Properties

Label 225.12.a.z.1.3
Level $225$
Weight $12$
Character 225.1
Self dual yes
Analytic conductor $172.877$
Analytic rank $1$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,12,Mod(1,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(172.877215626\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2 x^{7} - 8438 x^{6} - 12900 x^{5} + 24607297 x^{4} + 71220406 x^{3} - 29215500956 x^{2} + \cdots + 11837228681952 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{12}\cdot 5^{10} \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(26.7797\) of defining polynomial
Character \(\chi\) \(=\) 225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-22.0579 q^{2} -1561.45 q^{4} -55546.4 q^{7} +79616.9 q^{8} -390374. q^{11} +294278. q^{13} +1.22524e6 q^{14} +1.44167e6 q^{16} -1.34966e6 q^{17} -4.87782e6 q^{19} +8.61083e6 q^{22} -2.15035e7 q^{23} -6.49116e6 q^{26} +8.67329e7 q^{28} +1.06704e8 q^{29} +8.85723e7 q^{31} -1.94855e8 q^{32} +2.97707e7 q^{34} +7.15174e8 q^{37} +1.07594e8 q^{38} -1.01025e9 q^{41} +6.84508e7 q^{43} +6.09549e8 q^{44} +4.74321e8 q^{46} -1.18367e9 q^{47} +1.10807e9 q^{49} -4.59501e8 q^{52} +5.58230e9 q^{53} -4.42243e9 q^{56} -2.35366e9 q^{58} +8.83822e9 q^{59} +9.40678e9 q^{61} -1.95372e9 q^{62} +1.34557e9 q^{64} -1.67537e10 q^{67} +2.10743e9 q^{68} +9.80178e9 q^{71} +7.18622e9 q^{73} -1.57752e10 q^{74} +7.61646e9 q^{76} +2.16839e10 q^{77} -2.66926e9 q^{79} +2.22841e10 q^{82} -4.33938e10 q^{83} -1.50988e9 q^{86} -3.10803e10 q^{88} -5.89906e10 q^{89} -1.63461e10 q^{91} +3.35766e10 q^{92} +2.61093e10 q^{94} +9.59614e10 q^{97} -2.44418e10 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8976 q^{4} + 15740992 q^{16} - 61220032 q^{19} + 279698464 q^{31} - 309623120 q^{34} - 13964841760 q^{46} + 1596098056 q^{49} - 4923969584 q^{61} - 40933220096 q^{64} - 128254720704 q^{76} - 87780965728 q^{79}+ \cdots + 460752353440 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −22.0579 −0.487415 −0.243708 0.969849i \(-0.578364\pi\)
−0.243708 + 0.969849i \(0.578364\pi\)
\(3\) 0 0
\(4\) −1561.45 −0.762426
\(5\) 0 0
\(6\) 0 0
\(7\) −55546.4 −1.24916 −0.624578 0.780963i \(-0.714729\pi\)
−0.624578 + 0.780963i \(0.714729\pi\)
\(8\) 79616.9 0.859033
\(9\) 0 0
\(10\) 0 0
\(11\) −390374. −0.730838 −0.365419 0.930843i \(-0.619074\pi\)
−0.365419 + 0.930843i \(0.619074\pi\)
\(12\) 0 0
\(13\) 294278. 0.219821 0.109911 0.993941i \(-0.464944\pi\)
0.109911 + 0.993941i \(0.464944\pi\)
\(14\) 1.22524e6 0.608858
\(15\) 0 0
\(16\) 1.44167e6 0.343720
\(17\) −1.34966e6 −0.230545 −0.115272 0.993334i \(-0.536774\pi\)
−0.115272 + 0.993334i \(0.536774\pi\)
\(18\) 0 0
\(19\) −4.87782e6 −0.451940 −0.225970 0.974134i \(-0.572555\pi\)
−0.225970 + 0.974134i \(0.572555\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 8.61083e6 0.356221
\(23\) −2.15035e7 −0.696635 −0.348318 0.937377i \(-0.613247\pi\)
−0.348318 + 0.937377i \(0.613247\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −6.49116e6 −0.107144
\(27\) 0 0
\(28\) 8.67329e7 0.952389
\(29\) 1.06704e8 0.966030 0.483015 0.875612i \(-0.339542\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(30\) 0 0
\(31\) 8.85723e7 0.555659 0.277830 0.960630i \(-0.410385\pi\)
0.277830 + 0.960630i \(0.410385\pi\)
\(32\) −1.94855e8 −1.02657
\(33\) 0 0
\(34\) 2.97707e7 0.112371
\(35\) 0 0
\(36\) 0 0
\(37\) 7.15174e8 1.69552 0.847759 0.530382i \(-0.177951\pi\)
0.847759 + 0.530382i \(0.177951\pi\)
\(38\) 1.07594e8 0.220282
\(39\) 0 0
\(40\) 0 0
\(41\) −1.01025e9 −1.36182 −0.680909 0.732368i \(-0.738415\pi\)
−0.680909 + 0.732368i \(0.738415\pi\)
\(42\) 0 0
\(43\) 6.84508e7 0.0710072 0.0355036 0.999370i \(-0.488696\pi\)
0.0355036 + 0.999370i \(0.488696\pi\)
\(44\) 6.09549e8 0.557210
\(45\) 0 0
\(46\) 4.74321e8 0.339551
\(47\) −1.18367e9 −0.752822 −0.376411 0.926453i \(-0.622842\pi\)
−0.376411 + 0.926453i \(0.622842\pi\)
\(48\) 0 0
\(49\) 1.10807e9 0.560390
\(50\) 0 0
\(51\) 0 0
\(52\) −4.59501e8 −0.167598
\(53\) 5.58230e9 1.83356 0.916781 0.399389i \(-0.130778\pi\)
0.916781 + 0.399389i \(0.130778\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −4.42243e9 −1.07307
\(57\) 0 0
\(58\) −2.35366e9 −0.470858
\(59\) 8.83822e9 1.60945 0.804727 0.593645i \(-0.202312\pi\)
0.804727 + 0.593645i \(0.202312\pi\)
\(60\) 0 0
\(61\) 9.40678e9 1.42602 0.713012 0.701152i \(-0.247330\pi\)
0.713012 + 0.701152i \(0.247330\pi\)
\(62\) −1.95372e9 −0.270837
\(63\) 0 0
\(64\) 1.34557e9 0.156644
\(65\) 0 0
\(66\) 0 0
\(67\) −1.67537e10 −1.51600 −0.758002 0.652253i \(-0.773824\pi\)
−0.758002 + 0.652253i \(0.773824\pi\)
\(68\) 2.10743e9 0.175774
\(69\) 0 0
\(70\) 0 0
\(71\) 9.80178e9 0.644739 0.322370 0.946614i \(-0.395521\pi\)
0.322370 + 0.946614i \(0.395521\pi\)
\(72\) 0 0
\(73\) 7.18622e9 0.405718 0.202859 0.979208i \(-0.434977\pi\)
0.202859 + 0.979208i \(0.434977\pi\)
\(74\) −1.57752e10 −0.826421
\(75\) 0 0
\(76\) 7.61646e9 0.344571
\(77\) 2.16839e10 0.912930
\(78\) 0 0
\(79\) −2.66926e9 −0.0975983 −0.0487991 0.998809i \(-0.515539\pi\)
−0.0487991 + 0.998809i \(0.515539\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.22841e10 0.663771
\(83\) −4.33938e10 −1.20920 −0.604600 0.796529i \(-0.706667\pi\)
−0.604600 + 0.796529i \(0.706667\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −1.50988e9 −0.0346100
\(87\) 0 0
\(88\) −3.10803e10 −0.627814
\(89\) −5.89906e10 −1.11979 −0.559896 0.828563i \(-0.689159\pi\)
−0.559896 + 0.828563i \(0.689159\pi\)
\(90\) 0 0
\(91\) −1.63461e10 −0.274591
\(92\) 3.35766e10 0.531133
\(93\) 0 0
\(94\) 2.61093e10 0.366937
\(95\) 0 0
\(96\) 0 0
\(97\) 9.59614e10 1.13462 0.567312 0.823503i \(-0.307983\pi\)
0.567312 + 0.823503i \(0.307983\pi\)
\(98\) −2.44418e10 −0.273143
\(99\) 0 0
\(100\) 0 0
\(101\) 1.58971e11 1.50505 0.752524 0.658565i \(-0.228836\pi\)
0.752524 + 0.658565i \(0.228836\pi\)
\(102\) 0 0
\(103\) 1.21843e11 1.03561 0.517805 0.855499i \(-0.326749\pi\)
0.517805 + 0.855499i \(0.326749\pi\)
\(104\) 2.34295e10 0.188834
\(105\) 0 0
\(106\) −1.23134e11 −0.893707
\(107\) 2.64305e11 1.82178 0.910888 0.412653i \(-0.135398\pi\)
0.910888 + 0.412653i \(0.135398\pi\)
\(108\) 0 0
\(109\) −1.84618e11 −1.14929 −0.574644 0.818403i \(-0.694860\pi\)
−0.574644 + 0.818403i \(0.694860\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −8.00794e10 −0.429360
\(113\) 2.06690e11 1.05533 0.527664 0.849453i \(-0.323068\pi\)
0.527664 + 0.849453i \(0.323068\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.66613e11 −0.736527
\(117\) 0 0
\(118\) −1.94952e11 −0.784472
\(119\) 7.49688e10 0.287987
\(120\) 0 0
\(121\) −1.32920e11 −0.465876
\(122\) −2.07494e11 −0.695066
\(123\) 0 0
\(124\) −1.38301e11 −0.423649
\(125\) 0 0
\(126\) 0 0
\(127\) −3.53722e11 −0.950039 −0.475020 0.879975i \(-0.657559\pi\)
−0.475020 + 0.879975i \(0.657559\pi\)
\(128\) 3.69384e11 0.950217
\(129\) 0 0
\(130\) 0 0
\(131\) −4.97397e11 −1.12645 −0.563223 0.826305i \(-0.690439\pi\)
−0.563223 + 0.826305i \(0.690439\pi\)
\(132\) 0 0
\(133\) 2.70945e11 0.564543
\(134\) 3.69552e11 0.738923
\(135\) 0 0
\(136\) −1.07456e11 −0.198046
\(137\) 3.10911e11 0.550393 0.275196 0.961388i \(-0.411257\pi\)
0.275196 + 0.961388i \(0.411257\pi\)
\(138\) 0 0
\(139\) −1.80237e11 −0.294620 −0.147310 0.989090i \(-0.547062\pi\)
−0.147310 + 0.989090i \(0.547062\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.16207e11 −0.314256
\(143\) −1.14879e11 −0.160654
\(144\) 0 0
\(145\) 0 0
\(146\) −1.58513e11 −0.197753
\(147\) 0 0
\(148\) −1.11671e12 −1.29271
\(149\) −2.91760e11 −0.325463 −0.162731 0.986670i \(-0.552030\pi\)
−0.162731 + 0.986670i \(0.552030\pi\)
\(150\) 0 0
\(151\) −2.33328e11 −0.241876 −0.120938 0.992660i \(-0.538590\pi\)
−0.120938 + 0.992660i \(0.538590\pi\)
\(152\) −3.88356e11 −0.388232
\(153\) 0 0
\(154\) −4.78300e11 −0.444976
\(155\) 0 0
\(156\) 0 0
\(157\) 1.54856e12 1.29563 0.647813 0.761800i \(-0.275684\pi\)
0.647813 + 0.761800i \(0.275684\pi\)
\(158\) 5.88783e10 0.0475709
\(159\) 0 0
\(160\) 0 0
\(161\) 1.19444e12 0.870206
\(162\) 0 0
\(163\) 1.69870e12 1.15634 0.578168 0.815917i \(-0.303768\pi\)
0.578168 + 0.815917i \(0.303768\pi\)
\(164\) 1.57746e12 1.03829
\(165\) 0 0
\(166\) 9.57176e11 0.589383
\(167\) 1.59377e12 0.949481 0.474740 0.880126i \(-0.342542\pi\)
0.474740 + 0.880126i \(0.342542\pi\)
\(168\) 0 0
\(169\) −1.70556e12 −0.951679
\(170\) 0 0
\(171\) 0 0
\(172\) −1.06883e11 −0.0541378
\(173\) −1.16978e12 −0.573917 −0.286958 0.957943i \(-0.592644\pi\)
−0.286958 + 0.957943i \(0.592644\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.62789e11 −0.251204
\(177\) 0 0
\(178\) 1.30121e12 0.545804
\(179\) −4.37250e12 −1.77844 −0.889218 0.457484i \(-0.848751\pi\)
−0.889218 + 0.457484i \(0.848751\pi\)
\(180\) 0 0
\(181\) 5.31067e11 0.203197 0.101599 0.994825i \(-0.467604\pi\)
0.101599 + 0.994825i \(0.467604\pi\)
\(182\) 3.60561e11 0.133840
\(183\) 0 0
\(184\) −1.71204e12 −0.598433
\(185\) 0 0
\(186\) 0 0
\(187\) 5.26872e11 0.168491
\(188\) 1.84824e12 0.573971
\(189\) 0 0
\(190\) 0 0
\(191\) 4.26612e12 1.21437 0.607183 0.794562i \(-0.292300\pi\)
0.607183 + 0.794562i \(0.292300\pi\)
\(192\) 0 0
\(193\) −3.58148e12 −0.962713 −0.481356 0.876525i \(-0.659856\pi\)
−0.481356 + 0.876525i \(0.659856\pi\)
\(194\) −2.11671e12 −0.553033
\(195\) 0 0
\(196\) −1.73020e12 −0.427256
\(197\) 3.14971e12 0.756322 0.378161 0.925740i \(-0.376557\pi\)
0.378161 + 0.925740i \(0.376557\pi\)
\(198\) 0 0
\(199\) −7.71437e12 −1.75230 −0.876150 0.482039i \(-0.839896\pi\)
−0.876150 + 0.482039i \(0.839896\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −3.50656e12 −0.733583
\(203\) −5.92701e12 −1.20672
\(204\) 0 0
\(205\) 0 0
\(206\) −2.68760e12 −0.504772
\(207\) 0 0
\(208\) 4.24252e11 0.0755571
\(209\) 1.90417e12 0.330295
\(210\) 0 0
\(211\) −1.06063e13 −1.74586 −0.872931 0.487843i \(-0.837784\pi\)
−0.872931 + 0.487843i \(0.837784\pi\)
\(212\) −8.71648e12 −1.39796
\(213\) 0 0
\(214\) −5.83002e12 −0.887962
\(215\) 0 0
\(216\) 0 0
\(217\) −4.91987e12 −0.694105
\(218\) 4.07229e12 0.560181
\(219\) 0 0
\(220\) 0 0
\(221\) −3.97176e11 −0.0506787
\(222\) 0 0
\(223\) −1.19680e12 −0.145326 −0.0726630 0.997357i \(-0.523150\pi\)
−0.0726630 + 0.997357i \(0.523150\pi\)
\(224\) 1.08235e13 1.28234
\(225\) 0 0
\(226\) −4.55914e12 −0.514383
\(227\) −1.43614e13 −1.58145 −0.790724 0.612172i \(-0.790296\pi\)
−0.790724 + 0.612172i \(0.790296\pi\)
\(228\) 0 0
\(229\) −1.73779e13 −1.82349 −0.911744 0.410758i \(-0.865264\pi\)
−0.911744 + 0.410758i \(0.865264\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 8.49542e12 0.829852
\(233\) −4.48575e12 −0.427935 −0.213968 0.976841i \(-0.568639\pi\)
−0.213968 + 0.976841i \(0.568639\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.38004e13 −1.22709
\(237\) 0 0
\(238\) −1.65365e12 −0.140369
\(239\) 7.64513e10 0.00634157 0.00317078 0.999995i \(-0.498991\pi\)
0.00317078 + 0.999995i \(0.498991\pi\)
\(240\) 0 0
\(241\) −1.06281e13 −0.842097 −0.421049 0.907038i \(-0.638338\pi\)
−0.421049 + 0.907038i \(0.638338\pi\)
\(242\) 2.93193e12 0.227075
\(243\) 0 0
\(244\) −1.46882e13 −1.08724
\(245\) 0 0
\(246\) 0 0
\(247\) −1.43544e12 −0.0993461
\(248\) 7.05184e12 0.477330
\(249\) 0 0
\(250\) 0 0
\(251\) 4.24494e12 0.268946 0.134473 0.990917i \(-0.457066\pi\)
0.134473 + 0.990917i \(0.457066\pi\)
\(252\) 0 0
\(253\) 8.39439e12 0.509127
\(254\) 7.80236e12 0.463064
\(255\) 0 0
\(256\) −1.09035e13 −0.619795
\(257\) −1.26005e13 −0.701059 −0.350529 0.936552i \(-0.613998\pi\)
−0.350529 + 0.936552i \(0.613998\pi\)
\(258\) 0 0
\(259\) −3.97253e13 −2.11797
\(260\) 0 0
\(261\) 0 0
\(262\) 1.09715e13 0.549047
\(263\) 7.46619e12 0.365883 0.182942 0.983124i \(-0.441438\pi\)
0.182942 + 0.983124i \(0.441438\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −5.97648e12 −0.275167
\(267\) 0 0
\(268\) 2.61601e13 1.15584
\(269\) −1.69203e13 −0.732435 −0.366218 0.930529i \(-0.619347\pi\)
−0.366218 + 0.930529i \(0.619347\pi\)
\(270\) 0 0
\(271\) 2.59160e12 0.107705 0.0538526 0.998549i \(-0.482850\pi\)
0.0538526 + 0.998549i \(0.482850\pi\)
\(272\) −1.94576e12 −0.0792430
\(273\) 0 0
\(274\) −6.85804e12 −0.268270
\(275\) 0 0
\(276\) 0 0
\(277\) 8.12272e12 0.299270 0.149635 0.988741i \(-0.452190\pi\)
0.149635 + 0.988741i \(0.452190\pi\)
\(278\) 3.97565e12 0.143602
\(279\) 0 0
\(280\) 0 0
\(281\) 1.40507e13 0.478425 0.239213 0.970967i \(-0.423111\pi\)
0.239213 + 0.970967i \(0.423111\pi\)
\(282\) 0 0
\(283\) −5.56339e13 −1.82186 −0.910929 0.412563i \(-0.864634\pi\)
−0.910929 + 0.412563i \(0.864634\pi\)
\(284\) −1.53050e13 −0.491566
\(285\) 0 0
\(286\) 2.53398e12 0.0783051
\(287\) 5.61159e13 1.70112
\(288\) 0 0
\(289\) −3.24503e13 −0.946849
\(290\) 0 0
\(291\) 0 0
\(292\) −1.12209e13 −0.309330
\(293\) −3.50276e13 −0.947631 −0.473815 0.880624i \(-0.657124\pi\)
−0.473815 + 0.880624i \(0.657124\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 5.69399e13 1.45651
\(297\) 0 0
\(298\) 6.43561e12 0.158635
\(299\) −6.32801e12 −0.153135
\(300\) 0 0
\(301\) −3.80220e12 −0.0886990
\(302\) 5.14672e12 0.117894
\(303\) 0 0
\(304\) −7.03219e12 −0.155341
\(305\) 0 0
\(306\) 0 0
\(307\) −4.17912e13 −0.874628 −0.437314 0.899309i \(-0.644070\pi\)
−0.437314 + 0.899309i \(0.644070\pi\)
\(308\) −3.38582e13 −0.696042
\(309\) 0 0
\(310\) 0 0
\(311\) −1.46541e13 −0.285612 −0.142806 0.989751i \(-0.545612\pi\)
−0.142806 + 0.989751i \(0.545612\pi\)
\(312\) 0 0
\(313\) 4.36887e13 0.822007 0.411004 0.911634i \(-0.365178\pi\)
0.411004 + 0.911634i \(0.365178\pi\)
\(314\) −3.41579e13 −0.631507
\(315\) 0 0
\(316\) 4.16792e12 0.0744115
\(317\) −8.62787e12 −0.151383 −0.0756916 0.997131i \(-0.524116\pi\)
−0.0756916 + 0.997131i \(0.524116\pi\)
\(318\) 0 0
\(319\) −4.16544e13 −0.706011
\(320\) 0 0
\(321\) 0 0
\(322\) −2.63468e13 −0.424151
\(323\) 6.58340e12 0.104192
\(324\) 0 0
\(325\) 0 0
\(326\) −3.74697e13 −0.563616
\(327\) 0 0
\(328\) −8.04332e13 −1.16985
\(329\) 6.57486e13 0.940392
\(330\) 0 0
\(331\) −2.29938e13 −0.318095 −0.159048 0.987271i \(-0.550842\pi\)
−0.159048 + 0.987271i \(0.550842\pi\)
\(332\) 6.77572e13 0.921926
\(333\) 0 0
\(334\) −3.51553e13 −0.462791
\(335\) 0 0
\(336\) 0 0
\(337\) 2.07560e13 0.260123 0.130062 0.991506i \(-0.458483\pi\)
0.130062 + 0.991506i \(0.458483\pi\)
\(338\) 3.76211e13 0.463863
\(339\) 0 0
\(340\) 0 0
\(341\) −3.45763e13 −0.406097
\(342\) 0 0
\(343\) 4.82838e13 0.549141
\(344\) 5.44984e12 0.0609975
\(345\) 0 0
\(346\) 2.58028e13 0.279736
\(347\) −4.77409e13 −0.509423 −0.254711 0.967017i \(-0.581980\pi\)
−0.254711 + 0.967017i \(0.581980\pi\)
\(348\) 0 0
\(349\) −3.89716e13 −0.402910 −0.201455 0.979498i \(-0.564567\pi\)
−0.201455 + 0.979498i \(0.564567\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 7.60665e13 0.750255
\(353\) 1.70145e14 1.65218 0.826091 0.563536i \(-0.190559\pi\)
0.826091 + 0.563536i \(0.190559\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.21108e13 0.853760
\(357\) 0 0
\(358\) 9.64481e13 0.866837
\(359\) 2.00471e13 0.177432 0.0887160 0.996057i \(-0.471724\pi\)
0.0887160 + 0.996057i \(0.471724\pi\)
\(360\) 0 0
\(361\) −9.26972e13 −0.795750
\(362\) −1.17142e13 −0.0990413
\(363\) 0 0
\(364\) 2.55236e13 0.209356
\(365\) 0 0
\(366\) 0 0
\(367\) 1.03112e14 0.808433 0.404217 0.914663i \(-0.367544\pi\)
0.404217 + 0.914663i \(0.367544\pi\)
\(368\) −3.10009e13 −0.239448
\(369\) 0 0
\(370\) 0 0
\(371\) −3.10077e14 −2.29041
\(372\) 0 0
\(373\) −1.04079e13 −0.0746386 −0.0373193 0.999303i \(-0.511882\pi\)
−0.0373193 + 0.999303i \(0.511882\pi\)
\(374\) −1.16217e13 −0.0821251
\(375\) 0 0
\(376\) −9.42400e13 −0.646699
\(377\) 3.14006e13 0.212354
\(378\) 0 0
\(379\) 2.25424e14 1.48076 0.740380 0.672188i \(-0.234645\pi\)
0.740380 + 0.672188i \(0.234645\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −9.41016e13 −0.591900
\(383\) 5.14914e13 0.319258 0.159629 0.987177i \(-0.448970\pi\)
0.159629 + 0.987177i \(0.448970\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 7.89998e13 0.469241
\(387\) 0 0
\(388\) −1.49839e14 −0.865068
\(389\) 3.01596e14 1.71673 0.858366 0.513037i \(-0.171480\pi\)
0.858366 + 0.513037i \(0.171480\pi\)
\(390\) 0 0
\(391\) 2.90224e13 0.160606
\(392\) 8.82214e13 0.481394
\(393\) 0 0
\(394\) −6.94760e13 −0.368643
\(395\) 0 0
\(396\) 0 0
\(397\) 1.38344e14 0.704065 0.352033 0.935988i \(-0.385491\pi\)
0.352033 + 0.935988i \(0.385491\pi\)
\(398\) 1.70163e14 0.854097
\(399\) 0 0
\(400\) 0 0
\(401\) 2.15849e14 1.03958 0.519788 0.854295i \(-0.326011\pi\)
0.519788 + 0.854295i \(0.326011\pi\)
\(402\) 0 0
\(403\) 2.60649e13 0.122146
\(404\) −2.48225e14 −1.14749
\(405\) 0 0
\(406\) 1.30737e14 0.588175
\(407\) −2.79185e14 −1.23915
\(408\) 0 0
\(409\) 2.13616e14 0.922901 0.461450 0.887166i \(-0.347329\pi\)
0.461450 + 0.887166i \(0.347329\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.90252e14 −0.789576
\(413\) −4.90931e14 −2.01046
\(414\) 0 0
\(415\) 0 0
\(416\) −5.73418e13 −0.225662
\(417\) 0 0
\(418\) −4.20020e13 −0.160991
\(419\) −3.09233e14 −1.16979 −0.584896 0.811108i \(-0.698865\pi\)
−0.584896 + 0.811108i \(0.698865\pi\)
\(420\) 0 0
\(421\) 2.18306e14 0.804476 0.402238 0.915535i \(-0.368232\pi\)
0.402238 + 0.915535i \(0.368232\pi\)
\(422\) 2.33953e14 0.850960
\(423\) 0 0
\(424\) 4.44445e14 1.57509
\(425\) 0 0
\(426\) 0 0
\(427\) −5.22513e14 −1.78133
\(428\) −4.12699e14 −1.38897
\(429\) 0 0
\(430\) 0 0
\(431\) 4.05282e14 1.31260 0.656300 0.754500i \(-0.272121\pi\)
0.656300 + 0.754500i \(0.272121\pi\)
\(432\) 0 0
\(433\) 1.06068e14 0.334888 0.167444 0.985882i \(-0.446449\pi\)
0.167444 + 0.985882i \(0.446449\pi\)
\(434\) 1.08522e14 0.338317
\(435\) 0 0
\(436\) 2.88272e14 0.876248
\(437\) 1.04890e14 0.314837
\(438\) 0 0
\(439\) 2.34311e14 0.685864 0.342932 0.939360i \(-0.388580\pi\)
0.342932 + 0.939360i \(0.388580\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 8.76087e12 0.0247016
\(443\) −1.59155e13 −0.0443199 −0.0221600 0.999754i \(-0.507054\pi\)
−0.0221600 + 0.999754i \(0.507054\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.63988e13 0.0708341
\(447\) 0 0
\(448\) −7.47413e13 −0.195673
\(449\) −5.35002e14 −1.38357 −0.691784 0.722104i \(-0.743175\pi\)
−0.691784 + 0.722104i \(0.743175\pi\)
\(450\) 0 0
\(451\) 3.94377e14 0.995268
\(452\) −3.22735e14 −0.804610
\(453\) 0 0
\(454\) 3.16783e14 0.770822
\(455\) 0 0
\(456\) 0 0
\(457\) 5.44568e14 1.27795 0.638973 0.769229i \(-0.279359\pi\)
0.638973 + 0.769229i \(0.279359\pi\)
\(458\) 3.83321e14 0.888796
\(459\) 0 0
\(460\) 0 0
\(461\) −3.08085e14 −0.689154 −0.344577 0.938758i \(-0.611978\pi\)
−0.344577 + 0.938758i \(0.611978\pi\)
\(462\) 0 0
\(463\) 1.40262e14 0.306370 0.153185 0.988198i \(-0.451047\pi\)
0.153185 + 0.988198i \(0.451047\pi\)
\(464\) 1.53831e14 0.332044
\(465\) 0 0
\(466\) 9.89463e13 0.208582
\(467\) −3.04077e14 −0.633491 −0.316746 0.948511i \(-0.602590\pi\)
−0.316746 + 0.948511i \(0.602590\pi\)
\(468\) 0 0
\(469\) 9.30609e14 1.89372
\(470\) 0 0
\(471\) 0 0
\(472\) 7.03671e14 1.38257
\(473\) −2.67214e13 −0.0518947
\(474\) 0 0
\(475\) 0 0
\(476\) −1.17060e14 −0.219569
\(477\) 0 0
\(478\) −1.68635e12 −0.00309098
\(479\) 8.80901e14 1.59618 0.798090 0.602538i \(-0.205844\pi\)
0.798090 + 0.602538i \(0.205844\pi\)
\(480\) 0 0
\(481\) 2.10460e14 0.372711
\(482\) 2.34434e14 0.410451
\(483\) 0 0
\(484\) 2.07548e14 0.355196
\(485\) 0 0
\(486\) 0 0
\(487\) −3.64694e14 −0.603280 −0.301640 0.953422i \(-0.597534\pi\)
−0.301640 + 0.953422i \(0.597534\pi\)
\(488\) 7.48938e14 1.22500
\(489\) 0 0
\(490\) 0 0
\(491\) −2.81758e14 −0.445582 −0.222791 0.974866i \(-0.571517\pi\)
−0.222791 + 0.974866i \(0.571517\pi\)
\(492\) 0 0
\(493\) −1.44014e14 −0.222713
\(494\) 3.16627e13 0.0484228
\(495\) 0 0
\(496\) 1.27692e14 0.190991
\(497\) −5.44454e14 −0.805380
\(498\) 0 0
\(499\) 5.04088e14 0.729379 0.364690 0.931129i \(-0.381175\pi\)
0.364690 + 0.931129i \(0.381175\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −9.36344e13 −0.131089
\(503\) −7.09290e14 −0.982200 −0.491100 0.871103i \(-0.663405\pi\)
−0.491100 + 0.871103i \(0.663405\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.85163e14 −0.248156
\(507\) 0 0
\(508\) 5.52319e14 0.724335
\(509\) 3.89311e12 0.00505067 0.00252534 0.999997i \(-0.499196\pi\)
0.00252534 + 0.999997i \(0.499196\pi\)
\(510\) 0 0
\(511\) −3.99169e14 −0.506806
\(512\) −5.15989e14 −0.648120
\(513\) 0 0
\(514\) 2.77940e14 0.341707
\(515\) 0 0
\(516\) 0 0
\(517\) 4.62074e14 0.550191
\(518\) 8.76257e14 1.03233
\(519\) 0 0
\(520\) 0 0
\(521\) 6.67006e14 0.761241 0.380621 0.924731i \(-0.375710\pi\)
0.380621 + 0.924731i \(0.375710\pi\)
\(522\) 0 0
\(523\) −9.54669e14 −1.06683 −0.533413 0.845855i \(-0.679091\pi\)
−0.533413 + 0.845855i \(0.679091\pi\)
\(524\) 7.76660e14 0.858833
\(525\) 0 0
\(526\) −1.64689e14 −0.178337
\(527\) −1.19543e14 −0.128104
\(528\) 0 0
\(529\) −4.90411e14 −0.514700
\(530\) 0 0
\(531\) 0 0
\(532\) −4.23067e14 −0.430423
\(533\) −2.97296e14 −0.299357
\(534\) 0 0
\(535\) 0 0
\(536\) −1.33388e15 −1.30230
\(537\) 0 0
\(538\) 3.73225e14 0.357000
\(539\) −4.32563e14 −0.409554
\(540\) 0 0
\(541\) −2.01083e14 −0.186548 −0.0932739 0.995640i \(-0.529733\pi\)
−0.0932739 + 0.995640i \(0.529733\pi\)
\(542\) −5.71653e13 −0.0524972
\(543\) 0 0
\(544\) 2.62989e14 0.236670
\(545\) 0 0
\(546\) 0 0
\(547\) −1.97509e15 −1.72447 −0.862236 0.506507i \(-0.830936\pi\)
−0.862236 + 0.506507i \(0.830936\pi\)
\(548\) −4.85472e14 −0.419634
\(549\) 0 0
\(550\) 0 0
\(551\) −5.20481e14 −0.436588
\(552\) 0 0
\(553\) 1.48268e14 0.121915
\(554\) −1.79170e14 −0.145869
\(555\) 0 0
\(556\) 2.81431e14 0.224626
\(557\) 1.73969e15 1.37489 0.687444 0.726238i \(-0.258733\pi\)
0.687444 + 0.726238i \(0.258733\pi\)
\(558\) 0 0
\(559\) 2.01436e13 0.0156089
\(560\) 0 0
\(561\) 0 0
\(562\) −3.09929e14 −0.233192
\(563\) −7.00557e14 −0.521972 −0.260986 0.965343i \(-0.584048\pi\)
−0.260986 + 0.965343i \(0.584048\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.22717e15 0.888001
\(567\) 0 0
\(568\) 7.80387e14 0.553853
\(569\) −2.47841e15 −1.74203 −0.871014 0.491257i \(-0.836537\pi\)
−0.871014 + 0.491257i \(0.836537\pi\)
\(570\) 0 0
\(571\) −1.29540e15 −0.893111 −0.446556 0.894756i \(-0.647350\pi\)
−0.446556 + 0.894756i \(0.647350\pi\)
\(572\) 1.79377e14 0.122487
\(573\) 0 0
\(574\) −1.23780e15 −0.829153
\(575\) 0 0
\(576\) 0 0
\(577\) 8.93465e14 0.581582 0.290791 0.956787i \(-0.406082\pi\)
0.290791 + 0.956787i \(0.406082\pi\)
\(578\) 7.15786e14 0.461509
\(579\) 0 0
\(580\) 0 0
\(581\) 2.41037e15 1.51048
\(582\) 0 0
\(583\) −2.17918e15 −1.34004
\(584\) 5.72144e14 0.348526
\(585\) 0 0
\(586\) 7.72636e14 0.461890
\(587\) 2.15415e15 1.27575 0.637877 0.770138i \(-0.279813\pi\)
0.637877 + 0.770138i \(0.279813\pi\)
\(588\) 0 0
\(589\) −4.32039e14 −0.251125
\(590\) 0 0
\(591\) 0 0
\(592\) 1.03104e15 0.582784
\(593\) −1.51707e15 −0.849582 −0.424791 0.905291i \(-0.639652\pi\)
−0.424791 + 0.905291i \(0.639652\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.55568e14 0.248141
\(597\) 0 0
\(598\) 1.39583e14 0.0746405
\(599\) 4.59566e14 0.243501 0.121750 0.992561i \(-0.461149\pi\)
0.121750 + 0.992561i \(0.461149\pi\)
\(600\) 0 0
\(601\) −1.61074e15 −0.837944 −0.418972 0.907999i \(-0.637610\pi\)
−0.418972 + 0.907999i \(0.637610\pi\)
\(602\) 8.38685e13 0.0432333
\(603\) 0 0
\(604\) 3.64330e14 0.184413
\(605\) 0 0
\(606\) 0 0
\(607\) 2.27195e15 1.11908 0.559541 0.828803i \(-0.310978\pi\)
0.559541 + 0.828803i \(0.310978\pi\)
\(608\) 9.50469e14 0.463947
\(609\) 0 0
\(610\) 0 0
\(611\) −3.48328e14 −0.165486
\(612\) 0 0
\(613\) 2.51698e15 1.17448 0.587242 0.809411i \(-0.300214\pi\)
0.587242 + 0.809411i \(0.300214\pi\)
\(614\) 9.21825e14 0.426307
\(615\) 0 0
\(616\) 1.72640e15 0.784238
\(617\) 2.36230e15 1.06357 0.531785 0.846879i \(-0.321521\pi\)
0.531785 + 0.846879i \(0.321521\pi\)
\(618\) 0 0
\(619\) −3.01613e15 −1.33399 −0.666993 0.745064i \(-0.732419\pi\)
−0.666993 + 0.745064i \(0.732419\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3.23238e14 0.139211
\(623\) 3.27671e15 1.39880
\(624\) 0 0
\(625\) 0 0
\(626\) −9.63681e14 −0.400659
\(627\) 0 0
\(628\) −2.41799e15 −0.987819
\(629\) −9.65243e14 −0.390893
\(630\) 0 0
\(631\) 4.31590e14 0.171755 0.0858776 0.996306i \(-0.472631\pi\)
0.0858776 + 0.996306i \(0.472631\pi\)
\(632\) −2.12518e14 −0.0838402
\(633\) 0 0
\(634\) 1.90313e14 0.0737865
\(635\) 0 0
\(636\) 0 0
\(637\) 3.26083e14 0.123186
\(638\) 9.18807e14 0.344121
\(639\) 0 0
\(640\) 0 0
\(641\) 6.67595e13 0.0243666 0.0121833 0.999926i \(-0.496122\pi\)
0.0121833 + 0.999926i \(0.496122\pi\)
\(642\) 0 0
\(643\) 3.74464e15 1.34354 0.671769 0.740760i \(-0.265535\pi\)
0.671769 + 0.740760i \(0.265535\pi\)
\(644\) −1.86506e15 −0.663468
\(645\) 0 0
\(646\) −1.45216e14 −0.0507850
\(647\) −3.70369e15 −1.28428 −0.642142 0.766585i \(-0.721954\pi\)
−0.642142 + 0.766585i \(0.721954\pi\)
\(648\) 0 0
\(649\) −3.45021e15 −1.17625
\(650\) 0 0
\(651\) 0 0
\(652\) −2.65243e15 −0.881622
\(653\) −4.04155e15 −1.33207 −0.666033 0.745922i \(-0.732009\pi\)
−0.666033 + 0.745922i \(0.732009\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.45645e15 −0.468085
\(657\) 0 0
\(658\) −1.45027e15 −0.458361
\(659\) 4.16521e15 1.30547 0.652735 0.757586i \(-0.273622\pi\)
0.652735 + 0.757586i \(0.273622\pi\)
\(660\) 0 0
\(661\) −1.23316e15 −0.380111 −0.190056 0.981773i \(-0.560867\pi\)
−0.190056 + 0.981773i \(0.560867\pi\)
\(662\) 5.07195e14 0.155045
\(663\) 0 0
\(664\) −3.45488e15 −1.03874
\(665\) 0 0
\(666\) 0 0
\(667\) −2.29450e15 −0.672971
\(668\) −2.48860e15 −0.723909
\(669\) 0 0
\(670\) 0 0
\(671\) −3.67216e15 −1.04219
\(672\) 0 0
\(673\) −7.13397e14 −0.199181 −0.0995905 0.995029i \(-0.531753\pi\)
−0.0995905 + 0.995029i \(0.531753\pi\)
\(674\) −4.57833e14 −0.126788
\(675\) 0 0
\(676\) 2.66315e15 0.725585
\(677\) −3.93889e15 −1.06448 −0.532239 0.846594i \(-0.678649\pi\)
−0.532239 + 0.846594i \(0.678649\pi\)
\(678\) 0 0
\(679\) −5.33031e15 −1.41732
\(680\) 0 0
\(681\) 0 0
\(682\) 7.62680e14 0.197938
\(683\) 5.84741e15 1.50539 0.752696 0.658369i \(-0.228753\pi\)
0.752696 + 0.658369i \(0.228753\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.06504e15 −0.267660
\(687\) 0 0
\(688\) 9.86834e13 0.0244066
\(689\) 1.64275e15 0.403056
\(690\) 0 0
\(691\) −6.16517e15 −1.48873 −0.744364 0.667774i \(-0.767247\pi\)
−0.744364 + 0.667774i \(0.767247\pi\)
\(692\) 1.82654e15 0.437569
\(693\) 0 0
\(694\) 1.05306e15 0.248301
\(695\) 0 0
\(696\) 0 0
\(697\) 1.36350e15 0.313960
\(698\) 8.59632e14 0.196385
\(699\) 0 0
\(700\) 0 0
\(701\) −1.34268e15 −0.299587 −0.149793 0.988717i \(-0.547861\pi\)
−0.149793 + 0.988717i \(0.547861\pi\)
\(702\) 0 0
\(703\) −3.48849e15 −0.766272
\(704\) −5.25274e14 −0.114482
\(705\) 0 0
\(706\) −3.75304e15 −0.805299
\(707\) −8.83026e15 −1.88004
\(708\) 0 0
\(709\) −6.27775e15 −1.31598 −0.657991 0.753026i \(-0.728594\pi\)
−0.657991 + 0.753026i \(0.728594\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −4.69665e15 −0.961940
\(713\) −1.90461e15 −0.387092
\(714\) 0 0
\(715\) 0 0
\(716\) 6.82744e15 1.35593
\(717\) 0 0
\(718\) −4.42197e14 −0.0864830
\(719\) 8.75562e15 1.69933 0.849665 0.527322i \(-0.176804\pi\)
0.849665 + 0.527322i \(0.176804\pi\)
\(720\) 0 0
\(721\) −6.76794e15 −1.29364
\(722\) 2.04470e15 0.387861
\(723\) 0 0
\(724\) −8.29235e14 −0.154923
\(725\) 0 0
\(726\) 0 0
\(727\) −4.60975e15 −0.841857 −0.420929 0.907094i \(-0.638296\pi\)
−0.420929 + 0.907094i \(0.638296\pi\)
\(728\) −1.30143e15 −0.235883
\(729\) 0 0
\(730\) 0 0
\(731\) −9.23854e13 −0.0163704
\(732\) 0 0
\(733\) 7.71163e14 0.134609 0.0673046 0.997732i \(-0.478560\pi\)
0.0673046 + 0.997732i \(0.478560\pi\)
\(734\) −2.27443e15 −0.394043
\(735\) 0 0
\(736\) 4.19007e15 0.715143
\(737\) 6.54022e15 1.10795
\(738\) 0 0
\(739\) −2.51328e15 −0.419466 −0.209733 0.977759i \(-0.567259\pi\)
−0.209733 + 0.977759i \(0.567259\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6.83964e15 1.11638
\(743\) −1.08955e15 −0.176526 −0.0882631 0.996097i \(-0.528132\pi\)
−0.0882631 + 0.996097i \(0.528132\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 2.29576e14 0.0363800
\(747\) 0 0
\(748\) −8.22685e14 −0.128462
\(749\) −1.46812e16 −2.27568
\(750\) 0 0
\(751\) −3.61242e15 −0.551795 −0.275898 0.961187i \(-0.588975\pi\)
−0.275898 + 0.961187i \(0.588975\pi\)
\(752\) −1.70646e15 −0.258760
\(753\) 0 0
\(754\) −6.92632e14 −0.103505
\(755\) 0 0
\(756\) 0 0
\(757\) 1.16985e16 1.71041 0.855207 0.518287i \(-0.173430\pi\)
0.855207 + 0.518287i \(0.173430\pi\)
\(758\) −4.97238e15 −0.721745
\(759\) 0 0
\(760\) 0 0
\(761\) 3.29015e15 0.467304 0.233652 0.972320i \(-0.424932\pi\)
0.233652 + 0.972320i \(0.424932\pi\)
\(762\) 0 0
\(763\) 1.02549e16 1.43564
\(764\) −6.66133e15 −0.925864
\(765\) 0 0
\(766\) −1.13579e15 −0.155611
\(767\) 2.60090e15 0.353793
\(768\) 0 0
\(769\) −6.00040e15 −0.804610 −0.402305 0.915506i \(-0.631791\pi\)
−0.402305 + 0.915506i \(0.631791\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.59229e15 0.733998
\(773\) 3.98905e15 0.519856 0.259928 0.965628i \(-0.416301\pi\)
0.259928 + 0.965628i \(0.416301\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 7.64015e15 0.974681
\(777\) 0 0
\(778\) −6.65257e15 −0.836762
\(779\) 4.92783e15 0.615460
\(780\) 0 0
\(781\) −3.82636e15 −0.471200
\(782\) −6.40173e14 −0.0782817
\(783\) 0 0
\(784\) 1.59748e15 0.192618
\(785\) 0 0
\(786\) 0 0
\(787\) −1.17707e16 −1.38976 −0.694882 0.719123i \(-0.744544\pi\)
−0.694882 + 0.719123i \(0.744544\pi\)
\(788\) −4.91812e15 −0.576640
\(789\) 0 0
\(790\) 0 0
\(791\) −1.14809e16 −1.31827
\(792\) 0 0
\(793\) 2.76821e15 0.313471
\(794\) −3.05158e15 −0.343172
\(795\) 0 0
\(796\) 1.20456e16 1.33600
\(797\) −6.56353e15 −0.722965 −0.361482 0.932379i \(-0.617729\pi\)
−0.361482 + 0.932379i \(0.617729\pi\)
\(798\) 0 0
\(799\) 1.59755e15 0.173559
\(800\) 0 0
\(801\) 0 0
\(802\) −4.76118e15 −0.506705
\(803\) −2.80531e15 −0.296514
\(804\) 0 0
\(805\) 0 0
\(806\) −5.74937e14 −0.0595357
\(807\) 0 0
\(808\) 1.26568e16 1.29289
\(809\) 1.26091e15 0.127928 0.0639641 0.997952i \(-0.479626\pi\)
0.0639641 + 0.997952i \(0.479626\pi\)
\(810\) 0 0
\(811\) −1.13759e15 −0.113860 −0.0569302 0.998378i \(-0.518131\pi\)
−0.0569302 + 0.998378i \(0.518131\pi\)
\(812\) 9.25472e15 0.920037
\(813\) 0 0
\(814\) 6.15824e15 0.603980
\(815\) 0 0
\(816\) 0 0
\(817\) −3.33891e14 −0.0320910
\(818\) −4.71191e15 −0.449836
\(819\) 0 0
\(820\) 0 0
\(821\) 1.31809e16 1.23326 0.616632 0.787251i \(-0.288497\pi\)
0.616632 + 0.787251i \(0.288497\pi\)
\(822\) 0 0
\(823\) −1.98574e16 −1.83326 −0.916628 0.399742i \(-0.869100\pi\)
−0.916628 + 0.399742i \(0.869100\pi\)
\(824\) 9.70076e15 0.889623
\(825\) 0 0
\(826\) 1.08289e16 0.979928
\(827\) −1.25548e16 −1.12857 −0.564285 0.825580i \(-0.690848\pi\)
−0.564285 + 0.825580i \(0.690848\pi\)
\(828\) 0 0
\(829\) 1.26916e16 1.12581 0.562905 0.826521i \(-0.309684\pi\)
0.562905 + 0.826521i \(0.309684\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.95971e14 0.0344338
\(833\) −1.49553e15 −0.129195
\(834\) 0 0
\(835\) 0 0
\(836\) −2.97327e15 −0.251825
\(837\) 0 0
\(838\) 6.82103e15 0.570174
\(839\) 1.32436e15 0.109981 0.0549903 0.998487i \(-0.482487\pi\)
0.0549903 + 0.998487i \(0.482487\pi\)
\(840\) 0 0
\(841\) −8.14816e14 −0.0667854
\(842\) −4.81536e15 −0.392114
\(843\) 0 0
\(844\) 1.65612e16 1.33109
\(845\) 0 0
\(846\) 0 0
\(847\) 7.38322e15 0.581952
\(848\) 8.04782e15 0.630233
\(849\) 0 0
\(850\) 0 0
\(851\) −1.53787e16 −1.18116
\(852\) 0 0
\(853\) −1.99538e16 −1.51289 −0.756443 0.654060i \(-0.773064\pi\)
−0.756443 + 0.654060i \(0.773064\pi\)
\(854\) 1.15255e16 0.868245
\(855\) 0 0
\(856\) 2.10432e16 1.56497
\(857\) 2.21687e16 1.63812 0.819060 0.573709i \(-0.194496\pi\)
0.819060 + 0.573709i \(0.194496\pi\)
\(858\) 0 0
\(859\) 9.18375e15 0.669973 0.334987 0.942223i \(-0.391268\pi\)
0.334987 + 0.942223i \(0.391268\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −8.93967e15 −0.639781
\(863\) 2.31329e16 1.64502 0.822511 0.568750i \(-0.192573\pi\)
0.822511 + 0.568750i \(0.192573\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.33963e15 −0.163229
\(867\) 0 0
\(868\) 7.68213e15 0.529204
\(869\) 1.04201e15 0.0713285
\(870\) 0 0
\(871\) −4.93026e15 −0.333250
\(872\) −1.46987e16 −0.987277
\(873\) 0 0
\(874\) −2.31365e15 −0.153456
\(875\) 0 0
\(876\) 0 0
\(877\) −2.28779e16 −1.48908 −0.744541 0.667577i \(-0.767331\pi\)
−0.744541 + 0.667577i \(0.767331\pi\)
\(878\) −5.16841e15 −0.334301
\(879\) 0 0
\(880\) 0 0
\(881\) −3.00048e15 −0.190469 −0.0952344 0.995455i \(-0.530360\pi\)
−0.0952344 + 0.995455i \(0.530360\pi\)
\(882\) 0 0
\(883\) −1.43409e15 −0.0899066 −0.0449533 0.998989i \(-0.514314\pi\)
−0.0449533 + 0.998989i \(0.514314\pi\)
\(884\) 6.20171e14 0.0386388
\(885\) 0 0
\(886\) 3.51062e14 0.0216022
\(887\) 4.51694e15 0.276226 0.138113 0.990416i \(-0.455896\pi\)
0.138113 + 0.990416i \(0.455896\pi\)
\(888\) 0 0
\(889\) 1.96480e16 1.18675
\(890\) 0 0
\(891\) 0 0
\(892\) 1.86873e15 0.110800
\(893\) 5.77372e15 0.340230
\(894\) 0 0
\(895\) 0 0
\(896\) −2.05179e16 −1.18697
\(897\) 0 0
\(898\) 1.18010e16 0.674373
\(899\) 9.45099e15 0.536783
\(900\) 0 0
\(901\) −7.53421e15 −0.422719
\(902\) −8.69912e15 −0.485109
\(903\) 0 0
\(904\) 1.64560e16 0.906562
\(905\) 0 0
\(906\) 0 0
\(907\) 3.33072e16 1.80176 0.900882 0.434064i \(-0.142921\pi\)
0.900882 + 0.434064i \(0.142921\pi\)
\(908\) 2.24246e16 1.20574
\(909\) 0 0
\(910\) 0 0
\(911\) 9.75985e15 0.515338 0.257669 0.966233i \(-0.417046\pi\)
0.257669 + 0.966233i \(0.417046\pi\)
\(912\) 0 0
\(913\) 1.69398e16 0.883729
\(914\) −1.20120e16 −0.622891
\(915\) 0 0
\(916\) 2.71348e16 1.39028
\(917\) 2.76286e16 1.40711
\(918\) 0 0
\(919\) 8.87018e15 0.446372 0.223186 0.974776i \(-0.428354\pi\)
0.223186 + 0.974776i \(0.428354\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 6.79572e15 0.335904
\(923\) 2.88445e15 0.141728
\(924\) 0 0
\(925\) 0 0
\(926\) −3.09389e15 −0.149329
\(927\) 0 0
\(928\) −2.07918e16 −0.991696
\(929\) −2.79034e16 −1.32303 −0.661517 0.749930i \(-0.730087\pi\)
−0.661517 + 0.749930i \(0.730087\pi\)
\(930\) 0 0
\(931\) −5.40499e15 −0.253263
\(932\) 7.00428e15 0.326269
\(933\) 0 0
\(934\) 6.70730e15 0.308773
\(935\) 0 0
\(936\) 0 0
\(937\) −1.42598e16 −0.644978 −0.322489 0.946573i \(-0.604520\pi\)
−0.322489 + 0.946573i \(0.604520\pi\)
\(938\) −2.05273e16 −0.923030
\(939\) 0 0
\(940\) 0 0
\(941\) 4.11724e16 1.81913 0.909563 0.415566i \(-0.136416\pi\)
0.909563 + 0.415566i \(0.136416\pi\)
\(942\) 0 0
\(943\) 2.17239e16 0.948690
\(944\) 1.27418e16 0.553202
\(945\) 0 0
\(946\) 5.89418e14 0.0252943
\(947\) 2.03073e16 0.866419 0.433209 0.901293i \(-0.357381\pi\)
0.433209 + 0.901293i \(0.357381\pi\)
\(948\) 0 0
\(949\) 2.11475e15 0.0891856
\(950\) 0 0
\(951\) 0 0
\(952\) 5.96878e15 0.247390
\(953\) −3.65143e16 −1.50471 −0.752353 0.658760i \(-0.771081\pi\)
−0.752353 + 0.658760i \(0.771081\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.19375e14 −0.00483498
\(957\) 0 0
\(958\) −1.94308e16 −0.778003
\(959\) −1.72700e16 −0.687527
\(960\) 0 0
\(961\) −1.75634e16 −0.691243
\(962\) −4.64231e15 −0.181665
\(963\) 0 0
\(964\) 1.65953e16 0.642037
\(965\) 0 0
\(966\) 0 0
\(967\) 2.33229e16 0.887027 0.443513 0.896268i \(-0.353732\pi\)
0.443513 + 0.896268i \(0.353732\pi\)
\(968\) −1.05827e16 −0.400203
\(969\) 0 0
\(970\) 0 0
\(971\) 1.97670e16 0.734910 0.367455 0.930041i \(-0.380229\pi\)
0.367455 + 0.930041i \(0.380229\pi\)
\(972\) 0 0
\(973\) 1.00115e16 0.368027
\(974\) 8.04437e15 0.294048
\(975\) 0 0
\(976\) 1.35615e16 0.490154
\(977\) 1.51393e16 0.544109 0.272055 0.962282i \(-0.412297\pi\)
0.272055 + 0.962282i \(0.412297\pi\)
\(978\) 0 0
\(979\) 2.30284e16 0.818387
\(980\) 0 0
\(981\) 0 0
\(982\) 6.21498e15 0.217183
\(983\) 1.59131e16 0.552982 0.276491 0.961017i \(-0.410828\pi\)
0.276491 + 0.961017i \(0.410828\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 3.17664e15 0.108554
\(987\) 0 0
\(988\) 2.24136e15 0.0757441
\(989\) −1.47193e15 −0.0494661
\(990\) 0 0
\(991\) −3.31820e16 −1.10280 −0.551402 0.834240i \(-0.685907\pi\)
−0.551402 + 0.834240i \(0.685907\pi\)
\(992\) −1.72588e16 −0.570422
\(993\) 0 0
\(994\) 1.20095e16 0.392554
\(995\) 0 0
\(996\) 0 0
\(997\) −3.89617e16 −1.25261 −0.626303 0.779579i \(-0.715433\pi\)
−0.626303 + 0.779579i \(0.715433\pi\)
\(998\) −1.11191e16 −0.355511
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.12.a.z.1.3 8
3.2 odd 2 inner 225.12.a.z.1.5 8
5.2 odd 4 45.12.b.c.19.4 yes 8
5.3 odd 4 45.12.b.c.19.6 yes 8
5.4 even 2 inner 225.12.a.z.1.6 8
15.2 even 4 45.12.b.c.19.5 yes 8
15.8 even 4 45.12.b.c.19.3 8
15.14 odd 2 inner 225.12.a.z.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.12.b.c.19.3 8 15.8 even 4
45.12.b.c.19.4 yes 8 5.2 odd 4
45.12.b.c.19.5 yes 8 15.2 even 4
45.12.b.c.19.6 yes 8 5.3 odd 4
225.12.a.z.1.3 8 1.1 even 1 trivial
225.12.a.z.1.4 8 15.14 odd 2 inner
225.12.a.z.1.5 8 3.2 odd 2 inner
225.12.a.z.1.6 8 5.4 even 2 inner