Properties

Label 704.4.a.u.1.2
Level $704$
Weight $4$
Character 704.1
Self dual yes
Analytic conductor $41.537$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(1,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.11109.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.56976\) of defining polynomial
Character \(\chi\) \(=\) 704.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82655 q^{3} -17.4525 q^{5} +4.62596 q^{7} -19.0106 q^{9} +11.0000 q^{11} -85.1298 q^{13} -49.3304 q^{15} -6.08908 q^{17} +52.0891 q^{19} +13.0755 q^{21} +183.964 q^{23} +179.590 q^{25} -130.051 q^{27} -140.498 q^{29} +250.685 q^{31} +31.0920 q^{33} -80.7345 q^{35} +203.522 q^{37} -240.624 q^{39} -22.3275 q^{41} -117.409 q^{43} +331.783 q^{45} +275.744 q^{47} -321.601 q^{49} -17.2111 q^{51} -26.6548 q^{53} -191.978 q^{55} +147.232 q^{57} +515.922 q^{59} +693.071 q^{61} -87.9423 q^{63} +1485.73 q^{65} +341.545 q^{67} +519.983 q^{69} -831.425 q^{71} +251.591 q^{73} +507.620 q^{75} +50.8855 q^{77} +917.036 q^{79} +145.690 q^{81} -456.749 q^{83} +106.270 q^{85} -397.124 q^{87} +91.4974 q^{89} -393.807 q^{91} +708.574 q^{93} -909.085 q^{95} +146.569 q^{97} -209.117 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 2 q^{3} - 8 q^{5} - 24 q^{7} + 89 q^{9} + 33 q^{11} - 66 q^{13} + 10 q^{15} + 210 q^{17} - 72 q^{19} - 200 q^{21} + 50 q^{23} - q^{25} - 286 q^{27} + 50 q^{29} + 298 q^{31} + 22 q^{33} - 304 q^{35}+ \cdots + 979 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.82655 0.543970 0.271985 0.962302i \(-0.412320\pi\)
0.271985 + 0.962302i \(0.412320\pi\)
\(4\) 0 0
\(5\) −17.4525 −1.56100 −0.780500 0.625156i \(-0.785035\pi\)
−0.780500 + 0.625156i \(0.785035\pi\)
\(6\) 0 0
\(7\) 4.62596 0.249778 0.124889 0.992171i \(-0.460142\pi\)
0.124889 + 0.992171i \(0.460142\pi\)
\(8\) 0 0
\(9\) −19.0106 −0.704097
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −85.1298 −1.81621 −0.908106 0.418741i \(-0.862472\pi\)
−0.908106 + 0.418741i \(0.862472\pi\)
\(14\) 0 0
\(15\) −49.3304 −0.849137
\(16\) 0 0
\(17\) −6.08908 −0.0868717 −0.0434358 0.999056i \(-0.513830\pi\)
−0.0434358 + 0.999056i \(0.513830\pi\)
\(18\) 0 0
\(19\) 52.0891 0.628950 0.314475 0.949266i \(-0.398172\pi\)
0.314475 + 0.949266i \(0.398172\pi\)
\(20\) 0 0
\(21\) 13.0755 0.135872
\(22\) 0 0
\(23\) 183.964 1.66779 0.833894 0.551924i \(-0.186106\pi\)
0.833894 + 0.551924i \(0.186106\pi\)
\(24\) 0 0
\(25\) 179.590 1.43672
\(26\) 0 0
\(27\) −130.051 −0.926977
\(28\) 0 0
\(29\) −140.498 −0.899649 −0.449824 0.893117i \(-0.648513\pi\)
−0.449824 + 0.893117i \(0.648513\pi\)
\(30\) 0 0
\(31\) 250.685 1.45240 0.726199 0.687484i \(-0.241285\pi\)
0.726199 + 0.687484i \(0.241285\pi\)
\(32\) 0 0
\(33\) 31.0920 0.164013
\(34\) 0 0
\(35\) −80.7345 −0.389904
\(36\) 0 0
\(37\) 203.522 0.904293 0.452146 0.891944i \(-0.350658\pi\)
0.452146 + 0.891944i \(0.350658\pi\)
\(38\) 0 0
\(39\) −240.624 −0.987964
\(40\) 0 0
\(41\) −22.3275 −0.0850479 −0.0425239 0.999095i \(-0.513540\pi\)
−0.0425239 + 0.999095i \(0.513540\pi\)
\(42\) 0 0
\(43\) −117.409 −0.416388 −0.208194 0.978088i \(-0.566759\pi\)
−0.208194 + 0.978088i \(0.566759\pi\)
\(44\) 0 0
\(45\) 331.783 1.09910
\(46\) 0 0
\(47\) 275.744 0.855774 0.427887 0.903832i \(-0.359258\pi\)
0.427887 + 0.903832i \(0.359258\pi\)
\(48\) 0 0
\(49\) −321.601 −0.937611
\(50\) 0 0
\(51\) −17.2111 −0.0472556
\(52\) 0 0
\(53\) −26.6548 −0.0690815 −0.0345408 0.999403i \(-0.510997\pi\)
−0.0345408 + 0.999403i \(0.510997\pi\)
\(54\) 0 0
\(55\) −191.978 −0.470659
\(56\) 0 0
\(57\) 147.232 0.342130
\(58\) 0 0
\(59\) 515.922 1.13843 0.569214 0.822189i \(-0.307248\pi\)
0.569214 + 0.822189i \(0.307248\pi\)
\(60\) 0 0
\(61\) 693.071 1.45473 0.727366 0.686249i \(-0.240744\pi\)
0.727366 + 0.686249i \(0.240744\pi\)
\(62\) 0 0
\(63\) −87.9423 −0.175868
\(64\) 0 0
\(65\) 1485.73 2.83511
\(66\) 0 0
\(67\) 341.545 0.622782 0.311391 0.950282i \(-0.399205\pi\)
0.311391 + 0.950282i \(0.399205\pi\)
\(68\) 0 0
\(69\) 519.983 0.907227
\(70\) 0 0
\(71\) −831.425 −1.38975 −0.694873 0.719133i \(-0.744539\pi\)
−0.694873 + 0.719133i \(0.744539\pi\)
\(72\) 0 0
\(73\) 251.591 0.403377 0.201688 0.979450i \(-0.435357\pi\)
0.201688 + 0.979450i \(0.435357\pi\)
\(74\) 0 0
\(75\) 507.620 0.781532
\(76\) 0 0
\(77\) 50.8855 0.0753109
\(78\) 0 0
\(79\) 917.036 1.30601 0.653004 0.757355i \(-0.273509\pi\)
0.653004 + 0.757355i \(0.273509\pi\)
\(80\) 0 0
\(81\) 145.690 0.199849
\(82\) 0 0
\(83\) −456.749 −0.604033 −0.302017 0.953303i \(-0.597660\pi\)
−0.302017 + 0.953303i \(0.597660\pi\)
\(84\) 0 0
\(85\) 106.270 0.135607
\(86\) 0 0
\(87\) −397.124 −0.489382
\(88\) 0 0
\(89\) 91.4974 0.108974 0.0544871 0.998514i \(-0.482648\pi\)
0.0544871 + 0.998514i \(0.482648\pi\)
\(90\) 0 0
\(91\) −393.807 −0.453650
\(92\) 0 0
\(93\) 708.574 0.790061
\(94\) 0 0
\(95\) −909.085 −0.981791
\(96\) 0 0
\(97\) 146.569 0.153421 0.0767104 0.997053i \(-0.475558\pi\)
0.0767104 + 0.997053i \(0.475558\pi\)
\(98\) 0 0
\(99\) −209.117 −0.212293
\(100\) 0 0
\(101\) 1163.16 1.14593 0.572963 0.819581i \(-0.305794\pi\)
0.572963 + 0.819581i \(0.305794\pi\)
\(102\) 0 0
\(103\) −1703.51 −1.62963 −0.814815 0.579721i \(-0.803161\pi\)
−0.814815 + 0.579721i \(0.803161\pi\)
\(104\) 0 0
\(105\) −228.200 −0.212096
\(106\) 0 0
\(107\) 1997.18 1.80444 0.902218 0.431281i \(-0.141938\pi\)
0.902218 + 0.431281i \(0.141938\pi\)
\(108\) 0 0
\(109\) −1350.72 −1.18694 −0.593468 0.804858i \(-0.702242\pi\)
−0.593468 + 0.804858i \(0.702242\pi\)
\(110\) 0 0
\(111\) 575.265 0.491908
\(112\) 0 0
\(113\) −451.353 −0.375750 −0.187875 0.982193i \(-0.560160\pi\)
−0.187875 + 0.982193i \(0.560160\pi\)
\(114\) 0 0
\(115\) −3210.63 −2.60342
\(116\) 0 0
\(117\) 1618.37 1.27879
\(118\) 0 0
\(119\) −28.1678 −0.0216986
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −63.1097 −0.0462635
\(124\) 0 0
\(125\) −952.732 −0.681719
\(126\) 0 0
\(127\) 2737.44 1.91267 0.956333 0.292279i \(-0.0944135\pi\)
0.956333 + 0.292279i \(0.0944135\pi\)
\(128\) 0 0
\(129\) −331.862 −0.226502
\(130\) 0 0
\(131\) 978.943 0.652906 0.326453 0.945213i \(-0.394147\pi\)
0.326453 + 0.945213i \(0.394147\pi\)
\(132\) 0 0
\(133\) 240.962 0.157098
\(134\) 0 0
\(135\) 2269.72 1.44701
\(136\) 0 0
\(137\) −1104.14 −0.688565 −0.344283 0.938866i \(-0.611878\pi\)
−0.344283 + 0.938866i \(0.611878\pi\)
\(138\) 0 0
\(139\) −129.542 −0.0790474 −0.0395237 0.999219i \(-0.512584\pi\)
−0.0395237 + 0.999219i \(0.512584\pi\)
\(140\) 0 0
\(141\) 779.404 0.465515
\(142\) 0 0
\(143\) −936.428 −0.547608
\(144\) 0 0
\(145\) 2452.04 1.40435
\(146\) 0 0
\(147\) −909.020 −0.510032
\(148\) 0 0
\(149\) −1891.15 −1.03979 −0.519897 0.854229i \(-0.674030\pi\)
−0.519897 + 0.854229i \(0.674030\pi\)
\(150\) 0 0
\(151\) −7.13044 −0.00384283 −0.00192141 0.999998i \(-0.500612\pi\)
−0.00192141 + 0.999998i \(0.500612\pi\)
\(152\) 0 0
\(153\) 115.757 0.0611661
\(154\) 0 0
\(155\) −4375.08 −2.26719
\(156\) 0 0
\(157\) 16.2914 0.00828151 0.00414075 0.999991i \(-0.498682\pi\)
0.00414075 + 0.999991i \(0.498682\pi\)
\(158\) 0 0
\(159\) −75.3412 −0.0375783
\(160\) 0 0
\(161\) 851.009 0.416577
\(162\) 0 0
\(163\) 2947.53 1.41637 0.708186 0.706026i \(-0.249514\pi\)
0.708186 + 0.706026i \(0.249514\pi\)
\(164\) 0 0
\(165\) −542.634 −0.256024
\(166\) 0 0
\(167\) −3567.73 −1.65317 −0.826585 0.562813i \(-0.809719\pi\)
−0.826585 + 0.562813i \(0.809719\pi\)
\(168\) 0 0
\(169\) 5050.08 2.29863
\(170\) 0 0
\(171\) −990.246 −0.442842
\(172\) 0 0
\(173\) 647.739 0.284663 0.142331 0.989819i \(-0.454540\pi\)
0.142331 + 0.989819i \(0.454540\pi\)
\(174\) 0 0
\(175\) 830.775 0.358861
\(176\) 0 0
\(177\) 1458.28 0.619270
\(178\) 0 0
\(179\) 3061.71 1.27845 0.639225 0.769019i \(-0.279255\pi\)
0.639225 + 0.769019i \(0.279255\pi\)
\(180\) 0 0
\(181\) 4403.36 1.80828 0.904141 0.427233i \(-0.140512\pi\)
0.904141 + 0.427233i \(0.140512\pi\)
\(182\) 0 0
\(183\) 1959.00 0.791330
\(184\) 0 0
\(185\) −3551.97 −1.41160
\(186\) 0 0
\(187\) −66.9799 −0.0261928
\(188\) 0 0
\(189\) −601.612 −0.231539
\(190\) 0 0
\(191\) −904.321 −0.342588 −0.171294 0.985220i \(-0.554795\pi\)
−0.171294 + 0.985220i \(0.554795\pi\)
\(192\) 0 0
\(193\) 1344.72 0.501530 0.250765 0.968048i \(-0.419318\pi\)
0.250765 + 0.968048i \(0.419318\pi\)
\(194\) 0 0
\(195\) 4199.48 1.54221
\(196\) 0 0
\(197\) −5213.66 −1.88557 −0.942787 0.333395i \(-0.891806\pi\)
−0.942787 + 0.333395i \(0.891806\pi\)
\(198\) 0 0
\(199\) 3145.18 1.12038 0.560192 0.828363i \(-0.310728\pi\)
0.560192 + 0.828363i \(0.310728\pi\)
\(200\) 0 0
\(201\) 965.394 0.338774
\(202\) 0 0
\(203\) −649.937 −0.224713
\(204\) 0 0
\(205\) 389.670 0.132760
\(206\) 0 0
\(207\) −3497.27 −1.17429
\(208\) 0 0
\(209\) 572.980 0.189636
\(210\) 0 0
\(211\) −3878.22 −1.26535 −0.632673 0.774419i \(-0.718042\pi\)
−0.632673 + 0.774419i \(0.718042\pi\)
\(212\) 0 0
\(213\) −2350.06 −0.755980
\(214\) 0 0
\(215\) 2049.08 0.649981
\(216\) 0 0
\(217\) 1159.66 0.362777
\(218\) 0 0
\(219\) 711.135 0.219425
\(220\) 0 0
\(221\) 518.362 0.157777
\(222\) 0 0
\(223\) 367.736 0.110428 0.0552140 0.998475i \(-0.482416\pi\)
0.0552140 + 0.998475i \(0.482416\pi\)
\(224\) 0 0
\(225\) −3414.12 −1.01159
\(226\) 0 0
\(227\) 6061.59 1.77234 0.886171 0.463358i \(-0.153356\pi\)
0.886171 + 0.463358i \(0.153356\pi\)
\(228\) 0 0
\(229\) 4244.17 1.22473 0.612365 0.790576i \(-0.290218\pi\)
0.612365 + 0.790576i \(0.290218\pi\)
\(230\) 0 0
\(231\) 143.830 0.0409669
\(232\) 0 0
\(233\) −5000.36 −1.40594 −0.702971 0.711218i \(-0.748144\pi\)
−0.702971 + 0.711218i \(0.748144\pi\)
\(234\) 0 0
\(235\) −4812.42 −1.33586
\(236\) 0 0
\(237\) 2592.05 0.710429
\(238\) 0 0
\(239\) 733.915 0.198632 0.0993160 0.995056i \(-0.468335\pi\)
0.0993160 + 0.995056i \(0.468335\pi\)
\(240\) 0 0
\(241\) 424.106 0.113357 0.0566785 0.998392i \(-0.481949\pi\)
0.0566785 + 0.998392i \(0.481949\pi\)
\(242\) 0 0
\(243\) 3923.19 1.03569
\(244\) 0 0
\(245\) 5612.74 1.46361
\(246\) 0 0
\(247\) −4434.33 −1.14231
\(248\) 0 0
\(249\) −1291.02 −0.328576
\(250\) 0 0
\(251\) −950.127 −0.238930 −0.119465 0.992838i \(-0.538118\pi\)
−0.119465 + 0.992838i \(0.538118\pi\)
\(252\) 0 0
\(253\) 2023.60 0.502857
\(254\) 0 0
\(255\) 300.377 0.0737659
\(256\) 0 0
\(257\) −4822.67 −1.17054 −0.585272 0.810837i \(-0.699012\pi\)
−0.585272 + 0.810837i \(0.699012\pi\)
\(258\) 0 0
\(259\) 941.485 0.225873
\(260\) 0 0
\(261\) 2670.95 0.633440
\(262\) 0 0
\(263\) 1628.73 0.381871 0.190935 0.981603i \(-0.438848\pi\)
0.190935 + 0.981603i \(0.438848\pi\)
\(264\) 0 0
\(265\) 465.193 0.107836
\(266\) 0 0
\(267\) 258.622 0.0592787
\(268\) 0 0
\(269\) −8432.58 −1.91131 −0.955657 0.294483i \(-0.904852\pi\)
−0.955657 + 0.294483i \(0.904852\pi\)
\(270\) 0 0
\(271\) 5763.53 1.29192 0.645958 0.763373i \(-0.276458\pi\)
0.645958 + 0.763373i \(0.276458\pi\)
\(272\) 0 0
\(273\) −1113.11 −0.246772
\(274\) 0 0
\(275\) 1975.49 0.433187
\(276\) 0 0
\(277\) −5869.73 −1.27320 −0.636602 0.771192i \(-0.719661\pi\)
−0.636602 + 0.771192i \(0.719661\pi\)
\(278\) 0 0
\(279\) −4765.68 −1.02263
\(280\) 0 0
\(281\) −4339.50 −0.921256 −0.460628 0.887593i \(-0.652376\pi\)
−0.460628 + 0.887593i \(0.652376\pi\)
\(282\) 0 0
\(283\) 1177.65 0.247364 0.123682 0.992322i \(-0.460530\pi\)
0.123682 + 0.992322i \(0.460530\pi\)
\(284\) 0 0
\(285\) −2569.57 −0.534065
\(286\) 0 0
\(287\) −103.286 −0.0212431
\(288\) 0 0
\(289\) −4875.92 −0.992453
\(290\) 0 0
\(291\) 414.284 0.0834562
\(292\) 0 0
\(293\) −6012.35 −1.19879 −0.599394 0.800454i \(-0.704592\pi\)
−0.599394 + 0.800454i \(0.704592\pi\)
\(294\) 0 0
\(295\) −9004.12 −1.77709
\(296\) 0 0
\(297\) −1430.56 −0.279494
\(298\) 0 0
\(299\) −15660.8 −3.02906
\(300\) 0 0
\(301\) −543.128 −0.104005
\(302\) 0 0
\(303\) 3287.72 0.623349
\(304\) 0 0
\(305\) −12095.8 −2.27084
\(306\) 0 0
\(307\) −203.484 −0.0378287 −0.0189144 0.999821i \(-0.506021\pi\)
−0.0189144 + 0.999821i \(0.506021\pi\)
\(308\) 0 0
\(309\) −4815.06 −0.886469
\(310\) 0 0
\(311\) 4801.67 0.875492 0.437746 0.899099i \(-0.355777\pi\)
0.437746 + 0.899099i \(0.355777\pi\)
\(312\) 0 0
\(313\) 731.096 0.132026 0.0660128 0.997819i \(-0.478972\pi\)
0.0660128 + 0.997819i \(0.478972\pi\)
\(314\) 0 0
\(315\) 1534.81 0.274530
\(316\) 0 0
\(317\) 1344.21 0.238165 0.119083 0.992884i \(-0.462005\pi\)
0.119083 + 0.992884i \(0.462005\pi\)
\(318\) 0 0
\(319\) −1545.48 −0.271254
\(320\) 0 0
\(321\) 5645.13 0.981558
\(322\) 0 0
\(323\) −317.175 −0.0546380
\(324\) 0 0
\(325\) −15288.5 −2.60939
\(326\) 0 0
\(327\) −3817.89 −0.645657
\(328\) 0 0
\(329\) 1275.58 0.213754
\(330\) 0 0
\(331\) −1953.29 −0.324359 −0.162179 0.986761i \(-0.551852\pi\)
−0.162179 + 0.986761i \(0.551852\pi\)
\(332\) 0 0
\(333\) −3869.08 −0.636710
\(334\) 0 0
\(335\) −5960.82 −0.972162
\(336\) 0 0
\(337\) 6114.96 0.988436 0.494218 0.869338i \(-0.335454\pi\)
0.494218 + 0.869338i \(0.335454\pi\)
\(338\) 0 0
\(339\) −1275.77 −0.204397
\(340\) 0 0
\(341\) 2757.53 0.437915
\(342\) 0 0
\(343\) −3074.41 −0.483973
\(344\) 0 0
\(345\) −9075.01 −1.41618
\(346\) 0 0
\(347\) 5262.87 0.814195 0.407098 0.913385i \(-0.366541\pi\)
0.407098 + 0.913385i \(0.366541\pi\)
\(348\) 0 0
\(349\) −6426.98 −0.985755 −0.492877 0.870099i \(-0.664055\pi\)
−0.492877 + 0.870099i \(0.664055\pi\)
\(350\) 0 0
\(351\) 11071.2 1.68359
\(352\) 0 0
\(353\) 4196.42 0.632728 0.316364 0.948638i \(-0.397538\pi\)
0.316364 + 0.948638i \(0.397538\pi\)
\(354\) 0 0
\(355\) 14510.4 2.16939
\(356\) 0 0
\(357\) −79.6177 −0.0118034
\(358\) 0 0
\(359\) −4010.77 −0.589639 −0.294820 0.955553i \(-0.595260\pi\)
−0.294820 + 0.955553i \(0.595260\pi\)
\(360\) 0 0
\(361\) −4145.73 −0.604422
\(362\) 0 0
\(363\) 342.013 0.0494518
\(364\) 0 0
\(365\) −4390.90 −0.629671
\(366\) 0 0
\(367\) 3543.59 0.504016 0.252008 0.967725i \(-0.418909\pi\)
0.252008 + 0.967725i \(0.418909\pi\)
\(368\) 0 0
\(369\) 424.459 0.0598820
\(370\) 0 0
\(371\) −123.304 −0.0172551
\(372\) 0 0
\(373\) 3804.50 0.528122 0.264061 0.964506i \(-0.414938\pi\)
0.264061 + 0.964506i \(0.414938\pi\)
\(374\) 0 0
\(375\) −2692.94 −0.370835
\(376\) 0 0
\(377\) 11960.6 1.63395
\(378\) 0 0
\(379\) 328.702 0.0445496 0.0222748 0.999752i \(-0.492909\pi\)
0.0222748 + 0.999752i \(0.492909\pi\)
\(380\) 0 0
\(381\) 7737.51 1.04043
\(382\) 0 0
\(383\) 6321.67 0.843400 0.421700 0.906735i \(-0.361434\pi\)
0.421700 + 0.906735i \(0.361434\pi\)
\(384\) 0 0
\(385\) −888.080 −0.117560
\(386\) 0 0
\(387\) 2232.01 0.293177
\(388\) 0 0
\(389\) 9498.91 1.23808 0.619041 0.785359i \(-0.287521\pi\)
0.619041 + 0.785359i \(0.287521\pi\)
\(390\) 0 0
\(391\) −1120.17 −0.144884
\(392\) 0 0
\(393\) 2767.03 0.355161
\(394\) 0 0
\(395\) −16004.6 −2.03868
\(396\) 0 0
\(397\) 5007.59 0.633057 0.316529 0.948583i \(-0.397483\pi\)
0.316529 + 0.948583i \(0.397483\pi\)
\(398\) 0 0
\(399\) 681.090 0.0854566
\(400\) 0 0
\(401\) −5614.60 −0.699202 −0.349601 0.936899i \(-0.613683\pi\)
−0.349601 + 0.936899i \(0.613683\pi\)
\(402\) 0 0
\(403\) −21340.8 −2.63786
\(404\) 0 0
\(405\) −2542.66 −0.311965
\(406\) 0 0
\(407\) 2238.74 0.272655
\(408\) 0 0
\(409\) 10346.6 1.25087 0.625437 0.780274i \(-0.284921\pi\)
0.625437 + 0.780274i \(0.284921\pi\)
\(410\) 0 0
\(411\) −3120.92 −0.374559
\(412\) 0 0
\(413\) 2386.63 0.284354
\(414\) 0 0
\(415\) 7971.42 0.942895
\(416\) 0 0
\(417\) −366.156 −0.0429994
\(418\) 0 0
\(419\) −2420.02 −0.282162 −0.141081 0.989998i \(-0.545058\pi\)
−0.141081 + 0.989998i \(0.545058\pi\)
\(420\) 0 0
\(421\) −4934.72 −0.571268 −0.285634 0.958339i \(-0.592204\pi\)
−0.285634 + 0.958339i \(0.592204\pi\)
\(422\) 0 0
\(423\) −5242.06 −0.602548
\(424\) 0 0
\(425\) −1093.54 −0.124810
\(426\) 0 0
\(427\) 3206.12 0.363360
\(428\) 0 0
\(429\) −2646.86 −0.297882
\(430\) 0 0
\(431\) −2393.56 −0.267503 −0.133751 0.991015i \(-0.542702\pi\)
−0.133751 + 0.991015i \(0.542702\pi\)
\(432\) 0 0
\(433\) 10706.5 1.18827 0.594135 0.804365i \(-0.297494\pi\)
0.594135 + 0.804365i \(0.297494\pi\)
\(434\) 0 0
\(435\) 6930.82 0.763925
\(436\) 0 0
\(437\) 9582.52 1.04896
\(438\) 0 0
\(439\) 11485.6 1.24869 0.624346 0.781148i \(-0.285366\pi\)
0.624346 + 0.781148i \(0.285366\pi\)
\(440\) 0 0
\(441\) 6113.82 0.660169
\(442\) 0 0
\(443\) 2111.07 0.226410 0.113205 0.993572i \(-0.463888\pi\)
0.113205 + 0.993572i \(0.463888\pi\)
\(444\) 0 0
\(445\) −1596.86 −0.170109
\(446\) 0 0
\(447\) −5345.44 −0.565617
\(448\) 0 0
\(449\) −8476.58 −0.890946 −0.445473 0.895295i \(-0.646964\pi\)
−0.445473 + 0.895295i \(0.646964\pi\)
\(450\) 0 0
\(451\) −245.602 −0.0256429
\(452\) 0 0
\(453\) −20.1545 −0.00209038
\(454\) 0 0
\(455\) 6872.91 0.708148
\(456\) 0 0
\(457\) −3199.98 −0.327546 −0.163773 0.986498i \(-0.552366\pi\)
−0.163773 + 0.986498i \(0.552366\pi\)
\(458\) 0 0
\(459\) 791.893 0.0805281
\(460\) 0 0
\(461\) 6745.98 0.681544 0.340772 0.940146i \(-0.389312\pi\)
0.340772 + 0.940146i \(0.389312\pi\)
\(462\) 0 0
\(463\) 5410.30 0.543063 0.271531 0.962430i \(-0.412470\pi\)
0.271531 + 0.962430i \(0.412470\pi\)
\(464\) 0 0
\(465\) −12366.4 −1.23328
\(466\) 0 0
\(467\) 14305.6 1.41752 0.708761 0.705448i \(-0.249254\pi\)
0.708761 + 0.705448i \(0.249254\pi\)
\(468\) 0 0
\(469\) 1579.97 0.155557
\(470\) 0 0
\(471\) 46.0485 0.00450489
\(472\) 0 0
\(473\) −1291.50 −0.125546
\(474\) 0 0
\(475\) 9354.68 0.903625
\(476\) 0 0
\(477\) 506.724 0.0486401
\(478\) 0 0
\(479\) −1718.44 −0.163919 −0.0819596 0.996636i \(-0.526118\pi\)
−0.0819596 + 0.996636i \(0.526118\pi\)
\(480\) 0 0
\(481\) −17325.8 −1.64239
\(482\) 0 0
\(483\) 2405.42 0.226605
\(484\) 0 0
\(485\) −2557.99 −0.239490
\(486\) 0 0
\(487\) −13434.9 −1.25009 −0.625046 0.780588i \(-0.714920\pi\)
−0.625046 + 0.780588i \(0.714920\pi\)
\(488\) 0 0
\(489\) 8331.35 0.770463
\(490\) 0 0
\(491\) −6739.73 −0.619470 −0.309735 0.950823i \(-0.600240\pi\)
−0.309735 + 0.950823i \(0.600240\pi\)
\(492\) 0 0
\(493\) 855.503 0.0781540
\(494\) 0 0
\(495\) 3649.61 0.331390
\(496\) 0 0
\(497\) −3846.13 −0.347128
\(498\) 0 0
\(499\) −5609.08 −0.503200 −0.251600 0.967831i \(-0.580957\pi\)
−0.251600 + 0.967831i \(0.580957\pi\)
\(500\) 0 0
\(501\) −10084.4 −0.899274
\(502\) 0 0
\(503\) −15395.3 −1.36470 −0.682350 0.731026i \(-0.739042\pi\)
−0.682350 + 0.731026i \(0.739042\pi\)
\(504\) 0 0
\(505\) −20300.0 −1.78879
\(506\) 0 0
\(507\) 14274.3 1.25038
\(508\) 0 0
\(509\) −7701.34 −0.670640 −0.335320 0.942104i \(-0.608844\pi\)
−0.335320 + 0.942104i \(0.608844\pi\)
\(510\) 0 0
\(511\) 1163.85 0.100755
\(512\) 0 0
\(513\) −6774.25 −0.583022
\(514\) 0 0
\(515\) 29730.5 2.54385
\(516\) 0 0
\(517\) 3033.18 0.258026
\(518\) 0 0
\(519\) 1830.87 0.154848
\(520\) 0 0
\(521\) −1370.94 −0.115282 −0.0576412 0.998337i \(-0.518358\pi\)
−0.0576412 + 0.998337i \(0.518358\pi\)
\(522\) 0 0
\(523\) −5394.92 −0.451058 −0.225529 0.974236i \(-0.572411\pi\)
−0.225529 + 0.974236i \(0.572411\pi\)
\(524\) 0 0
\(525\) 2348.23 0.195210
\(526\) 0 0
\(527\) −1526.44 −0.126172
\(528\) 0 0
\(529\) 21675.8 1.78152
\(530\) 0 0
\(531\) −9807.99 −0.801564
\(532\) 0 0
\(533\) 1900.73 0.154465
\(534\) 0 0
\(535\) −34855.8 −2.81672
\(536\) 0 0
\(537\) 8654.07 0.695439
\(538\) 0 0
\(539\) −3537.61 −0.282700
\(540\) 0 0
\(541\) 16039.6 1.27467 0.637335 0.770587i \(-0.280037\pi\)
0.637335 + 0.770587i \(0.280037\pi\)
\(542\) 0 0
\(543\) 12446.3 0.983651
\(544\) 0 0
\(545\) 23573.5 1.85281
\(546\) 0 0
\(547\) −7648.69 −0.597869 −0.298935 0.954274i \(-0.596631\pi\)
−0.298935 + 0.954274i \(0.596631\pi\)
\(548\) 0 0
\(549\) −13175.7 −1.02427
\(550\) 0 0
\(551\) −7318.41 −0.565834
\(552\) 0 0
\(553\) 4242.17 0.326212
\(554\) 0 0
\(555\) −10039.8 −0.767868
\(556\) 0 0
\(557\) 18116.4 1.37812 0.689062 0.724702i \(-0.258023\pi\)
0.689062 + 0.724702i \(0.258023\pi\)
\(558\) 0 0
\(559\) 9994.99 0.756249
\(560\) 0 0
\(561\) −189.322 −0.0142481
\(562\) 0 0
\(563\) 4828.86 0.361478 0.180739 0.983531i \(-0.442151\pi\)
0.180739 + 0.983531i \(0.442151\pi\)
\(564\) 0 0
\(565\) 7877.24 0.586545
\(566\) 0 0
\(567\) 673.957 0.0499180
\(568\) 0 0
\(569\) 18277.3 1.34661 0.673307 0.739363i \(-0.264873\pi\)
0.673307 + 0.739363i \(0.264873\pi\)
\(570\) 0 0
\(571\) 14940.9 1.09502 0.547511 0.836798i \(-0.315575\pi\)
0.547511 + 0.836798i \(0.315575\pi\)
\(572\) 0 0
\(573\) −2556.11 −0.186358
\(574\) 0 0
\(575\) 33038.1 2.39615
\(576\) 0 0
\(577\) 10861.2 0.783635 0.391818 0.920043i \(-0.371846\pi\)
0.391818 + 0.920043i \(0.371846\pi\)
\(578\) 0 0
\(579\) 3800.93 0.272817
\(580\) 0 0
\(581\) −2112.90 −0.150874
\(582\) 0 0
\(583\) −293.203 −0.0208289
\(584\) 0 0
\(585\) −28244.6 −1.99619
\(586\) 0 0
\(587\) 13347.4 0.938515 0.469257 0.883062i \(-0.344522\pi\)
0.469257 + 0.883062i \(0.344522\pi\)
\(588\) 0 0
\(589\) 13057.9 0.913486
\(590\) 0 0
\(591\) −14736.7 −1.02570
\(592\) 0 0
\(593\) 6260.84 0.433562 0.216781 0.976220i \(-0.430444\pi\)
0.216781 + 0.976220i \(0.430444\pi\)
\(594\) 0 0
\(595\) 491.599 0.0338716
\(596\) 0 0
\(597\) 8890.02 0.609455
\(598\) 0 0
\(599\) 1235.84 0.0842991 0.0421496 0.999111i \(-0.486579\pi\)
0.0421496 + 0.999111i \(0.486579\pi\)
\(600\) 0 0
\(601\) 11558.8 0.784515 0.392257 0.919855i \(-0.371694\pi\)
0.392257 + 0.919855i \(0.371694\pi\)
\(602\) 0 0
\(603\) −6492.98 −0.438499
\(604\) 0 0
\(605\) −2111.75 −0.141909
\(606\) 0 0
\(607\) 1054.63 0.0705205 0.0352603 0.999378i \(-0.488774\pi\)
0.0352603 + 0.999378i \(0.488774\pi\)
\(608\) 0 0
\(609\) −1837.08 −0.122237
\(610\) 0 0
\(611\) −23474.0 −1.55427
\(612\) 0 0
\(613\) −1203.04 −0.0792664 −0.0396332 0.999214i \(-0.512619\pi\)
−0.0396332 + 0.999214i \(0.512619\pi\)
\(614\) 0 0
\(615\) 1101.42 0.0722173
\(616\) 0 0
\(617\) −959.742 −0.0626220 −0.0313110 0.999510i \(-0.509968\pi\)
−0.0313110 + 0.999510i \(0.509968\pi\)
\(618\) 0 0
\(619\) 14011.0 0.909774 0.454887 0.890549i \(-0.349680\pi\)
0.454887 + 0.890549i \(0.349680\pi\)
\(620\) 0 0
\(621\) −23924.8 −1.54600
\(622\) 0 0
\(623\) 423.263 0.0272194
\(624\) 0 0
\(625\) −5821.19 −0.372556
\(626\) 0 0
\(627\) 1619.56 0.103156
\(628\) 0 0
\(629\) −1239.26 −0.0785574
\(630\) 0 0
\(631\) −5897.24 −0.372053 −0.186026 0.982545i \(-0.559561\pi\)
−0.186026 + 0.982545i \(0.559561\pi\)
\(632\) 0 0
\(633\) −10962.0 −0.688310
\(634\) 0 0
\(635\) −47775.2 −2.98567
\(636\) 0 0
\(637\) 27377.8 1.70290
\(638\) 0 0
\(639\) 15805.9 0.978516
\(640\) 0 0
\(641\) 23075.3 1.42187 0.710937 0.703256i \(-0.248271\pi\)
0.710937 + 0.703256i \(0.248271\pi\)
\(642\) 0 0
\(643\) 8295.98 0.508805 0.254402 0.967098i \(-0.418121\pi\)
0.254402 + 0.967098i \(0.418121\pi\)
\(644\) 0 0
\(645\) 5791.82 0.353570
\(646\) 0 0
\(647\) 17869.7 1.08583 0.542913 0.839789i \(-0.317321\pi\)
0.542913 + 0.839789i \(0.317321\pi\)
\(648\) 0 0
\(649\) 5675.14 0.343249
\(650\) 0 0
\(651\) 3277.83 0.197340
\(652\) 0 0
\(653\) −12150.0 −0.728125 −0.364063 0.931374i \(-0.618611\pi\)
−0.364063 + 0.931374i \(0.618611\pi\)
\(654\) 0 0
\(655\) −17085.0 −1.01919
\(656\) 0 0
\(657\) −4782.90 −0.284016
\(658\) 0 0
\(659\) 16104.7 0.951975 0.475987 0.879452i \(-0.342091\pi\)
0.475987 + 0.879452i \(0.342091\pi\)
\(660\) 0 0
\(661\) 28742.7 1.69132 0.845660 0.533721i \(-0.179207\pi\)
0.845660 + 0.533721i \(0.179207\pi\)
\(662\) 0 0
\(663\) 1465.18 0.0858261
\(664\) 0 0
\(665\) −4205.39 −0.245230
\(666\) 0 0
\(667\) −25846.6 −1.50042
\(668\) 0 0
\(669\) 1039.42 0.0600694
\(670\) 0 0
\(671\) 7623.78 0.438618
\(672\) 0 0
\(673\) 18091.3 1.03621 0.518106 0.855317i \(-0.326637\pi\)
0.518106 + 0.855317i \(0.326637\pi\)
\(674\) 0 0
\(675\) −23355.9 −1.33181
\(676\) 0 0
\(677\) 1915.04 0.108716 0.0543581 0.998522i \(-0.482689\pi\)
0.0543581 + 0.998522i \(0.482689\pi\)
\(678\) 0 0
\(679\) 678.021 0.0383211
\(680\) 0 0
\(681\) 17133.4 0.964100
\(682\) 0 0
\(683\) 4576.76 0.256405 0.128203 0.991748i \(-0.459079\pi\)
0.128203 + 0.991748i \(0.459079\pi\)
\(684\) 0 0
\(685\) 19270.1 1.07485
\(686\) 0 0
\(687\) 11996.4 0.666216
\(688\) 0 0
\(689\) 2269.12 0.125467
\(690\) 0 0
\(691\) −19493.4 −1.07317 −0.536587 0.843845i \(-0.680287\pi\)
−0.536587 + 0.843845i \(0.680287\pi\)
\(692\) 0 0
\(693\) −967.365 −0.0530262
\(694\) 0 0
\(695\) 2260.83 0.123393
\(696\) 0 0
\(697\) 135.954 0.00738825
\(698\) 0 0
\(699\) −14133.8 −0.764790
\(700\) 0 0
\(701\) −16641.1 −0.896613 −0.448306 0.893880i \(-0.647973\pi\)
−0.448306 + 0.893880i \(0.647973\pi\)
\(702\) 0 0
\(703\) 10601.3 0.568755
\(704\) 0 0
\(705\) −13602.6 −0.726669
\(706\) 0 0
\(707\) 5380.72 0.286227
\(708\) 0 0
\(709\) 34690.1 1.83754 0.918768 0.394799i \(-0.129186\pi\)
0.918768 + 0.394799i \(0.129186\pi\)
\(710\) 0 0
\(711\) −17433.4 −0.919556
\(712\) 0 0
\(713\) 46117.0 2.42229
\(714\) 0 0
\(715\) 16343.0 0.854817
\(716\) 0 0
\(717\) 2074.45 0.108050
\(718\) 0 0
\(719\) −31316.5 −1.62435 −0.812175 0.583414i \(-0.801716\pi\)
−0.812175 + 0.583414i \(0.801716\pi\)
\(720\) 0 0
\(721\) −7880.36 −0.407046
\(722\) 0 0
\(723\) 1198.76 0.0616628
\(724\) 0 0
\(725\) −25232.0 −1.29254
\(726\) 0 0
\(727\) 6829.67 0.348416 0.174208 0.984709i \(-0.444264\pi\)
0.174208 + 0.984709i \(0.444264\pi\)
\(728\) 0 0
\(729\) 7155.44 0.363534
\(730\) 0 0
\(731\) 714.912 0.0361723
\(732\) 0 0
\(733\) −30580.1 −1.54093 −0.770465 0.637482i \(-0.779976\pi\)
−0.770465 + 0.637482i \(0.779976\pi\)
\(734\) 0 0
\(735\) 15864.7 0.796160
\(736\) 0 0
\(737\) 3757.00 0.187776
\(738\) 0 0
\(739\) 24945.0 1.24170 0.620850 0.783929i \(-0.286788\pi\)
0.620850 + 0.783929i \(0.286788\pi\)
\(740\) 0 0
\(741\) −12533.9 −0.621380
\(742\) 0 0
\(743\) −20683.3 −1.02126 −0.510630 0.859801i \(-0.670588\pi\)
−0.510630 + 0.859801i \(0.670588\pi\)
\(744\) 0 0
\(745\) 33005.4 1.62312
\(746\) 0 0
\(747\) 8683.08 0.425298
\(748\) 0 0
\(749\) 9238.86 0.450709
\(750\) 0 0
\(751\) −12716.9 −0.617902 −0.308951 0.951078i \(-0.599978\pi\)
−0.308951 + 0.951078i \(0.599978\pi\)
\(752\) 0 0
\(753\) −2685.58 −0.129971
\(754\) 0 0
\(755\) 124.444 0.00599865
\(756\) 0 0
\(757\) 37126.5 1.78254 0.891271 0.453472i \(-0.149815\pi\)
0.891271 + 0.453472i \(0.149815\pi\)
\(758\) 0 0
\(759\) 5719.82 0.273539
\(760\) 0 0
\(761\) 4198.08 0.199974 0.0999870 0.994989i \(-0.468120\pi\)
0.0999870 + 0.994989i \(0.468120\pi\)
\(762\) 0 0
\(763\) −6248.39 −0.296471
\(764\) 0 0
\(765\) −2020.25 −0.0954802
\(766\) 0 0
\(767\) −43920.3 −2.06763
\(768\) 0 0
\(769\) 16085.3 0.754294 0.377147 0.926153i \(-0.376905\pi\)
0.377147 + 0.926153i \(0.376905\pi\)
\(770\) 0 0
\(771\) −13631.5 −0.636741
\(772\) 0 0
\(773\) −3557.93 −0.165550 −0.0827748 0.996568i \(-0.526378\pi\)
−0.0827748 + 0.996568i \(0.526378\pi\)
\(774\) 0 0
\(775\) 45020.5 2.08669
\(776\) 0 0
\(777\) 2661.15 0.122868
\(778\) 0 0
\(779\) −1163.02 −0.0534909
\(780\) 0 0
\(781\) −9145.67 −0.419024
\(782\) 0 0
\(783\) 18271.9 0.833954
\(784\) 0 0
\(785\) −284.326 −0.0129274
\(786\) 0 0
\(787\) 34848.3 1.57841 0.789204 0.614132i \(-0.210494\pi\)
0.789204 + 0.614132i \(0.210494\pi\)
\(788\) 0 0
\(789\) 4603.70 0.207726
\(790\) 0 0
\(791\) −2087.94 −0.0938541
\(792\) 0 0
\(793\) −59001.0 −2.64210
\(794\) 0 0
\(795\) 1314.89 0.0586596
\(796\) 0 0
\(797\) 19212.8 0.853892 0.426946 0.904277i \(-0.359589\pi\)
0.426946 + 0.904277i \(0.359589\pi\)
\(798\) 0 0
\(799\) −1679.03 −0.0743426
\(800\) 0 0
\(801\) −1739.42 −0.0767284
\(802\) 0 0
\(803\) 2767.50 0.121623
\(804\) 0 0
\(805\) −14852.2 −0.650277
\(806\) 0 0
\(807\) −23835.1 −1.03970
\(808\) 0 0
\(809\) −35866.9 −1.55873 −0.779365 0.626570i \(-0.784458\pi\)
−0.779365 + 0.626570i \(0.784458\pi\)
\(810\) 0 0
\(811\) −12295.8 −0.532386 −0.266193 0.963920i \(-0.585766\pi\)
−0.266193 + 0.963920i \(0.585766\pi\)
\(812\) 0 0
\(813\) 16290.9 0.702764
\(814\) 0 0
\(815\) −51441.8 −2.21096
\(816\) 0 0
\(817\) −6115.72 −0.261887
\(818\) 0 0
\(819\) 7486.51 0.319414
\(820\) 0 0
\(821\) −8301.98 −0.352913 −0.176456 0.984308i \(-0.556463\pi\)
−0.176456 + 0.984308i \(0.556463\pi\)
\(822\) 0 0
\(823\) 19260.2 0.815757 0.407879 0.913036i \(-0.366269\pi\)
0.407879 + 0.913036i \(0.366269\pi\)
\(824\) 0 0
\(825\) 5583.82 0.235641
\(826\) 0 0
\(827\) −15002.2 −0.630806 −0.315403 0.948958i \(-0.602140\pi\)
−0.315403 + 0.948958i \(0.602140\pi\)
\(828\) 0 0
\(829\) 15589.7 0.653141 0.326570 0.945173i \(-0.394107\pi\)
0.326570 + 0.945173i \(0.394107\pi\)
\(830\) 0 0
\(831\) −16591.1 −0.692585
\(832\) 0 0
\(833\) 1958.25 0.0814518
\(834\) 0 0
\(835\) 62265.8 2.58060
\(836\) 0 0
\(837\) −32601.9 −1.34634
\(838\) 0 0
\(839\) 42573.2 1.75183 0.875917 0.482461i \(-0.160257\pi\)
0.875917 + 0.482461i \(0.160257\pi\)
\(840\) 0 0
\(841\) −4649.33 −0.190632
\(842\) 0 0
\(843\) −12265.8 −0.501135
\(844\) 0 0
\(845\) −88136.5 −3.58815
\(846\) 0 0
\(847\) 559.741 0.0227071
\(848\) 0 0
\(849\) 3328.69 0.134559
\(850\) 0 0
\(851\) 37440.7 1.50817
\(852\) 0 0
\(853\) 23827.7 0.956441 0.478221 0.878240i \(-0.341282\pi\)
0.478221 + 0.878240i \(0.341282\pi\)
\(854\) 0 0
\(855\) 17282.3 0.691276
\(856\) 0 0
\(857\) −42582.9 −1.69732 −0.848660 0.528938i \(-0.822590\pi\)
−0.848660 + 0.528938i \(0.822590\pi\)
\(858\) 0 0
\(859\) −37604.0 −1.49364 −0.746818 0.665029i \(-0.768419\pi\)
−0.746818 + 0.665029i \(0.768419\pi\)
\(860\) 0 0
\(861\) −291.943 −0.0115556
\(862\) 0 0
\(863\) 36934.0 1.45683 0.728417 0.685134i \(-0.240256\pi\)
0.728417 + 0.685134i \(0.240256\pi\)
\(864\) 0 0
\(865\) −11304.7 −0.444359
\(866\) 0 0
\(867\) −13782.0 −0.539865
\(868\) 0 0
\(869\) 10087.4 0.393776
\(870\) 0 0
\(871\) −29075.7 −1.13110
\(872\) 0 0
\(873\) −2786.36 −0.108023
\(874\) 0 0
\(875\) −4407.29 −0.170279
\(876\) 0 0
\(877\) −18212.3 −0.701238 −0.350619 0.936518i \(-0.614029\pi\)
−0.350619 + 0.936518i \(0.614029\pi\)
\(878\) 0 0
\(879\) −16994.2 −0.652105
\(880\) 0 0
\(881\) 5878.65 0.224809 0.112405 0.993663i \(-0.464145\pi\)
0.112405 + 0.993663i \(0.464145\pi\)
\(882\) 0 0
\(883\) 6399.06 0.243879 0.121940 0.992538i \(-0.461089\pi\)
0.121940 + 0.992538i \(0.461089\pi\)
\(884\) 0 0
\(885\) −25450.6 −0.966681
\(886\) 0 0
\(887\) 33294.9 1.26035 0.630177 0.776452i \(-0.282982\pi\)
0.630177 + 0.776452i \(0.282982\pi\)
\(888\) 0 0
\(889\) 12663.3 0.477742
\(890\) 0 0
\(891\) 1602.59 0.0602569
\(892\) 0 0
\(893\) 14363.2 0.538239
\(894\) 0 0
\(895\) −53434.5 −1.99566
\(896\) 0 0
\(897\) −44266.1 −1.64772
\(898\) 0 0
\(899\) −35220.7 −1.30665
\(900\) 0 0
\(901\) 162.303 0.00600123
\(902\) 0 0
\(903\) −1535.18 −0.0565754
\(904\) 0 0
\(905\) −76849.7 −2.82273
\(906\) 0 0
\(907\) 20701.9 0.757878 0.378939 0.925422i \(-0.376289\pi\)
0.378939 + 0.925422i \(0.376289\pi\)
\(908\) 0 0
\(909\) −22112.4 −0.806843
\(910\) 0 0
\(911\) 2496.01 0.0907756 0.0453878 0.998969i \(-0.485548\pi\)
0.0453878 + 0.998969i \(0.485548\pi\)
\(912\) 0 0
\(913\) −5024.24 −0.182123
\(914\) 0 0
\(915\) −34189.5 −1.23527
\(916\) 0 0
\(917\) 4528.55 0.163082
\(918\) 0 0
\(919\) 45604.5 1.63695 0.818473 0.574546i \(-0.194821\pi\)
0.818473 + 0.574546i \(0.194821\pi\)
\(920\) 0 0
\(921\) −575.156 −0.0205777
\(922\) 0 0
\(923\) 70779.0 2.52407
\(924\) 0 0
\(925\) 36550.5 1.29922
\(926\) 0 0
\(927\) 32384.8 1.14742
\(928\) 0 0
\(929\) −21550.0 −0.761067 −0.380534 0.924767i \(-0.624260\pi\)
−0.380534 + 0.924767i \(0.624260\pi\)
\(930\) 0 0
\(931\) −16751.9 −0.589711
\(932\) 0 0
\(933\) 13572.2 0.476241
\(934\) 0 0
\(935\) 1168.97 0.0408869
\(936\) 0 0
\(937\) −33457.9 −1.16651 −0.583257 0.812288i \(-0.698222\pi\)
−0.583257 + 0.812288i \(0.698222\pi\)
\(938\) 0 0
\(939\) 2066.48 0.0718179
\(940\) 0 0
\(941\) 45107.8 1.56267 0.781334 0.624113i \(-0.214539\pi\)
0.781334 + 0.624113i \(0.214539\pi\)
\(942\) 0 0
\(943\) −4107.45 −0.141842
\(944\) 0 0
\(945\) 10499.6 0.361432
\(946\) 0 0
\(947\) 30270.6 1.03871 0.519357 0.854557i \(-0.326172\pi\)
0.519357 + 0.854557i \(0.326172\pi\)
\(948\) 0 0
\(949\) −21417.9 −0.732618
\(950\) 0 0
\(951\) 3799.48 0.129555
\(952\) 0 0
\(953\) −4145.41 −0.140905 −0.0704527 0.997515i \(-0.522444\pi\)
−0.0704527 + 0.997515i \(0.522444\pi\)
\(954\) 0 0
\(955\) 15782.7 0.534780
\(956\) 0 0
\(957\) −4368.37 −0.147554
\(958\) 0 0
\(959\) −5107.72 −0.171989
\(960\) 0 0
\(961\) 33052.0 1.10946
\(962\) 0 0
\(963\) −37967.6 −1.27050
\(964\) 0 0
\(965\) −23468.8 −0.782888
\(966\) 0 0
\(967\) −1369.06 −0.0455285 −0.0227643 0.999741i \(-0.507247\pi\)
−0.0227643 + 0.999741i \(0.507247\pi\)
\(968\) 0 0
\(969\) −896.510 −0.0297214
\(970\) 0 0
\(971\) 29221.5 0.965770 0.482885 0.875684i \(-0.339589\pi\)
0.482885 + 0.875684i \(0.339589\pi\)
\(972\) 0 0
\(973\) −599.255 −0.0197443
\(974\) 0 0
\(975\) −43213.6 −1.41943
\(976\) 0 0
\(977\) −33896.8 −1.10999 −0.554993 0.831855i \(-0.687279\pi\)
−0.554993 + 0.831855i \(0.687279\pi\)
\(978\) 0 0
\(979\) 1006.47 0.0328570
\(980\) 0 0
\(981\) 25678.1 0.835718
\(982\) 0 0
\(983\) 11859.9 0.384815 0.192408 0.981315i \(-0.438370\pi\)
0.192408 + 0.981315i \(0.438370\pi\)
\(984\) 0 0
\(985\) 90991.5 2.94338
\(986\) 0 0
\(987\) 3605.49 0.116276
\(988\) 0 0
\(989\) −21599.0 −0.694447
\(990\) 0 0
\(991\) 2037.86 0.0653227 0.0326614 0.999466i \(-0.489602\pi\)
0.0326614 + 0.999466i \(0.489602\pi\)
\(992\) 0 0
\(993\) −5521.08 −0.176441
\(994\) 0 0
\(995\) −54891.4 −1.74892
\(996\) 0 0
\(997\) 35940.6 1.14168 0.570838 0.821063i \(-0.306618\pi\)
0.570838 + 0.821063i \(0.306618\pi\)
\(998\) 0 0
\(999\) −26468.3 −0.838259
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.4.a.u.1.2 3
4.3 odd 2 704.4.a.t.1.2 3
8.3 odd 2 88.4.a.d.1.2 3
8.5 even 2 176.4.a.j.1.2 3
24.5 odd 2 1584.4.a.bl.1.1 3
24.11 even 2 792.4.a.l.1.1 3
40.19 odd 2 2200.4.a.m.1.2 3
88.21 odd 2 1936.4.a.bh.1.2 3
88.43 even 2 968.4.a.i.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.4.a.d.1.2 3 8.3 odd 2
176.4.a.j.1.2 3 8.5 even 2
704.4.a.t.1.2 3 4.3 odd 2
704.4.a.u.1.2 3 1.1 even 1 trivial
792.4.a.l.1.1 3 24.11 even 2
968.4.a.i.1.2 3 88.43 even 2
1584.4.a.bl.1.1 3 24.5 odd 2
1936.4.a.bh.1.2 3 88.21 odd 2
2200.4.a.m.1.2 3 40.19 odd 2