) 2386.63 0.284354
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 366.156 0.0429994
\(418\) 0 0
\(419\) −2420.02 −0.282162 −0.141081 0.989998i \(-0.545058\pi\)
−0.141081 + 0.989998i \(0.545058\pi\)
\(420\) 0 0
\(421\) 4934.72 0.571268 0.285634 0.958339i \(-0.407796\pi\)
0.285634 + 0.958339i \(0.407796\pi\)
\(422\) 0 0
\(423\) −5242.06 −0.602548
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3206.12 −0.363360
\(428\) 0 0
\(429\) 2646.86 0.297882
\(430\) 0 0
\(431\) 2393.56 0.267503 0.133751 0.991015i \(-0.457298\pi\)
0.133751 + 0.991015i \(0.457298\pi\)
\(432\) 0 0
\(433\) −10706.5 −1.18827 −0.594135 0.804365i \(-0.702506\pi\)
−0.594135 + 0.804365i \(0.702506\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 9582.52 1.04896
\(438\) 0 0
\(439\) −11485.6 −1.24869 −0.624346 0.781148i \(-0.714634\pi\)
−0.624346 + 0.781148i \(0.714634\pi\)
\(440\) 0 0
\(441\) 6113.82 0.660169
\(442\) 0 0
\(443\) −2111.07 −0.226410 −0.113205 0.993572i \(-0.536112\pi\)
−0.113205 + 0.993572i \(0.536112\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −5345.44 −0.565617
\(448\) 0 0
\(449\) −8476.58 −0.890946 −0.445473 0.895295i \(-0.646964\pi\)
−0.445473 + 0.895295i \(0.646964\pi\)
\(450\) 0 0
\(451\) −245.602 −0.0256429
\(452\) 0 0
\(453\) −20.1545 −0.00209038
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3199.98 0.327546 0.163773 0.986498i \(-0.447634\pi\)
0.163773 + 0.986498i \(0.447634\pi\)
\(458\) 0 0
\(459\) 791.893 0.0805281
\(460\) 0 0
\(461\) −6745.98 −0.681544 −0.340772 0.940146i \(-0.610688\pi\)
−0.340772 + 0.940146i \(0.610688\pi\)
\(462\) 0 0
\(463\) 5410.30 0.543063 0.271531 0.962430i \(-0.412470\pi\)
0.271531 + 0.962430i \(0.412470\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14305.6 −1.41752 −0.708761 0.705448i \(-0.750746\pi\)
−0.708761 + 0.705448i \(0.750746\pi\)
\(468\) 0 0
\(469\) −1579.97 −0.155557
\(470\) 0 0
\(471\) −46.0485 −0.00450489
\(472\) 0 0
\(473\) 1291.50 0.125546
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 506.724 0.0486401
\(478\) 0 0
\(479\) 1718.44 0.163919 0.0819596 0.996636i \(-0.473882\pi\)
0.0819596 + 0.996636i \(0.473882\pi\)
\(480\) 0 0
\(481\) −17325.8 −1.64239
\(482\) 0 0
\(483\) −2405.42 −0.226605
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −13434.9 −1.25009 −0.625046 0.780588i \(-0.714920\pi\)
−0.625046 + 0.780588i \(0.714920\pi\)
\(488\) 0 0
\(489\) 8331.35 0.770463
\(490\) 0 0
\(491\) −6739.73 −0.619470 −0.309735 0.950823i \(-0.600240\pi\)
−0.309735 + 0.950823i \(0.600240\pi\)
\(492\) 0 0
\(493\) 855.503 0.0781540
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3846.13 0.347128
\(498\) 0 0
\(499\) −5609.08 −0.503200 −0.251600 0.967831i \(-0.580957\pi\)
−0.251600 + 0.967831i \(0.580957\pi\)
\(500\) 0 0
\(501\) 10084.4 0.899274
\(502\) 0 0
\(503\) −15395.3 −1.36470 −0.682350 0.731026i \(-0.739042\pi\)
−0.682350 + 0.731026i \(0.739042\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −14274.3 −1.25038
\(508\) 0 0
\(509\) 7701.34 0.670640 0.335320 0.942104i \(-0.391156\pi\)
0.335320 + 0.942104i \(0.391156\pi\)
\(510\) 0 0
\(511\) −1163.85 −0.100755
\(512\) 0 0
\(513\) 6774.25 0.583022
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3033.18 0.258026
\(518\) 0 0
\(519\) −1830.87 −0.154848
\(520\) 0 0
\(521\) −1370.94 −0.115282 −0.0576412 0.998337i \(-0.518358\pi\)
−0.0576412 + 0.998337i \(0.518358\pi\)
\(522\) 0 0
\(523\) 5394.92 0.451058 0.225529 0.974236i \(-0.427589\pi\)
0.225529 + 0.974236i \(0.427589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1526.44 −0.126172
\(528\) 0 0
\(529\) 21675.8 1.78152
\(530\) 0 0
\(531\) −9807.99 −0.801564
\(532\) 0 0
\(533\) 1900.73 0.154465
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −8654.07 −0.695439
\(538\) 0 0
\(539\) −3537.61 −0.282700
\(540\) 0 0
\(541\) −16039.6 −1.27467 −0.637335 0.770587i \(-0.719963\pi\)
−0.637335 + 0.770587i \(0.719963\pi\)
\(542\) 0 0
\(543\) 12446.3 0.983651
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 7648.69 0.597869 0.298935 0.954274i \(-0.403369\pi\)
0.298935 + 0.954274i \(0.403369\pi\)
\(548\) 0 0
\(549\) 13175.7 1.02427
\(550\) 0 0
\(551\) 7318.41 0.565834
\(552\) 0 0
\(553\) −4242.17 −0.326212
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18116.4 1.37812 0.689062 0.724702i \(-0.258023\pi\)
0.689062 + 0.724702i \(0.258023\pi\)
\(558\) 0 0
\(559\) −9994.99 −0.756249
\(560\) 0 0
\(561\) −189.322 −0.0142481
\(562\) 0 0
\(563\) −4828.86 −0.361478 −0.180739 0.983531i \(-0.557849\pi\)
−0.180739 + 0.983531i \(0.557849\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 673.957 0.0499180
\(568\) 0 0
\(569\) 18277.3 1.34661 0.673307 0.739363i \(-0.264873\pi\)
0.673307 + 0.739363i \(0.264873\pi\)
\(570\) 0 0
\(571\) 14940.9 1.09502 0.547511 0.836798i \(-0.315575\pi\)
0.547511 + 0.836798i \(0.315575\pi\)
\(572\) 0 0
\(573\) −2556.11 −0.186358
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10861.2 −0.783635 −0.391818 0.920043i \(-0.628154\pi\)
−0.391818 + 0.920043i \(0.628154\pi\)
\(578\) 0 0
\(579\) 3800.93 0.272817
\(580\) 0 0
\(581\) 2112.90 0.150874
\(582\) 0 0
\(583\) −293.203 −0.0208289
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13347.4 −0.938515 −0.469257 0.883062i \(-0.655478\pi\)
−0.469257 + 0.883062i \(0.655478\pi\)
\(588\) 0 0
\(589\) −13057.9 −0.913486
\(590\) 0 0
\(591\) 14736.7 1.02570
\(592\) 0 0
\(593\) −6260.84 −0.433562 −0.216781 0.976220i \(-0.569556\pi\)
−0.216781 + 0.976220i \(0.569556\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8890.02 0.609455
\(598\) 0 0
\(599\) −1235.84 −0.0842991 −0.0421496 0.999111i \(-0.513421\pi\)
−0.0421496 + 0.999111i \(0.513421\pi\)
\(600\) 0 0
\(601\) 11558.8 0.784515 0.392257 0.919855i \(-0.371694\pi\)
0.392257 + 0.919855i \(0.371694\pi\)
\(602\) 0 0
\(603\) 6492.98 0.438499
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1054.63 0.0705205 0.0352603 0.999378i \(-0.488774\pi\)
0.0352603 + 0.999378i \(0.488774\pi\)
\(608\) 0 0
\(609\) −1837.08 −0.122237
\(610\) 0 0
\(611\) −23474.0 −1.55427
\(612\) 0 0
\(613\) −1203.04 −0.0792664 −0.0396332 0.999214i \(-0.512619\pi\)
−0.0396332 + 0.999214i \(0.512619\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 959.742 0.0626220 0.0313110 0.999510i \(-0.490032\pi\)
0.0313110 + 0.999510i \(0.490032\pi\)
\(618\) 0 0
\(619\) 14011.0 0.909774 0.454887 0.890549i \(-0.349680\pi\)
0.454887 + 0.890549i \(0.349680\pi\)
\(620\) 0 0
\(621\) 23924.8 1.54600
\(622\) 0 0
\(623\) 423.263 0.0272194
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −1619.56 −0.103156
\(628\) 0 0
\(629\) 1239.26 0.0785574
\(630\) 0 0
\(631\) 5897.24 0.372053 0.186026 0.982545i \(-0.440439\pi\)
0.186026 + 0.982545i \(0.440439\pi\)
\(632\) 0 0
\(633\) 10962.0 0.688310
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 27377.8 1.70290
\(638\) 0 0
\(639\) −15805.9 −0.978516
\(640\) 0 0
\(641\) 23075.3 1.42187 0.710937 0.703256i \(-0.248271\pi\)
0.710937 + 0.703256i \(0.248271\pi\)
\(642\) 0 0
\(643\) −8295.98 −0.508805 −0.254402 0.967098i \(-0.581879\pi\)
−0.254402 + 0.967098i \(0.581879\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17869.7 1.08583 0.542913 0.839789i \(-0.317321\pi\)
0.542913 + 0.839789i \(0.317321\pi\)
\(648\) 0 0
\(649\) 5675.14 0.343249
\(650\) 0 0
\(651\) 3277.83 0.197340
\(652\) 0 0
\(653\) −12150.0 −0.728125 −0.364063 0.931374i \(-0.618611\pi\)
−0.364063 + 0.931374i \(0.618611\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4782.90 0.284016
\(658\) 0 0
\(659\) 16104.7 0.951975 0.475987 0.879452i \(-0.342091\pi\)
0.475987 + 0.879452i \(0.342091\pi\)
\(660\) 0 0
\(661\) −28742.7 −1.69132 −0.845660 0.533721i \(-0.820793\pi\)
−0.845660 + 0.533721i \(0.820793\pi\)
\(662\) 0 0
\(663\) 1465.18 0.0858261
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 25846.6 1.50042
\(668\) 0 0
\(669\) −1039.42 −0.0600694
\(670\) 0 0
\(671\) −7623.78 −0.438618
\(672\) 0 0
\(673\) −18091.3 −1.03621 −0.518106 0.855317i \(-0.673363\pi\)
−0.518106 + 0.855317i \(0.673363\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1915.04 0.108716 0.0543581 0.998522i \(-0.482689\pi\)
0.0543581 + 0.998522i \(0.482689\pi\)
\(678\) 0 0
\(679\) −678.021 −0.0383211
\(680\) 0 0
\(681\) 17133.4 0.964100
\(682\) 0 0
\(683\) −4576.76 −0.256405 −0.128203 0.991748i \(-0.540921\pi\)
−0.128203 + 0.991748i \(0.540921\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 11996.4 0.666216
\(688\) 0 0
\(689\) 2269.12 0.125467
\(690\) 0 0
\(691\) −19493.4 −1.07317 −0.536587 0.843845i \(-0.680287\pi\)
−0.536587 + 0.843845i \(0.680287\pi\)
\(692\) 0 0
\(693\) −967.365 −0.0530262
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −135.954 −0.00738825
\(698\) 0 0
\(699\) −14133.8 −0.764790
\(700\) 0 0
\(701\) 16641.1 0.896613 0.448306 0.893880i \(-0.352027\pi\)
0.448306 + 0.893880i \(0.352027\pi\)
\(702\) 0 0
\(703\) 10601.3 0.568755
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5380.72 −0.286227
\(708\) 0 0
\(709\) −34690.1 −1.83754 −0.918768 0.394799i \(-0.870814\pi\)
−0.918768 + 0.394799i \(0.870814\pi\)
\(710\) 0 0
\(711\) 17433.4 0.919556
\(712\) 0 0
\(713\) −46117.0 −2.42229
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2074.45 0.108050
\(718\) 0 0
\(719\) 31316.5 1.62435 0.812175 0.583414i \(-0.198284\pi\)
0.812175 + 0.583414i \(0.198284\pi\)
\(720\) 0 0
\(721\) −7880.36 −0.407046
\(722\) 0 0
\(723\) −1198.76 −0.0616628
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6829.67 0.348416 0.174208 0.984709i \(-0.444264\pi\)
0.174208 + 0.984709i \(0.444264\pi\)
\(728\) 0 0
\(729\) 7155.44 0.363534
\(730\) 0 0
\(731\) 714.912 0.0361723
\(732\) 0 0
\(733\) −30580.1 −1.54093 −0.770465 0.637482i \(-0.779976\pi\)
−0.770465 + 0.637482i \(0.779976\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3757.00 −0.187776
\(738\) 0 0
\(739\) 24945.0 1.24170 0.620850 0.783929i \(-0.286788\pi\)
0.620850 + 0.783929i \(0.286788\pi\)
\(740\) 0 0
\(741\) 12533.9 0.621380
\(742\) 0 0
\(743\) −20683.3 −1.02126 −0.510630 0.859801i \(-0.670588\pi\)
−0.510630 + 0.859801i \(0.670588\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −8683.08 −0.425298
\(748\) 0 0
\(749\) −9238.86 −0.450709
\(750\) 0 0
\(751\) 12716.9 0.617902 0.308951 0.951078i \(-0.400022\pi\)
0.308951 + 0.951078i \(0.400022\pi\)
\(752\) 0 0
\(753\) 2685.58 0.129971
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 37126.5 1.78254 0.891271 0.453472i \(-0.149815\pi\)
0.891271 + 0.453472i \(0.149815\pi\)
\(758\) 0 0
\(759\) −5719.82 −0.273539
\(760\) 0 0
\(761\) 4198.08 0.199974 0.0999870 0.994989i \(-0.468120\pi\)
0.0999870 + 0.994989i \(0.468120\pi\)
\(762\) 0 0
\(763\) 6248.39 0.296471
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −43920.3 −2.06763
\(768\) 0 0
\(769\) 16085.3 0.754294 0.377147 0.926153i \(-0.376905\pi\)
0.377147 + 0.926153i \(0.376905\pi\)
\(770\) 0 0
\(771\) −13631.5 −0.636741
\(772\) 0 0
\(773\) −3557.93 −0.165550 −0.0827748 0.996568i \(-0.526378\pi\)
−0.0827748 + 0.996568i \(0.526378\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2661.15 −0.122868
\(778\) 0 0
\(779\) −1163.02 −0.0534909
\(780\) 0 0
\(781\) 9145.67 0.419024
\(782\) 0 0
\(783\) 18271.9 0.833954
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −34848.3 −1.57841 −0.789204 0.614132i \(-0.789506\pi\)
−0.789204 + 0.614132i \(0.789506\pi\)
\(788\) 0 0
\(789\) −4603.70 −0.207726
\(790\) 0 0
\(791\) 2087.94 0.0938541
\(792\) 0 0
\(793\) 59001.0 2.64210
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19212.8 0.853892 0.426946 0.904277i \(-0.359589\pi\)
0.426946 + 0.904277i \(0.359589\pi\)
\(798\) 0 0
\(799\) 1679.03 0.0743426
\(800\) 0 0
\(801\) −1739.42 −0.0767284
\(802\) 0 0
\(803\) −2767.50 −0.121623
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −23835.1 −1.03970
\(808\) 0 0
\(809\) −35866.9 −1.55873 −0.779365 0.626570i \(-0.784458\pi\)
−0.779365 + 0.626570i \(0.784458\pi\)
\(810\) 0 0
\(811\) −12295.8 −0.532386 −0.266193 0.963920i \(-0.585766\pi\)
−0.266193 + 0.963920i \(0.585766\pi\)
\(812\) 0 0
\(813\) 16290.9 0.702764
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6115.72 0.261887
\(818\) 0 0
\(819\) 7486.51 0.319414
\(820\) 0 0
\(821\) 8301.98 0.352913 0.176456 0.984308i \(-0.443537\pi\)
0.176456 + 0.984308i \(0.443537\pi\)
\(822\) 0 0
\(823\) 19260.2 0.815757 0.407879 0.913036i \(-0.366269\pi\)
0.407879 + 0.913036i \(0.366269\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15002.2 0.630806 0.315403 0.948958i \(-0.397860\pi\)
0.315403 + 0.948958i \(0.397860\pi\)
\(828\) 0 0
\(829\) −15589.7 −0.653141 −0.326570 0.945173i \(-0.605893\pi\)
−0.326570 + 0.945173i \(0.605893\pi\)
\(830\) 0 0
\(831\) 16591.1 0.692585
\(832\) 0 0
\(833\) −1958.25 −0.0814518
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −32601.9 −1.34634
\(838\) 0 0
\(839\) −42573.2 −1.75183 −0.875917 0.482461i \(-0.839743\pi\)
−0.875917 + 0.482461i \(0.839743\pi\)
\(840\) 0 0
\(841\) −4649.33 −0.190632
\(842\) 0 0
\(843\) 12265.8 0.501135
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 559.741 0.0227071
\(848\) 0 0
\(849\) 3328.69 0.134559
\(850\) 0 0
\(851\) 37440.7 1.50817
\(852\) 0 0
\(853\) 23827.7 0.956441 0.478221 0.878240i \(-0.341282\pi\)
0.478221 + 0.878240i \(0.341282\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 42582.9 1.69732 0.848660 0.528938i \(-0.177410\pi\)
0.848660 + 0.528938i \(0.177410\pi\)
\(858\) 0 0
\(859\) −37604.0 −1.49364 −0.746818 0.665029i \(-0.768419\pi\)
−0.746818 + 0.665029i \(0.768419\pi\)
\(860\) 0 0
\(861\) 291.943 0.0115556
\(862\) 0 0
\(863\) 36934.0 1.45683 0.728417 0.685134i \(-0.240256\pi\)
0.728417 + 0.685134i \(0.240256\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 13782.0 0.539865
\(868\) 0 0
\(869\) −10087.4 −0.393776
\(870\) 0 0
\(871\) 29075.7 1.13110
\(872\) 0 0
\(873\) 2786.36 0.108023
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18212.3 −0.701238 −0.350619 0.936518i \(-0.614029\pi\)
−0.350619 + 0.936518i \(0.614029\pi\)
\(878\) 0 0
\(879\) 16994.2 0.652105
\(880\) 0 0
\(881\) 5878.65 0.224809 0.112405 0.993663i \(-0.464145\pi\)
0.112405 + 0.993663i \(0.464145\pi\)
\(882\) 0 0
\(883\) −6399.06 −0.243879 −0.121940 0.992538i \(-0.538911\pi\)
−0.121940 + 0.992538i \(0.538911\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33294.9 1.26035 0.630177 0.776452i \(-0.282982\pi\)
0.630177 + 0.776452i \(0.282982\pi\)
\(888\) 0 0
\(889\) 12663.3 0.477742
\(890\) 0 0
\(891\) 1602.59 0.0602569
\(892\) 0 0
\(893\) 14363.2 0.538239
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 44266.1 1.64772
\(898\) 0 0
\(899\) −35220.7 −1.30665
\(900\) 0 0
\(901\) −162.303 −0.00600123
\(902\) 0 0
\(903\) −1535.18 −0.0565754
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −20701.9 −0.757878 −0.378939 0.925422i \(-0.623711\pi\)
−0.378939 + 0.925422i \(0.623711\pi\)
\(908\) 0 0
\(909\) 22112.4 0.806843
\(910\) 0 0
\(911\) −2496.01 −0.0907756 −0.0453878 0.998969i \(-0.514452\pi\)
−0.0453878 + 0.998969i \(0.514452\pi\)
\(912\) 0 0
\(913\) 5024.24 0.182123
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4528.55 0.163082
\(918\) 0 0
\(919\) −45604.5 −1.63695 −0.818473 0.574546i \(-0.805179\pi\)
−0.818473 + 0.574546i \(0.805179\pi\)
\(920\) 0 0
\(921\) −575.156 −0.0205777
\(922\) 0 0
\(923\) −70779.0 −2.52407
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 32384.8 1.14742
\(928\) 0 0
\(929\) −21550.0 −0.761067 −0.380534 0.924767i \(-0.624260\pi\)
−0.380534 + 0.924767i \(0.624260\pi\)
\(930\) 0 0
\(931\) −16751.9 −0.589711
\(932\) 0 0
\(933\) 13572.2 0.476241
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 33457.9 1.16651 0.583257 0.812288i \(-0.301778\pi\)
0.583257 + 0.812288i \(0.301778\pi\)
\(938\) 0 0
\(939\) 2066.48 0.0718179
\(940\) 0 0
\(941\) −45107.8 −1.56267 −0.781334 0.624113i \(-0.785461\pi\)
−0.781334 + 0.624113i \(0.785461\pi\)
\(942\) 0 0
\(943\) −4107.45 −0.141842
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30270.6 −1.03871 −0.519357 0.854557i \(-0.673828\pi\)
−0.519357 + 0.854557i \(0.673828\pi\)
\(948\) 0 0
\(949\) 21417.9 0.732618
\(950\) 0 0
\(951\) −3799.48 −0.129555
\(952\) 0 0
\(953\) 4145.41 0.140905 0.0704527 0.997515i \(-0.477556\pi\)
0.0704527 + 0.997515i \(0.477556\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −4368.37 −0.147554
\(958\) 0 0
\(959\) 5107.72 0.171989
\(960\) 0 0
\(961\) 33052.0 1.10946
\(962\) 0 0
\(963\) 37967.6 1.27050
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1369.06 −0.0455285 −0.0227643 0.999741i \(-0.507247\pi\)
−0.0227643 + 0.999741i \(0.507247\pi\)
\(968\) 0 0
\(969\) −896.510 −0.0297214
\(970\) 0 0
\(971\) 29221.5 0.965770 0.482885 0.875684i \(-0.339589\pi\)
0.482885 + 0.875684i \(0.339589\pi\)
\(972\) 0 0
\(973\) −599.255 −0.0197443
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 33896.8 1.10999 0.554993 0.831855i \(-0.312721\pi\)
0.554993 + 0.831855i \(0.312721\pi\)
\(978\) 0 0
\(979\) 1006.47 0.0328570
\(980\) 0 0
\(981\) −25678.1 −0.835718
\(982\) 0 0
\(983\) 11859.9 0.384815 0.192408 0.981315i \(-0.438370\pi\)
0.192408 + 0.981315i \(0.438370\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3605.49 −0.116276
\(988\) 0 0
\(989\) 21599.0 0.694447
\(990\) 0 0
\(991\) −2037.86 −0.0653227 −0.0326614 0.999466i \(-0.510398\pi\)
−0.0326614 + 0.999466i \(0.510398\pi\)
\(992\) 0 0
\(993\) 5521.08 0.176441
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 35940.6 1.14168 0.570838 0.821063i \(-0.306618\pi\)
0.570838 + 0.821063i \(0.306618\pi\)
\(998\) 0 0
\(999\) 26468.3 0.838259
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2200.4.a.m.1.2 3
5.4 even 2 88.4.a.d.1.2 3
15.14 odd 2 792.4.a.l.1.1 3
20.19 odd 2 176.4.a.j.1.2 3
40.19 odd 2 704.4.a.u.1.2 3
40.29 even 2 704.4.a.t.1.2 3
55.54 odd 2 968.4.a.i.1.2 3
60.59 even 2 1584.4.a.bl.1.1 3
220.219 even 2 1936.4.a.bh.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.a.d.1.2 3 5.4 even 2
176.4.a.j.1.2 3 20.19 odd 2
704.4.a.t.1.2 3 40.29 even 2
704.4.a.u.1.2 3 40.19 odd 2
792.4.a.l.1.1 3 15.14 odd 2
968.4.a.i.1.2 3 55.54 odd 2
1584.4.a.bl.1.1 3 60.59 even 2
1936.4.a.bh.1.2 3 220.219 even 2
2200.4.a.m.1.2 3 1.1 even 1 trivial