Properties

Label 45.12.b.c.19.5
Level $45$
Weight $12$
Character 45.19
Analytic conductor $34.575$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,12,Mod(19,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.19");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 45.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.5754431252\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2 x^{7} - 5706 x^{6} + 91460 x^{5} + 8073323 x^{4} - 237717036 x^{3} + 1329030846 x^{2} + \cdots + 2557326711753 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{12}\cdot 5^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.5
Root \(24.4724 - 17.3199i\) of defining polynomial
Character \(\chi\) \(=\) 45.19
Dual form 45.12.b.c.19.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+22.0579i q^{2} +1561.45 q^{4} +(-5411.49 + 4420.85i) q^{5} -55546.4i q^{7} +79616.9i q^{8} +(-97514.6 - 119366. i) q^{10} +390374. q^{11} -294278. i q^{13} +1.22524e6 q^{14} +1.44167e6 q^{16} +1.34966e6i q^{17} +4.87782e6 q^{19} +(-8.44977e6 + 6.90293e6i) q^{20} +8.61083e6i q^{22} -2.15035e7i q^{23} +(9.74030e6 - 4.78468e7i) q^{25} +6.49116e6 q^{26} -8.67329e7i q^{28} +1.06704e8 q^{29} +8.85723e7 q^{31} +1.94855e8i q^{32} -2.97707e7 q^{34} +(2.45562e8 + 3.00589e8i) q^{35} +7.15174e8i q^{37} +1.07594e8i q^{38} +(-3.51974e8 - 4.30846e8i) q^{40} +1.01025e9 q^{41} -6.84508e7i q^{43} +6.09549e8 q^{44} +4.74321e8 q^{46} +1.18367e9i q^{47} -1.10807e9 q^{49} +(1.05540e9 + 2.14851e8i) q^{50} -4.59501e8i q^{52} +5.58230e9i q^{53} +(-2.11250e9 + 1.72578e9i) q^{55} +4.42243e9 q^{56} +2.35366e9i q^{58} +8.83822e9 q^{59} +9.40678e9 q^{61} +1.95372e9i q^{62} -1.34557e9 q^{64} +(1.30096e9 + 1.59248e9i) q^{65} -1.67537e10i q^{67} +2.10743e9i q^{68} +(-6.63035e9 + 5.41659e9i) q^{70} -9.80178e9 q^{71} -7.18622e9i q^{73} -1.57752e10 q^{74} +7.61646e9 q^{76} -2.16839e10i q^{77} +2.66926e9 q^{79} +(-7.80157e9 + 6.37340e9i) q^{80} +2.22841e10i q^{82} -4.33938e10i q^{83} +(-5.96665e9 - 7.30368e9i) q^{85} +1.50988e9 q^{86} +3.10803e10i q^{88} -5.89906e10 q^{89} -1.63461e10 q^{91} -3.35766e10i q^{92} -2.61093e10 q^{94} +(-2.63963e10 + 2.15641e10i) q^{95} +9.59614e10i q^{97} -2.44418e10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8976 q^{4} - 1155800 q^{10} + 15740992 q^{16} + 61220032 q^{19} + 184187000 q^{25} + 279698464 q^{31} + 309623120 q^{34} - 62144800 q^{40} - 13964841760 q^{46} - 1596098056 q^{49} + 15819804000 q^{55}+ \cdots - 460752353440 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 22.0579i 0.487415i 0.969849 + 0.243708i \(0.0783637\pi\)
−0.969849 + 0.243708i \(0.921636\pi\)
\(3\) 0 0
\(4\) 1561.45 0.762426
\(5\) −5411.49 + 4420.85i −0.774429 + 0.632661i
\(6\) 0 0
\(7\) 55546.4i 1.24916i −0.780963 0.624578i \(-0.785271\pi\)
0.780963 0.624578i \(-0.214729\pi\)
\(8\) 79616.9i 0.859033i
\(9\) 0 0
\(10\) −97514.6 119366.i −0.308368 0.377469i
\(11\) 390374. 0.730838 0.365419 0.930843i \(-0.380926\pi\)
0.365419 + 0.930843i \(0.380926\pi\)
\(12\) 0 0
\(13\) 294278.i 0.219821i −0.993941 0.109911i \(-0.964944\pi\)
0.993941 0.109911i \(-0.0350565\pi\)
\(14\) 1.22524e6 0.608858
\(15\) 0 0
\(16\) 1.44167e6 0.343720
\(17\) 1.34966e6i 0.230545i 0.993334 + 0.115272i \(0.0367741\pi\)
−0.993334 + 0.115272i \(0.963226\pi\)
\(18\) 0 0
\(19\) 4.87782e6 0.451940 0.225970 0.974134i \(-0.427445\pi\)
0.225970 + 0.974134i \(0.427445\pi\)
\(20\) −8.44977e6 + 6.90293e6i −0.590445 + 0.482357i
\(21\) 0 0
\(22\) 8.61083e6i 0.356221i
\(23\) 2.15035e7i 0.696635i −0.937377 0.348318i \(-0.886753\pi\)
0.937377 0.348318i \(-0.113247\pi\)
\(24\) 0 0
\(25\) 9.74030e6 4.78468e7i 0.199481 0.979902i
\(26\) 6.49116e6 0.107144
\(27\) 0 0
\(28\) 8.67329e7i 0.952389i
\(29\) 1.06704e8 0.966030 0.483015 0.875612i \(-0.339542\pi\)
0.483015 + 0.875612i \(0.339542\pi\)
\(30\) 0 0
\(31\) 8.85723e7 0.555659 0.277830 0.960630i \(-0.410385\pi\)
0.277830 + 0.960630i \(0.410385\pi\)
\(32\) 1.94855e8i 1.02657i
\(33\) 0 0
\(34\) −2.97707e7 −0.112371
\(35\) 2.45562e8 + 3.00589e8i 0.790292 + 0.967383i
\(36\) 0 0
\(37\) 7.15174e8i 1.69552i 0.530382 + 0.847759i \(0.322049\pi\)
−0.530382 + 0.847759i \(0.677951\pi\)
\(38\) 1.07594e8i 0.220282i
\(39\) 0 0
\(40\) −3.51974e8 4.30846e8i −0.543477 0.665261i
\(41\) 1.01025e9 1.36182 0.680909 0.732368i \(-0.261585\pi\)
0.680909 + 0.732368i \(0.261585\pi\)
\(42\) 0 0
\(43\) 6.84508e7i 0.0710072i −0.999370 0.0355036i \(-0.988696\pi\)
0.999370 0.0355036i \(-0.0113035\pi\)
\(44\) 6.09549e8 0.557210
\(45\) 0 0
\(46\) 4.74321e8 0.339551
\(47\) 1.18367e9i 0.752822i 0.926453 + 0.376411i \(0.122842\pi\)
−0.926453 + 0.376411i \(0.877158\pi\)
\(48\) 0 0
\(49\) −1.10807e9 −0.560390
\(50\) 1.05540e9 + 2.14851e8i 0.477619 + 0.0972303i
\(51\) 0 0
\(52\) 4.59501e8i 0.167598i
\(53\) 5.58230e9i 1.83356i 0.399389 + 0.916781i \(0.369222\pi\)
−0.399389 + 0.916781i \(0.630778\pi\)
\(54\) 0 0
\(55\) −2.11250e9 + 1.72578e9i −0.565982 + 0.462372i
\(56\) 4.42243e9 1.07307
\(57\) 0 0
\(58\) 2.35366e9i 0.470858i
\(59\) 8.83822e9 1.60945 0.804727 0.593645i \(-0.202312\pi\)
0.804727 + 0.593645i \(0.202312\pi\)
\(60\) 0 0
\(61\) 9.40678e9 1.42602 0.713012 0.701152i \(-0.247330\pi\)
0.713012 + 0.701152i \(0.247330\pi\)
\(62\) 1.95372e9i 0.270837i
\(63\) 0 0
\(64\) −1.34557e9 −0.156644
\(65\) 1.30096e9 + 1.59248e9i 0.139072 + 0.170236i
\(66\) 0 0
\(67\) 1.67537e10i 1.51600i −0.652253 0.758002i \(-0.726176\pi\)
0.652253 0.758002i \(-0.273824\pi\)
\(68\) 2.10743e9i 0.175774i
\(69\) 0 0
\(70\) −6.63035e9 + 5.41659e9i −0.471517 + 0.385200i
\(71\) −9.80178e9 −0.644739 −0.322370 0.946614i \(-0.604479\pi\)
−0.322370 + 0.946614i \(0.604479\pi\)
\(72\) 0 0
\(73\) 7.18622e9i 0.405718i −0.979208 0.202859i \(-0.934977\pi\)
0.979208 0.202859i \(-0.0650234\pi\)
\(74\) −1.57752e10 −0.826421
\(75\) 0 0
\(76\) 7.61646e9 0.344571
\(77\) 2.16839e10i 0.912930i
\(78\) 0 0
\(79\) 2.66926e9 0.0975983 0.0487991 0.998809i \(-0.484461\pi\)
0.0487991 + 0.998809i \(0.484461\pi\)
\(80\) −7.80157e9 + 6.37340e9i −0.266187 + 0.217458i
\(81\) 0 0
\(82\) 2.22841e10i 0.663771i
\(83\) 4.33938e10i 1.20920i −0.796529 0.604600i \(-0.793333\pi\)
0.796529 0.604600i \(-0.206667\pi\)
\(84\) 0 0
\(85\) −5.96665e9 7.30368e9i −0.145857 0.178541i
\(86\) 1.50988e9 0.0346100
\(87\) 0 0
\(88\) 3.10803e10i 0.627814i
\(89\) −5.89906e10 −1.11979 −0.559896 0.828563i \(-0.689159\pi\)
−0.559896 + 0.828563i \(0.689159\pi\)
\(90\) 0 0
\(91\) −1.63461e10 −0.274591
\(92\) 3.35766e10i 0.531133i
\(93\) 0 0
\(94\) −2.61093e10 −0.366937
\(95\) −2.63963e10 + 2.15641e10i −0.349996 + 0.285925i
\(96\) 0 0
\(97\) 9.59614e10i 1.13462i 0.823503 + 0.567312i \(0.192017\pi\)
−0.823503 + 0.567312i \(0.807983\pi\)
\(98\) 2.44418e10i 0.273143i
\(99\) 0 0
\(100\) 1.52090e10 7.47103e10i 0.152090 0.747103i
\(101\) −1.58971e11 −1.50505 −0.752524 0.658565i \(-0.771164\pi\)
−0.752524 + 0.658565i \(0.771164\pi\)
\(102\) 0 0
\(103\) 1.21843e11i 1.03561i −0.855499 0.517805i \(-0.826749\pi\)
0.855499 0.517805i \(-0.173251\pi\)
\(104\) 2.34295e10 0.188834
\(105\) 0 0
\(106\) −1.23134e11 −0.893707
\(107\) 2.64305e11i 1.82178i −0.412653 0.910888i \(-0.635398\pi\)
0.412653 0.910888i \(-0.364602\pi\)
\(108\) 0 0
\(109\) 1.84618e11 1.14929 0.574644 0.818403i \(-0.305140\pi\)
0.574644 + 0.818403i \(0.305140\pi\)
\(110\) −3.80672e10 4.65974e10i −0.225367 0.275868i
\(111\) 0 0
\(112\) 8.00794e10i 0.429360i
\(113\) 2.06690e11i 1.05533i 0.849453 + 0.527664i \(0.176932\pi\)
−0.849453 + 0.527664i \(0.823068\pi\)
\(114\) 0 0
\(115\) 9.50636e10 + 1.16366e11i 0.440733 + 0.539495i
\(116\) 1.66613e11 0.736527
\(117\) 0 0
\(118\) 1.94952e11i 0.784472i
\(119\) 7.49688e10 0.287987
\(120\) 0 0
\(121\) −1.32920e11 −0.465876
\(122\) 2.07494e11i 0.695066i
\(123\) 0 0
\(124\) 1.38301e11 0.423649
\(125\) 1.58814e11 + 3.01983e11i 0.465461 + 0.885068i
\(126\) 0 0
\(127\) 3.53722e11i 0.950039i −0.879975 0.475020i \(-0.842441\pi\)
0.879975 0.475020i \(-0.157559\pi\)
\(128\) 3.69384e11i 0.950217i
\(129\) 0 0
\(130\) −3.51269e10 + 2.86965e10i −0.0829757 + 0.0677860i
\(131\) 4.97397e11 1.12645 0.563223 0.826305i \(-0.309561\pi\)
0.563223 + 0.826305i \(0.309561\pi\)
\(132\) 0 0
\(133\) 2.70945e11i 0.564543i
\(134\) 3.69552e11 0.738923
\(135\) 0 0
\(136\) −1.07456e11 −0.198046
\(137\) 3.10911e11i 0.550393i −0.961388 0.275196i \(-0.911257\pi\)
0.961388 0.275196i \(-0.0887429\pi\)
\(138\) 0 0
\(139\) 1.80237e11 0.294620 0.147310 0.989090i \(-0.452938\pi\)
0.147310 + 0.989090i \(0.452938\pi\)
\(140\) 3.83433e11 + 4.69354e11i 0.602539 + 0.737558i
\(141\) 0 0
\(142\) 2.16207e11i 0.314256i
\(143\) 1.14879e11i 0.160654i
\(144\) 0 0
\(145\) −5.77426e11 + 4.71721e11i −0.748122 + 0.611169i
\(146\) 1.58513e11 0.197753
\(147\) 0 0
\(148\) 1.11671e12i 1.29271i
\(149\) −2.91760e11 −0.325463 −0.162731 0.986670i \(-0.552030\pi\)
−0.162731 + 0.986670i \(0.552030\pi\)
\(150\) 0 0
\(151\) −2.33328e11 −0.241876 −0.120938 0.992660i \(-0.538590\pi\)
−0.120938 + 0.992660i \(0.538590\pi\)
\(152\) 3.88356e11i 0.388232i
\(153\) 0 0
\(154\) 4.78300e11 0.444976
\(155\) −4.79308e11 + 3.91565e11i −0.430319 + 0.351544i
\(156\) 0 0
\(157\) 1.54856e12i 1.29563i 0.761800 + 0.647813i \(0.224316\pi\)
−0.761800 + 0.647813i \(0.775684\pi\)
\(158\) 5.88783e10i 0.0475709i
\(159\) 0 0
\(160\) −8.61427e11 1.05446e12i −0.649469 0.795004i
\(161\) −1.19444e12 −0.870206
\(162\) 0 0
\(163\) 1.69870e12i 1.15634i −0.815917 0.578168i \(-0.803768\pi\)
0.815917 0.578168i \(-0.196232\pi\)
\(164\) 1.57746e12 1.03829
\(165\) 0 0
\(166\) 9.57176e11 0.589383
\(167\) 1.59377e12i 0.949481i −0.880126 0.474740i \(-0.842542\pi\)
0.880126 0.474740i \(-0.157458\pi\)
\(168\) 0 0
\(169\) 1.70556e12 0.951679
\(170\) 1.61104e11 1.31612e11i 0.0870235 0.0710928i
\(171\) 0 0
\(172\) 1.06883e11i 0.0541378i
\(173\) 1.16978e12i 0.573917i −0.957943 0.286958i \(-0.907356\pi\)
0.957943 0.286958i \(-0.0926441\pi\)
\(174\) 0 0
\(175\) −2.65771e12 5.41039e11i −1.22405 0.249183i
\(176\) 5.62789e11 0.251204
\(177\) 0 0
\(178\) 1.30121e12i 0.545804i
\(179\) −4.37250e12 −1.77844 −0.889218 0.457484i \(-0.848751\pi\)
−0.889218 + 0.457484i \(0.848751\pi\)
\(180\) 0 0
\(181\) 5.31067e11 0.203197 0.101599 0.994825i \(-0.467604\pi\)
0.101599 + 0.994825i \(0.467604\pi\)
\(182\) 3.60561e11i 0.133840i
\(183\) 0 0
\(184\) 1.71204e12 0.598433
\(185\) −3.16168e12 3.87016e12i −1.07269 1.31306i
\(186\) 0 0
\(187\) 5.26872e11i 0.168491i
\(188\) 1.84824e12i 0.573971i
\(189\) 0 0
\(190\) −4.75659e11 5.82246e11i −0.139364 0.170593i
\(191\) −4.26612e12 −1.21437 −0.607183 0.794562i \(-0.707700\pi\)
−0.607183 + 0.794562i \(0.707700\pi\)
\(192\) 0 0
\(193\) 3.58148e12i 0.962713i 0.876525 + 0.481356i \(0.159856\pi\)
−0.876525 + 0.481356i \(0.840144\pi\)
\(194\) −2.11671e12 −0.553033
\(195\) 0 0
\(196\) −1.73020e12 −0.427256
\(197\) 3.14971e12i 0.756322i −0.925740 0.378161i \(-0.876557\pi\)
0.925740 0.378161i \(-0.123443\pi\)
\(198\) 0 0
\(199\) 7.71437e12 1.75230 0.876150 0.482039i \(-0.160104\pi\)
0.876150 + 0.482039i \(0.160104\pi\)
\(200\) 3.80941e12 + 7.75492e11i 0.841768 + 0.171361i
\(201\) 0 0
\(202\) 3.50656e12i 0.733583i
\(203\) 5.92701e12i 1.20672i
\(204\) 0 0
\(205\) −5.46698e12 + 4.46618e12i −1.05463 + 0.861569i
\(206\) 2.68760e12 0.504772
\(207\) 0 0
\(208\) 4.24252e11i 0.0755571i
\(209\) 1.90417e12 0.330295
\(210\) 0 0
\(211\) −1.06063e13 −1.74586 −0.872931 0.487843i \(-0.837784\pi\)
−0.872931 + 0.487843i \(0.837784\pi\)
\(212\) 8.71648e12i 1.39796i
\(213\) 0 0
\(214\) 5.83002e12 0.887962
\(215\) 3.02611e11 + 3.70421e11i 0.0449234 + 0.0549900i
\(216\) 0 0
\(217\) 4.91987e12i 0.694105i
\(218\) 4.07229e12i 0.560181i
\(219\) 0 0
\(220\) −3.29857e12 + 2.69472e12i −0.431520 + 0.352525i
\(221\) 3.97176e11 0.0506787
\(222\) 0 0
\(223\) 1.19680e12i 0.145326i 0.997357 + 0.0726630i \(0.0231497\pi\)
−0.997357 + 0.0726630i \(0.976850\pi\)
\(224\) 1.08235e13 1.28234
\(225\) 0 0
\(226\) −4.55914e12 −0.514383
\(227\) 1.43614e13i 1.58145i 0.612172 + 0.790724i \(0.290296\pi\)
−0.612172 + 0.790724i \(0.709704\pi\)
\(228\) 0 0
\(229\) 1.73779e13 1.82349 0.911744 0.410758i \(-0.134736\pi\)
0.911744 + 0.410758i \(0.134736\pi\)
\(230\) −2.56678e12 + 2.09690e12i −0.262958 + 0.214820i
\(231\) 0 0
\(232\) 8.49542e12i 0.829852i
\(233\) 4.48575e12i 0.427935i −0.976841 0.213968i \(-0.931361\pi\)
0.976841 0.213968i \(-0.0686387\pi\)
\(234\) 0 0
\(235\) −5.23282e12 6.40541e12i −0.476281 0.583007i
\(236\) 1.38004e13 1.22709
\(237\) 0 0
\(238\) 1.65365e12i 0.140369i
\(239\) 7.64513e10 0.00634157 0.00317078 0.999995i \(-0.498991\pi\)
0.00317078 + 0.999995i \(0.498991\pi\)
\(240\) 0 0
\(241\) −1.06281e13 −0.842097 −0.421049 0.907038i \(-0.638338\pi\)
−0.421049 + 0.907038i \(0.638338\pi\)
\(242\) 2.93193e12i 0.227075i
\(243\) 0 0
\(244\) 1.46882e13 1.08724
\(245\) 5.99633e12 4.89863e12i 0.433983 0.354537i
\(246\) 0 0
\(247\) 1.43544e12i 0.0993461i
\(248\) 7.05184e12i 0.477330i
\(249\) 0 0
\(250\) −6.66110e12 + 3.50310e12i −0.431396 + 0.226873i
\(251\) −4.24494e12 −0.268946 −0.134473 0.990917i \(-0.542934\pi\)
−0.134473 + 0.990917i \(0.542934\pi\)
\(252\) 0 0
\(253\) 8.39439e12i 0.509127i
\(254\) 7.80236e12 0.463064
\(255\) 0 0
\(256\) −1.09035e13 −0.619795
\(257\) 1.26005e13i 0.701059i 0.936552 + 0.350529i \(0.113998\pi\)
−0.936552 + 0.350529i \(0.886002\pi\)
\(258\) 0 0
\(259\) 3.97253e13 2.11797
\(260\) 2.03138e12 + 2.48658e12i 0.106032 + 0.129793i
\(261\) 0 0
\(262\) 1.09715e13i 0.549047i
\(263\) 7.46619e12i 0.365883i 0.983124 + 0.182942i \(0.0585620\pi\)
−0.983124 + 0.182942i \(0.941438\pi\)
\(264\) 0 0
\(265\) −2.46785e13 3.02086e13i −1.16002 1.41996i
\(266\) 5.97648e12 0.275167
\(267\) 0 0
\(268\) 2.61601e13i 1.15584i
\(269\) −1.69203e13 −0.732435 −0.366218 0.930529i \(-0.619347\pi\)
−0.366218 + 0.930529i \(0.619347\pi\)
\(270\) 0 0
\(271\) 2.59160e12 0.107705 0.0538526 0.998549i \(-0.482850\pi\)
0.0538526 + 0.998549i \(0.482850\pi\)
\(272\) 1.94576e12i 0.0792430i
\(273\) 0 0
\(274\) 6.85804e12 0.268270
\(275\) 3.80236e12 1.86781e13i 0.145788 0.716149i
\(276\) 0 0
\(277\) 8.12272e12i 0.299270i 0.988741 + 0.149635i \(0.0478098\pi\)
−0.988741 + 0.149635i \(0.952190\pi\)
\(278\) 3.97565e12i 0.143602i
\(279\) 0 0
\(280\) −2.39319e13 + 1.95509e13i −0.831014 + 0.678887i
\(281\) −1.40507e13 −0.478425 −0.239213 0.970967i \(-0.576889\pi\)
−0.239213 + 0.970967i \(0.576889\pi\)
\(282\) 0 0
\(283\) 5.56339e13i 1.82186i 0.412563 + 0.910929i \(0.364634\pi\)
−0.412563 + 0.910929i \(0.635366\pi\)
\(284\) −1.53050e13 −0.491566
\(285\) 0 0
\(286\) 2.53398e12 0.0783051
\(287\) 5.61159e13i 1.70112i
\(288\) 0 0
\(289\) 3.24503e13 0.946849
\(290\) −1.04052e13 1.27368e13i −0.297893 0.364646i
\(291\) 0 0
\(292\) 1.12209e13i 0.309330i
\(293\) 3.50276e13i 0.947631i −0.880624 0.473815i \(-0.842876\pi\)
0.880624 0.473815i \(-0.157124\pi\)
\(294\) 0 0
\(295\) −4.78279e13 + 3.90724e13i −1.24641 + 1.01824i
\(296\) −5.69399e13 −1.45651
\(297\) 0 0
\(298\) 6.43561e12i 0.158635i
\(299\) −6.32801e12 −0.153135
\(300\) 0 0
\(301\) −3.80220e12 −0.0886990
\(302\) 5.14672e12i 0.117894i
\(303\) 0 0
\(304\) 7.03219e12 0.155341
\(305\) −5.09047e13 + 4.15860e13i −1.10435 + 0.902189i
\(306\) 0 0
\(307\) 4.17912e13i 0.874628i −0.899309 0.437314i \(-0.855930\pi\)
0.899309 0.437314i \(-0.144070\pi\)
\(308\) 3.38582e13i 0.696042i
\(309\) 0 0
\(310\) −8.63709e12 1.05725e13i −0.171348 0.209744i
\(311\) 1.46541e13 0.285612 0.142806 0.989751i \(-0.454388\pi\)
0.142806 + 0.989751i \(0.454388\pi\)
\(312\) 0 0
\(313\) 4.36887e13i 0.822007i −0.911634 0.411004i \(-0.865178\pi\)
0.911634 0.411004i \(-0.134822\pi\)
\(314\) −3.41579e13 −0.631507
\(315\) 0 0
\(316\) 4.16792e12 0.0744115
\(317\) 8.62787e12i 0.151383i 0.997131 + 0.0756916i \(0.0241164\pi\)
−0.997131 + 0.0756916i \(0.975884\pi\)
\(318\) 0 0
\(319\) 4.16544e13 0.706011
\(320\) 7.28151e12 5.94854e12i 0.121310 0.0991028i
\(321\) 0 0
\(322\) 2.63468e13i 0.424151i
\(323\) 6.58340e12i 0.104192i
\(324\) 0 0
\(325\) −1.40803e13 2.86636e12i −0.215403 0.0438503i
\(326\) 3.74697e13 0.563616
\(327\) 0 0
\(328\) 8.04332e13i 1.16985i
\(329\) 6.57486e13 0.940392
\(330\) 0 0
\(331\) −2.29938e13 −0.318095 −0.159048 0.987271i \(-0.550842\pi\)
−0.159048 + 0.987271i \(0.550842\pi\)
\(332\) 6.77572e13i 0.921926i
\(333\) 0 0
\(334\) 3.51553e13 0.462791
\(335\) 7.40657e13 + 9.06626e13i 0.959115 + 1.17404i
\(336\) 0 0
\(337\) 2.07560e13i 0.260123i 0.991506 + 0.130062i \(0.0415175\pi\)
−0.991506 + 0.130062i \(0.958483\pi\)
\(338\) 3.76211e13i 0.463863i
\(339\) 0 0
\(340\) −9.31662e12 1.14043e13i −0.111205 0.136124i
\(341\) 3.45763e13 0.406097
\(342\) 0 0
\(343\) 4.82838e13i 0.549141i
\(344\) 5.44984e12 0.0609975
\(345\) 0 0
\(346\) 2.58028e13 0.279736
\(347\) 4.77409e13i 0.509423i 0.967017 + 0.254711i \(0.0819805\pi\)
−0.967017 + 0.254711i \(0.918020\pi\)
\(348\) 0 0
\(349\) 3.89716e13 0.402910 0.201455 0.979498i \(-0.435433\pi\)
0.201455 + 0.979498i \(0.435433\pi\)
\(350\) 1.19342e13 5.86236e13i 0.121456 0.596620i
\(351\) 0 0
\(352\) 7.60665e13i 0.750255i
\(353\) 1.70145e14i 1.65218i 0.563536 + 0.826091i \(0.309441\pi\)
−0.563536 + 0.826091i \(0.690559\pi\)
\(354\) 0 0
\(355\) 5.30422e13 4.33322e13i 0.499305 0.407901i
\(356\) −9.21108e13 −0.853760
\(357\) 0 0
\(358\) 9.64481e13i 0.866837i
\(359\) 2.00471e13 0.177432 0.0887160 0.996057i \(-0.471724\pi\)
0.0887160 + 0.996057i \(0.471724\pi\)
\(360\) 0 0
\(361\) −9.26972e13 −0.795750
\(362\) 1.17142e13i 0.0990413i
\(363\) 0 0
\(364\) −2.55236e13 −0.209356
\(365\) 3.17692e13 + 3.88882e13i 0.256682 + 0.314200i
\(366\) 0 0
\(367\) 1.03112e14i 0.808433i 0.914663 + 0.404217i \(0.132456\pi\)
−0.914663 + 0.404217i \(0.867544\pi\)
\(368\) 3.10009e13i 0.239448i
\(369\) 0 0
\(370\) 8.53675e13 6.97399e13i 0.640005 0.522844i
\(371\) 3.10077e14 2.29041
\(372\) 0 0
\(373\) 1.04079e13i 0.0746386i 0.999303 + 0.0373193i \(0.0118819\pi\)
−0.999303 + 0.0373193i \(0.988118\pi\)
\(374\) −1.16217e13 −0.0821251
\(375\) 0 0
\(376\) −9.42400e13 −0.646699
\(377\) 3.14006e13i 0.212354i
\(378\) 0 0
\(379\) −2.25424e14 −1.48076 −0.740380 0.672188i \(-0.765355\pi\)
−0.740380 + 0.672188i \(0.765355\pi\)
\(380\) −4.12164e13 + 3.36712e13i −0.266846 + 0.217996i
\(381\) 0 0
\(382\) 9.41016e13i 0.591900i
\(383\) 5.14914e13i 0.319258i 0.987177 + 0.159629i \(0.0510298\pi\)
−0.987177 + 0.159629i \(0.948970\pi\)
\(384\) 0 0
\(385\) 9.58611e13 + 1.17342e14i 0.577575 + 0.707000i
\(386\) −7.89998e13 −0.469241
\(387\) 0 0
\(388\) 1.49839e14i 0.865068i
\(389\) 3.01596e14 1.71673 0.858366 0.513037i \(-0.171480\pi\)
0.858366 + 0.513037i \(0.171480\pi\)
\(390\) 0 0
\(391\) 2.90224e13 0.160606
\(392\) 8.82214e13i 0.481394i
\(393\) 0 0
\(394\) 6.94760e13 0.368643
\(395\) −1.44447e13 + 1.18004e13i −0.0755829 + 0.0617466i
\(396\) 0 0
\(397\) 1.38344e14i 0.704065i 0.935988 + 0.352033i \(0.114509\pi\)
−0.935988 + 0.352033i \(0.885491\pi\)
\(398\) 1.70163e14i 0.854097i
\(399\) 0 0
\(400\) 1.40423e13 6.89791e13i 0.0685658 0.336812i
\(401\) −2.15849e14 −1.03958 −0.519788 0.854295i \(-0.673989\pi\)
−0.519788 + 0.854295i \(0.673989\pi\)
\(402\) 0 0
\(403\) 2.60649e13i 0.122146i
\(404\) −2.48225e14 −1.14749
\(405\) 0 0
\(406\) 1.30737e14 0.588175
\(407\) 2.79185e14i 1.23915i
\(408\) 0 0
\(409\) −2.13616e14 −0.922901 −0.461450 0.887166i \(-0.652671\pi\)
−0.461450 + 0.887166i \(0.652671\pi\)
\(410\) −9.85145e13 1.20590e14i −0.419942 0.514044i
\(411\) 0 0
\(412\) 1.90252e14i 0.789576i
\(413\) 4.90931e14i 2.01046i
\(414\) 0 0
\(415\) 1.91837e14 + 2.34825e14i 0.765013 + 0.936440i
\(416\) 5.73418e13 0.225662
\(417\) 0 0
\(418\) 4.20020e13i 0.160991i
\(419\) −3.09233e14 −1.16979 −0.584896 0.811108i \(-0.698865\pi\)
−0.584896 + 0.811108i \(0.698865\pi\)
\(420\) 0 0
\(421\) 2.18306e14 0.804476 0.402238 0.915535i \(-0.368232\pi\)
0.402238 + 0.915535i \(0.368232\pi\)
\(422\) 2.33953e14i 0.850960i
\(423\) 0 0
\(424\) −4.44445e14 −1.57509
\(425\) 6.45769e13 + 1.31461e13i 0.225911 + 0.0459894i
\(426\) 0 0
\(427\) 5.22513e14i 1.78133i
\(428\) 4.12699e14i 1.38897i
\(429\) 0 0
\(430\) −8.17071e12 + 6.67496e12i −0.0268030 + 0.0218964i
\(431\) −4.05282e14 −1.31260 −0.656300 0.754500i \(-0.727879\pi\)
−0.656300 + 0.754500i \(0.727879\pi\)
\(432\) 0 0
\(433\) 1.06068e14i 0.334888i −0.985882 0.167444i \(-0.946449\pi\)
0.985882 0.167444i \(-0.0535513\pi\)
\(434\) 1.08522e14 0.338317
\(435\) 0 0
\(436\) 2.88272e14 0.876248
\(437\) 1.04890e14i 0.314837i
\(438\) 0 0
\(439\) −2.34311e14 −0.685864 −0.342932 0.939360i \(-0.611420\pi\)
−0.342932 + 0.939360i \(0.611420\pi\)
\(440\) −1.37401e14 1.68191e14i −0.397193 0.486198i
\(441\) 0 0
\(442\) 8.76087e12i 0.0247016i
\(443\) 1.59155e13i 0.0443199i −0.999754 0.0221600i \(-0.992946\pi\)
0.999754 0.0221600i \(-0.00705431\pi\)
\(444\) 0 0
\(445\) 3.19227e14 2.60789e14i 0.867200 0.708449i
\(446\) −2.63988e13 −0.0708341
\(447\) 0 0
\(448\) 7.47413e13i 0.195673i
\(449\) −5.35002e14 −1.38357 −0.691784 0.722104i \(-0.743175\pi\)
−0.691784 + 0.722104i \(0.743175\pi\)
\(450\) 0 0
\(451\) 3.94377e14 0.995268
\(452\) 3.22735e14i 0.804610i
\(453\) 0 0
\(454\) −3.16783e14 −0.770822
\(455\) 8.84568e13 7.22637e13i 0.212652 0.173723i
\(456\) 0 0
\(457\) 5.44568e14i 1.27795i 0.769229 + 0.638973i \(0.220641\pi\)
−0.769229 + 0.638973i \(0.779359\pi\)
\(458\) 3.83321e14i 0.888796i
\(459\) 0 0
\(460\) 1.48437e14 + 1.81699e14i 0.336027 + 0.411325i
\(461\) 3.08085e14 0.689154 0.344577 0.938758i \(-0.388022\pi\)
0.344577 + 0.938758i \(0.388022\pi\)
\(462\) 0 0
\(463\) 1.40262e14i 0.306370i −0.988198 0.153185i \(-0.951047\pi\)
0.988198 0.153185i \(-0.0489530\pi\)
\(464\) 1.53831e14 0.332044
\(465\) 0 0
\(466\) 9.89463e13 0.208582
\(467\) 3.04077e14i 0.633491i 0.948511 + 0.316746i \(0.102590\pi\)
−0.948511 + 0.316746i \(0.897410\pi\)
\(468\) 0 0
\(469\) −9.30609e14 −1.89372
\(470\) 1.41290e14 1.15425e14i 0.284167 0.232146i
\(471\) 0 0
\(472\) 7.03671e14i 1.38257i
\(473\) 2.67214e13i 0.0518947i
\(474\) 0 0
\(475\) 4.75114e13 2.33388e14i 0.0901536 0.442857i
\(476\) 1.17060e14 0.219569
\(477\) 0 0
\(478\) 1.68635e12i 0.00309098i
\(479\) 8.80901e14 1.59618 0.798090 0.602538i \(-0.205844\pi\)
0.798090 + 0.602538i \(0.205844\pi\)
\(480\) 0 0
\(481\) 2.10460e14 0.372711
\(482\) 2.34434e14i 0.410451i
\(483\) 0 0
\(484\) −2.07548e14 −0.355196
\(485\) −4.24231e14 5.19294e14i −0.717832 0.878687i
\(486\) 0 0
\(487\) 3.64694e14i 0.603280i −0.953422 0.301640i \(-0.902466\pi\)
0.953422 0.301640i \(-0.0975340\pi\)
\(488\) 7.48938e14i 1.22500i
\(489\) 0 0
\(490\) 1.08053e14 + 1.32266e14i 0.172807 + 0.211530i
\(491\) 2.81758e14 0.445582 0.222791 0.974866i \(-0.428483\pi\)
0.222791 + 0.974866i \(0.428483\pi\)
\(492\) 0 0
\(493\) 1.44014e14i 0.222713i
\(494\) 3.16627e13 0.0484228
\(495\) 0 0
\(496\) 1.27692e14 0.190991
\(497\) 5.44454e14i 0.805380i
\(498\) 0 0
\(499\) −5.04088e14 −0.729379 −0.364690 0.931129i \(-0.618825\pi\)
−0.364690 + 0.931129i \(0.618825\pi\)
\(500\) 2.47980e14 + 4.71531e14i 0.354880 + 0.674800i
\(501\) 0 0
\(502\) 9.36344e13i 0.131089i
\(503\) 7.09290e14i 0.982200i −0.871103 0.491100i \(-0.836595\pi\)
0.871103 0.491100i \(-0.163405\pi\)
\(504\) 0 0
\(505\) 8.60270e14 7.02787e14i 1.16555 0.952184i
\(506\) 1.85163e14 0.248156
\(507\) 0 0
\(508\) 5.52319e14i 0.724335i
\(509\) 3.89311e12 0.00505067 0.00252534 0.999997i \(-0.499196\pi\)
0.00252534 + 0.999997i \(0.499196\pi\)
\(510\) 0 0
\(511\) −3.99169e14 −0.506806
\(512\) 5.15989e14i 0.648120i
\(513\) 0 0
\(514\) −2.77940e14 −0.341707
\(515\) 5.38650e14 + 6.59352e14i 0.655189 + 0.802006i
\(516\) 0 0
\(517\) 4.62074e14i 0.550191i
\(518\) 8.76257e14i 1.03233i
\(519\) 0 0
\(520\) −1.26789e14 + 1.03578e14i −0.146239 + 0.119468i
\(521\) −6.67006e14 −0.761241 −0.380621 0.924731i \(-0.624290\pi\)
−0.380621 + 0.924731i \(0.624290\pi\)
\(522\) 0 0
\(523\) 9.54669e14i 1.06683i 0.845855 + 0.533413i \(0.179091\pi\)
−0.845855 + 0.533413i \(0.820909\pi\)
\(524\) 7.76660e14 0.858833
\(525\) 0 0
\(526\) −1.64689e14 −0.178337
\(527\) 1.19543e14i 0.128104i
\(528\) 0 0
\(529\) 4.90411e14 0.514700
\(530\) 6.66337e14 5.44356e14i 0.692112 0.565413i
\(531\) 0 0
\(532\) 4.23067e14i 0.430423i
\(533\) 2.97296e14i 0.299357i
\(534\) 0 0
\(535\) 1.16845e15 + 1.43029e15i 1.15257 + 1.41084i
\(536\) 1.33388e15 1.30230
\(537\) 0 0
\(538\) 3.73225e14i 0.357000i
\(539\) −4.32563e14 −0.409554
\(540\) 0 0
\(541\) −2.01083e14 −0.186548 −0.0932739 0.995640i \(-0.529733\pi\)
−0.0932739 + 0.995640i \(0.529733\pi\)
\(542\) 5.71653e13i 0.0524972i
\(543\) 0 0
\(544\) −2.62989e14 −0.236670
\(545\) −9.99060e14 + 8.16170e14i −0.890043 + 0.727110i
\(546\) 0 0
\(547\) 1.97509e15i 1.72447i −0.506507 0.862236i \(-0.669064\pi\)
0.506507 0.862236i \(-0.330936\pi\)
\(548\) 4.85472e14i 0.419634i
\(549\) 0 0
\(550\) 4.12000e14 + 8.38720e13i 0.349062 + 0.0710595i
\(551\) 5.20481e14 0.436588
\(552\) 0 0
\(553\) 1.48268e14i 0.121915i
\(554\) −1.79170e14 −0.145869
\(555\) 0 0
\(556\) 2.81431e14 0.224626
\(557\) 1.73969e15i 1.37489i −0.726238 0.687444i \(-0.758733\pi\)
0.726238 0.687444i \(-0.241267\pi\)
\(558\) 0 0
\(559\) −2.01436e13 −0.0156089
\(560\) 3.54019e14 + 4.33349e14i 0.271639 + 0.332509i
\(561\) 0 0
\(562\) 3.09929e14i 0.233192i
\(563\) 7.00557e14i 0.521972i −0.965343 0.260986i \(-0.915952\pi\)
0.965343 0.260986i \(-0.0840477\pi\)
\(564\) 0 0
\(565\) −9.13744e14 1.11850e15i −0.667664 0.817276i
\(566\) −1.22717e15 −0.888001
\(567\) 0 0
\(568\) 7.80387e14i 0.553853i
\(569\) −2.47841e15 −1.74203 −0.871014 0.491257i \(-0.836537\pi\)
−0.871014 + 0.491257i \(0.836537\pi\)
\(570\) 0 0
\(571\) −1.29540e15 −0.893111 −0.446556 0.894756i \(-0.647350\pi\)
−0.446556 + 0.894756i \(0.647350\pi\)
\(572\) 1.79377e14i 0.122487i
\(573\) 0 0
\(574\) 1.23780e15 0.829153
\(575\) −1.02887e15 2.09450e14i −0.682634 0.138966i
\(576\) 0 0
\(577\) 8.93465e14i 0.581582i 0.956787 + 0.290791i \(0.0939184\pi\)
−0.956787 + 0.290791i \(0.906082\pi\)
\(578\) 7.15786e14i 0.461509i
\(579\) 0 0
\(580\) −9.01622e14 + 7.36569e14i −0.570388 + 0.465972i
\(581\) −2.41037e15 −1.51048
\(582\) 0 0
\(583\) 2.17918e15i 1.34004i
\(584\) 5.72144e14 0.348526
\(585\) 0 0
\(586\) 7.72636e14 0.461890
\(587\) 2.15415e15i 1.27575i −0.770138 0.637877i \(-0.779813\pi\)
0.770138 0.637877i \(-0.220187\pi\)
\(588\) 0 0
\(589\) 4.32039e14 0.251125
\(590\) −8.61855e14 1.05498e15i −0.496305 0.607518i
\(591\) 0 0
\(592\) 1.03104e15i 0.582784i
\(593\) 1.51707e15i 0.849582i −0.905291 0.424791i \(-0.860348\pi\)
0.905291 0.424791i \(-0.139652\pi\)
\(594\) 0 0
\(595\) −4.05693e14 + 3.31426e14i −0.223025 + 0.182198i
\(596\) −4.55568e14 −0.248141
\(597\) 0 0
\(598\) 1.39583e14i 0.0746405i
\(599\) 4.59566e14 0.243501 0.121750 0.992561i \(-0.461149\pi\)
0.121750 + 0.992561i \(0.461149\pi\)
\(600\) 0 0
\(601\) −1.61074e15 −0.837944 −0.418972 0.907999i \(-0.637610\pi\)
−0.418972 + 0.907999i \(0.637610\pi\)
\(602\) 8.38685e13i 0.0432333i
\(603\) 0 0
\(604\) −3.64330e14 −0.184413
\(605\) 7.19295e14 5.87619e14i 0.360788 0.294742i
\(606\) 0 0
\(607\) 2.27195e15i 1.11908i 0.828803 + 0.559541i \(0.189022\pi\)
−0.828803 + 0.559541i \(0.810978\pi\)
\(608\) 9.50469e14i 0.463947i
\(609\) 0 0
\(610\) −9.17299e14 1.12285e15i −0.439741 0.538279i
\(611\) 3.48328e14 0.165486
\(612\) 0 0
\(613\) 2.51698e15i 1.17448i −0.809411 0.587242i \(-0.800214\pi\)
0.809411 0.587242i \(-0.199786\pi\)
\(614\) 9.21825e14 0.426307
\(615\) 0 0
\(616\) 1.72640e15 0.784238
\(617\) 2.36230e15i 1.06357i −0.846879 0.531785i \(-0.821521\pi\)
0.846879 0.531785i \(-0.178479\pi\)
\(618\) 0 0
\(619\) 3.01613e15 1.33399 0.666993 0.745064i \(-0.267581\pi\)
0.666993 + 0.745064i \(0.267581\pi\)
\(620\) −7.48415e14 + 6.11408e14i −0.328086 + 0.268026i
\(621\) 0 0
\(622\) 3.23238e14i 0.139211i
\(623\) 3.27671e15i 1.39880i
\(624\) 0 0
\(625\) −2.19444e15 9.32084e14i −0.920414 0.390944i
\(626\) 9.63681e14 0.400659
\(627\) 0 0
\(628\) 2.41799e15i 0.987819i
\(629\) −9.65243e14 −0.390893
\(630\) 0 0
\(631\) 4.31590e14 0.171755 0.0858776 0.996306i \(-0.472631\pi\)
0.0858776 + 0.996306i \(0.472631\pi\)
\(632\) 2.12518e14i 0.0838402i
\(633\) 0 0
\(634\) −1.90313e14 −0.0737865
\(635\) 1.56375e15 + 1.91416e15i 0.601052 + 0.735738i
\(636\) 0 0
\(637\) 3.26083e14i 0.123186i
\(638\) 9.18807e14i 0.344121i
\(639\) 0 0
\(640\) −1.63299e15 1.99892e15i −0.601165 0.735876i
\(641\) −6.67595e13 −0.0243666 −0.0121833 0.999926i \(-0.503878\pi\)
−0.0121833 + 0.999926i \(0.503878\pi\)
\(642\) 0 0
\(643\) 3.74464e15i 1.34354i −0.740760 0.671769i \(-0.765535\pi\)
0.740760 0.671769i \(-0.234465\pi\)
\(644\) −1.86506e15 −0.663468
\(645\) 0 0
\(646\) −1.45216e14 −0.0507850
\(647\) 3.70369e15i 1.28428i 0.766585 + 0.642142i \(0.221954\pi\)
−0.766585 + 0.642142i \(0.778046\pi\)
\(648\) 0 0
\(649\) 3.45021e15 1.17625
\(650\) 6.32259e13 3.10581e14i 0.0213733 0.104991i
\(651\) 0 0
\(652\) 2.65243e15i 0.881622i
\(653\) 4.04155e15i 1.33207i −0.745922 0.666033i \(-0.767991\pi\)
0.745922 0.666033i \(-0.232009\pi\)
\(654\) 0 0
\(655\) −2.69166e15 + 2.19892e15i −0.872353 + 0.712658i
\(656\) 1.45645e15 0.468085
\(657\) 0 0
\(658\) 1.45027e15i 0.458361i
\(659\) 4.16521e15 1.30547 0.652735 0.757586i \(-0.273622\pi\)
0.652735 + 0.757586i \(0.273622\pi\)
\(660\) 0 0
\(661\) −1.23316e15 −0.380111 −0.190056 0.981773i \(-0.560867\pi\)
−0.190056 + 0.981773i \(0.560867\pi\)
\(662\) 5.07195e14i 0.155045i
\(663\) 0 0
\(664\) 3.45488e15 1.03874
\(665\) 1.19781e15 + 1.46622e15i 0.357164 + 0.437199i
\(666\) 0 0
\(667\) 2.29450e15i 0.672971i
\(668\) 2.48860e15i 0.723909i
\(669\) 0 0
\(670\) −1.99983e15 + 1.63373e15i −0.572244 + 0.467487i
\(671\) 3.67216e15 1.04219
\(672\) 0 0
\(673\) 7.13397e14i 0.199181i 0.995029 + 0.0995905i \(0.0317533\pi\)
−0.995029 + 0.0995905i \(0.968247\pi\)
\(674\) −4.57833e14 −0.126788
\(675\) 0 0
\(676\) 2.66315e15 0.725585
\(677\) 3.93889e15i 1.06448i 0.846594 + 0.532239i \(0.178649\pi\)
−0.846594 + 0.532239i \(0.821351\pi\)
\(678\) 0 0
\(679\) 5.33031e15 1.41732
\(680\) 5.81496e14 4.75046e14i 0.153373 0.125296i
\(681\) 0 0
\(682\) 7.62680e14i 0.197938i
\(683\) 5.84741e15i 1.50539i 0.658369 + 0.752696i \(0.271247\pi\)
−0.658369 + 0.752696i \(0.728753\pi\)
\(684\) 0 0
\(685\) 1.37449e15 + 1.68249e15i 0.348212 + 0.426240i
\(686\) 1.06504e15 0.267660
\(687\) 0 0
\(688\) 9.86834e13i 0.0244066i
\(689\) 1.64275e15 0.403056
\(690\) 0 0
\(691\) −6.16517e15 −1.48873 −0.744364 0.667774i \(-0.767247\pi\)
−0.744364 + 0.667774i \(0.767247\pi\)
\(692\) 1.82654e15i 0.437569i
\(693\) 0 0
\(694\) −1.05306e15 −0.248301
\(695\) −9.75351e14 + 7.96801e14i −0.228163 + 0.186395i
\(696\) 0 0
\(697\) 1.36350e15i 0.313960i
\(698\) 8.59632e14i 0.196385i
\(699\) 0 0
\(700\) −4.14989e15 8.44804e14i −0.933248 0.189984i
\(701\) 1.34268e15 0.299587 0.149793 0.988717i \(-0.452139\pi\)
0.149793 + 0.988717i \(0.452139\pi\)
\(702\) 0 0
\(703\) 3.48849e15i 0.766272i
\(704\) −5.25274e14 −0.114482
\(705\) 0 0
\(706\) −3.75304e15 −0.805299
\(707\) 8.83026e15i 1.88004i
\(708\) 0 0
\(709\) 6.27775e15 1.31598 0.657991 0.753026i \(-0.271406\pi\)
0.657991 + 0.753026i \(0.271406\pi\)
\(710\) 9.55817e14 + 1.17000e15i 0.198817 + 0.243369i
\(711\) 0 0
\(712\) 4.69665e15i 0.961940i
\(713\) 1.90461e15i 0.387092i
\(714\) 0 0
\(715\) 5.07861e14 + 6.21664e14i 0.101639 + 0.124415i
\(716\) −6.82744e15 −1.35593
\(717\) 0 0
\(718\) 4.42197e14i 0.0864830i
\(719\) 8.75562e15 1.69933 0.849665 0.527322i \(-0.176804\pi\)
0.849665 + 0.527322i \(0.176804\pi\)
\(720\) 0 0
\(721\) −6.76794e15 −1.29364
\(722\) 2.04470e15i 0.387861i
\(723\) 0 0
\(724\) 8.29235e14 0.154923
\(725\) 1.03933e15 5.10543e15i 0.192705 0.946615i
\(726\) 0 0
\(727\) 4.60975e15i 0.841857i −0.907094 0.420929i \(-0.861704\pi\)
0.907094 0.420929i \(-0.138296\pi\)
\(728\) 1.30143e15i 0.235883i
\(729\) 0 0
\(730\) −8.57791e14 + 7.00762e14i −0.153146 + 0.125111i
\(731\) 9.23854e13 0.0163704
\(732\) 0 0
\(733\) 7.71163e14i 0.134609i −0.997732 0.0673046i \(-0.978560\pi\)
0.997732 0.0673046i \(-0.0214399\pi\)
\(734\) −2.27443e15 −0.394043
\(735\) 0 0
\(736\) 4.19007e15 0.715143
\(737\) 6.54022e15i 1.10795i
\(738\) 0 0
\(739\) 2.51328e15 0.419466 0.209733 0.977759i \(-0.432741\pi\)
0.209733 + 0.977759i \(0.432741\pi\)
\(740\) −4.93680e15 6.04305e15i −0.817845 1.00111i
\(741\) 0 0
\(742\) 6.83964e15i 1.11638i
\(743\) 1.08955e15i 0.176526i −0.996097 0.0882631i \(-0.971868\pi\)
0.996097 0.0882631i \(-0.0281316\pi\)
\(744\) 0 0
\(745\) 1.57886e15 1.28983e15i 0.252048 0.205907i
\(746\) −2.29576e14 −0.0363800
\(747\) 0 0
\(748\) 8.22685e14i 0.128462i
\(749\) −1.46812e16 −2.27568
\(750\) 0 0
\(751\) −3.61242e15 −0.551795 −0.275898 0.961187i \(-0.588975\pi\)
−0.275898 + 0.961187i \(0.588975\pi\)
\(752\) 1.70646e15i 0.258760i
\(753\) 0 0
\(754\) 6.92632e14 0.103505
\(755\) 1.26265e15 1.03151e15i 0.187316 0.153026i
\(756\) 0 0
\(757\) 1.16985e16i 1.71041i 0.518287 + 0.855207i \(0.326570\pi\)
−0.518287 + 0.855207i \(0.673430\pi\)
\(758\) 4.97238e15i 0.721745i
\(759\) 0 0
\(760\) −1.71687e15 2.10159e15i −0.245619 0.300658i
\(761\) −3.29015e15 −0.467304 −0.233652 0.972320i \(-0.575068\pi\)
−0.233652 + 0.972320i \(0.575068\pi\)
\(762\) 0 0
\(763\) 1.02549e16i 1.43564i
\(764\) −6.66133e15 −0.925864
\(765\) 0 0
\(766\) −1.13579e15 −0.155611
\(767\) 2.60090e15i 0.353793i
\(768\) 0 0
\(769\) 6.00040e15 0.804610 0.402305 0.915506i \(-0.368209\pi\)
0.402305 + 0.915506i \(0.368209\pi\)
\(770\) −2.58832e15 + 2.11449e15i −0.344602 + 0.281519i
\(771\) 0 0
\(772\) 5.59229e15i 0.733998i
\(773\) 3.98905e15i 0.519856i 0.965628 + 0.259928i \(0.0836988\pi\)
−0.965628 + 0.259928i \(0.916301\pi\)
\(774\) 0 0
\(775\) 8.62720e14 4.23790e15i 0.110844 0.544491i
\(776\) −7.64015e15 −0.974681
\(777\) 0 0
\(778\) 6.65257e15i 0.836762i
\(779\) 4.92783e15 0.615460
\(780\) 0 0
\(781\) −3.82636e15 −0.471200
\(782\) 6.40173e14i 0.0782817i
\(783\) 0 0
\(784\) −1.59748e15 −0.192618
\(785\) −6.84594e15 8.38000e15i −0.819691 1.00337i
\(786\) 0 0
\(787\) 1.17707e16i 1.38976i −0.719123 0.694882i \(-0.755456\pi\)
0.719123 0.694882i \(-0.244544\pi\)
\(788\) 4.91812e15i 0.576640i
\(789\) 0 0
\(790\) −2.60292e14 3.18619e14i −0.0300962 0.0368403i
\(791\) 1.14809e16 1.31827
\(792\) 0 0
\(793\) 2.76821e15i 0.313471i
\(794\) −3.05158e15 −0.343172
\(795\) 0 0
\(796\) 1.20456e16 1.33600
\(797\) 6.56353e15i 0.722965i 0.932379 + 0.361482i \(0.117729\pi\)
−0.932379 + 0.361482i \(0.882271\pi\)
\(798\) 0 0
\(799\) −1.59755e15 −0.173559
\(800\) 9.32320e15 + 1.89795e15i 1.00594 + 0.204781i
\(801\) 0 0
\(802\) 4.76118e15i 0.506705i
\(803\) 2.80531e15i 0.296514i
\(804\) 0 0
\(805\) 6.46370e15 5.28044e15i 0.673913 0.550545i
\(806\) 5.74937e14 0.0595357
\(807\) 0 0
\(808\) 1.26568e16i 1.29289i
\(809\) 1.26091e15 0.127928 0.0639641 0.997952i \(-0.479626\pi\)
0.0639641 + 0.997952i \(0.479626\pi\)
\(810\) 0 0
\(811\) −1.13759e15 −0.113860 −0.0569302 0.998378i \(-0.518131\pi\)
−0.0569302 + 0.998378i \(0.518131\pi\)
\(812\) 9.25472e15i 0.920037i
\(813\) 0 0
\(814\) −6.15824e15 −0.603980
\(815\) 7.50969e15 + 9.19249e15i 0.731569 + 0.895501i
\(816\) 0 0
\(817\) 3.33891e14i 0.0320910i
\(818\) 4.71191e15i 0.449836i
\(819\) 0 0
\(820\) −8.53640e15 + 6.97371e15i −0.804079 + 0.656883i
\(821\) −1.31809e16 −1.23326 −0.616632 0.787251i \(-0.711503\pi\)
−0.616632 + 0.787251i \(0.711503\pi\)
\(822\) 0 0
\(823\) 1.98574e16i 1.83326i 0.399742 + 0.916628i \(0.369100\pi\)
−0.399742 + 0.916628i \(0.630900\pi\)
\(824\) 9.70076e15 0.889623
\(825\) 0 0
\(826\) 1.08289e16 0.979928
\(827\) 1.25548e16i 1.12857i 0.825580 + 0.564285i \(0.190848\pi\)
−0.825580 + 0.564285i \(0.809152\pi\)
\(828\) 0 0
\(829\) −1.26916e16 −1.12581 −0.562905 0.826521i \(-0.690316\pi\)
−0.562905 + 0.826521i \(0.690316\pi\)
\(830\) −5.17975e15 + 4.23153e15i −0.456435 + 0.372879i
\(831\) 0 0
\(832\) 3.95971e14i 0.0344338i
\(833\) 1.49553e15i 0.129195i
\(834\) 0 0
\(835\) 7.04584e15 + 8.62469e15i 0.600699 + 0.735306i
\(836\) 2.97327e15 0.251825
\(837\) 0 0
\(838\) 6.82103e15i 0.570174i
\(839\) 1.32436e15 0.109981 0.0549903 0.998487i \(-0.482487\pi\)
0.0549903 + 0.998487i \(0.482487\pi\)
\(840\) 0 0
\(841\) −8.14816e14 −0.0667854
\(842\) 4.81536e15i 0.392114i
\(843\) 0 0
\(844\) −1.65612e16 −1.33109
\(845\) −9.22962e15 + 7.54003e15i −0.737008 + 0.602089i
\(846\) 0 0
\(847\) 7.38322e15i 0.581952i
\(848\) 8.04782e15i 0.630233i
\(849\) 0 0
\(850\) −2.89975e14 + 1.42443e15i −0.0224159 + 0.110113i
\(851\) 1.53787e16 1.18116
\(852\) 0 0
\(853\) 1.99538e16i 1.51289i 0.654060 + 0.756443i \(0.273064\pi\)
−0.654060 + 0.756443i \(0.726936\pi\)
\(854\) 1.15255e16 0.868245
\(855\) 0 0
\(856\) 2.10432e16 1.56497
\(857\) 2.21687e16i 1.63812i −0.573709 0.819060i \(-0.694496\pi\)
0.573709 0.819060i \(-0.305504\pi\)
\(858\) 0 0
\(859\) −9.18375e15 −0.669973 −0.334987 0.942223i \(-0.608732\pi\)
−0.334987 + 0.942223i \(0.608732\pi\)
\(860\) 4.72512e14 + 5.78394e14i 0.0342508 + 0.0419259i
\(861\) 0 0
\(862\) 8.93967e15i 0.639781i
\(863\) 2.31329e16i 1.64502i 0.568750 + 0.822511i \(0.307427\pi\)
−0.568750 + 0.822511i \(0.692573\pi\)
\(864\) 0 0
\(865\) 5.17140e15 + 6.33023e15i 0.363094 + 0.444458i
\(866\) 2.33963e15 0.163229
\(867\) 0 0
\(868\) 7.68213e15i 0.529204i
\(869\) 1.04201e15 0.0713285
\(870\) 0 0
\(871\) −4.93026e15 −0.333250
\(872\) 1.46987e16i 0.987277i
\(873\) 0 0
\(874\) 2.31365e15 0.153456
\(875\) 1.67740e16 8.82153e15i 1.10559 0.581433i
\(876\) 0 0
\(877\) 2.28779e16i 1.48908i −0.667577 0.744541i \(-0.732669\pi\)
0.667577 0.744541i \(-0.267331\pi\)
\(878\) 5.16841e15i 0.334301i
\(879\) 0 0
\(880\) −3.04553e15 + 2.48801e15i −0.194540 + 0.158927i
\(881\) 3.00048e15 0.190469 0.0952344 0.995455i \(-0.469640\pi\)
0.0952344 + 0.995455i \(0.469640\pi\)
\(882\) 0 0
\(883\) 1.43409e15i 0.0899066i 0.998989 + 0.0449533i \(0.0143139\pi\)
−0.998989 + 0.0449533i \(0.985686\pi\)
\(884\) 6.20171e14 0.0386388
\(885\) 0 0
\(886\) 3.51062e14 0.0216022
\(887\) 4.51694e15i 0.276226i −0.990416 0.138113i \(-0.955896\pi\)
0.990416 0.138113i \(-0.0441037\pi\)
\(888\) 0 0
\(889\) −1.96480e16 −1.18675
\(890\) 5.75245e15 + 7.04147e15i 0.345309 + 0.422687i
\(891\) 0 0
\(892\) 1.86873e15i 0.110800i
\(893\) 5.77372e15i 0.340230i
\(894\) 0 0
\(895\) 2.36617e16 1.93302e16i 1.37727 1.12515i
\(896\) 2.05179e16 1.18697
\(897\) 0 0
\(898\) 1.18010e16i 0.674373i
\(899\) 9.45099e15 0.536783
\(900\) 0 0
\(901\) −7.53421e15 −0.422719
\(902\) 8.69912e15i 0.485109i
\(903\) 0 0
\(904\) −1.64560e16 −0.906562
\(905\) −2.87386e15 + 2.34777e15i −0.157362 + 0.128555i
\(906\) 0 0
\(907\) 3.33072e16i 1.80176i 0.434064 + 0.900882i \(0.357079\pi\)
−0.434064 + 0.900882i \(0.642921\pi\)
\(908\) 2.24246e16i 1.20574i
\(909\) 0 0
\(910\) 1.59398e15 + 1.95117e15i 0.0846753 + 0.103650i
\(911\) −9.75985e15 −0.515338 −0.257669 0.966233i \(-0.582954\pi\)
−0.257669 + 0.966233i \(0.582954\pi\)
\(912\) 0 0
\(913\) 1.69398e16i 0.883729i
\(914\) −1.20120e16 −0.622891
\(915\) 0 0
\(916\) 2.71348e16 1.39028
\(917\) 2.76286e16i 1.40711i
\(918\) 0 0
\(919\) −8.87018e15 −0.446372 −0.223186 0.974776i \(-0.571646\pi\)
−0.223186 + 0.974776i \(0.571646\pi\)
\(920\) −9.26468e15 + 7.56866e15i −0.463444 + 0.378605i
\(921\) 0 0
\(922\) 6.79572e15i 0.335904i
\(923\) 2.88445e15i 0.141728i
\(924\) 0 0
\(925\) 3.42188e16 + 6.96601e15i 1.66144 + 0.338224i
\(926\) 3.09389e15 0.149329
\(927\) 0 0
\(928\) 2.07918e16i 0.991696i
\(929\) −2.79034e16 −1.32303 −0.661517 0.749930i \(-0.730087\pi\)
−0.661517 + 0.749930i \(0.730087\pi\)
\(930\) 0 0
\(931\) −5.40499e15 −0.253263
\(932\) 7.00428e15i 0.326269i
\(933\) 0 0
\(934\) −6.70730e15 −0.308773
\(935\) −2.32922e15 2.85116e15i −0.106598 0.130484i
\(936\) 0 0
\(937\) 1.42598e16i 0.644978i −0.946573 0.322489i \(-0.895480\pi\)
0.946573 0.322489i \(-0.104520\pi\)
\(938\) 2.05273e16i 0.923030i
\(939\) 0 0
\(940\) −8.17079e15 1.00017e16i −0.363129 0.444500i
\(941\) −4.11724e16 −1.81913 −0.909563 0.415566i \(-0.863584\pi\)
−0.909563 + 0.415566i \(0.863584\pi\)
\(942\) 0 0
\(943\) 2.17239e16i 0.948690i
\(944\) 1.27418e16 0.553202
\(945\) 0 0
\(946\) 5.89418e14 0.0252943
\(947\) 2.03073e16i 0.866419i −0.901293 0.433209i \(-0.857381\pi\)
0.901293 0.433209i \(-0.142619\pi\)
\(948\) 0 0
\(949\) −2.11475e15 −0.0891856
\(950\) 5.14804e15 + 1.04800e15i 0.215855 + 0.0439422i
\(951\) 0 0
\(952\) 5.96878e15i 0.247390i
\(953\) 3.65143e16i 1.50471i −0.658760 0.752353i \(-0.728919\pi\)
0.658760 0.752353i \(-0.271081\pi\)
\(954\) 0 0
\(955\) 2.30861e16 1.88599e16i 0.940440 0.768281i
\(956\) 1.19375e14 0.00483498
\(957\) 0 0
\(958\) 1.94308e16i 0.778003i
\(959\) −1.72700e16 −0.687527
\(960\) 0 0
\(961\) −1.75634e16 −0.691243
\(962\) 4.64231e15i 0.181665i
\(963\) 0 0
\(964\) −1.65953e16 −0.642037
\(965\) −1.58332e16 1.93811e16i −0.609070 0.745553i
\(966\) 0 0
\(967\) 2.33229e16i 0.887027i 0.896268 + 0.443513i \(0.146268\pi\)
−0.896268 + 0.443513i \(0.853732\pi\)
\(968\) 1.05827e16i 0.400203i
\(969\) 0 0
\(970\) 1.14545e16 9.35765e15i 0.428285 0.349882i
\(971\) −1.97670e16 −0.734910 −0.367455 0.930041i \(-0.619771\pi\)
−0.367455 + 0.930041i \(0.619771\pi\)
\(972\) 0 0
\(973\) 1.00115e16i 0.368027i
\(974\) 8.04437e15 0.294048
\(975\) 0 0
\(976\) 1.35615e16 0.490154
\(977\) 1.51393e16i 0.544109i −0.962282 0.272055i \(-0.912297\pi\)
0.962282 0.272055i \(-0.0877032\pi\)
\(978\) 0 0
\(979\) −2.30284e16 −0.818387
\(980\) 9.36297e15 7.64896e15i 0.330880 0.270308i
\(981\) 0 0
\(982\) 6.21498e15i 0.217183i
\(983\) 1.59131e16i 0.552982i 0.961017 + 0.276491i \(0.0891716\pi\)
−0.961017 + 0.276491i \(0.910828\pi\)
\(984\) 0 0
\(985\) 1.39244e16 + 1.70446e16i 0.478495 + 0.585718i
\(986\) −3.17664e15 −0.108554
\(987\) 0 0
\(988\) 2.24136e15i 0.0757441i
\(989\) −1.47193e15 −0.0494661
\(990\) 0 0
\(991\) −3.31820e16 −1.10280 −0.551402 0.834240i \(-0.685907\pi\)
−0.551402 + 0.834240i \(0.685907\pi\)
\(992\) 1.72588e16i 0.570422i
\(993\) 0 0
\(994\) −1.20095e16 −0.392554
\(995\) −4.17462e16 + 3.41041e16i −1.35703 + 1.10861i
\(996\) 0 0
\(997\) 3.89617e16i 1.25261i −0.779579 0.626303i \(-0.784567\pi\)
0.779579 0.626303i \(-0.215433\pi\)
\(998\) 1.11191e16i 0.355511i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.12.b.c.19.5 yes 8
3.2 odd 2 inner 45.12.b.c.19.4 yes 8
5.2 odd 4 225.12.a.z.1.4 8
5.3 odd 4 225.12.a.z.1.5 8
5.4 even 2 inner 45.12.b.c.19.3 8
15.2 even 4 225.12.a.z.1.6 8
15.8 even 4 225.12.a.z.1.3 8
15.14 odd 2 inner 45.12.b.c.19.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.12.b.c.19.3 8 5.4 even 2 inner
45.12.b.c.19.4 yes 8 3.2 odd 2 inner
45.12.b.c.19.5 yes 8 1.1 even 1 trivial
45.12.b.c.19.6 yes 8 15.14 odd 2 inner
225.12.a.z.1.3 8 15.8 even 4
225.12.a.z.1.4 8 5.2 odd 4
225.12.a.z.1.5 8 5.3 odd 4
225.12.a.z.1.6 8 15.2 even 4