Properties

Label 225.3.g.a.118.2
Level $225$
Weight $3$
Character 225.118
Analytic conductor $6.131$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,3,Mod(82,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.82");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 225.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13080594811\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 118.2
Root \(1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 225.118
Dual form 225.3.g.a.82.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.224745 - 0.224745i) q^{2} +3.89898i q^{4} +(-3.44949 + 3.44949i) q^{7} +(1.77526 + 1.77526i) q^{8} -11.3485 q^{11} +(5.55051 + 5.55051i) q^{13} +1.55051i q^{14} -14.7980 q^{16} +(-17.3485 + 17.3485i) q^{17} -8.69694i q^{19} +(-2.55051 + 2.55051i) q^{22} +(11.5505 + 11.5505i) q^{23} +2.49490 q^{26} +(-13.4495 - 13.4495i) q^{28} +35.1464i q^{29} +10.6969 q^{31} +(-10.4268 + 10.4268i) q^{32} +7.79796i q^{34} +(6.04541 - 6.04541i) q^{37} +(-1.95459 - 1.95459i) q^{38} -0.696938 q^{41} +(26.4949 + 26.4949i) q^{43} -44.2474i q^{44} +5.19184 q^{46} +(44.2474 - 44.2474i) q^{47} +25.2020i q^{49} +(-21.6413 + 21.6413i) q^{52} +(-0.696938 - 0.696938i) q^{53} -12.2474 q^{56} +(7.89898 + 7.89898i) q^{58} -39.9342i q^{59} +5.90918 q^{61} +(2.40408 - 2.40408i) q^{62} -54.5051i q^{64} +(45.1010 - 45.1010i) q^{67} +(-67.6413 - 67.6413i) q^{68} +68.0000 q^{71} +(-77.7878 - 77.7878i) q^{73} -2.71735i q^{74} +33.9092 q^{76} +(39.1464 - 39.1464i) q^{77} +24.4949i q^{79} +(-0.156633 + 0.156633i) q^{82} +(13.1464 + 13.1464i) q^{83} +11.9092 q^{86} +(-20.1464 - 20.1464i) q^{88} +82.1816i q^{89} -38.2929 q^{91} +(-45.0352 + 45.0352i) q^{92} -19.8888i q^{94} +(24.5959 - 24.5959i) q^{97} +(5.66403 + 5.66403i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{7} + 12 q^{8} - 16 q^{11} + 32 q^{13} - 20 q^{16} - 40 q^{17} - 20 q^{22} + 56 q^{23} - 88 q^{26} - 44 q^{28} - 16 q^{31} - 76 q^{32} - 64 q^{37} - 96 q^{38} + 56 q^{41} + 8 q^{43}+ \cdots - 188 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.224745 0.224745i 0.112372 0.112372i −0.648685 0.761057i \(-0.724681\pi\)
0.761057 + 0.648685i \(0.224681\pi\)
\(3\) 0 0
\(4\) 3.89898i 0.974745i
\(5\) 0 0
\(6\) 0 0
\(7\) −3.44949 + 3.44949i −0.492784 + 0.492784i −0.909182 0.416398i \(-0.863292\pi\)
0.416398 + 0.909182i \(0.363292\pi\)
\(8\) 1.77526 + 1.77526i 0.221907 + 0.221907i
\(9\) 0 0
\(10\) 0 0
\(11\) −11.3485 −1.03168 −0.515840 0.856685i \(-0.672520\pi\)
−0.515840 + 0.856685i \(0.672520\pi\)
\(12\) 0 0
\(13\) 5.55051 + 5.55051i 0.426962 + 0.426962i 0.887592 0.460630i \(-0.152376\pi\)
−0.460630 + 0.887592i \(0.652376\pi\)
\(14\) 1.55051i 0.110751i
\(15\) 0 0
\(16\) −14.7980 −0.924872
\(17\) −17.3485 + 17.3485i −1.02050 + 1.02050i −0.0207127 + 0.999785i \(0.506594\pi\)
−0.999785 + 0.0207127i \(0.993406\pi\)
\(18\) 0 0
\(19\) 8.69694i 0.457734i −0.973458 0.228867i \(-0.926498\pi\)
0.973458 0.228867i \(-0.0735020\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.55051 + 2.55051i −0.115932 + 0.115932i
\(23\) 11.5505 + 11.5505i 0.502196 + 0.502196i 0.912120 0.409924i \(-0.134445\pi\)
−0.409924 + 0.912120i \(0.634445\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.49490 0.0959576
\(27\) 0 0
\(28\) −13.4495 13.4495i −0.480339 0.480339i
\(29\) 35.1464i 1.21195i 0.795485 + 0.605973i \(0.207216\pi\)
−0.795485 + 0.605973i \(0.792784\pi\)
\(30\) 0 0
\(31\) 10.6969 0.345063 0.172531 0.985004i \(-0.444805\pi\)
0.172531 + 0.985004i \(0.444805\pi\)
\(32\) −10.4268 + 10.4268i −0.325837 + 0.325837i
\(33\) 0 0
\(34\) 7.79796i 0.229352i
\(35\) 0 0
\(36\) 0 0
\(37\) 6.04541 6.04541i 0.163389 0.163389i −0.620677 0.784066i \(-0.713142\pi\)
0.784066 + 0.620677i \(0.213142\pi\)
\(38\) −1.95459 1.95459i −0.0514366 0.0514366i
\(39\) 0 0
\(40\) 0 0
\(41\) −0.696938 −0.0169985 −0.00849925 0.999964i \(-0.502705\pi\)
−0.00849925 + 0.999964i \(0.502705\pi\)
\(42\) 0 0
\(43\) 26.4949 + 26.4949i 0.616160 + 0.616160i 0.944544 0.328384i \(-0.106504\pi\)
−0.328384 + 0.944544i \(0.606504\pi\)
\(44\) 44.2474i 1.00562i
\(45\) 0 0
\(46\) 5.19184 0.112866
\(47\) 44.2474 44.2474i 0.941435 0.941435i −0.0569424 0.998377i \(-0.518135\pi\)
0.998377 + 0.0569424i \(0.0181351\pi\)
\(48\) 0 0
\(49\) 25.2020i 0.514327i
\(50\) 0 0
\(51\) 0 0
\(52\) −21.6413 + 21.6413i −0.416179 + 0.416179i
\(53\) −0.696938 0.696938i −0.0131498 0.0131498i 0.700501 0.713651i \(-0.252960\pi\)
−0.713651 + 0.700501i \(0.752960\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −12.2474 −0.218704
\(57\) 0 0
\(58\) 7.89898 + 7.89898i 0.136189 + 0.136189i
\(59\) 39.9342i 0.676851i −0.940993 0.338425i \(-0.890106\pi\)
0.940993 0.338425i \(-0.109894\pi\)
\(60\) 0 0
\(61\) 5.90918 0.0968719 0.0484359 0.998826i \(-0.484576\pi\)
0.0484359 + 0.998826i \(0.484576\pi\)
\(62\) 2.40408 2.40408i 0.0387755 0.0387755i
\(63\) 0 0
\(64\) 54.5051i 0.851642i
\(65\) 0 0
\(66\) 0 0
\(67\) 45.1010 45.1010i 0.673150 0.673150i −0.285291 0.958441i \(-0.592090\pi\)
0.958441 + 0.285291i \(0.0920903\pi\)
\(68\) −67.6413 67.6413i −0.994725 0.994725i
\(69\) 0 0
\(70\) 0 0
\(71\) 68.0000 0.957746 0.478873 0.877884i \(-0.341045\pi\)
0.478873 + 0.877884i \(0.341045\pi\)
\(72\) 0 0
\(73\) −77.7878 77.7878i −1.06559 1.06559i −0.997693 0.0678931i \(-0.978372\pi\)
−0.0678931 0.997693i \(-0.521628\pi\)
\(74\) 2.71735i 0.0367209i
\(75\) 0 0
\(76\) 33.9092 0.446173
\(77\) 39.1464 39.1464i 0.508395 0.508395i
\(78\) 0 0
\(79\) 24.4949i 0.310062i 0.987910 + 0.155031i \(0.0495477\pi\)
−0.987910 + 0.155031i \(0.950452\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −0.156633 + 0.156633i −0.00191016 + 0.00191016i
\(83\) 13.1464 + 13.1464i 0.158391 + 0.158391i 0.781853 0.623463i \(-0.214275\pi\)
−0.623463 + 0.781853i \(0.714275\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 11.9092 0.138479
\(87\) 0 0
\(88\) −20.1464 20.1464i −0.228937 0.228937i
\(89\) 82.1816i 0.923389i 0.887039 + 0.461695i \(0.152758\pi\)
−0.887039 + 0.461695i \(0.847242\pi\)
\(90\) 0 0
\(91\) −38.2929 −0.420801
\(92\) −45.0352 + 45.0352i −0.489513 + 0.489513i
\(93\) 0 0
\(94\) 19.8888i 0.211583i
\(95\) 0 0
\(96\) 0 0
\(97\) 24.5959 24.5959i 0.253566 0.253566i −0.568865 0.822431i \(-0.692617\pi\)
0.822431 + 0.568865i \(0.192617\pi\)
\(98\) 5.66403 + 5.66403i 0.0577962 + 0.0577962i
\(99\) 0 0
\(100\) 0 0
\(101\) 105.621 1.04575 0.522876 0.852409i \(-0.324859\pi\)
0.522876 + 0.852409i \(0.324859\pi\)
\(102\) 0 0
\(103\) 89.2474 + 89.2474i 0.866480 + 0.866480i 0.992081 0.125601i \(-0.0400858\pi\)
−0.125601 + 0.992081i \(0.540086\pi\)
\(104\) 19.7071i 0.189492i
\(105\) 0 0
\(106\) −0.313267 −0.00295535
\(107\) 68.7423 68.7423i 0.642452 0.642452i −0.308706 0.951158i \(-0.599896\pi\)
0.951158 + 0.308706i \(0.0998958\pi\)
\(108\) 0 0
\(109\) 68.6969i 0.630247i −0.949051 0.315124i \(-0.897954\pi\)
0.949051 0.315124i \(-0.102046\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 51.0454 51.0454i 0.455763 0.455763i
\(113\) 97.6413 + 97.6413i 0.864083 + 0.864083i 0.991809 0.127727i \(-0.0407681\pi\)
−0.127727 + 0.991809i \(0.540768\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −137.035 −1.18134
\(117\) 0 0
\(118\) −8.97500 8.97500i −0.0760593 0.0760593i
\(119\) 119.687i 1.00577i
\(120\) 0 0
\(121\) 7.78775 0.0643616
\(122\) 1.32806 1.32806i 0.0108857 0.0108857i
\(123\) 0 0
\(124\) 41.7071i 0.336348i
\(125\) 0 0
\(126\) 0 0
\(127\) −164.621 + 164.621i −1.29623 + 1.29623i −0.365362 + 0.930865i \(0.619055\pi\)
−0.930865 + 0.365362i \(0.880945\pi\)
\(128\) −53.9569 53.9569i −0.421538 0.421538i
\(129\) 0 0
\(130\) 0 0
\(131\) −106.136 −0.810200 −0.405100 0.914272i \(-0.632763\pi\)
−0.405100 + 0.914272i \(0.632763\pi\)
\(132\) 0 0
\(133\) 30.0000 + 30.0000i 0.225564 + 0.225564i
\(134\) 20.2724i 0.151287i
\(135\) 0 0
\(136\) −61.5959 −0.452911
\(137\) −166.631 + 166.631i −1.21629 + 1.21629i −0.247363 + 0.968923i \(0.579564\pi\)
−0.968923 + 0.247363i \(0.920436\pi\)
\(138\) 0 0
\(139\) 191.171i 1.37533i 0.726026 + 0.687667i \(0.241365\pi\)
−0.726026 + 0.687667i \(0.758635\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 15.2827 15.2827i 0.107624 0.107624i
\(143\) −62.9898 62.9898i −0.440488 0.440488i
\(144\) 0 0
\(145\) 0 0
\(146\) −34.9648 −0.239485
\(147\) 0 0
\(148\) 23.5709 + 23.5709i 0.159263 + 0.159263i
\(149\) 84.8536i 0.569487i 0.958604 + 0.284744i \(0.0919084\pi\)
−0.958604 + 0.284744i \(0.908092\pi\)
\(150\) 0 0
\(151\) 148.969 0.986552 0.493276 0.869873i \(-0.335799\pi\)
0.493276 + 0.869873i \(0.335799\pi\)
\(152\) 15.4393 15.4393i 0.101574 0.101574i
\(153\) 0 0
\(154\) 17.5959i 0.114259i
\(155\) 0 0
\(156\) 0 0
\(157\) −16.8536 + 16.8536i −0.107348 + 0.107348i −0.758741 0.651393i \(-0.774185\pi\)
0.651393 + 0.758741i \(0.274185\pi\)
\(158\) 5.50510 + 5.50510i 0.0348424 + 0.0348424i
\(159\) 0 0
\(160\) 0 0
\(161\) −79.6867 −0.494949
\(162\) 0 0
\(163\) −130.606 130.606i −0.801265 0.801265i 0.182029 0.983293i \(-0.441734\pi\)
−0.983293 + 0.182029i \(0.941734\pi\)
\(164\) 2.71735i 0.0165692i
\(165\) 0 0
\(166\) 5.90918 0.0355975
\(167\) −45.0352 + 45.0352i −0.269672 + 0.269672i −0.828968 0.559296i \(-0.811071\pi\)
0.559296 + 0.828968i \(0.311071\pi\)
\(168\) 0 0
\(169\) 107.384i 0.635406i
\(170\) 0 0
\(171\) 0 0
\(172\) −103.303 + 103.303i −0.600599 + 0.600599i
\(173\) 146.631 + 146.631i 0.847579 + 0.847579i 0.989831 0.142252i \(-0.0454343\pi\)
−0.142252 + 0.989831i \(0.545434\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 167.934 0.954171
\(177\) 0 0
\(178\) 18.4699 + 18.4699i 0.103763 + 0.103763i
\(179\) 183.712i 1.02632i 0.858292 + 0.513161i \(0.171526\pi\)
−0.858292 + 0.513161i \(0.828474\pi\)
\(180\) 0 0
\(181\) −286.272 −1.58162 −0.790808 0.612064i \(-0.790339\pi\)
−0.790808 + 0.612064i \(0.790339\pi\)
\(182\) −8.60612 + 8.60612i −0.0472864 + 0.0472864i
\(183\) 0 0
\(184\) 41.0102i 0.222882i
\(185\) 0 0
\(186\) 0 0
\(187\) 196.879 196.879i 1.05283 1.05283i
\(188\) 172.520 + 172.520i 0.917659 + 0.917659i
\(189\) 0 0
\(190\) 0 0
\(191\) −48.0908 −0.251784 −0.125892 0.992044i \(-0.540179\pi\)
−0.125892 + 0.992044i \(0.540179\pi\)
\(192\) 0 0
\(193\) 255.565 + 255.565i 1.32417 + 1.32417i 0.910364 + 0.413809i \(0.135802\pi\)
0.413809 + 0.910364i \(0.364198\pi\)
\(194\) 11.0556i 0.0569877i
\(195\) 0 0
\(196\) −98.2622 −0.501338
\(197\) −96.6969 + 96.6969i −0.490847 + 0.490847i −0.908573 0.417726i \(-0.862827\pi\)
0.417726 + 0.908573i \(0.362827\pi\)
\(198\) 0 0
\(199\) 192.606i 0.967870i −0.875104 0.483935i \(-0.839207\pi\)
0.875104 0.483935i \(-0.160793\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 23.7378 23.7378i 0.117514 0.117514i
\(203\) −121.237 121.237i −0.597228 0.597228i
\(204\) 0 0
\(205\) 0 0
\(206\) 40.1158 0.194737
\(207\) 0 0
\(208\) −82.1362 82.1362i −0.394886 0.394886i
\(209\) 98.6969i 0.472234i
\(210\) 0 0
\(211\) 147.212 0.697688 0.348844 0.937181i \(-0.386574\pi\)
0.348844 + 0.937181i \(0.386574\pi\)
\(212\) 2.71735 2.71735i 0.0128177 0.0128177i
\(213\) 0 0
\(214\) 30.8990i 0.144388i
\(215\) 0 0
\(216\) 0 0
\(217\) −36.8990 + 36.8990i −0.170041 + 0.170041i
\(218\) −15.4393 15.4393i −0.0708224 0.0708224i
\(219\) 0 0
\(220\) 0 0
\(221\) −192.586 −0.871429
\(222\) 0 0
\(223\) −167.429 167.429i −0.750803 0.750803i 0.223826 0.974629i \(-0.428145\pi\)
−0.974629 + 0.223826i \(0.928145\pi\)
\(224\) 71.9342i 0.321135i
\(225\) 0 0
\(226\) 43.8888 0.194198
\(227\) 253.171 253.171i 1.11529 1.11529i 0.122870 0.992423i \(-0.460790\pi\)
0.992423 0.122870i \(-0.0392098\pi\)
\(228\) 0 0
\(229\) 224.202i 0.979048i 0.871990 + 0.489524i \(0.162829\pi\)
−0.871990 + 0.489524i \(0.837171\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −62.3939 + 62.3939i −0.268939 + 0.268939i
\(233\) −205.712 205.712i −0.882883 0.882883i 0.110944 0.993827i \(-0.464613\pi\)
−0.993827 + 0.110944i \(0.964613\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 155.703 0.659757
\(237\) 0 0
\(238\) −26.8990 26.8990i −0.113021 0.113021i
\(239\) 345.798i 1.44685i −0.690401 0.723427i \(-0.742566\pi\)
0.690401 0.723427i \(-0.257434\pi\)
\(240\) 0 0
\(241\) 101.576 0.421475 0.210738 0.977543i \(-0.432413\pi\)
0.210738 + 0.977543i \(0.432413\pi\)
\(242\) 1.75026 1.75026i 0.00723247 0.00723247i
\(243\) 0 0
\(244\) 23.0398i 0.0944254i
\(245\) 0 0
\(246\) 0 0
\(247\) 48.2724 48.2724i 0.195435 0.195435i
\(248\) 18.9898 + 18.9898i 0.0765718 + 0.0765718i
\(249\) 0 0
\(250\) 0 0
\(251\) 331.258 1.31975 0.659876 0.751375i \(-0.270609\pi\)
0.659876 + 0.751375i \(0.270609\pi\)
\(252\) 0 0
\(253\) −131.081 131.081i −0.518105 0.518105i
\(254\) 73.9954i 0.291321i
\(255\) 0 0
\(256\) 193.767 0.756904
\(257\) 33.2372 33.2372i 0.129328 0.129328i −0.639480 0.768808i \(-0.720850\pi\)
0.768808 + 0.639480i \(0.220850\pi\)
\(258\) 0 0
\(259\) 41.7071i 0.161031i
\(260\) 0 0
\(261\) 0 0
\(262\) −23.8536 + 23.8536i −0.0910442 + 0.0910442i
\(263\) −278.157 278.157i −1.05763 1.05763i −0.998235 0.0593952i \(-0.981083\pi\)
−0.0593952 0.998235i \(-0.518917\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 13.4847 0.0506943
\(267\) 0 0
\(268\) 175.848 + 175.848i 0.656149 + 0.656149i
\(269\) 488.499i 1.81598i −0.418988 0.907992i \(-0.637615\pi\)
0.418988 0.907992i \(-0.362385\pi\)
\(270\) 0 0
\(271\) 131.576 0.485518 0.242759 0.970087i \(-0.421947\pi\)
0.242759 + 0.970087i \(0.421947\pi\)
\(272\) 256.722 256.722i 0.943831 0.943831i
\(273\) 0 0
\(274\) 74.8990i 0.273354i
\(275\) 0 0
\(276\) 0 0
\(277\) −101.510 + 101.510i −0.366461 + 0.366461i −0.866185 0.499724i \(-0.833435\pi\)
0.499724 + 0.866185i \(0.333435\pi\)
\(278\) 42.9648 + 42.9648i 0.154550 + 0.154550i
\(279\) 0 0
\(280\) 0 0
\(281\) −343.303 −1.22172 −0.610860 0.791739i \(-0.709176\pi\)
−0.610860 + 0.791739i \(0.709176\pi\)
\(282\) 0 0
\(283\) −1.19184 1.19184i −0.00421143 0.00421143i 0.704998 0.709209i \(-0.250948\pi\)
−0.709209 + 0.704998i \(0.750948\pi\)
\(284\) 265.131i 0.933558i
\(285\) 0 0
\(286\) −28.3133 −0.0989974
\(287\) 2.40408 2.40408i 0.00837659 0.00837659i
\(288\) 0 0
\(289\) 312.939i 1.08283i
\(290\) 0 0
\(291\) 0 0
\(292\) 303.293 303.293i 1.03867 1.03867i
\(293\) 96.5653 + 96.5653i 0.329574 + 0.329574i 0.852425 0.522850i \(-0.175131\pi\)
−0.522850 + 0.852425i \(0.675131\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 21.4643 0.0725145
\(297\) 0 0
\(298\) 19.0704 + 19.0704i 0.0639946 + 0.0639946i
\(299\) 128.222i 0.428838i
\(300\) 0 0
\(301\) −182.788 −0.607268
\(302\) 33.4801 33.4801i 0.110861 0.110861i
\(303\) 0 0
\(304\) 128.697i 0.423345i
\(305\) 0 0
\(306\) 0 0
\(307\) 124.969 124.969i 0.407066 0.407066i −0.473648 0.880714i \(-0.657063\pi\)
0.880714 + 0.473648i \(0.157063\pi\)
\(308\) 152.631 + 152.631i 0.495556 + 0.495556i
\(309\) 0 0
\(310\) 0 0
\(311\) 586.302 1.88522 0.942608 0.333902i \(-0.108365\pi\)
0.942608 + 0.333902i \(0.108365\pi\)
\(312\) 0 0
\(313\) 102.373 + 102.373i 0.327072 + 0.327072i 0.851472 0.524400i \(-0.175710\pi\)
−0.524400 + 0.851472i \(0.675710\pi\)
\(314\) 7.57551i 0.0241258i
\(315\) 0 0
\(316\) −95.5051 −0.302231
\(317\) −108.783 + 108.783i −0.343165 + 0.343165i −0.857556 0.514391i \(-0.828018\pi\)
0.514391 + 0.857556i \(0.328018\pi\)
\(318\) 0 0
\(319\) 398.858i 1.25034i
\(320\) 0 0
\(321\) 0 0
\(322\) −17.9092 + 17.9092i −0.0556186 + 0.0556186i
\(323\) 150.879 + 150.879i 0.467116 + 0.467116i
\(324\) 0 0
\(325\) 0 0
\(326\) −58.7061 −0.180080
\(327\) 0 0
\(328\) −1.23724 1.23724i −0.00377208 0.00377208i
\(329\) 305.262i 0.927849i
\(330\) 0 0
\(331\) −245.423 −0.741461 −0.370730 0.928741i \(-0.620893\pi\)
−0.370730 + 0.928741i \(0.620893\pi\)
\(332\) −51.2577 + 51.2577i −0.154391 + 0.154391i
\(333\) 0 0
\(334\) 20.2429i 0.0606074i
\(335\) 0 0
\(336\) 0 0
\(337\) −213.808 + 213.808i −0.634446 + 0.634446i −0.949180 0.314734i \(-0.898085\pi\)
0.314734 + 0.949180i \(0.398085\pi\)
\(338\) −24.1339 24.1339i −0.0714022 0.0714022i
\(339\) 0 0
\(340\) 0 0
\(341\) −121.394 −0.355994
\(342\) 0 0
\(343\) −255.959 255.959i −0.746237 0.746237i
\(344\) 94.0704i 0.273460i
\(345\) 0 0
\(346\) 65.9092 0.190489
\(347\) −160.050 + 160.050i −0.461239 + 0.461239i −0.899062 0.437822i \(-0.855750\pi\)
0.437822 + 0.899062i \(0.355750\pi\)
\(348\) 0 0
\(349\) 298.009i 0.853894i 0.904277 + 0.426947i \(0.140411\pi\)
−0.904277 + 0.426947i \(0.859589\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 118.328 118.328i 0.336159 0.336159i
\(353\) −22.5199 22.5199i −0.0637957 0.0637957i 0.674489 0.738285i \(-0.264364\pi\)
−0.738285 + 0.674489i \(0.764364\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −320.424 −0.900069
\(357\) 0 0
\(358\) 41.2883 + 41.2883i 0.115330 + 0.115330i
\(359\) 48.2724i 0.134464i 0.997737 + 0.0672318i \(0.0214167\pi\)
−0.997737 + 0.0672318i \(0.978583\pi\)
\(360\) 0 0
\(361\) 285.363 0.790480
\(362\) −64.3383 + 64.3383i −0.177730 + 0.177730i
\(363\) 0 0
\(364\) 149.303i 0.410173i
\(365\) 0 0
\(366\) 0 0
\(367\) −146.510 + 146.510i −0.399209 + 0.399209i −0.877954 0.478745i \(-0.841092\pi\)
0.478745 + 0.877954i \(0.341092\pi\)
\(368\) −170.924 170.924i −0.464467 0.464467i
\(369\) 0 0
\(370\) 0 0
\(371\) 4.80816 0.0129600
\(372\) 0 0
\(373\) −86.2066 86.2066i −0.231117 0.231117i 0.582042 0.813159i \(-0.302254\pi\)
−0.813159 + 0.582042i \(0.802254\pi\)
\(374\) 88.4949i 0.236617i
\(375\) 0 0
\(376\) 157.101 0.417822
\(377\) −195.081 + 195.081i −0.517455 + 0.517455i
\(378\) 0 0
\(379\) 210.000i 0.554090i 0.960857 + 0.277045i \(0.0893551\pi\)
−0.960857 + 0.277045i \(0.910645\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −10.8082 + 10.8082i −0.0282936 + 0.0282936i
\(383\) −10.6311 10.6311i −0.0277575 0.0277575i 0.693092 0.720849i \(-0.256248\pi\)
−0.720849 + 0.693092i \(0.756248\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 114.874 0.297601
\(387\) 0 0
\(388\) 95.8990 + 95.8990i 0.247162 + 0.247162i
\(389\) 535.337i 1.37619i −0.725621 0.688094i \(-0.758448\pi\)
0.725621 0.688094i \(-0.241552\pi\)
\(390\) 0 0
\(391\) −400.767 −1.02498
\(392\) −44.7401 + 44.7401i −0.114133 + 0.114133i
\(393\) 0 0
\(394\) 43.4643i 0.110315i
\(395\) 0 0
\(396\) 0 0
\(397\) −118.742 + 118.742i −0.299099 + 0.299099i −0.840661 0.541562i \(-0.817833\pi\)
0.541562 + 0.840661i \(0.317833\pi\)
\(398\) −43.2872 43.2872i −0.108762 0.108762i
\(399\) 0 0
\(400\) 0 0
\(401\) −420.302 −1.04813 −0.524067 0.851677i \(-0.675586\pi\)
−0.524067 + 0.851677i \(0.675586\pi\)
\(402\) 0 0
\(403\) 59.3735 + 59.3735i 0.147329 + 0.147329i
\(404\) 411.814i 1.01934i
\(405\) 0 0
\(406\) −54.4949 −0.134224
\(407\) −68.6061 + 68.6061i −0.168565 + 0.168565i
\(408\) 0 0
\(409\) 515.110i 1.25944i 0.776823 + 0.629719i \(0.216830\pi\)
−0.776823 + 0.629719i \(0.783170\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −347.974 + 347.974i −0.844597 + 0.844597i
\(413\) 137.753 + 137.753i 0.333541 + 0.333541i
\(414\) 0 0
\(415\) 0 0
\(416\) −115.748 −0.278240
\(417\) 0 0
\(418\) 22.1816 + 22.1816i 0.0530661 + 0.0530661i
\(419\) 88.6015i 0.211460i −0.994395 0.105730i \(-0.966282\pi\)
0.994395 0.105730i \(-0.0337178\pi\)
\(420\) 0 0
\(421\) −257.151 −0.610810 −0.305405 0.952223i \(-0.598792\pi\)
−0.305405 + 0.952223i \(0.598792\pi\)
\(422\) 33.0852 33.0852i 0.0784009 0.0784009i
\(423\) 0 0
\(424\) 2.47449i 0.00583605i
\(425\) 0 0
\(426\) 0 0
\(427\) −20.3837 + 20.3837i −0.0477369 + 0.0477369i
\(428\) 268.025 + 268.025i 0.626227 + 0.626227i
\(429\) 0 0
\(430\) 0 0
\(431\) −804.636 −1.86690 −0.933452 0.358702i \(-0.883219\pi\)
−0.933452 + 0.358702i \(0.883219\pi\)
\(432\) 0 0
\(433\) 344.848 + 344.848i 0.796416 + 0.796416i 0.982528 0.186113i \(-0.0595890\pi\)
−0.186113 + 0.982528i \(0.559589\pi\)
\(434\) 16.5857i 0.0382159i
\(435\) 0 0
\(436\) 267.848 0.614330
\(437\) 100.454 100.454i 0.229872 0.229872i
\(438\) 0 0
\(439\) 432.929i 0.986170i −0.869981 0.493085i \(-0.835869\pi\)
0.869981 0.493085i \(-0.164131\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −43.2827 + 43.2827i −0.0979246 + 0.0979246i
\(443\) 245.131 + 245.131i 0.553342 + 0.553342i 0.927404 0.374062i \(-0.122035\pi\)
−0.374062 + 0.927404i \(0.622035\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −75.2577 −0.168739
\(447\) 0 0
\(448\) 188.015 + 188.015i 0.419676 + 0.419676i
\(449\) 386.091i 0.859890i 0.902855 + 0.429945i \(0.141467\pi\)
−0.902855 + 0.429945i \(0.858533\pi\)
\(450\) 0 0
\(451\) 7.90918 0.0175370
\(452\) −380.702 + 380.702i −0.842260 + 0.842260i
\(453\) 0 0
\(454\) 113.798i 0.250656i
\(455\) 0 0
\(456\) 0 0
\(457\) 223.747 223.747i 0.489599 0.489599i −0.418580 0.908180i \(-0.637472\pi\)
0.908180 + 0.418580i \(0.137472\pi\)
\(458\) 50.3883 + 50.3883i 0.110018 + 0.110018i
\(459\) 0 0
\(460\) 0 0
\(461\) 722.620 1.56751 0.783753 0.621073i \(-0.213303\pi\)
0.783753 + 0.621073i \(0.213303\pi\)
\(462\) 0 0
\(463\) 129.702 + 129.702i 0.280133 + 0.280133i 0.833162 0.553029i \(-0.186528\pi\)
−0.553029 + 0.833162i \(0.686528\pi\)
\(464\) 520.095i 1.12090i
\(465\) 0 0
\(466\) −92.4653 −0.198423
\(467\) 415.258 415.258i 0.889203 0.889203i −0.105244 0.994446i \(-0.533562\pi\)
0.994446 + 0.105244i \(0.0335623\pi\)
\(468\) 0 0
\(469\) 311.151i 0.663435i
\(470\) 0 0
\(471\) 0 0
\(472\) 70.8934 70.8934i 0.150198 0.150198i
\(473\) −300.677 300.677i −0.635680 0.635680i
\(474\) 0 0
\(475\) 0 0
\(476\) 466.656 0.980370
\(477\) 0 0
\(478\) −77.7163 77.7163i −0.162586 0.162586i
\(479\) 304.949i 0.636637i 0.947984 + 0.318318i \(0.103118\pi\)
−0.947984 + 0.318318i \(0.896882\pi\)
\(480\) 0 0
\(481\) 67.1102 0.139522
\(482\) 22.8286 22.8286i 0.0473622 0.0473622i
\(483\) 0 0
\(484\) 30.3643i 0.0627361i
\(485\) 0 0
\(486\) 0 0
\(487\) 429.318 429.318i 0.881556 0.881556i −0.112137 0.993693i \(-0.535769\pi\)
0.993693 + 0.112137i \(0.0357694\pi\)
\(488\) 10.4903 + 10.4903i 0.0214965 + 0.0214965i
\(489\) 0 0
\(490\) 0 0
\(491\) 414.318 0.843825 0.421912 0.906637i \(-0.361359\pi\)
0.421912 + 0.906637i \(0.361359\pi\)
\(492\) 0 0
\(493\) −609.737 609.737i −1.23679 1.23679i
\(494\) 21.6980i 0.0439230i
\(495\) 0 0
\(496\) −158.293 −0.319139
\(497\) −234.565 + 234.565i −0.471962 + 0.471962i
\(498\) 0 0
\(499\) 367.585i 0.736643i −0.929699 0.368321i \(-0.879933\pi\)
0.929699 0.368321i \(-0.120067\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 74.4485 74.4485i 0.148304 0.148304i
\(503\) −9.59133 9.59133i −0.0190683 0.0190683i 0.697508 0.716577i \(-0.254292\pi\)
−0.716577 + 0.697508i \(0.754292\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −58.9194 −0.116441
\(507\) 0 0
\(508\) −641.854 641.854i −1.26349 1.26349i
\(509\) 777.489i 1.52748i 0.645522 + 0.763742i \(0.276640\pi\)
−0.645522 + 0.763742i \(0.723360\pi\)
\(510\) 0 0
\(511\) 536.656 1.05021
\(512\) 259.376 259.376i 0.506593 0.506593i
\(513\) 0 0
\(514\) 14.9398i 0.0290658i
\(515\) 0 0
\(516\) 0 0
\(517\) −502.141 + 502.141i −0.971259 + 0.971259i
\(518\) 9.37347 + 9.37347i 0.0180955 + 0.0180955i
\(519\) 0 0
\(520\) 0 0
\(521\) −321.605 −0.617284 −0.308642 0.951178i \(-0.599875\pi\)
−0.308642 + 0.951178i \(0.599875\pi\)
\(522\) 0 0
\(523\) 582.454 + 582.454i 1.11368 + 1.11368i 0.992649 + 0.121030i \(0.0386198\pi\)
0.121030 + 0.992649i \(0.461380\pi\)
\(524\) 413.823i 0.789738i
\(525\) 0 0
\(526\) −125.029 −0.237697
\(527\) −185.576 + 185.576i −0.352136 + 0.352136i
\(528\) 0 0
\(529\) 262.171i 0.495598i
\(530\) 0 0
\(531\) 0 0
\(532\) −116.969 + 116.969i −0.219867 + 0.219867i
\(533\) −3.86836 3.86836i −0.00725772 0.00725772i
\(534\) 0 0
\(535\) 0 0
\(536\) 160.132 0.298753
\(537\) 0 0
\(538\) −109.788 109.788i −0.204066 0.204066i
\(539\) 286.005i 0.530621i
\(540\) 0 0
\(541\) 460.697 0.851566 0.425783 0.904825i \(-0.359999\pi\)
0.425783 + 0.904825i \(0.359999\pi\)
\(542\) 29.5709 29.5709i 0.0545589 0.0545589i
\(543\) 0 0
\(544\) 361.778i 0.665032i
\(545\) 0 0
\(546\) 0 0
\(547\) 661.778 661.778i 1.20983 1.20983i 0.238750 0.971081i \(-0.423262\pi\)
0.971081 0.238750i \(-0.0767376\pi\)
\(548\) −649.691 649.691i −1.18557 1.18557i
\(549\) 0 0
\(550\) 0 0
\(551\) 305.666 0.554748
\(552\) 0 0
\(553\) −84.4949 84.4949i −0.152794 0.152794i
\(554\) 45.6276i 0.0823602i
\(555\) 0 0
\(556\) −745.373 −1.34060
\(557\) 125.909 125.909i 0.226049 0.226049i −0.584991 0.811040i \(-0.698902\pi\)
0.811040 + 0.584991i \(0.198902\pi\)
\(558\) 0 0
\(559\) 294.120i 0.526155i
\(560\) 0 0
\(561\) 0 0
\(562\) −77.1556 + 77.1556i −0.137288 + 0.137288i
\(563\) −200.009 200.009i −0.355256 0.355256i 0.506805 0.862061i \(-0.330826\pi\)
−0.862061 + 0.506805i \(0.830826\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −0.535718 −0.000946498
\(567\) 0 0
\(568\) 120.717 + 120.717i 0.212531 + 0.212531i
\(569\) 599.839i 1.05420i −0.849804 0.527099i \(-0.823280\pi\)
0.849804 0.527099i \(-0.176720\pi\)
\(570\) 0 0
\(571\) −247.970 −0.434274 −0.217137 0.976141i \(-0.569672\pi\)
−0.217137 + 0.976141i \(0.569672\pi\)
\(572\) 245.596 245.596i 0.429363 0.429363i
\(573\) 0 0
\(574\) 1.08061i 0.00188260i
\(575\) 0 0
\(576\) 0 0
\(577\) 292.121 292.121i 0.506276 0.506276i −0.407105 0.913381i \(-0.633462\pi\)
0.913381 + 0.407105i \(0.133462\pi\)
\(578\) −70.3314 70.3314i −0.121681 0.121681i
\(579\) 0 0
\(580\) 0 0
\(581\) −90.6969 −0.156105
\(582\) 0 0
\(583\) 7.90918 + 7.90918i 0.0135664 + 0.0135664i
\(584\) 276.186i 0.472922i
\(585\) 0 0
\(586\) 43.4051 0.0740702
\(587\) 611.217 611.217i 1.04126 1.04126i 0.0421437 0.999112i \(-0.486581\pi\)
0.999112 0.0421437i \(-0.0134187\pi\)
\(588\) 0 0
\(589\) 93.0306i 0.157947i
\(590\) 0 0
\(591\) 0 0
\(592\) −89.4597 + 89.4597i −0.151114 + 0.151114i
\(593\) 524.742 + 524.742i 0.884894 + 0.884894i 0.994027 0.109133i \(-0.0348074\pi\)
−0.109133 + 0.994027i \(0.534807\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −330.842 −0.555105
\(597\) 0 0
\(598\) 28.8173 + 28.8173i 0.0481895 + 0.0481895i
\(599\) 368.858i 0.615790i −0.951420 0.307895i \(-0.900375\pi\)
0.951420 0.307895i \(-0.0996245\pi\)
\(600\) 0 0
\(601\) 932.484 1.55155 0.775777 0.631007i \(-0.217358\pi\)
0.775777 + 0.631007i \(0.217358\pi\)
\(602\) −41.0806 + 41.0806i −0.0682402 + 0.0682402i
\(603\) 0 0
\(604\) 580.829i 0.961637i
\(605\) 0 0
\(606\) 0 0
\(607\) −513.611 + 513.611i −0.846146 + 0.846146i −0.989650 0.143504i \(-0.954163\pi\)
0.143504 + 0.989650i \(0.454163\pi\)
\(608\) 90.6811 + 90.6811i 0.149147 + 0.149147i
\(609\) 0 0
\(610\) 0 0
\(611\) 491.192 0.803915
\(612\) 0 0
\(613\) 615.287 + 615.287i 1.00373 + 1.00373i 0.999993 + 0.00373821i \(0.00118991\pi\)
0.00373821 + 0.999993i \(0.498810\pi\)
\(614\) 56.1725i 0.0914861i
\(615\) 0 0
\(616\) 138.990 0.225633
\(617\) 546.752 546.752i 0.886145 0.886145i −0.108005 0.994150i \(-0.534446\pi\)
0.994150 + 0.108005i \(0.0344463\pi\)
\(618\) 0 0
\(619\) 152.869i 0.246962i −0.992347 0.123481i \(-0.960594\pi\)
0.992347 0.123481i \(-0.0394058\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 131.768 131.768i 0.211846 0.211846i
\(623\) −283.485 283.485i −0.455032 0.455032i
\(624\) 0 0
\(625\) 0 0
\(626\) 46.0158 0.0735077
\(627\) 0 0
\(628\) −65.7117 65.7117i −0.104637 0.104637i
\(629\) 209.757i 0.333477i
\(630\) 0 0
\(631\) −41.4847 −0.0657444 −0.0328722 0.999460i \(-0.510465\pi\)
−0.0328722 + 0.999460i \(0.510465\pi\)
\(632\) −43.4847 + 43.4847i −0.0688049 + 0.0688049i
\(633\) 0 0
\(634\) 48.8969i 0.0771245i
\(635\) 0 0
\(636\) 0 0
\(637\) −139.884 + 139.884i −0.219598 + 0.219598i
\(638\) −89.6413 89.6413i −0.140504 0.140504i
\(639\) 0 0
\(640\) 0 0
\(641\) −47.2122 −0.0736541 −0.0368270 0.999322i \(-0.511725\pi\)
−0.0368270 + 0.999322i \(0.511725\pi\)
\(642\) 0 0
\(643\) −460.372 460.372i −0.715976 0.715976i 0.251803 0.967779i \(-0.418977\pi\)
−0.967779 + 0.251803i \(0.918977\pi\)
\(644\) 310.697i 0.482449i
\(645\) 0 0
\(646\) 67.8184 0.104982
\(647\) −281.287 + 281.287i −0.434756 + 0.434756i −0.890243 0.455487i \(-0.849465\pi\)
0.455487 + 0.890243i \(0.349465\pi\)
\(648\) 0 0
\(649\) 453.192i 0.698293i
\(650\) 0 0
\(651\) 0 0
\(652\) 509.231 509.231i 0.781029 0.781029i
\(653\) 89.8230 + 89.8230i 0.137554 + 0.137554i 0.772531 0.634977i \(-0.218990\pi\)
−0.634977 + 0.772531i \(0.718990\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 10.3133 0.0157214
\(657\) 0 0
\(658\) 68.6061 + 68.6061i 0.104265 + 0.104265i
\(659\) 1081.24i 1.64072i 0.571844 + 0.820362i \(0.306228\pi\)
−0.571844 + 0.820362i \(0.693772\pi\)
\(660\) 0 0
\(661\) −632.393 −0.956721 −0.478361 0.878163i \(-0.658769\pi\)
−0.478361 + 0.878163i \(0.658769\pi\)
\(662\) −55.1577 + 55.1577i −0.0833197 + 0.0833197i
\(663\) 0 0
\(664\) 46.6765i 0.0702960i
\(665\) 0 0
\(666\) 0 0
\(667\) −405.959 + 405.959i −0.608634 + 0.608634i
\(668\) −175.591 175.591i −0.262861 0.262861i
\(669\) 0 0
\(670\) 0 0
\(671\) −67.0602 −0.0999407
\(672\) 0 0
\(673\) −233.293 233.293i −0.346646 0.346646i 0.512213 0.858859i \(-0.328826\pi\)
−0.858859 + 0.512213i \(0.828826\pi\)
\(674\) 96.1046i 0.142588i
\(675\) 0 0
\(676\) 418.687 0.619359
\(677\) −48.3883 + 48.3883i −0.0714745 + 0.0714745i −0.741940 0.670466i \(-0.766094\pi\)
0.670466 + 0.741940i \(0.266094\pi\)
\(678\) 0 0
\(679\) 169.687i 0.249907i
\(680\) 0 0
\(681\) 0 0
\(682\) −27.2827 + 27.2827i −0.0400039 + 0.0400039i
\(683\) 213.410 + 213.410i 0.312459 + 0.312459i 0.845862 0.533402i \(-0.179087\pi\)
−0.533402 + 0.845862i \(0.679087\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −115.051 −0.167713
\(687\) 0 0
\(688\) −392.070 392.070i −0.569870 0.569870i
\(689\) 7.73673i 0.0112289i
\(690\) 0 0
\(691\) 151.121 0.218700 0.109350 0.994003i \(-0.465123\pi\)
0.109350 + 0.994003i \(0.465123\pi\)
\(692\) −571.712 + 571.712i −0.826173 + 0.826173i
\(693\) 0 0
\(694\) 71.9408i 0.103661i
\(695\) 0 0
\(696\) 0 0
\(697\) 12.0908 12.0908i 0.0173469 0.0173469i
\(698\) 66.9760 + 66.9760i 0.0959542 + 0.0959542i
\(699\) 0 0
\(700\) 0 0
\(701\) 745.680 1.06374 0.531869 0.846827i \(-0.321490\pi\)
0.531869 + 0.846827i \(0.321490\pi\)
\(702\) 0 0
\(703\) −52.5765 52.5765i −0.0747888 0.0747888i
\(704\) 618.549i 0.878621i
\(705\) 0 0
\(706\) −10.1225 −0.0143378
\(707\) −364.338 + 364.338i −0.515330 + 0.515330i
\(708\) 0 0
\(709\) 719.049i 1.01417i −0.861895 0.507087i \(-0.830722\pi\)
0.861895 0.507087i \(-0.169278\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −145.893 + 145.893i −0.204906 + 0.204906i
\(713\) 123.555 + 123.555i 0.173289 + 0.173289i
\(714\) 0 0
\(715\) 0 0
\(716\) −716.288 −1.00040
\(717\) 0 0
\(718\) 10.8490 + 10.8490i 0.0151100 + 0.0151100i
\(719\) 605.271i 0.841824i −0.907101 0.420912i \(-0.861710\pi\)
0.907101 0.420912i \(-0.138290\pi\)
\(720\) 0 0
\(721\) −615.716 −0.853975
\(722\) 64.1339 64.1339i 0.0888282 0.0888282i
\(723\) 0 0
\(724\) 1116.17i 1.54167i
\(725\) 0 0
\(726\) 0 0
\(727\) 246.126 246.126i 0.338550 0.338550i −0.517271 0.855821i \(-0.673052\pi\)
0.855821 + 0.517271i \(0.173052\pi\)
\(728\) −67.9796 67.9796i −0.0933786 0.0933786i
\(729\) 0 0
\(730\) 0 0
\(731\) −919.292 −1.25758
\(732\) 0 0
\(733\) 270.763 + 270.763i 0.369390 + 0.369390i 0.867255 0.497865i \(-0.165882\pi\)
−0.497865 + 0.867255i \(0.665882\pi\)
\(734\) 65.8546i 0.0897202i
\(735\) 0 0
\(736\) −240.869 −0.327268
\(737\) −511.828 + 511.828i −0.694474 + 0.694474i
\(738\) 0 0
\(739\) 515.666i 0.697789i 0.937162 + 0.348895i \(0.113443\pi\)
−0.937162 + 0.348895i \(0.886557\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.08061 1.08061i 0.00145635 0.00145635i
\(743\) 420.702 + 420.702i 0.566220 + 0.566220i 0.931067 0.364847i \(-0.118879\pi\)
−0.364847 + 0.931067i \(0.618879\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −38.7490 −0.0519424
\(747\) 0 0
\(748\) 767.626 + 767.626i 1.02624 + 1.02624i
\(749\) 474.252i 0.633180i
\(750\) 0 0
\(751\) −859.787 −1.14486 −0.572428 0.819955i \(-0.693998\pi\)
−0.572428 + 0.819955i \(0.693998\pi\)
\(752\) −654.772 + 654.772i −0.870707 + 0.870707i
\(753\) 0 0
\(754\) 87.6867i 0.116295i
\(755\) 0 0
\(756\) 0 0
\(757\) 956.075 956.075i 1.26298 1.26298i 0.313337 0.949642i \(-0.398553\pi\)
0.949642 0.313337i \(-0.101447\pi\)
\(758\) 47.1964 + 47.1964i 0.0622644 + 0.0622644i
\(759\) 0 0
\(760\) 0 0
\(761\) 322.758 0.424124 0.212062 0.977256i \(-0.431982\pi\)
0.212062 + 0.977256i \(0.431982\pi\)
\(762\) 0 0
\(763\) 236.969 + 236.969i 0.310576 + 0.310576i
\(764\) 187.505i 0.245426i
\(765\) 0 0
\(766\) −4.77858 −0.00623835
\(767\) 221.655 221.655i 0.288990 0.288990i
\(768\) 0 0
\(769\) 692.402i 0.900393i −0.892930 0.450196i \(-0.851354\pi\)
0.892930 0.450196i \(-0.148646\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −996.444 + 996.444i −1.29073 + 1.29073i
\(773\) 375.226 + 375.226i 0.485415 + 0.485415i 0.906856 0.421441i \(-0.138475\pi\)
−0.421441 + 0.906856i \(0.638475\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 87.3281 0.112536
\(777\) 0 0
\(778\) −120.314 120.314i −0.154646 0.154646i
\(779\) 6.06123i 0.00778078i
\(780\) 0 0
\(781\) −771.696 −0.988087
\(782\) −90.0704 + 90.0704i −0.115180 + 0.115180i
\(783\) 0 0
\(784\) 372.939i 0.475687i
\(785\) 0 0
\(786\) 0 0
\(787\) −910.990 + 910.990i −1.15755 + 1.15755i −0.172546 + 0.985001i \(0.555199\pi\)
−0.985001 + 0.172546i \(0.944801\pi\)
\(788\) −377.019 377.019i −0.478451 0.478451i
\(789\) 0 0
\(790\) 0 0
\(791\) −673.626 −0.851613
\(792\) 0 0
\(793\) 32.7990 + 32.7990i 0.0413606 + 0.0413606i
\(794\) 53.3735i 0.0672210i
\(795\) 0 0
\(796\) 750.967 0.943426
\(797\) −7.21683 + 7.21683i −0.00905500 + 0.00905500i −0.711620 0.702565i \(-0.752038\pi\)
0.702565 + 0.711620i \(0.252038\pi\)
\(798\) 0 0
\(799\) 1535.25i 1.92147i
\(800\) 0 0
\(801\) 0 0
\(802\) −94.4607 + 94.4607i −0.117781 + 0.117781i
\(803\) 882.772 + 882.772i 1.09934 + 1.09934i
\(804\) 0 0
\(805\) 0 0
\(806\) 26.6878 0.0331114
\(807\) 0 0
\(808\) 187.504 + 187.504i 0.232059 + 0.232059i
\(809\) 150.000i 0.185414i −0.995693 0.0927070i \(-0.970448\pi\)
0.995693 0.0927070i \(-0.0295520\pi\)
\(810\) 0 0
\(811\) 1336.85 1.64839 0.824197 0.566304i \(-0.191627\pi\)
0.824197 + 0.566304i \(0.191627\pi\)
\(812\) 472.702 472.702i 0.582145 0.582145i
\(813\) 0 0
\(814\) 30.8377i 0.0378842i
\(815\) 0 0
\(816\) 0 0
\(817\) 230.424 230.424i 0.282037 0.282037i
\(818\) 115.768 + 115.768i 0.141526 + 0.141526i
\(819\) 0 0
\(820\) 0 0
\(821\) 33.8934 0.0412830 0.0206415 0.999787i \(-0.493429\pi\)
0.0206415 + 0.999787i \(0.493429\pi\)
\(822\) 0 0
\(823\) −481.631 481.631i −0.585214 0.585214i 0.351117 0.936331i \(-0.385802\pi\)
−0.936331 + 0.351117i \(0.885802\pi\)
\(824\) 316.874i 0.384556i
\(825\) 0 0
\(826\) 61.9184 0.0749617
\(827\) 350.756 350.756i 0.424131 0.424131i −0.462492 0.886623i \(-0.653045\pi\)
0.886623 + 0.462492i \(0.153045\pi\)
\(828\) 0 0
\(829\) 697.423i 0.841283i 0.907227 + 0.420641i \(0.138195\pi\)
−0.907227 + 0.420641i \(0.861805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 302.531 302.531i 0.363619 0.363619i
\(833\) −437.217 437.217i −0.524870 0.524870i
\(834\) 0 0
\(835\) 0 0
\(836\) −384.817 −0.460308
\(837\) 0 0
\(838\) −19.9127 19.9127i −0.0237622 0.0237622i
\(839\) 72.3724i 0.0862604i 0.999069 + 0.0431302i \(0.0137330\pi\)
−0.999069 + 0.0431302i \(0.986267\pi\)
\(840\) 0 0
\(841\) −394.271 −0.468813
\(842\) −57.7934 + 57.7934i −0.0686382 + 0.0686382i
\(843\) 0 0
\(844\) 573.978i 0.680068i
\(845\) 0 0
\(846\) 0 0
\(847\) −26.8638 + 26.8638i −0.0317164 + 0.0317164i
\(848\) 10.3133 + 10.3133i 0.0121619 + 0.0121619i
\(849\) 0 0
\(850\) 0 0
\(851\) 139.655 0.164107
\(852\) 0 0
\(853\) 74.5699 + 74.5699i 0.0874207 + 0.0874207i 0.749465 0.662044i \(-0.230311\pi\)
−0.662044 + 0.749465i \(0.730311\pi\)
\(854\) 9.16225i 0.0107286i
\(855\) 0 0
\(856\) 244.070 0.285129
\(857\) −293.176 + 293.176i −0.342096 + 0.342096i −0.857155 0.515059i \(-0.827770\pi\)
0.515059 + 0.857155i \(0.327770\pi\)
\(858\) 0 0
\(859\) 786.867i 0.916027i 0.888945 + 0.458014i \(0.151439\pi\)
−0.888945 + 0.458014i \(0.848561\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −180.838 + 180.838i −0.209789 + 0.209789i
\(863\) −1072.68 1072.68i −1.24297 1.24297i −0.958764 0.284204i \(-0.908271\pi\)
−0.284204 0.958764i \(-0.591729\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 155.006 0.178990
\(867\) 0 0
\(868\) −143.868 143.868i −0.165747 0.165747i
\(869\) 277.980i 0.319884i
\(870\) 0 0
\(871\) 500.667 0.574819
\(872\) 121.955 121.955i 0.139856 0.139856i
\(873\) 0 0
\(874\) 45.1531i 0.0516626i
\(875\) 0 0
\(876\) 0 0
\(877\) −239.460 + 239.460i −0.273044 + 0.273044i −0.830324 0.557280i \(-0.811845\pi\)
0.557280 + 0.830324i \(0.311845\pi\)
\(878\) −97.2985 97.2985i −0.110818 0.110818i
\(879\) 0 0
\(880\) 0 0
\(881\) −62.8490 −0.0713382 −0.0356691 0.999364i \(-0.511356\pi\)
−0.0356691 + 0.999364i \(0.511356\pi\)
\(882\) 0 0
\(883\) 158.061 + 158.061i 0.179005 + 0.179005i 0.790922 0.611917i \(-0.209601\pi\)
−0.611917 + 0.790922i \(0.709601\pi\)
\(884\) 750.888i 0.849421i
\(885\) 0 0
\(886\) 110.184 0.124361
\(887\) 30.2066 30.2066i 0.0340548 0.0340548i −0.689874 0.723929i \(-0.742334\pi\)
0.723929 + 0.689874i \(0.242334\pi\)
\(888\) 0 0
\(889\) 1135.72i 1.27752i
\(890\) 0 0
\(891\) 0 0
\(892\) 652.803 652.803i 0.731841 0.731841i
\(893\) −384.817 384.817i −0.430926 0.430926i
\(894\) 0 0
\(895\) 0 0
\(896\) 372.247 0.415455
\(897\) 0 0
\(898\) 86.7719 + 86.7719i 0.0966280 + 0.0966280i
\(899\) 375.959i 0.418197i
\(900\) 0 0
\(901\) 24.1816 0.0268387
\(902\) 1.77755 1.77755i 0.00197067 0.00197067i
\(903\) 0 0
\(904\) 346.677i 0.383492i
\(905\) 0 0
\(906\) 0 0
\(907\) −571.342 + 571.342i −0.629925 + 0.629925i −0.948049 0.318124i \(-0.896947\pi\)
0.318124 + 0.948049i \(0.396947\pi\)
\(908\) 987.110 + 987.110i 1.08713 + 1.08713i
\(909\) 0 0
\(910\) 0 0
\(911\) −173.362 −0.190299 −0.0951494 0.995463i \(-0.530333\pi\)
−0.0951494 + 0.995463i \(0.530333\pi\)
\(912\) 0 0
\(913\) −149.192 149.192i −0.163408 0.163408i
\(914\) 100.572i 0.110035i
\(915\) 0 0
\(916\) −874.159 −0.954322
\(917\) 366.116 366.116i 0.399254 0.399254i
\(918\) 0 0
\(919\) 1147.42i 1.24856i −0.781202 0.624278i \(-0.785393\pi\)
0.781202 0.624278i \(-0.214607\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 162.405 162.405i 0.176144 0.176144i
\(923\) 377.435 + 377.435i 0.408922 + 0.408922i
\(924\) 0 0
\(925\) 0 0
\(926\) 58.2995 0.0629584
\(927\) 0 0
\(928\) −366.464 366.464i −0.394897 0.394897i
\(929\) 220.293i 0.237129i −0.992946 0.118565i \(-0.962171\pi\)
0.992946 0.118565i \(-0.0378292\pi\)
\(930\) 0 0
\(931\) 219.181 0.235425
\(932\) 802.066 802.066i 0.860586 0.860586i
\(933\) 0 0
\(934\) 186.654i 0.199844i
\(935\) 0 0
\(936\) 0 0
\(937\) 396.090 396.090i 0.422721 0.422721i −0.463418 0.886140i \(-0.653377\pi\)
0.886140 + 0.463418i \(0.153377\pi\)
\(938\) 69.9296 + 69.9296i 0.0745518 + 0.0745518i
\(939\) 0 0
\(940\) 0 0
\(941\) −185.771 −0.197419 −0.0987093 0.995116i \(-0.531471\pi\)
−0.0987093 + 0.995116i \(0.531471\pi\)
\(942\) 0 0
\(943\) −8.04999 8.04999i −0.00853658 0.00853658i
\(944\) 590.944i 0.626000i
\(945\) 0 0
\(946\) −135.151 −0.142866
\(947\) −845.190 + 845.190i −0.892492 + 0.892492i −0.994757 0.102265i \(-0.967391\pi\)
0.102265 + 0.994757i \(0.467391\pi\)
\(948\) 0 0
\(949\) 863.523i 0.909930i
\(950\) 0 0
\(951\) 0 0
\(952\) 212.474 212.474i 0.223187 0.223187i
\(953\) −630.499 630.499i −0.661594 0.661594i 0.294161 0.955756i \(-0.404960\pi\)
−0.955756 + 0.294161i \(0.904960\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1348.26 1.41031
\(957\) 0 0
\(958\) 68.5357 + 68.5357i 0.0715404 + 0.0715404i
\(959\) 1149.58i 1.19873i
\(960\) 0 0
\(961\) −846.576 −0.880932
\(962\) 15.0827 15.0827i 0.0156785 0.0156785i
\(963\) 0 0
\(964\) 396.041i 0.410831i
\(965\) 0 0
\(966\) 0 0
\(967\) 381.690 381.690i 0.394716 0.394716i −0.481649 0.876364i \(-0.659962\pi\)
0.876364 + 0.481649i \(0.159962\pi\)
\(968\) 13.8252 + 13.8252i 0.0142823 + 0.0142823i
\(969\) 0 0
\(970\) 0 0
\(971\) 1000.44 1.03032 0.515159 0.857095i \(-0.327733\pi\)
0.515159 + 0.857095i \(0.327733\pi\)
\(972\) 0 0
\(973\) −659.444 659.444i −0.677743 0.677743i
\(974\) 192.974i 0.198125i
\(975\) 0 0
\(976\) −87.4439 −0.0895941
\(977\) 593.662 593.662i 0.607637 0.607637i −0.334691 0.942328i \(-0.608632\pi\)
0.942328 + 0.334691i \(0.108632\pi\)
\(978\) 0 0
\(979\) 932.636i 0.952641i
\(980\) 0 0
\(981\) 0 0
\(982\) 93.1158 93.1158i 0.0948226 0.0948226i
\(983\) −1217.34 1217.34i −1.23839 1.23839i −0.960659 0.277731i \(-0.910418\pi\)
−0.277731 0.960659i \(-0.589582\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −274.070 −0.277962
\(987\) 0 0
\(988\) 188.213 + 188.213i 0.190499 + 0.190499i
\(989\) 612.059i 0.618867i
\(990\) 0 0
\(991\) −544.061 −0.549002 −0.274501 0.961587i \(-0.588513\pi\)
−0.274501 + 0.961587i \(0.588513\pi\)
\(992\) −111.535 + 111.535i −0.112434 + 0.112434i
\(993\) 0 0
\(994\) 105.435i 0.106071i
\(995\) 0 0
\(996\) 0 0
\(997\) 316.733 316.733i 0.317686 0.317686i −0.530192 0.847878i \(-0.677880\pi\)
0.847878 + 0.530192i \(0.177880\pi\)
\(998\) −82.6128 82.6128i −0.0827783 0.0827783i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.3.g.a.118.2 4
3.2 odd 2 75.3.f.c.43.1 4
5.2 odd 4 inner 225.3.g.a.82.2 4
5.3 odd 4 45.3.g.b.37.1 4
5.4 even 2 45.3.g.b.28.1 4
12.11 even 2 1200.3.bg.k.193.1 4
15.2 even 4 75.3.f.c.7.1 4
15.8 even 4 15.3.f.a.7.2 4
15.14 odd 2 15.3.f.a.13.2 yes 4
20.3 even 4 720.3.bh.k.577.2 4
20.19 odd 2 720.3.bh.k.433.2 4
45.4 even 6 405.3.l.f.298.1 8
45.13 odd 12 405.3.l.f.217.2 8
45.14 odd 6 405.3.l.h.298.2 8
45.23 even 12 405.3.l.h.217.1 8
45.29 odd 6 405.3.l.h.28.1 8
45.34 even 6 405.3.l.f.28.2 8
45.38 even 12 405.3.l.h.352.2 8
45.43 odd 12 405.3.l.f.352.1 8
60.23 odd 4 240.3.bg.a.97.2 4
60.47 odd 4 1200.3.bg.k.1057.1 4
60.59 even 2 240.3.bg.a.193.2 4
120.29 odd 2 960.3.bg.i.193.2 4
120.53 even 4 960.3.bg.i.577.2 4
120.59 even 2 960.3.bg.h.193.1 4
120.83 odd 4 960.3.bg.h.577.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.3.f.a.7.2 4 15.8 even 4
15.3.f.a.13.2 yes 4 15.14 odd 2
45.3.g.b.28.1 4 5.4 even 2
45.3.g.b.37.1 4 5.3 odd 4
75.3.f.c.7.1 4 15.2 even 4
75.3.f.c.43.1 4 3.2 odd 2
225.3.g.a.82.2 4 5.2 odd 4 inner
225.3.g.a.118.2 4 1.1 even 1 trivial
240.3.bg.a.97.2 4 60.23 odd 4
240.3.bg.a.193.2 4 60.59 even 2
405.3.l.f.28.2 8 45.34 even 6
405.3.l.f.217.2 8 45.13 odd 12
405.3.l.f.298.1 8 45.4 even 6
405.3.l.f.352.1 8 45.43 odd 12
405.3.l.h.28.1 8 45.29 odd 6
405.3.l.h.217.1 8 45.23 even 12
405.3.l.h.298.2 8 45.14 odd 6
405.3.l.h.352.2 8 45.38 even 12
720.3.bh.k.433.2 4 20.19 odd 2
720.3.bh.k.577.2 4 20.3 even 4
960.3.bg.h.193.1 4 120.59 even 2
960.3.bg.h.577.1 4 120.83 odd 4
960.3.bg.i.193.2 4 120.29 odd 2
960.3.bg.i.577.2 4 120.53 even 4
1200.3.bg.k.193.1 4 12.11 even 2
1200.3.bg.k.1057.1 4 60.47 odd 4