Properties

Label 2240.2.g.a.449.1
Level 22402240
Weight 22
Character 2240.449
Analytic conductor 17.88617.886
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2240,2,Mod(449,2240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2240.449");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2240=2657 2240 = 2^{6} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2240.g (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 17.886490052817.8864900528
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 449.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 2240.449
Dual form 2240.2.g.a.449.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq3+(2.000001.00000i)q5+1.00000iq7+2.00000q91.00000q111.00000iq13+(1.00000+2.00000i)q153.00000iq17+4.00000q19+1.00000q21+2.00000iq23+(3.00000+4.00000i)q255.00000iq271.00000q29+6.00000q31+1.00000iq33+(1.000002.00000i)q352.00000iq371.00000q3910.0000q41+(4.000002.00000i)q459.00000iq471.00000q493.00000q5114.0000iq53+(2.00000+1.00000i)q554.00000iq576.00000q59+4.00000q61+2.00000iq63+(1.00000+2.00000i)q65+10.0000iq67+2.00000q69+16.0000q7110.0000iq73+(4.000003.00000i)q751.00000iq7711.0000q79+1.00000q814.00000iq83+(3.00000+6.00000i)q85+1.00000iq8712.0000q89+1.00000q916.00000iq93+(8.000004.00000i)q9519.0000iq972.00000q99+O(q100)q-1.00000i q^{3} +(-2.00000 - 1.00000i) q^{5} +1.00000i q^{7} +2.00000 q^{9} -1.00000 q^{11} -1.00000i q^{13} +(-1.00000 + 2.00000i) q^{15} -3.00000i q^{17} +4.00000 q^{19} +1.00000 q^{21} +2.00000i q^{23} +(3.00000 + 4.00000i) q^{25} -5.00000i q^{27} -1.00000 q^{29} +6.00000 q^{31} +1.00000i q^{33} +(1.00000 - 2.00000i) q^{35} -2.00000i q^{37} -1.00000 q^{39} -10.0000 q^{41} +(-4.00000 - 2.00000i) q^{45} -9.00000i q^{47} -1.00000 q^{49} -3.00000 q^{51} -14.0000i q^{53} +(2.00000 + 1.00000i) q^{55} -4.00000i q^{57} -6.00000 q^{59} +4.00000 q^{61} +2.00000i q^{63} +(-1.00000 + 2.00000i) q^{65} +10.0000i q^{67} +2.00000 q^{69} +16.0000 q^{71} -10.0000i q^{73} +(4.00000 - 3.00000i) q^{75} -1.00000i q^{77} -11.0000 q^{79} +1.00000 q^{81} -4.00000i q^{83} +(-3.00000 + 6.00000i) q^{85} +1.00000i q^{87} -12.0000 q^{89} +1.00000 q^{91} -6.00000i q^{93} +(-8.00000 - 4.00000i) q^{95} -19.0000i q^{97} -2.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q5+4q92q112q15+8q19+2q21+6q252q29+12q31+2q352q3920q418q452q496q51+4q5512q59+8q61+4q99+O(q100) 2 q - 4 q^{5} + 4 q^{9} - 2 q^{11} - 2 q^{15} + 8 q^{19} + 2 q^{21} + 6 q^{25} - 2 q^{29} + 12 q^{31} + 2 q^{35} - 2 q^{39} - 20 q^{41} - 8 q^{45} - 2 q^{49} - 6 q^{51} + 4 q^{55} - 12 q^{59} + 8 q^{61}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2240Z)×\left(\mathbb{Z}/2240\mathbb{Z}\right)^\times.

nn 897897 14711471 15411541 19211921
χ(n)\chi(n) 1-1 11 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000i 0.577350i −0.957427 0.288675i 0.906785π-0.906785\pi
0.957427 0.288675i 0.0932147π-0.0932147\pi
44 0 0
55 −2.00000 1.00000i −0.894427 0.447214i
66 0 0
77 1.00000i 0.377964i
88 0 0
99 2.00000 0.666667
1010 0 0
1111 −1.00000 −0.301511 −0.150756 0.988571i 0.548171π-0.548171\pi
−0.150756 + 0.988571i 0.548171π0.548171\pi
1212 0 0
1313 1.00000i 0.277350i −0.990338 0.138675i 0.955716π-0.955716\pi
0.990338 0.138675i 0.0442844π-0.0442844\pi
1414 0 0
1515 −1.00000 + 2.00000i −0.258199 + 0.516398i
1616 0 0
1717 3.00000i 0.727607i −0.931476 0.363803i 0.881478π-0.881478\pi
0.931476 0.363803i 0.118522π-0.118522\pi
1818 0 0
1919 4.00000 0.917663 0.458831 0.888523i 0.348268π-0.348268\pi
0.458831 + 0.888523i 0.348268π0.348268\pi
2020 0 0
2121 1.00000 0.218218
2222 0 0
2323 2.00000i 0.417029i 0.978019 + 0.208514i 0.0668628π0.0668628\pi
−0.978019 + 0.208514i 0.933137π0.933137\pi
2424 0 0
2525 3.00000 + 4.00000i 0.600000 + 0.800000i
2626 0 0
2727 5.00000i 0.962250i
2828 0 0
2929 −1.00000 −0.185695 −0.0928477 0.995680i 0.529597π-0.529597\pi
−0.0928477 + 0.995680i 0.529597π0.529597\pi
3030 0 0
3131 6.00000 1.07763 0.538816 0.842424i 0.318872π-0.318872\pi
0.538816 + 0.842424i 0.318872π0.318872\pi
3232 0 0
3333 1.00000i 0.174078i
3434 0 0
3535 1.00000 2.00000i 0.169031 0.338062i
3636 0 0
3737 2.00000i 0.328798i −0.986394 0.164399i 0.947432π-0.947432\pi
0.986394 0.164399i 0.0525685π-0.0525685\pi
3838 0 0
3939 −1.00000 −0.160128
4040 0 0
4141 −10.0000 −1.56174 −0.780869 0.624695i 0.785223π-0.785223\pi
−0.780869 + 0.624695i 0.785223π0.785223\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 −4.00000 2.00000i −0.596285 0.298142i
4646 0 0
4747 9.00000i 1.31278i −0.754420 0.656392i 0.772082π-0.772082\pi
0.754420 0.656392i 0.227918π-0.227918\pi
4848 0 0
4949 −1.00000 −0.142857
5050 0 0
5151 −3.00000 −0.420084
5252 0 0
5353 14.0000i 1.92305i −0.274721 0.961524i 0.588586π-0.588586\pi
0.274721 0.961524i 0.411414π-0.411414\pi
5454 0 0
5555 2.00000 + 1.00000i 0.269680 + 0.134840i
5656 0 0
5757 4.00000i 0.529813i
5858 0 0
5959 −6.00000 −0.781133 −0.390567 0.920575i 0.627721π-0.627721\pi
−0.390567 + 0.920575i 0.627721π0.627721\pi
6060 0 0
6161 4.00000 0.512148 0.256074 0.966657i 0.417571π-0.417571\pi
0.256074 + 0.966657i 0.417571π0.417571\pi
6262 0 0
6363 2.00000i 0.251976i
6464 0 0
6565 −1.00000 + 2.00000i −0.124035 + 0.248069i
6666 0 0
6767 10.0000i 1.22169i 0.791748 + 0.610847i 0.209171π0.209171\pi
−0.791748 + 0.610847i 0.790829π0.790829\pi
6868 0 0
6969 2.00000 0.240772
7070 0 0
7171 16.0000 1.89885 0.949425 0.313993i 0.101667π-0.101667\pi
0.949425 + 0.313993i 0.101667π0.101667\pi
7272 0 0
7373 10.0000i 1.17041i −0.810885 0.585206i 0.801014π-0.801014\pi
0.810885 0.585206i 0.198986π-0.198986\pi
7474 0 0
7575 4.00000 3.00000i 0.461880 0.346410i
7676 0 0
7777 1.00000i 0.113961i
7878 0 0
7979 −11.0000 −1.23760 −0.618798 0.785550i 0.712380π-0.712380\pi
−0.618798 + 0.785550i 0.712380π0.712380\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 4.00000i 0.439057i −0.975606 0.219529i 0.929548π-0.929548\pi
0.975606 0.219529i 0.0704519π-0.0704519\pi
8484 0 0
8585 −3.00000 + 6.00000i −0.325396 + 0.650791i
8686 0 0
8787 1.00000i 0.107211i
8888 0 0
8989 −12.0000 −1.27200 −0.635999 0.771690i 0.719412π-0.719412\pi
−0.635999 + 0.771690i 0.719412π0.719412\pi
9090 0 0
9191 1.00000 0.104828
9292 0 0
9393 6.00000i 0.622171i
9494 0 0
9595 −8.00000 4.00000i −0.820783 0.410391i
9696 0 0
9797 19.0000i 1.92916i −0.263795 0.964579i 0.584974π-0.584974\pi
0.263795 0.964579i 0.415026π-0.415026\pi
9898 0 0
9999 −2.00000 −0.201008
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 1.00000i 0.0985329i 0.998786 + 0.0492665i 0.0156884π0.0156884\pi
−0.998786 + 0.0492665i 0.984312π0.984312\pi
104104 0 0
105105 −2.00000 1.00000i −0.195180 0.0975900i
106106 0 0
107107 16.0000i 1.54678i 0.633932 + 0.773389i 0.281440π0.281440\pi
−0.633932 + 0.773389i 0.718560π0.718560\pi
108108 0 0
109109 −15.0000 −1.43674 −0.718370 0.695662i 0.755111π-0.755111\pi
−0.718370 + 0.695662i 0.755111π0.755111\pi
110110 0 0
111111 −2.00000 −0.189832
112112 0 0
113113 14.0000i 1.31701i −0.752577 0.658505i 0.771189π-0.771189\pi
0.752577 0.658505i 0.228811π-0.228811\pi
114114 0 0
115115 2.00000 4.00000i 0.186501 0.373002i
116116 0 0
117117 2.00000i 0.184900i
118118 0 0
119119 3.00000 0.275010
120120 0 0
121121 −10.0000 −0.909091
122122 0 0
123123 10.0000i 0.901670i
124124 0 0
125125 −2.00000 11.0000i −0.178885 0.983870i
126126 0 0
127127 18.0000i 1.59724i −0.601834 0.798621i 0.705563π-0.705563\pi
0.601834 0.798621i 0.294437π-0.294437\pi
128128 0 0
129129 0 0
130130 0 0
131131 6.00000 0.524222 0.262111 0.965038i 0.415581π-0.415581\pi
0.262111 + 0.965038i 0.415581π0.415581\pi
132132 0 0
133133 4.00000i 0.346844i
134134 0 0
135135 −5.00000 + 10.0000i −0.430331 + 0.860663i
136136 0 0
137137 8.00000i 0.683486i −0.939793 0.341743i 0.888983π-0.888983\pi
0.939793 0.341743i 0.111017π-0.111017\pi
138138 0 0
139139 14.0000 1.18746 0.593732 0.804663i 0.297654π-0.297654\pi
0.593732 + 0.804663i 0.297654π0.297654\pi
140140 0 0
141141 −9.00000 −0.757937
142142 0 0
143143 1.00000i 0.0836242i
144144 0 0
145145 2.00000 + 1.00000i 0.166091 + 0.0830455i
146146 0 0
147147 1.00000i 0.0824786i
148148 0 0
149149 −6.00000 −0.491539 −0.245770 0.969328i 0.579041π-0.579041\pi
−0.245770 + 0.969328i 0.579041π0.579041\pi
150150 0 0
151151 −13.0000 −1.05792 −0.528962 0.848645i 0.677419π-0.677419\pi
−0.528962 + 0.848645i 0.677419π0.677419\pi
152152 0 0
153153 6.00000i 0.485071i
154154 0 0
155155 −12.0000 6.00000i −0.963863 0.481932i
156156 0 0
157157 14.0000i 1.11732i 0.829396 + 0.558661i 0.188685π0.188685\pi
−0.829396 + 0.558661i 0.811315π0.811315\pi
158158 0 0
159159 −14.0000 −1.11027
160160 0 0
161161 −2.00000 −0.157622
162162 0 0
163163 10.0000i 0.783260i −0.920123 0.391630i 0.871911π-0.871911\pi
0.920123 0.391630i 0.128089π-0.128089\pi
164164 0 0
165165 1.00000 2.00000i 0.0778499 0.155700i
166166 0 0
167167 15.0000i 1.16073i 0.814355 + 0.580367i 0.197091π0.197091\pi
−0.814355 + 0.580367i 0.802909π0.802909\pi
168168 0 0
169169 12.0000 0.923077
170170 0 0
171171 8.00000 0.611775
172172 0 0
173173 15.0000i 1.14043i −0.821496 0.570214i 0.806860π-0.806860\pi
0.821496 0.570214i 0.193140π-0.193140\pi
174174 0 0
175175 −4.00000 + 3.00000i −0.302372 + 0.226779i
176176 0 0
177177 6.00000i 0.450988i
178178 0 0
179179 −20.0000 −1.49487 −0.747435 0.664335i 0.768715π-0.768715\pi
−0.747435 + 0.664335i 0.768715π0.768715\pi
180180 0 0
181181 2.00000 0.148659 0.0743294 0.997234i 0.476318π-0.476318\pi
0.0743294 + 0.997234i 0.476318π0.476318\pi
182182 0 0
183183 4.00000i 0.295689i
184184 0 0
185185 −2.00000 + 4.00000i −0.147043 + 0.294086i
186186 0 0
187187 3.00000i 0.219382i
188188 0 0
189189 5.00000 0.363696
190190 0 0
191191 −3.00000 −0.217072 −0.108536 0.994092i 0.534616π-0.534616\pi
−0.108536 + 0.994092i 0.534616π0.534616\pi
192192 0 0
193193 4.00000i 0.287926i −0.989583 0.143963i 0.954015π-0.954015\pi
0.989583 0.143963i 0.0459847π-0.0459847\pi
194194 0 0
195195 2.00000 + 1.00000i 0.143223 + 0.0716115i
196196 0 0
197197 6.00000i 0.427482i 0.976890 + 0.213741i 0.0685649π0.0685649\pi
−0.976890 + 0.213741i 0.931435π0.931435\pi
198198 0 0
199199 10.0000 0.708881 0.354441 0.935079i 0.384671π-0.384671\pi
0.354441 + 0.935079i 0.384671π0.384671\pi
200200 0 0
201201 10.0000 0.705346
202202 0 0
203203 1.00000i 0.0701862i
204204 0 0
205205 20.0000 + 10.0000i 1.39686 + 0.698430i
206206 0 0
207207 4.00000i 0.278019i
208208 0 0
209209 −4.00000 −0.276686
210210 0 0
211211 1.00000 0.0688428 0.0344214 0.999407i 0.489041π-0.489041\pi
0.0344214 + 0.999407i 0.489041π0.489041\pi
212212 0 0
213213 16.0000i 1.09630i
214214 0 0
215215 0 0
216216 0 0
217217 6.00000i 0.407307i
218218 0 0
219219 −10.0000 −0.675737
220220 0 0
221221 −3.00000 −0.201802
222222 0 0
223223 15.0000i 1.00447i −0.864730 0.502237i 0.832510π-0.832510\pi
0.864730 0.502237i 0.167490π-0.167490\pi
224224 0 0
225225 6.00000 + 8.00000i 0.400000 + 0.533333i
226226 0 0
227227 7.00000i 0.464606i −0.972643 0.232303i 0.925374π-0.925374\pi
0.972643 0.232303i 0.0746261π-0.0746261\pi
228228 0 0
229229 18.0000 1.18947 0.594737 0.803921i 0.297256π-0.297256\pi
0.594737 + 0.803921i 0.297256π0.297256\pi
230230 0 0
231231 −1.00000 −0.0657952
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 −9.00000 + 18.0000i −0.587095 + 1.17419i
236236 0 0
237237 11.0000i 0.714527i
238238 0 0
239239 17.0000 1.09964 0.549819 0.835284i 0.314697π-0.314697\pi
0.549819 + 0.835284i 0.314697π0.314697\pi
240240 0 0
241241 2.00000 0.128831 0.0644157 0.997923i 0.479482π-0.479482\pi
0.0644157 + 0.997923i 0.479482π0.479482\pi
242242 0 0
243243 16.0000i 1.02640i
244244 0 0
245245 2.00000 + 1.00000i 0.127775 + 0.0638877i
246246 0 0
247247 4.00000i 0.254514i
248248 0 0
249249 −4.00000 −0.253490
250250 0 0
251251 10.0000 0.631194 0.315597 0.948893i 0.397795π-0.397795\pi
0.315597 + 0.948893i 0.397795π0.397795\pi
252252 0 0
253253 2.00000i 0.125739i
254254 0 0
255255 6.00000 + 3.00000i 0.375735 + 0.187867i
256256 0 0
257257 18.0000i 1.12281i 0.827541 + 0.561405i 0.189739π0.189739\pi
−0.827541 + 0.561405i 0.810261π0.810261\pi
258258 0 0
259259 2.00000 0.124274
260260 0 0
261261 −2.00000 −0.123797
262262 0 0
263263 24.0000i 1.47990i 0.672660 + 0.739952i 0.265152π0.265152\pi
−0.672660 + 0.739952i 0.734848π0.734848\pi
264264 0 0
265265 −14.0000 + 28.0000i −0.860013 + 1.72003i
266266 0 0
267267 12.0000i 0.734388i
268268 0 0
269269 −6.00000 −0.365826 −0.182913 0.983129i 0.558553π-0.558553\pi
−0.182913 + 0.983129i 0.558553π0.558553\pi
270270 0 0
271271 4.00000 0.242983 0.121491 0.992592i 0.461232π-0.461232\pi
0.121491 + 0.992592i 0.461232π0.461232\pi
272272 0 0
273273 1.00000i 0.0605228i
274274 0 0
275275 −3.00000 4.00000i −0.180907 0.241209i
276276 0 0
277277 18.0000i 1.08152i 0.841178 + 0.540758i 0.181862π0.181862\pi
−0.841178 + 0.540758i 0.818138π0.818138\pi
278278 0 0
279279 12.0000 0.718421
280280 0 0
281281 15.0000 0.894825 0.447412 0.894328i 0.352346π-0.352346\pi
0.447412 + 0.894328i 0.352346π0.352346\pi
282282 0 0
283283 21.0000i 1.24832i 0.781296 + 0.624160i 0.214559π0.214559\pi
−0.781296 + 0.624160i 0.785441π0.785441\pi
284284 0 0
285285 −4.00000 + 8.00000i −0.236940 + 0.473879i
286286 0 0
287287 10.0000i 0.590281i
288288 0 0
289289 8.00000 0.470588
290290 0 0
291291 −19.0000 −1.11380
292292 0 0
293293 31.0000i 1.81104i −0.424304 0.905520i 0.639481π-0.639481\pi
0.424304 0.905520i 0.360519π-0.360519\pi
294294 0 0
295295 12.0000 + 6.00000i 0.698667 + 0.349334i
296296 0 0
297297 5.00000i 0.290129i
298298 0 0
299299 2.00000 0.115663
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −8.00000 4.00000i −0.458079 0.229039i
306306 0 0
307307 25.0000i 1.42683i −0.700744 0.713413i 0.747149π-0.747149\pi
0.700744 0.713413i 0.252851π-0.252851\pi
308308 0 0
309309 1.00000 0.0568880
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 7.00000i 0.395663i −0.980236 0.197832i 0.936610π-0.936610\pi
0.980236 0.197832i 0.0633900π-0.0633900\pi
314314 0 0
315315 2.00000 4.00000i 0.112687 0.225374i
316316 0 0
317317 12.0000i 0.673987i −0.941507 0.336994i 0.890590π-0.890590\pi
0.941507 0.336994i 0.109410π-0.109410\pi
318318 0 0
319319 1.00000 0.0559893
320320 0 0
321321 16.0000 0.893033
322322 0 0
323323 12.0000i 0.667698i
324324 0 0
325325 4.00000 3.00000i 0.221880 0.166410i
326326 0 0
327327 15.0000i 0.829502i
328328 0 0
329329 9.00000 0.496186
330330 0 0
331331 28.0000 1.53902 0.769510 0.638635i 0.220501π-0.220501\pi
0.769510 + 0.638635i 0.220501π0.220501\pi
332332 0 0
333333 4.00000i 0.219199i
334334 0 0
335335 10.0000 20.0000i 0.546358 1.09272i
336336 0 0
337337 34.0000i 1.85210i 0.377403 + 0.926049i 0.376817π0.376817\pi
−0.377403 + 0.926049i 0.623183π0.623183\pi
338338 0 0
339339 −14.0000 −0.760376
340340 0 0
341341 −6.00000 −0.324918
342342 0 0
343343 1.00000i 0.0539949i
344344 0 0
345345 −4.00000 2.00000i −0.215353 0.107676i
346346 0 0
347347 22.0000i 1.18102i −0.807030 0.590511i 0.798926π-0.798926\pi
0.807030 0.590511i 0.201074π-0.201074\pi
348348 0 0
349349 8.00000 0.428230 0.214115 0.976808i 0.431313π-0.431313\pi
0.214115 + 0.976808i 0.431313π0.431313\pi
350350 0 0
351351 −5.00000 −0.266880
352352 0 0
353353 9.00000i 0.479022i −0.970894 0.239511i 0.923013π-0.923013\pi
0.970894 0.239511i 0.0769871π-0.0769871\pi
354354 0 0
355355 −32.0000 16.0000i −1.69838 0.849192i
356356 0 0
357357 3.00000i 0.158777i
358358 0 0
359359 4.00000 0.211112 0.105556 0.994413i 0.466338π-0.466338\pi
0.105556 + 0.994413i 0.466338π0.466338\pi
360360 0 0
361361 −3.00000 −0.157895
362362 0 0
363363 10.0000i 0.524864i
364364 0 0
365365 −10.0000 + 20.0000i −0.523424 + 1.04685i
366366 0 0
367367 17.0000i 0.887393i −0.896177 0.443696i 0.853667π-0.853667\pi
0.896177 0.443696i 0.146333π-0.146333\pi
368368 0 0
369369 −20.0000 −1.04116
370370 0 0
371371 14.0000 0.726844
372372 0 0
373373 20.0000i 1.03556i 0.855514 + 0.517780i 0.173242π0.173242\pi
−0.855514 + 0.517780i 0.826758π0.826758\pi
374374 0 0
375375 −11.0000 + 2.00000i −0.568038 + 0.103280i
376376 0 0
377377 1.00000i 0.0515026i
378378 0 0
379379 28.0000 1.43826 0.719132 0.694874i 0.244540π-0.244540\pi
0.719132 + 0.694874i 0.244540π0.244540\pi
380380 0 0
381381 −18.0000 −0.922168
382382 0 0
383383 24.0000i 1.22634i 0.789950 + 0.613171i 0.210106π0.210106\pi
−0.789950 + 0.613171i 0.789894π0.789894\pi
384384 0 0
385385 −1.00000 + 2.00000i −0.0509647 + 0.101929i
386386 0 0
387387 0 0
388388 0 0
389389 9.00000 0.456318 0.228159 0.973624i 0.426729π-0.426729\pi
0.228159 + 0.973624i 0.426729π0.426729\pi
390390 0 0
391391 6.00000 0.303433
392392 0 0
393393 6.00000i 0.302660i
394394 0 0
395395 22.0000 + 11.0000i 1.10694 + 0.553470i
396396 0 0
397397 15.0000i 0.752828i 0.926451 + 0.376414i 0.122843π0.122843\pi
−0.926451 + 0.376414i 0.877157π0.877157\pi
398398 0 0
399399 4.00000 0.200250
400400 0 0
401401 13.0000 0.649189 0.324595 0.945853i 0.394772π-0.394772\pi
0.324595 + 0.945853i 0.394772π0.394772\pi
402402 0 0
403403 6.00000i 0.298881i
404404 0 0
405405 −2.00000 1.00000i −0.0993808 0.0496904i
406406 0 0
407407 2.00000i 0.0991363i
408408 0 0
409409 28.0000 1.38451 0.692255 0.721653i 0.256617π-0.256617\pi
0.692255 + 0.721653i 0.256617π0.256617\pi
410410 0 0
411411 −8.00000 −0.394611
412412 0 0
413413 6.00000i 0.295241i
414414 0 0
415415 −4.00000 + 8.00000i −0.196352 + 0.392705i
416416 0 0
417417 14.0000i 0.685583i
418418 0 0
419419 30.0000 1.46560 0.732798 0.680446i 0.238214π-0.238214\pi
0.732798 + 0.680446i 0.238214π0.238214\pi
420420 0 0
421421 −1.00000 −0.0487370 −0.0243685 0.999703i 0.507758π-0.507758\pi
−0.0243685 + 0.999703i 0.507758π0.507758\pi
422422 0 0
423423 18.0000i 0.875190i
424424 0 0
425425 12.0000 9.00000i 0.582086 0.436564i
426426 0 0
427427 4.00000i 0.193574i
428428 0 0
429429 1.00000 0.0482805
430430 0 0
431431 −31.0000 −1.49322 −0.746609 0.665263i 0.768319π-0.768319\pi
−0.746609 + 0.665263i 0.768319π0.768319\pi
432432 0 0
433433 6.00000i 0.288342i −0.989553 0.144171i 0.953949π-0.953949\pi
0.989553 0.144171i 0.0460515π-0.0460515\pi
434434 0 0
435435 1.00000 2.00000i 0.0479463 0.0958927i
436436 0 0
437437 8.00000i 0.382692i
438438 0 0
439439 −30.0000 −1.43182 −0.715911 0.698192i 0.753988π-0.753988\pi
−0.715911 + 0.698192i 0.753988π0.753988\pi
440440 0 0
441441 −2.00000 −0.0952381
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 24.0000 + 12.0000i 1.13771 + 0.568855i
446446 0 0
447447 6.00000i 0.283790i
448448 0 0
449449 −27.0000 −1.27421 −0.637104 0.770778i 0.719868π-0.719868\pi
−0.637104 + 0.770778i 0.719868π0.719868\pi
450450 0 0
451451 10.0000 0.470882
452452 0 0
453453 13.0000i 0.610793i
454454 0 0
455455 −2.00000 1.00000i −0.0937614 0.0468807i
456456 0 0
457457 18.0000i 0.842004i 0.907060 + 0.421002i 0.138322π0.138322\pi
−0.907060 + 0.421002i 0.861678π0.861678\pi
458458 0 0
459459 −15.0000 −0.700140
460460 0 0
461461 −12.0000 −0.558896 −0.279448 0.960161i 0.590151π-0.590151\pi
−0.279448 + 0.960161i 0.590151π0.590151\pi
462462 0 0
463463 16.0000i 0.743583i −0.928316 0.371792i 0.878744π-0.878744\pi
0.928316 0.371792i 0.121256π-0.121256\pi
464464 0 0
465465 −6.00000 + 12.0000i −0.278243 + 0.556487i
466466 0 0
467467 27.0000i 1.24941i 0.780860 + 0.624705i 0.214781π0.214781\pi
−0.780860 + 0.624705i 0.785219π0.785219\pi
468468 0 0
469469 −10.0000 −0.461757
470470 0 0
471471 14.0000 0.645086
472472 0 0
473473 0 0
474474 0 0
475475 12.0000 + 16.0000i 0.550598 + 0.734130i
476476 0 0
477477 28.0000i 1.28203i
478478 0 0
479479 2.00000 0.0913823 0.0456912 0.998956i 0.485451π-0.485451\pi
0.0456912 + 0.998956i 0.485451π0.485451\pi
480480 0 0
481481 −2.00000 −0.0911922
482482 0 0
483483 2.00000i 0.0910032i
484484 0 0
485485 −19.0000 + 38.0000i −0.862746 + 1.72549i
486486 0 0
487487 38.0000i 1.72194i 0.508652 + 0.860972i 0.330144π0.330144\pi
−0.508652 + 0.860972i 0.669856π0.669856\pi
488488 0 0
489489 −10.0000 −0.452216
490490 0 0
491491 5.00000 0.225647 0.112823 0.993615i 0.464011π-0.464011\pi
0.112823 + 0.993615i 0.464011π0.464011\pi
492492 0 0
493493 3.00000i 0.135113i
494494 0 0
495495 4.00000 + 2.00000i 0.179787 + 0.0898933i
496496 0 0
497497 16.0000i 0.717698i
498498 0 0
499499 −23.0000 −1.02962 −0.514811 0.857304i 0.672138π-0.672138\pi
−0.514811 + 0.857304i 0.672138π0.672138\pi
500500 0 0
501501 15.0000 0.670151
502502 0 0
503503 29.0000i 1.29305i −0.762894 0.646523i 0.776222π-0.776222\pi
0.762894 0.646523i 0.223778π-0.223778\pi
504504 0 0
505505 0 0
506506 0 0
507507 12.0000i 0.532939i
508508 0 0
509509 10.0000 0.443242 0.221621 0.975133i 0.428865π-0.428865\pi
0.221621 + 0.975133i 0.428865π0.428865\pi
510510 0 0
511511 10.0000 0.442374
512512 0 0
513513 20.0000i 0.883022i
514514 0 0
515515 1.00000 2.00000i 0.0440653 0.0881305i
516516 0 0
517517 9.00000i 0.395820i
518518 0 0
519519 −15.0000 −0.658427
520520 0 0
521521 −8.00000 −0.350486 −0.175243 0.984525i 0.556071π-0.556071\pi
−0.175243 + 0.984525i 0.556071π0.556071\pi
522522 0 0
523523 28.0000i 1.22435i 0.790721 + 0.612177i 0.209706π0.209706\pi
−0.790721 + 0.612177i 0.790294π0.790294\pi
524524 0 0
525525 3.00000 + 4.00000i 0.130931 + 0.174574i
526526 0 0
527527 18.0000i 0.784092i
528528 0 0
529529 19.0000 0.826087
530530 0 0
531531 −12.0000 −0.520756
532532 0 0
533533 10.0000i 0.433148i
534534 0 0
535535 16.0000 32.0000i 0.691740 1.38348i
536536 0 0
537537 20.0000i 0.863064i
538538 0 0
539539 1.00000 0.0430730
540540 0 0
541541 41.0000 1.76273 0.881364 0.472438i 0.156626π-0.156626\pi
0.881364 + 0.472438i 0.156626π0.156626\pi
542542 0 0
543543 2.00000i 0.0858282i
544544 0 0
545545 30.0000 + 15.0000i 1.28506 + 0.642529i
546546 0 0
547547 4.00000i 0.171028i 0.996337 + 0.0855138i 0.0272532π0.0272532\pi
−0.996337 + 0.0855138i 0.972747π0.972747\pi
548548 0 0
549549 8.00000 0.341432
550550 0 0
551551 −4.00000 −0.170406
552552 0 0
553553 11.0000i 0.467768i
554554 0 0
555555 4.00000 + 2.00000i 0.169791 + 0.0848953i
556556 0 0
557557 36.0000i 1.52537i 0.646771 + 0.762684i 0.276119π0.276119\pi
−0.646771 + 0.762684i 0.723881π0.723881\pi
558558 0 0
559559 0 0
560560 0 0
561561 3.00000 0.126660
562562 0 0
563563 24.0000i 1.01148i −0.862686 0.505740i 0.831220π-0.831220\pi
0.862686 0.505740i 0.168780π-0.168780\pi
564564 0 0
565565 −14.0000 + 28.0000i −0.588984 + 1.17797i
566566 0 0
567567 1.00000i 0.0419961i
568568 0 0
569569 6.00000 0.251533 0.125767 0.992060i 0.459861π-0.459861\pi
0.125767 + 0.992060i 0.459861π0.459861\pi
570570 0 0
571571 −44.0000 −1.84134 −0.920671 0.390339i 0.872358π-0.872358\pi
−0.920671 + 0.390339i 0.872358π0.872358\pi
572572 0 0
573573 3.00000i 0.125327i
574574 0 0
575575 −8.00000 + 6.00000i −0.333623 + 0.250217i
576576 0 0
577577 31.0000i 1.29055i 0.763952 + 0.645273i 0.223257π0.223257\pi
−0.763952 + 0.645273i 0.776743π0.776743\pi
578578 0 0
579579 −4.00000 −0.166234
580580 0 0
581581 4.00000 0.165948
582582 0 0
583583 14.0000i 0.579821i
584584 0 0
585585 −2.00000 + 4.00000i −0.0826898 + 0.165380i
586586 0 0
587587 20.0000i 0.825488i −0.910847 0.412744i 0.864570π-0.864570\pi
0.910847 0.412744i 0.135430π-0.135430\pi
588588 0 0
589589 24.0000 0.988903
590590 0 0
591591 6.00000 0.246807
592592 0 0
593593 19.0000i 0.780236i −0.920765 0.390118i 0.872434π-0.872434\pi
0.920765 0.390118i 0.127566π-0.127566\pi
594594 0 0
595595 −6.00000 3.00000i −0.245976 0.122988i
596596 0 0
597597 10.0000i 0.409273i
598598 0 0
599599 7.00000 0.286012 0.143006 0.989722i 0.454323π-0.454323\pi
0.143006 + 0.989722i 0.454323π0.454323\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 20.0000i 0.814463i
604604 0 0
605605 20.0000 + 10.0000i 0.813116 + 0.406558i
606606 0 0
607607 1.00000i 0.0405887i 0.999794 + 0.0202944i 0.00646034π0.00646034\pi
−0.999794 + 0.0202944i 0.993540π0.993540\pi
608608 0 0
609609 −1.00000 −0.0405220
610610 0 0
611611 −9.00000 −0.364101
612612 0 0
613613 4.00000i 0.161558i −0.996732 0.0807792i 0.974259π-0.974259\pi
0.996732 0.0807792i 0.0257409π-0.0257409\pi
614614 0 0
615615 10.0000 20.0000i 0.403239 0.806478i
616616 0 0
617617 2.00000i 0.0805170i 0.999189 + 0.0402585i 0.0128181π0.0128181\pi
−0.999189 + 0.0402585i 0.987182π0.987182\pi
618618 0 0
619619 38.0000 1.52735 0.763674 0.645601i 0.223393π-0.223393\pi
0.763674 + 0.645601i 0.223393π0.223393\pi
620620 0 0
621621 10.0000 0.401286
622622 0 0
623623 12.0000i 0.480770i
624624 0 0
625625 −7.00000 + 24.0000i −0.280000 + 0.960000i
626626 0 0
627627 4.00000i 0.159745i
628628 0 0
629629 −6.00000 −0.239236
630630 0 0
631631 13.0000 0.517522 0.258761 0.965941i 0.416686π-0.416686\pi
0.258761 + 0.965941i 0.416686π0.416686\pi
632632 0 0
633633 1.00000i 0.0397464i
634634 0 0
635635 −18.0000 + 36.0000i −0.714308 + 1.42862i
636636 0 0
637637 1.00000i 0.0396214i
638638 0 0
639639 32.0000 1.26590
640640 0 0
641641 −18.0000 −0.710957 −0.355479 0.934684i 0.615682π-0.615682\pi
−0.355479 + 0.934684i 0.615682π0.615682\pi
642642 0 0
643643 15.0000i 0.591542i 0.955259 + 0.295771i 0.0955766π0.0955766\pi
−0.955259 + 0.295771i 0.904423π0.904423\pi
644644 0 0
645645 0 0
646646 0 0
647647 32.0000i 1.25805i 0.777385 + 0.629025i 0.216546π0.216546\pi
−0.777385 + 0.629025i 0.783454π0.783454\pi
648648 0 0
649649 6.00000 0.235521
650650 0 0
651651 6.00000 0.235159
652652 0 0
653653 24.0000i 0.939193i −0.882881 0.469596i 0.844399π-0.844399\pi
0.882881 0.469596i 0.155601π-0.155601\pi
654654 0 0
655655 −12.0000 6.00000i −0.468879 0.234439i
656656 0 0
657657 20.0000i 0.780274i
658658 0 0
659659 21.0000 0.818044 0.409022 0.912525i 0.365870π-0.365870\pi
0.409022 + 0.912525i 0.365870π0.365870\pi
660660 0 0
661661 28.0000 1.08907 0.544537 0.838737i 0.316705π-0.316705\pi
0.544537 + 0.838737i 0.316705π0.316705\pi
662662 0 0
663663 3.00000i 0.116510i
664664 0 0
665665 4.00000 8.00000i 0.155113 0.310227i
666666 0 0
667667 2.00000i 0.0774403i
668668 0 0
669669 −15.0000 −0.579934
670670 0 0
671671 −4.00000 −0.154418
672672 0 0
673673 20.0000i 0.770943i 0.922720 + 0.385472i 0.125961π0.125961\pi
−0.922720 + 0.385472i 0.874039π0.874039\pi
674674 0 0
675675 20.0000 15.0000i 0.769800 0.577350i
676676 0 0
677677 3.00000i 0.115299i −0.998337 0.0576497i 0.981639π-0.981639\pi
0.998337 0.0576497i 0.0183606π-0.0183606\pi
678678 0 0
679679 19.0000 0.729153
680680 0 0
681681 −7.00000 −0.268241
682682 0 0
683683 4.00000i 0.153056i 0.997067 + 0.0765279i 0.0243834π0.0243834\pi
−0.997067 + 0.0765279i 0.975617π0.975617\pi
684684 0 0
685685 −8.00000 + 16.0000i −0.305664 + 0.611329i
686686 0 0
687687 18.0000i 0.686743i
688688 0 0
689689 −14.0000 −0.533358
690690 0 0
691691 −48.0000 −1.82601 −0.913003 0.407953i 0.866243π-0.866243\pi
−0.913003 + 0.407953i 0.866243π0.866243\pi
692692 0 0
693693 2.00000i 0.0759737i
694694 0 0
695695 −28.0000 14.0000i −1.06210 0.531050i
696696 0 0
697697 30.0000i 1.13633i
698698 0 0
699699 0 0
700700 0 0
701701 41.0000 1.54855 0.774274 0.632850i 0.218115π-0.218115\pi
0.774274 + 0.632850i 0.218115π0.218115\pi
702702 0 0
703703 8.00000i 0.301726i
704704 0 0
705705 18.0000 + 9.00000i 0.677919 + 0.338960i
706706 0 0
707707 0 0
708708 0 0
709709 −17.0000 −0.638448 −0.319224 0.947679i 0.603422π-0.603422\pi
−0.319224 + 0.947679i 0.603422π0.603422\pi
710710 0 0
711711 −22.0000 −0.825064
712712 0 0
713713 12.0000i 0.449404i
714714 0 0
715715 1.00000 2.00000i 0.0373979 0.0747958i
716716 0 0
717717 17.0000i 0.634877i
718718 0 0
719719 −50.0000 −1.86469 −0.932343 0.361576i 0.882239π-0.882239\pi
−0.932343 + 0.361576i 0.882239π0.882239\pi
720720 0 0
721721 −1.00000 −0.0372419
722722 0 0
723723 2.00000i 0.0743808i
724724 0 0
725725 −3.00000 4.00000i −0.111417 0.148556i
726726 0 0
727727 36.0000i 1.33517i 0.744535 + 0.667583i 0.232671π0.232671\pi
−0.744535 + 0.667583i 0.767329π0.767329\pi
728728 0 0
729729 −13.0000 −0.481481
730730 0 0
731731 0 0
732732 0 0
733733 9.00000i 0.332423i −0.986090 0.166211i 0.946847π-0.946847\pi
0.986090 0.166211i 0.0531534π-0.0531534\pi
734734 0 0
735735 1.00000 2.00000i 0.0368856 0.0737711i
736736 0 0
737737 10.0000i 0.368355i
738738 0 0
739739 −15.0000 −0.551784 −0.275892 0.961189i 0.588973π-0.588973\pi
−0.275892 + 0.961189i 0.588973π0.588973\pi
740740 0 0
741741 −4.00000 −0.146944
742742 0 0
743743 42.0000i 1.54083i 0.637542 + 0.770415i 0.279951π0.279951\pi
−0.637542 + 0.770415i 0.720049π0.720049\pi
744744 0 0
745745 12.0000 + 6.00000i 0.439646 + 0.219823i
746746 0 0
747747 8.00000i 0.292705i
748748 0 0
749749 −16.0000 −0.584627
750750 0 0
751751 −17.0000 −0.620339 −0.310169 0.950681i 0.600386π-0.600386\pi
−0.310169 + 0.950681i 0.600386π0.600386\pi
752752 0 0
753753 10.0000i 0.364420i
754754 0 0
755755 26.0000 + 13.0000i 0.946237 + 0.473118i
756756 0 0
757757 8.00000i 0.290765i −0.989376 0.145382i 0.953559π-0.953559\pi
0.989376 0.145382i 0.0464413π-0.0464413\pi
758758 0 0
759759 −2.00000 −0.0725954
760760 0 0
761761 22.0000 0.797499 0.398750 0.917060i 0.369444π-0.369444\pi
0.398750 + 0.917060i 0.369444π0.369444\pi
762762 0 0
763763 15.0000i 0.543036i
764764 0 0
765765 −6.00000 + 12.0000i −0.216930 + 0.433861i
766766 0 0
767767 6.00000i 0.216647i
768768 0 0
769769 8.00000 0.288487 0.144244 0.989542i 0.453925π-0.453925\pi
0.144244 + 0.989542i 0.453925π0.453925\pi
770770 0 0
771771 18.0000 0.648254
772772 0 0
773773 13.0000i 0.467578i −0.972287 0.233789i 0.924888π-0.924888\pi
0.972287 0.233789i 0.0751124π-0.0751124\pi
774774 0 0
775775 18.0000 + 24.0000i 0.646579 + 0.862105i
776776 0 0
777777 2.00000i 0.0717496i
778778 0 0
779779 −40.0000 −1.43315
780780 0 0
781781 −16.0000 −0.572525
782782 0 0
783783 5.00000i 0.178685i
784784 0 0
785785 14.0000 28.0000i 0.499681 0.999363i
786786 0 0
787787 31.0000i 1.10503i −0.833503 0.552515i 0.813668π-0.813668\pi
0.833503 0.552515i 0.186332π-0.186332\pi
788788 0 0
789789 24.0000 0.854423
790790 0 0
791791 14.0000 0.497783
792792 0 0
793793 4.00000i 0.142044i
794794 0 0
795795 28.0000 + 14.0000i 0.993058 + 0.496529i
796796 0 0
797797 27.0000i 0.956389i 0.878254 + 0.478195i 0.158709π0.158709\pi
−0.878254 + 0.478195i 0.841291π0.841291\pi
798798 0 0
799799 −27.0000 −0.955191
800800 0 0
801801 −24.0000 −0.847998
802802 0 0
803803 10.0000i 0.352892i
804804 0 0
805805 4.00000 + 2.00000i 0.140981 + 0.0704907i
806806 0 0
807807 6.00000i 0.211210i
808808 0 0
809809 51.0000 1.79306 0.896532 0.442978i 0.146078π-0.146078\pi
0.896532 + 0.442978i 0.146078π0.146078\pi
810810 0 0
811811 −42.0000 −1.47482 −0.737410 0.675446i 0.763951π-0.763951\pi
−0.737410 + 0.675446i 0.763951π0.763951\pi
812812 0 0
813813 4.00000i 0.140286i
814814 0 0
815815 −10.0000 + 20.0000i −0.350285 + 0.700569i
816816 0 0
817817 0 0
818818 0 0
819819 2.00000 0.0698857
820820 0 0
821821 −45.0000 −1.57051 −0.785255 0.619172i 0.787468π-0.787468\pi
−0.785255 + 0.619172i 0.787468π0.787468\pi
822822 0 0
823823 10.0000i 0.348578i −0.984695 0.174289i 0.944237π-0.944237\pi
0.984695 0.174289i 0.0557627π-0.0557627\pi
824824 0 0
825825 −4.00000 + 3.00000i −0.139262 + 0.104447i
826826 0 0
827827 42.0000i 1.46048i −0.683189 0.730242i 0.739408π-0.739408\pi
0.683189 0.730242i 0.260592π-0.260592\pi
828828 0 0
829829 −50.0000 −1.73657 −0.868286 0.496064i 0.834778π-0.834778\pi
−0.868286 + 0.496064i 0.834778π0.834778\pi
830830 0 0
831831 18.0000 0.624413
832832 0 0
833833 3.00000i 0.103944i
834834 0 0
835835 15.0000 30.0000i 0.519096 1.03819i
836836 0 0
837837 30.0000i 1.03695i
838838 0 0
839839 54.0000 1.86429 0.932144 0.362089i 0.117936π-0.117936\pi
0.932144 + 0.362089i 0.117936π0.117936\pi
840840 0 0
841841 −28.0000 −0.965517
842842 0 0
843843 15.0000i 0.516627i
844844 0 0
845845 −24.0000 12.0000i −0.825625 0.412813i
846846 0 0
847847 10.0000i 0.343604i
848848 0 0
849849 21.0000 0.720718
850850 0 0
851851 4.00000 0.137118
852852 0 0
853853 14.0000i 0.479351i 0.970853 + 0.239675i 0.0770410π0.0770410\pi
−0.970853 + 0.239675i 0.922959π0.922959\pi
854854 0 0
855855 −16.0000 8.00000i −0.547188 0.273594i
856856 0 0
857857 10.0000i 0.341593i −0.985306 0.170797i 0.945366π-0.945366\pi
0.985306 0.170797i 0.0546341π-0.0546341\pi
858858 0 0
859859 8.00000 0.272956 0.136478 0.990643i 0.456422π-0.456422\pi
0.136478 + 0.990643i 0.456422π0.456422\pi
860860 0 0
861861 −10.0000 −0.340799
862862 0 0
863863 6.00000i 0.204242i 0.994772 + 0.102121i 0.0325630π0.0325630\pi
−0.994772 + 0.102121i 0.967437π0.967437\pi
864864 0 0
865865 −15.0000 + 30.0000i −0.510015 + 1.02003i
866866 0 0
867867 8.00000i 0.271694i
868868 0 0
869869 11.0000 0.373149
870870 0 0
871871 10.0000 0.338837
872872 0 0
873873 38.0000i 1.28611i
874874 0 0
875875 11.0000 2.00000i 0.371868 0.0676123i
876876 0 0
877877 52.0000i 1.75592i −0.478738 0.877958i 0.658906π-0.658906\pi
0.478738 0.877958i 0.341094π-0.341094\pi
878878 0 0
879879 −31.0000 −1.04560
880880 0 0
881881 16.0000 0.539054 0.269527 0.962993i 0.413133π-0.413133\pi
0.269527 + 0.962993i 0.413133π0.413133\pi
882882 0 0
883883 16.0000i 0.538443i −0.963078 0.269221i 0.913234π-0.913234\pi
0.963078 0.269221i 0.0867663π-0.0867663\pi
884884 0 0
885885 6.00000 12.0000i 0.201688 0.403376i
886886 0 0
887887 12.0000i 0.402921i −0.979497 0.201460i 0.935431π-0.935431\pi
0.979497 0.201460i 0.0645687π-0.0645687\pi
888888 0 0
889889 18.0000 0.603701
890890 0 0
891891 −1.00000 −0.0335013
892892 0 0
893893 36.0000i 1.20469i
894894 0 0
895895 40.0000 + 20.0000i 1.33705 + 0.668526i
896896 0 0
897897 2.00000i 0.0667781i
898898 0 0
899899 −6.00000 −0.200111
900900 0 0
901901 −42.0000 −1.39922
902902 0 0
903903 0 0
904904 0 0
905905 −4.00000 2.00000i −0.132964 0.0664822i
906906 0 0
907907 14.0000i 0.464862i 0.972613 + 0.232431i 0.0746680π0.0746680\pi
−0.972613 + 0.232431i 0.925332π0.925332\pi
908908 0 0
909909 0 0
910910 0 0
911911 12.0000 0.397578 0.198789 0.980042i 0.436299π-0.436299\pi
0.198789 + 0.980042i 0.436299π0.436299\pi
912912 0 0
913913 4.00000i 0.132381i
914914 0 0
915915 −4.00000 + 8.00000i −0.132236 + 0.264472i
916916 0 0
917917 6.00000i 0.198137i
918918 0 0
919919 −27.0000 −0.890648 −0.445324 0.895370i 0.646911π-0.646911\pi
−0.445324 + 0.895370i 0.646911π0.646911\pi
920920 0 0
921921 −25.0000 −0.823778
922922 0 0
923923 16.0000i 0.526646i
924924 0 0
925925 8.00000 6.00000i 0.263038 0.197279i
926926 0 0
927927 2.00000i 0.0656886i
928928 0 0
929929 −14.0000 −0.459325 −0.229663 0.973270i 0.573762π-0.573762\pi
−0.229663 + 0.973270i 0.573762π0.573762\pi
930930 0 0
931931 −4.00000 −0.131095
932932 0 0
933933 0 0
934934 0 0
935935 3.00000 6.00000i 0.0981105 0.196221i
936936 0 0
937937 1.00000i 0.0326686i 0.999867 + 0.0163343i 0.00519960π0.00519960\pi
−0.999867 + 0.0163343i 0.994800π0.994800\pi
938938 0 0
939939 −7.00000 −0.228436
940940 0 0
941941 28.0000 0.912774 0.456387 0.889781i 0.349143π-0.349143\pi
0.456387 + 0.889781i 0.349143π0.349143\pi
942942 0 0
943943 20.0000i 0.651290i
944944 0 0
945945 −10.0000 5.00000i −0.325300 0.162650i
946946 0 0
947947 30.0000i 0.974869i 0.873160 + 0.487435i 0.162067π0.162067\pi
−0.873160 + 0.487435i 0.837933π0.837933\pi
948948 0 0
949949 −10.0000 −0.324614
950950 0 0
951951 −12.0000 −0.389127
952952 0 0
953953 30.0000i 0.971795i −0.874016 0.485898i 0.838493π-0.838493\pi
0.874016 0.485898i 0.161507π-0.161507\pi
954954 0 0
955955 6.00000 + 3.00000i 0.194155 + 0.0970777i
956956 0 0
957957 1.00000i 0.0323254i
958958 0 0
959959 8.00000 0.258333
960960 0 0
961961 5.00000 0.161290
962962 0 0
963963 32.0000i 1.03119i
964964 0 0
965965 −4.00000 + 8.00000i −0.128765 + 0.257529i
966966 0 0
967967 32.0000i 1.02905i 0.857475 + 0.514525i 0.172032π0.172032\pi
−0.857475 + 0.514525i 0.827968π0.827968\pi
968968 0 0
969969 −12.0000 −0.385496
970970 0 0
971971 −18.0000 −0.577647 −0.288824 0.957382i 0.593264π-0.593264\pi
−0.288824 + 0.957382i 0.593264π0.593264\pi
972972 0 0
973973 14.0000i 0.448819i
974974 0 0
975975 −3.00000 4.00000i −0.0960769 0.128103i
976976 0 0
977977 40.0000i 1.27971i 0.768494 + 0.639857i 0.221006π0.221006\pi
−0.768494 + 0.639857i 0.778994π0.778994\pi
978978 0 0
979979 12.0000 0.383522
980980 0 0
981981 −30.0000 −0.957826
982982 0 0
983983 1.00000i 0.0318950i −0.999873 0.0159475i 0.994924π-0.994924\pi
0.999873 0.0159475i 0.00507647π-0.00507647\pi
984984 0 0
985985 6.00000 12.0000i 0.191176 0.382352i
986986 0 0
987987 9.00000i 0.286473i
988988 0 0
989989 0 0
990990 0 0
991991 −40.0000 −1.27064 −0.635321 0.772248i 0.719132π-0.719132\pi
−0.635321 + 0.772248i 0.719132π0.719132\pi
992992 0 0
993993 28.0000i 0.888553i
994994 0 0
995995 −20.0000 10.0000i −0.634043 0.317021i
996996 0 0
997997 27.0000i 0.855099i 0.903992 + 0.427549i 0.140623π0.140623\pi
−0.903992 + 0.427549i 0.859377π0.859377\pi
998998 0 0
999999 −10.0000 −0.316386
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2240.2.g.a.449.1 2
4.3 odd 2 2240.2.g.b.449.2 2
5.4 even 2 inner 2240.2.g.a.449.2 2
8.3 odd 2 280.2.g.a.169.1 2
8.5 even 2 560.2.g.d.449.2 2
20.19 odd 2 2240.2.g.b.449.1 2
24.5 odd 2 5040.2.t.a.1009.1 2
24.11 even 2 2520.2.t.a.1009.1 2
40.3 even 4 1400.2.a.j.1.1 1
40.13 odd 4 2800.2.a.k.1.1 1
40.19 odd 2 280.2.g.a.169.2 yes 2
40.27 even 4 1400.2.a.d.1.1 1
40.29 even 2 560.2.g.d.449.1 2
40.37 odd 4 2800.2.a.u.1.1 1
56.27 even 2 1960.2.g.a.1569.2 2
120.29 odd 2 5040.2.t.a.1009.2 2
120.59 even 2 2520.2.t.a.1009.2 2
280.27 odd 4 9800.2.a.bb.1.1 1
280.83 odd 4 9800.2.a.p.1.1 1
280.139 even 2 1960.2.g.a.1569.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.g.a.169.1 2 8.3 odd 2
280.2.g.a.169.2 yes 2 40.19 odd 2
560.2.g.d.449.1 2 40.29 even 2
560.2.g.d.449.2 2 8.5 even 2
1400.2.a.d.1.1 1 40.27 even 4
1400.2.a.j.1.1 1 40.3 even 4
1960.2.g.a.1569.1 2 280.139 even 2
1960.2.g.a.1569.2 2 56.27 even 2
2240.2.g.a.449.1 2 1.1 even 1 trivial
2240.2.g.a.449.2 2 5.4 even 2 inner
2240.2.g.b.449.1 2 20.19 odd 2
2240.2.g.b.449.2 2 4.3 odd 2
2520.2.t.a.1009.1 2 24.11 even 2
2520.2.t.a.1009.2 2 120.59 even 2
2800.2.a.k.1.1 1 40.13 odd 4
2800.2.a.u.1.1 1 40.37 odd 4
5040.2.t.a.1009.1 2 24.5 odd 2
5040.2.t.a.1009.2 2 120.29 odd 2
9800.2.a.p.1.1 1 280.83 odd 4
9800.2.a.bb.1.1 1 280.27 odd 4