Properties

Label 720.3.bh.k.433.2
Level $720$
Weight $3$
Character 720.433
Analytic conductor $19.619$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,3,Mod(433,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.433");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.bh (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.2
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 720.433
Dual form 720.3.bh.k.577.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.67423 + 1.77526i) q^{5} +(-3.44949 + 3.44949i) q^{7} +11.3485 q^{11} +(-5.55051 - 5.55051i) q^{13} +(17.3485 - 17.3485i) q^{17} +8.69694i q^{19} +(11.5505 + 11.5505i) q^{23} +(18.6969 + 16.5959i) q^{25} +35.1464i q^{29} -10.6969 q^{31} +(-22.2474 + 10.0000i) q^{35} +(-6.04541 + 6.04541i) q^{37} -0.696938 q^{41} +(26.4949 + 26.4949i) q^{43} +(44.2474 - 44.2474i) q^{47} +25.2020i q^{49} +(0.696938 + 0.696938i) q^{53} +(53.0454 + 20.1464i) q^{55} +39.9342i q^{59} +5.90918 q^{61} +(-16.0908 - 35.7980i) q^{65} +(45.1010 - 45.1010i) q^{67} -68.0000 q^{71} +(77.7878 + 77.7878i) q^{73} +(-39.1464 + 39.1464i) q^{77} -24.4949i q^{79} +(13.1464 + 13.1464i) q^{83} +(111.889 - 50.2929i) q^{85} +82.1816i q^{89} +38.2929 q^{91} +(-15.4393 + 40.6515i) q^{95} +(-24.5959 + 24.5959i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{7} + 16 q^{11} - 32 q^{13} + 40 q^{17} + 56 q^{23} + 16 q^{25} + 16 q^{31} - 40 q^{35} + 64 q^{37} + 56 q^{41} + 8 q^{43} + 128 q^{47} - 56 q^{53} + 124 q^{55} + 200 q^{61} + 112 q^{65}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.67423 + 1.77526i 0.934847 + 0.355051i
\(6\) 0 0
\(7\) −3.44949 + 3.44949i −0.492784 + 0.492784i −0.909182 0.416398i \(-0.863292\pi\)
0.416398 + 0.909182i \(0.363292\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 11.3485 1.03168 0.515840 0.856685i \(-0.327480\pi\)
0.515840 + 0.856685i \(0.327480\pi\)
\(12\) 0 0
\(13\) −5.55051 5.55051i −0.426962 0.426962i 0.460630 0.887592i \(-0.347624\pi\)
−0.887592 + 0.460630i \(0.847624\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 17.3485 17.3485i 1.02050 1.02050i 0.0207127 0.999785i \(-0.493406\pi\)
0.999785 0.0207127i \(-0.00659354\pi\)
\(18\) 0 0
\(19\) 8.69694i 0.457734i 0.973458 + 0.228867i \(0.0735020\pi\)
−0.973458 + 0.228867i \(0.926498\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 11.5505 + 11.5505i 0.502196 + 0.502196i 0.912120 0.409924i \(-0.134445\pi\)
−0.409924 + 0.912120i \(0.634445\pi\)
\(24\) 0 0
\(25\) 18.6969 + 16.5959i 0.747878 + 0.663837i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 35.1464i 1.21195i 0.795485 + 0.605973i \(0.207216\pi\)
−0.795485 + 0.605973i \(0.792784\pi\)
\(30\) 0 0
\(31\) −10.6969 −0.345063 −0.172531 0.985004i \(-0.555195\pi\)
−0.172531 + 0.985004i \(0.555195\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −22.2474 + 10.0000i −0.635641 + 0.285714i
\(36\) 0 0
\(37\) −6.04541 + 6.04541i −0.163389 + 0.163389i −0.784066 0.620677i \(-0.786858\pi\)
0.620677 + 0.784066i \(0.286858\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.696938 −0.0169985 −0.00849925 0.999964i \(-0.502705\pi\)
−0.00849925 + 0.999964i \(0.502705\pi\)
\(42\) 0 0
\(43\) 26.4949 + 26.4949i 0.616160 + 0.616160i 0.944544 0.328384i \(-0.106504\pi\)
−0.328384 + 0.944544i \(0.606504\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 44.2474 44.2474i 0.941435 0.941435i −0.0569424 0.998377i \(-0.518135\pi\)
0.998377 + 0.0569424i \(0.0181351\pi\)
\(48\) 0 0
\(49\) 25.2020i 0.514327i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.696938 + 0.696938i 0.0131498 + 0.0131498i 0.713651 0.700501i \(-0.247040\pi\)
−0.700501 + 0.713651i \(0.747040\pi\)
\(54\) 0 0
\(55\) 53.0454 + 20.1464i 0.964462 + 0.366299i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 39.9342i 0.676851i 0.940993 + 0.338425i \(0.109894\pi\)
−0.940993 + 0.338425i \(0.890106\pi\)
\(60\) 0 0
\(61\) 5.90918 0.0968719 0.0484359 0.998826i \(-0.484576\pi\)
0.0484359 + 0.998826i \(0.484576\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −16.0908 35.7980i −0.247551 0.550738i
\(66\) 0 0
\(67\) 45.1010 45.1010i 0.673150 0.673150i −0.285291 0.958441i \(-0.592090\pi\)
0.958441 + 0.285291i \(0.0920903\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −68.0000 −0.957746 −0.478873 0.877884i \(-0.658955\pi\)
−0.478873 + 0.877884i \(0.658955\pi\)
\(72\) 0 0
\(73\) 77.7878 + 77.7878i 1.06559 + 1.06559i 0.997693 + 0.0678931i \(0.0216277\pi\)
0.0678931 + 0.997693i \(0.478372\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −39.1464 + 39.1464i −0.508395 + 0.508395i
\(78\) 0 0
\(79\) 24.4949i 0.310062i −0.987910 0.155031i \(-0.950452\pi\)
0.987910 0.155031i \(-0.0495477\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.1464 + 13.1464i 0.158391 + 0.158391i 0.781853 0.623463i \(-0.214275\pi\)
−0.623463 + 0.781853i \(0.714275\pi\)
\(84\) 0 0
\(85\) 111.889 50.2929i 1.31634 0.591681i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 82.1816i 0.923389i 0.887039 + 0.461695i \(0.152758\pi\)
−0.887039 + 0.461695i \(0.847242\pi\)
\(90\) 0 0
\(91\) 38.2929 0.420801
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −15.4393 + 40.6515i −0.162519 + 0.427911i
\(96\) 0 0
\(97\) −24.5959 + 24.5959i −0.253566 + 0.253566i −0.822431 0.568865i \(-0.807383\pi\)
0.568865 + 0.822431i \(0.307383\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 105.621 1.04575 0.522876 0.852409i \(-0.324859\pi\)
0.522876 + 0.852409i \(0.324859\pi\)
\(102\) 0 0
\(103\) 89.2474 + 89.2474i 0.866480 + 0.866480i 0.992081 0.125601i \(-0.0400858\pi\)
−0.125601 + 0.992081i \(0.540086\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 68.7423 68.7423i 0.642452 0.642452i −0.308706 0.951158i \(-0.599896\pi\)
0.951158 + 0.308706i \(0.0998958\pi\)
\(108\) 0 0
\(109\) 68.6969i 0.630247i −0.949051 0.315124i \(-0.897954\pi\)
0.949051 0.315124i \(-0.102046\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −97.6413 97.6413i −0.864083 0.864083i 0.127727 0.991809i \(-0.459232\pi\)
−0.991809 + 0.127727i \(0.959232\pi\)
\(114\) 0 0
\(115\) 33.4847 + 74.4949i 0.291171 + 0.647782i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 119.687i 1.00577i
\(120\) 0 0
\(121\) 7.78775 0.0643616
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 57.9319 + 110.765i 0.463455 + 0.886120i
\(126\) 0 0
\(127\) −164.621 + 164.621i −1.29623 + 1.29623i −0.365362 + 0.930865i \(0.619055\pi\)
−0.930865 + 0.365362i \(0.880945\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 106.136 0.810200 0.405100 0.914272i \(-0.367237\pi\)
0.405100 + 0.914272i \(0.367237\pi\)
\(132\) 0 0
\(133\) −30.0000 30.0000i −0.225564 0.225564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 166.631 166.631i 1.21629 1.21629i 0.247363 0.968923i \(-0.420436\pi\)
0.968923 0.247363i \(-0.0795639\pi\)
\(138\) 0 0
\(139\) 191.171i 1.37533i −0.726026 0.687667i \(-0.758635\pi\)
0.726026 0.687667i \(-0.241365\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −62.9898 62.9898i −0.440488 0.440488i
\(144\) 0 0
\(145\) −62.3939 + 164.283i −0.430303 + 1.13298i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 84.8536i 0.569487i 0.958604 + 0.284744i \(0.0919084\pi\)
−0.958604 + 0.284744i \(0.908092\pi\)
\(150\) 0 0
\(151\) −148.969 −0.986552 −0.493276 0.869873i \(-0.664201\pi\)
−0.493276 + 0.869873i \(0.664201\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −50.0000 18.9898i −0.322581 0.122515i
\(156\) 0 0
\(157\) 16.8536 16.8536i 0.107348 0.107348i −0.651393 0.758741i \(-0.725815\pi\)
0.758741 + 0.651393i \(0.225815\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −79.6867 −0.494949
\(162\) 0 0
\(163\) −130.606 130.606i −0.801265 0.801265i 0.182029 0.983293i \(-0.441734\pi\)
−0.983293 + 0.182029i \(0.941734\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −45.0352 + 45.0352i −0.269672 + 0.269672i −0.828968 0.559296i \(-0.811071\pi\)
0.559296 + 0.828968i \(0.311071\pi\)
\(168\) 0 0
\(169\) 107.384i 0.635406i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −146.631 146.631i −0.847579 0.847579i 0.142252 0.989831i \(-0.454566\pi\)
−0.989831 + 0.142252i \(0.954566\pi\)
\(174\) 0 0
\(175\) −121.742 + 7.24745i −0.695671 + 0.0414140i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 183.712i 1.02632i −0.858292 0.513161i \(-0.828474\pi\)
0.858292 0.513161i \(-0.171526\pi\)
\(180\) 0 0
\(181\) −286.272 −1.58162 −0.790808 0.612064i \(-0.790339\pi\)
−0.790808 + 0.612064i \(0.790339\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −38.9898 + 17.5255i −0.210756 + 0.0947325i
\(186\) 0 0
\(187\) 196.879 196.879i 1.05283 1.05283i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 48.0908 0.251784 0.125892 0.992044i \(-0.459821\pi\)
0.125892 + 0.992044i \(0.459821\pi\)
\(192\) 0 0
\(193\) −255.565 255.565i −1.32417 1.32417i −0.910364 0.413809i \(-0.864198\pi\)
−0.413809 0.910364i \(-0.635802\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 96.6969 96.6969i 0.490847 0.490847i −0.417726 0.908573i \(-0.637173\pi\)
0.908573 + 0.417726i \(0.137173\pi\)
\(198\) 0 0
\(199\) 192.606i 0.967870i 0.875104 + 0.483935i \(0.160793\pi\)
−0.875104 + 0.483935i \(0.839207\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −121.237 121.237i −0.597228 0.597228i
\(204\) 0 0
\(205\) −3.25765 1.23724i −0.0158910 0.00603533i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 98.6969i 0.472234i
\(210\) 0 0
\(211\) −147.212 −0.697688 −0.348844 0.937181i \(-0.613426\pi\)
−0.348844 + 0.937181i \(0.613426\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 76.8082 + 170.879i 0.357247 + 0.794784i
\(216\) 0 0
\(217\) 36.8990 36.8990i 0.170041 0.170041i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −192.586 −0.871429
\(222\) 0 0
\(223\) −167.429 167.429i −0.750803 0.750803i 0.223826 0.974629i \(-0.428145\pi\)
−0.974629 + 0.223826i \(0.928145\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 253.171 253.171i 1.11529 1.11529i 0.122870 0.992423i \(-0.460790\pi\)
0.992423 0.122870i \(-0.0392098\pi\)
\(228\) 0 0
\(229\) 224.202i 0.979048i 0.871990 + 0.489524i \(0.162829\pi\)
−0.871990 + 0.489524i \(0.837171\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 205.712 + 205.712i 0.882883 + 0.882883i 0.993827 0.110944i \(-0.0353873\pi\)
−0.110944 + 0.993827i \(0.535387\pi\)
\(234\) 0 0
\(235\) 285.373 128.272i 1.21436 0.545840i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 345.798i 1.44685i 0.690401 + 0.723427i \(0.257434\pi\)
−0.690401 + 0.723427i \(0.742566\pi\)
\(240\) 0 0
\(241\) 101.576 0.421475 0.210738 0.977543i \(-0.432413\pi\)
0.210738 + 0.977543i \(0.432413\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −44.7401 + 117.800i −0.182612 + 0.480817i
\(246\) 0 0
\(247\) 48.2724 48.2724i 0.195435 0.195435i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −331.258 −1.31975 −0.659876 0.751375i \(-0.729391\pi\)
−0.659876 + 0.751375i \(0.729391\pi\)
\(252\) 0 0
\(253\) 131.081 + 131.081i 0.518105 + 0.518105i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −33.2372 + 33.2372i −0.129328 + 0.129328i −0.768808 0.639480i \(-0.779150\pi\)
0.639480 + 0.768808i \(0.279150\pi\)
\(258\) 0 0
\(259\) 41.7071i 0.161031i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −278.157 278.157i −1.05763 1.05763i −0.998235 0.0593952i \(-0.981083\pi\)
−0.0593952 0.998235i \(-0.518917\pi\)
\(264\) 0 0
\(265\) 2.02041 + 4.49490i 0.00762419 + 0.0169619i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 488.499i 1.81598i −0.418988 0.907992i \(-0.637615\pi\)
0.418988 0.907992i \(-0.362385\pi\)
\(270\) 0 0
\(271\) −131.576 −0.485518 −0.242759 0.970087i \(-0.578053\pi\)
−0.242759 + 0.970087i \(0.578053\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 212.182 + 188.338i 0.771570 + 0.684866i
\(276\) 0 0
\(277\) 101.510 101.510i 0.366461 0.366461i −0.499724 0.866185i \(-0.666565\pi\)
0.866185 + 0.499724i \(0.166565\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −343.303 −1.22172 −0.610860 0.791739i \(-0.709176\pi\)
−0.610860 + 0.791739i \(0.709176\pi\)
\(282\) 0 0
\(283\) −1.19184 1.19184i −0.00421143 0.00421143i 0.704998 0.709209i \(-0.250948\pi\)
−0.709209 + 0.704998i \(0.750948\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.40408 2.40408i 0.00837659 0.00837659i
\(288\) 0 0
\(289\) 312.939i 1.08283i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −96.5653 96.5653i −0.329574 0.329574i 0.522850 0.852425i \(-0.324869\pi\)
−0.852425 + 0.522850i \(0.824869\pi\)
\(294\) 0 0
\(295\) −70.8934 + 186.662i −0.240316 + 0.632752i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 128.222i 0.428838i
\(300\) 0 0
\(301\) −182.788 −0.607268
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 27.6209 + 10.4903i 0.0905604 + 0.0343945i
\(306\) 0 0
\(307\) 124.969 124.969i 0.407066 0.407066i −0.473648 0.880714i \(-0.657063\pi\)
0.880714 + 0.473648i \(0.157063\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −586.302 −1.88522 −0.942608 0.333902i \(-0.891635\pi\)
−0.942608 + 0.333902i \(0.891635\pi\)
\(312\) 0 0
\(313\) −102.373 102.373i −0.327072 0.327072i 0.524400 0.851472i \(-0.324290\pi\)
−0.851472 + 0.524400i \(0.824290\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 108.783 108.783i 0.343165 0.343165i −0.514391 0.857556i \(-0.671982\pi\)
0.857556 + 0.514391i \(0.171982\pi\)
\(318\) 0 0
\(319\) 398.858i 1.25034i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 150.879 + 150.879i 0.467116 + 0.467116i
\(324\) 0 0
\(325\) −11.6617 195.893i −0.0358823 0.602749i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 305.262i 0.927849i
\(330\) 0 0
\(331\) 245.423 0.741461 0.370730 0.928741i \(-0.379107\pi\)
0.370730 + 0.928741i \(0.379107\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 290.879 130.747i 0.868294 0.390289i
\(336\) 0 0
\(337\) 213.808 213.808i 0.634446 0.634446i −0.314734 0.949180i \(-0.601915\pi\)
0.949180 + 0.314734i \(0.101915\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −121.394 −0.355994
\(342\) 0 0
\(343\) −255.959 255.959i −0.746237 0.746237i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −160.050 + 160.050i −0.461239 + 0.461239i −0.899062 0.437822i \(-0.855750\pi\)
0.437822 + 0.899062i \(0.355750\pi\)
\(348\) 0 0
\(349\) 298.009i 0.853894i 0.904277 + 0.426947i \(0.140411\pi\)
−0.904277 + 0.426947i \(0.859589\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 22.5199 + 22.5199i 0.0637957 + 0.0637957i 0.738285 0.674489i \(-0.235636\pi\)
−0.674489 + 0.738285i \(0.735636\pi\)
\(354\) 0 0
\(355\) −317.848 120.717i −0.895346 0.340049i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 48.2724i 0.134464i −0.997737 0.0672318i \(-0.978583\pi\)
0.997737 0.0672318i \(-0.0214167\pi\)
\(360\) 0 0
\(361\) 285.363 0.790480
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 225.505 + 501.691i 0.617822 + 1.37450i
\(366\) 0 0
\(367\) −146.510 + 146.510i −0.399209 + 0.399209i −0.877954 0.478745i \(-0.841092\pi\)
0.478745 + 0.877954i \(0.341092\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.80816 −0.0129600
\(372\) 0 0
\(373\) 86.2066 + 86.2066i 0.231117 + 0.231117i 0.813159 0.582042i \(-0.197746\pi\)
−0.582042 + 0.813159i \(0.697746\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 195.081 195.081i 0.517455 0.517455i
\(378\) 0 0
\(379\) 210.000i 0.554090i −0.960857 0.277045i \(-0.910645\pi\)
0.960857 0.277045i \(-0.0893551\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.6311 10.6311i −0.0277575 0.0277575i 0.693092 0.720849i \(-0.256248\pi\)
−0.720849 + 0.693092i \(0.756248\pi\)
\(384\) 0 0
\(385\) −252.474 + 113.485i −0.655778 + 0.294765i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 535.337i 1.37619i −0.725621 0.688094i \(-0.758448\pi\)
0.725621 0.688094i \(-0.241552\pi\)
\(390\) 0 0
\(391\) 400.767 1.02498
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 43.4847 114.495i 0.110088 0.289860i
\(396\) 0 0
\(397\) 118.742 118.742i 0.299099 0.299099i −0.541562 0.840661i \(-0.682167\pi\)
0.840661 + 0.541562i \(0.182167\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −420.302 −1.04813 −0.524067 0.851677i \(-0.675586\pi\)
−0.524067 + 0.851677i \(0.675586\pi\)
\(402\) 0 0
\(403\) 59.3735 + 59.3735i 0.147329 + 0.147329i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −68.6061 + 68.6061i −0.168565 + 0.168565i
\(408\) 0 0
\(409\) 515.110i 1.25944i 0.776823 + 0.629719i \(0.216830\pi\)
−0.776823 + 0.629719i \(0.783170\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −137.753 137.753i −0.333541 0.333541i
\(414\) 0 0
\(415\) 38.1112 + 84.7878i 0.0918343 + 0.204308i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 88.6015i 0.211460i 0.994395 + 0.105730i \(0.0337178\pi\)
−0.994395 + 0.105730i \(0.966282\pi\)
\(420\) 0 0
\(421\) −257.151 −0.610810 −0.305405 0.952223i \(-0.598792\pi\)
−0.305405 + 0.952223i \(0.598792\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 612.277 36.4495i 1.44065 0.0857635i
\(426\) 0 0
\(427\) −20.3837 + 20.3837i −0.0477369 + 0.0477369i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 804.636 1.86690 0.933452 0.358702i \(-0.116781\pi\)
0.933452 + 0.358702i \(0.116781\pi\)
\(432\) 0 0
\(433\) −344.848 344.848i −0.796416 0.796416i 0.186113 0.982528i \(-0.440411\pi\)
−0.982528 + 0.186113i \(0.940411\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −100.454 + 100.454i −0.229872 + 0.229872i
\(438\) 0 0
\(439\) 432.929i 0.986170i 0.869981 + 0.493085i \(0.164131\pi\)
−0.869981 + 0.493085i \(0.835869\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 245.131 + 245.131i 0.553342 + 0.553342i 0.927404 0.374062i \(-0.122035\pi\)
−0.374062 + 0.927404i \(0.622035\pi\)
\(444\) 0 0
\(445\) −145.893 + 384.136i −0.327850 + 0.863227i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 386.091i 0.859890i 0.902855 + 0.429945i \(0.141467\pi\)
−0.902855 + 0.429945i \(0.858533\pi\)
\(450\) 0 0
\(451\) −7.90918 −0.0175370
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 178.990 + 67.9796i 0.393384 + 0.149406i
\(456\) 0 0
\(457\) −223.747 + 223.747i −0.489599 + 0.489599i −0.908180 0.418580i \(-0.862528\pi\)
0.418580 + 0.908180i \(0.362528\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 722.620 1.56751 0.783753 0.621073i \(-0.213303\pi\)
0.783753 + 0.621073i \(0.213303\pi\)
\(462\) 0 0
\(463\) 129.702 + 129.702i 0.280133 + 0.280133i 0.833162 0.553029i \(-0.186528\pi\)
−0.553029 + 0.833162i \(0.686528\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 415.258 415.258i 0.889203 0.889203i −0.105244 0.994446i \(-0.533562\pi\)
0.994446 + 0.105244i \(0.0335623\pi\)
\(468\) 0 0
\(469\) 311.151i 0.663435i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 300.677 + 300.677i 0.635680 + 0.635680i
\(474\) 0 0
\(475\) −144.334 + 162.606i −0.303860 + 0.342329i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 304.949i 0.636637i −0.947984 0.318318i \(-0.896882\pi\)
0.947984 0.318318i \(-0.103118\pi\)
\(480\) 0 0
\(481\) 67.1102 0.139522
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −158.631 + 71.3031i −0.327074 + 0.147017i
\(486\) 0 0
\(487\) 429.318 429.318i 0.881556 0.881556i −0.112137 0.993693i \(-0.535769\pi\)
0.993693 + 0.112137i \(0.0357694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −414.318 −0.843825 −0.421912 0.906637i \(-0.638641\pi\)
−0.421912 + 0.906637i \(0.638641\pi\)
\(492\) 0 0
\(493\) 609.737 + 609.737i 1.23679 + 1.23679i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 234.565 234.565i 0.471962 0.471962i
\(498\) 0 0
\(499\) 367.585i 0.736643i 0.929699 + 0.368321i \(0.120067\pi\)
−0.929699 + 0.368321i \(0.879933\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −9.59133 9.59133i −0.0190683 0.0190683i 0.697508 0.716577i \(-0.254292\pi\)
−0.716577 + 0.697508i \(0.754292\pi\)
\(504\) 0 0
\(505\) 493.697 + 187.504i 0.977618 + 0.371295i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 777.489i 1.52748i 0.645522 + 0.763742i \(0.276640\pi\)
−0.645522 + 0.763742i \(0.723360\pi\)
\(510\) 0 0
\(511\) −536.656 −1.05021
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 258.727 + 575.601i 0.502382 + 1.11767i
\(516\) 0 0
\(517\) 502.141 502.141i 0.971259 0.971259i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −321.605 −0.617284 −0.308642 0.951178i \(-0.599875\pi\)
−0.308642 + 0.951178i \(0.599875\pi\)
\(522\) 0 0
\(523\) 582.454 + 582.454i 1.11368 + 1.11368i 0.992649 + 0.121030i \(0.0386198\pi\)
0.121030 + 0.992649i \(0.461380\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −185.576 + 185.576i −0.352136 + 0.352136i
\(528\) 0 0
\(529\) 262.171i 0.495598i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.86836 + 3.86836i 0.00725772 + 0.00725772i
\(534\) 0 0
\(535\) 443.353 199.283i 0.828697 0.372491i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 286.005i 0.530621i
\(540\) 0 0
\(541\) 460.697 0.851566 0.425783 0.904825i \(-0.359999\pi\)
0.425783 + 0.904825i \(0.359999\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 121.955 321.106i 0.223770 0.589185i
\(546\) 0 0
\(547\) 661.778 661.778i 1.20983 1.20983i 0.238750 0.971081i \(-0.423262\pi\)
0.971081 0.238750i \(-0.0767376\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −305.666 −0.554748
\(552\) 0 0
\(553\) 84.4949 + 84.4949i 0.152794 + 0.152794i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −125.909 + 125.909i −0.226049 + 0.226049i −0.811040 0.584991i \(-0.801098\pi\)
0.584991 + 0.811040i \(0.301098\pi\)
\(558\) 0 0
\(559\) 294.120i 0.526155i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −200.009 200.009i −0.355256 0.355256i 0.506805 0.862061i \(-0.330826\pi\)
−0.862061 + 0.506805i \(0.830826\pi\)
\(564\) 0 0
\(565\) −283.060 629.737i −0.500992 1.11458i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 599.839i 1.05420i −0.849804 0.527099i \(-0.823280\pi\)
0.849804 0.527099i \(-0.176720\pi\)
\(570\) 0 0
\(571\) 247.970 0.434274 0.217137 0.976141i \(-0.430328\pi\)
0.217137 + 0.976141i \(0.430328\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 24.2679 + 407.650i 0.0422050 + 0.708957i
\(576\) 0 0
\(577\) −292.121 + 292.121i −0.506276 + 0.506276i −0.913381 0.407105i \(-0.866538\pi\)
0.407105 + 0.913381i \(0.366538\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −90.6969 −0.156105
\(582\) 0 0
\(583\) 7.90918 + 7.90918i 0.0135664 + 0.0135664i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 611.217 611.217i 1.04126 1.04126i 0.0421437 0.999112i \(-0.486581\pi\)
0.999112 0.0421437i \(-0.0134187\pi\)
\(588\) 0 0
\(589\) 93.0306i 0.157947i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −524.742 524.742i −0.884894 0.884894i 0.109133 0.994027i \(-0.465193\pi\)
−0.994027 + 0.109133i \(0.965193\pi\)
\(594\) 0 0
\(595\) −212.474 + 559.444i −0.357100 + 0.940242i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 368.858i 0.615790i 0.951420 + 0.307895i \(0.0996245\pi\)
−0.951420 + 0.307895i \(0.900375\pi\)
\(600\) 0 0
\(601\) 932.484 1.55155 0.775777 0.631007i \(-0.217358\pi\)
0.775777 + 0.631007i \(0.217358\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 36.4018 + 13.8252i 0.0601682 + 0.0228517i
\(606\) 0 0
\(607\) −513.611 + 513.611i −0.846146 + 0.846146i −0.989650 0.143504i \(-0.954163\pi\)
0.143504 + 0.989650i \(0.454163\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −491.192 −0.803915
\(612\) 0 0
\(613\) −615.287 615.287i −1.00373 1.00373i −0.999993 0.00373821i \(-0.998810\pi\)
−0.00373821 0.999993i \(-0.501190\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −546.752 + 546.752i −0.886145 + 0.886145i −0.994150 0.108005i \(-0.965554\pi\)
0.108005 + 0.994150i \(0.465554\pi\)
\(618\) 0 0
\(619\) 152.869i 0.246962i 0.992347 + 0.123481i \(0.0394058\pi\)
−0.992347 + 0.123481i \(0.960594\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −283.485 283.485i −0.455032 0.455032i
\(624\) 0 0
\(625\) 74.1510 + 620.586i 0.118642 + 0.992937i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 209.757i 0.333477i
\(630\) 0 0
\(631\) 41.4847 0.0657444 0.0328722 0.999460i \(-0.489535\pi\)
0.0328722 + 0.999460i \(0.489535\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1061.72 + 477.233i −1.67200 + 0.751547i
\(636\) 0 0
\(637\) 139.884 139.884i 0.219598 0.219598i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −47.2122 −0.0736541 −0.0368270 0.999322i \(-0.511725\pi\)
−0.0368270 + 0.999322i \(0.511725\pi\)
\(642\) 0 0
\(643\) −460.372 460.372i −0.715976 0.715976i 0.251803 0.967779i \(-0.418977\pi\)
−0.967779 + 0.251803i \(0.918977\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −281.287 + 281.287i −0.434756 + 0.434756i −0.890243 0.455487i \(-0.849465\pi\)
0.455487 + 0.890243i \(0.349465\pi\)
\(648\) 0 0
\(649\) 453.192i 0.698293i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −89.8230 89.8230i −0.137554 0.137554i 0.634977 0.772531i \(-0.281010\pi\)
−0.772531 + 0.634977i \(0.781010\pi\)
\(654\) 0 0
\(655\) 496.106 + 188.419i 0.757413 + 0.287662i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1081.24i 1.64072i −0.571844 0.820362i \(-0.693772\pi\)
0.571844 0.820362i \(-0.306228\pi\)
\(660\) 0 0
\(661\) −632.393 −0.956721 −0.478361 0.878163i \(-0.658769\pi\)
−0.478361 + 0.878163i \(0.658769\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −86.9694 193.485i −0.130781 0.290954i
\(666\) 0 0
\(667\) −405.959 + 405.959i −0.608634 + 0.608634i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 67.0602 0.0999407
\(672\) 0 0
\(673\) 233.293 + 233.293i 0.346646 + 0.346646i 0.858859 0.512213i \(-0.171174\pi\)
−0.512213 + 0.858859i \(0.671174\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 48.3883 48.3883i 0.0714745 0.0714745i −0.670466 0.741940i \(-0.733906\pi\)
0.741940 + 0.670466i \(0.233906\pi\)
\(678\) 0 0
\(679\) 169.687i 0.249907i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 213.410 + 213.410i 0.312459 + 0.312459i 0.845862 0.533402i \(-0.179087\pi\)
−0.533402 + 0.845862i \(0.679087\pi\)
\(684\) 0 0
\(685\) 1074.69 483.060i 1.56888 0.705197i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.73673i 0.0112289i
\(690\) 0 0
\(691\) −151.121 −0.218700 −0.109350 0.994003i \(-0.534877\pi\)
−0.109350 + 0.994003i \(0.534877\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 339.378 893.580i 0.488314 1.28573i
\(696\) 0 0
\(697\) −12.0908 + 12.0908i −0.0173469 + 0.0173469i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 745.680 1.06374 0.531869 0.846827i \(-0.321490\pi\)
0.531869 + 0.846827i \(0.321490\pi\)
\(702\) 0 0
\(703\) −52.5765 52.5765i −0.0747888 0.0747888i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −364.338 + 364.338i −0.515330 + 0.515330i
\(708\) 0 0
\(709\) 719.049i 1.01417i −0.861895 0.507087i \(-0.830722\pi\)
0.861895 0.507087i \(-0.169278\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −123.555 123.555i −0.173289 0.173289i
\(714\) 0 0
\(715\) −182.606 406.252i −0.255393 0.568185i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 605.271i 0.841824i 0.907101 + 0.420912i \(0.138290\pi\)
−0.907101 + 0.420912i \(0.861710\pi\)
\(720\) 0 0
\(721\) −615.716 −0.853975
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −583.287 + 657.131i −0.804534 + 0.906387i
\(726\) 0 0
\(727\) 246.126 246.126i 0.338550 0.338550i −0.517271 0.855821i \(-0.673052\pi\)
0.855821 + 0.517271i \(0.173052\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 919.292 1.25758
\(732\) 0 0
\(733\) −270.763 270.763i −0.369390 0.369390i 0.497865 0.867255i \(-0.334118\pi\)
−0.867255 + 0.497865i \(0.834118\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 511.828 511.828i 0.694474 0.694474i
\(738\) 0 0
\(739\) 515.666i 0.697789i −0.937162 0.348895i \(-0.886557\pi\)
0.937162 0.348895i \(-0.113443\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 420.702 + 420.702i 0.566220 + 0.566220i 0.931067 0.364847i \(-0.118879\pi\)
−0.364847 + 0.931067i \(0.618879\pi\)
\(744\) 0 0
\(745\) −150.637 + 396.626i −0.202197 + 0.532383i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 474.252i 0.633180i
\(750\) 0 0
\(751\) 859.787 1.14486 0.572428 0.819955i \(-0.306002\pi\)
0.572428 + 0.819955i \(0.306002\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −696.318 264.459i −0.922275 0.350276i
\(756\) 0 0
\(757\) −956.075 + 956.075i −1.26298 + 1.26298i −0.313337 + 0.949642i \(0.601447\pi\)
−0.949642 + 0.313337i \(0.898553\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 322.758 0.424124 0.212062 0.977256i \(-0.431982\pi\)
0.212062 + 0.977256i \(0.431982\pi\)
\(762\) 0 0
\(763\) 236.969 + 236.969i 0.310576 + 0.310576i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 221.655 221.655i 0.288990 0.288990i
\(768\) 0 0
\(769\) 692.402i 0.900393i −0.892930 0.450196i \(-0.851354\pi\)
0.892930 0.450196i \(-0.148646\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −375.226 375.226i −0.485415 0.485415i 0.421441 0.906856i \(-0.361525\pi\)
−0.906856 + 0.421441i \(0.861525\pi\)
\(774\) 0 0
\(775\) −200.000 177.526i −0.258065 0.229065i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.06123i 0.00778078i
\(780\) 0 0
\(781\) −771.696 −0.988087
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 108.697 48.8582i 0.138467 0.0622397i
\(786\) 0 0
\(787\) −910.990 + 910.990i −1.15755 + 1.15755i −0.172546 + 0.985001i \(0.555199\pi\)
−0.985001 + 0.172546i \(0.944801\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 673.626 0.851613
\(792\) 0 0
\(793\) −32.7990 32.7990i −0.0413606 0.0413606i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.21683 7.21683i 0.00905500 0.00905500i −0.702565 0.711620i \(-0.747962\pi\)
0.711620 + 0.702565i \(0.247962\pi\)
\(798\) 0 0
\(799\) 1535.25i 1.92147i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 882.772 + 882.772i 1.09934 + 1.09934i
\(804\) 0 0
\(805\) −372.474 141.464i −0.462701 0.175732i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 150.000i 0.185414i −0.995693 0.0927070i \(-0.970448\pi\)
0.995693 0.0927070i \(-0.0295520\pi\)
\(810\) 0 0
\(811\) −1336.85 −1.64839 −0.824197 0.566304i \(-0.808373\pi\)
−0.824197 + 0.566304i \(0.808373\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −378.624 842.343i −0.464570 1.03355i
\(816\) 0 0
\(817\) −230.424 + 230.424i −0.282037 + 0.282037i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 33.8934 0.0412830 0.0206415 0.999787i \(-0.493429\pi\)
0.0206415 + 0.999787i \(0.493429\pi\)
\(822\) 0 0
\(823\) −481.631 481.631i −0.585214 0.585214i 0.351117 0.936331i \(-0.385802\pi\)
−0.936331 + 0.351117i \(0.885802\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 350.756 350.756i 0.424131 0.424131i −0.462492 0.886623i \(-0.653045\pi\)
0.886623 + 0.462492i \(0.153045\pi\)
\(828\) 0 0
\(829\) 697.423i 0.841283i 0.907227 + 0.420641i \(0.138195\pi\)
−0.907227 + 0.420641i \(0.861805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 437.217 + 437.217i 0.524870 + 0.524870i
\(834\) 0 0
\(835\) −290.454 + 130.556i −0.347849 + 0.156355i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 72.3724i 0.0862604i −0.999069 0.0431302i \(-0.986267\pi\)
0.999069 0.0431302i \(-0.0137330\pi\)
\(840\) 0 0
\(841\) −394.271 −0.468813
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 190.633 501.936i 0.225602 0.594008i
\(846\) 0 0
\(847\) −26.8638 + 26.8638i −0.0317164 + 0.0317164i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −139.655 −0.164107
\(852\) 0 0
\(853\) −74.5699 74.5699i −0.0874207 0.0874207i 0.662044 0.749465i \(-0.269689\pi\)
−0.749465 + 0.662044i \(0.769689\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 293.176 293.176i 0.342096 0.342096i −0.515059 0.857155i \(-0.672230\pi\)
0.857155 + 0.515059i \(0.172230\pi\)
\(858\) 0 0
\(859\) 786.867i 0.916027i −0.888945 0.458014i \(-0.848561\pi\)
0.888945 0.458014i \(-0.151439\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1072.68 1072.68i −1.24297 1.24297i −0.958764 0.284204i \(-0.908271\pi\)
−0.284204 0.958764i \(-0.591729\pi\)
\(864\) 0 0
\(865\) −425.081 945.696i −0.491423 1.09329i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 277.980i 0.319884i
\(870\) 0 0
\(871\) −500.667 −0.574819
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −581.918 182.247i −0.665050 0.208283i
\(876\) 0 0
\(877\) 239.460 239.460i 0.273044 0.273044i −0.557280 0.830324i \(-0.688155\pi\)
0.830324 + 0.557280i \(0.188155\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −62.8490 −0.0713382 −0.0356691 0.999364i \(-0.511356\pi\)
−0.0356691 + 0.999364i \(0.511356\pi\)
\(882\) 0 0
\(883\) 158.061 + 158.061i 0.179005 + 0.179005i 0.790922 0.611917i \(-0.209601\pi\)
−0.611917 + 0.790922i \(0.709601\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.2066 30.2066i 0.0340548 0.0340548i −0.689874 0.723929i \(-0.742334\pi\)
0.723929 + 0.689874i \(0.242334\pi\)
\(888\) 0 0
\(889\) 1135.72i 1.27752i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 384.817 + 384.817i 0.430926 + 0.430926i
\(894\) 0 0
\(895\) 326.135 858.712i 0.364397 0.959454i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 375.959i 0.418197i
\(900\) 0 0
\(901\) 24.1816 0.0268387
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1338.10 508.207i −1.47857 0.561554i
\(906\) 0 0
\(907\) −571.342 + 571.342i −0.629925 + 0.629925i −0.948049 0.318124i \(-0.896947\pi\)
0.318124 + 0.948049i \(0.396947\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 173.362 0.190299 0.0951494 0.995463i \(-0.469667\pi\)
0.0951494 + 0.995463i \(0.469667\pi\)
\(912\) 0 0
\(913\) 149.192 + 149.192i 0.163408 + 0.163408i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −366.116 + 366.116i −0.399254 + 0.399254i
\(918\) 0 0
\(919\) 1147.42i 1.24856i 0.781202 + 0.624278i \(0.214607\pi\)
−0.781202 + 0.624278i \(0.785393\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 377.435 + 377.435i 0.408922 + 0.408922i
\(924\) 0 0
\(925\) −213.360 + 12.7015i −0.230659 + 0.0137314i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 220.293i 0.237129i −0.992946 0.118565i \(-0.962171\pi\)
0.992946 0.118565i \(-0.0378292\pi\)
\(930\) 0 0
\(931\) −219.181 −0.235425
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1269.77 570.747i 1.35804 0.610425i
\(936\) 0 0
\(937\) −396.090 + 396.090i −0.422721 + 0.422721i −0.886140 0.463418i \(-0.846623\pi\)
0.463418 + 0.886140i \(0.346623\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −185.771 −0.197419 −0.0987093 0.995116i \(-0.531471\pi\)
−0.0987093 + 0.995116i \(0.531471\pi\)
\(942\) 0 0
\(943\) −8.04999 8.04999i −0.00853658 0.00853658i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −845.190 + 845.190i −0.892492 + 0.892492i −0.994757 0.102265i \(-0.967391\pi\)
0.102265 + 0.994757i \(0.467391\pi\)
\(948\) 0 0
\(949\) 863.523i 0.909930i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 630.499 + 630.499i 0.661594 + 0.661594i 0.955756 0.294161i \(-0.0950403\pi\)
−0.294161 + 0.955756i \(0.595040\pi\)
\(954\) 0 0
\(955\) 224.788 + 85.3735i 0.235380 + 0.0893963i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1149.58i 1.19873i
\(960\) 0 0
\(961\) −846.576 −0.880932
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −740.879 1648.27i −0.767750 1.70805i
\(966\) 0 0
\(967\) 381.690 381.690i 0.394716 0.394716i −0.481649 0.876364i \(-0.659962\pi\)
0.876364 + 0.481649i \(0.159962\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1000.44 −1.03032 −0.515159 0.857095i \(-0.672267\pi\)
−0.515159 + 0.857095i \(0.672267\pi\)
\(972\) 0 0
\(973\) 659.444 + 659.444i 0.677743 + 0.677743i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −593.662 + 593.662i −0.607637 + 0.607637i −0.942328 0.334691i \(-0.891368\pi\)
0.334691 + 0.942328i \(0.391368\pi\)
\(978\) 0 0
\(979\) 932.636i 0.952641i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1217.34 1217.34i −1.23839 1.23839i −0.960659 0.277731i \(-0.910418\pi\)
−0.277731 0.960659i \(-0.589582\pi\)
\(984\) 0 0
\(985\) 623.646 280.322i 0.633143 0.284591i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 612.059i 0.618867i
\(990\) 0 0
\(991\) 544.061 0.549002 0.274501 0.961587i \(-0.411487\pi\)
0.274501 + 0.961587i \(0.411487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −341.925 + 900.286i −0.343643 + 0.904810i
\(996\) 0 0
\(997\) −316.733 + 316.733i −0.317686 + 0.317686i −0.847878 0.530192i \(-0.822120\pi\)
0.530192 + 0.847878i \(0.322120\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.bh.k.433.2 4
3.2 odd 2 240.3.bg.a.193.2 4
4.3 odd 2 45.3.g.b.28.1 4
5.2 odd 4 inner 720.3.bh.k.577.2 4
12.11 even 2 15.3.f.a.13.2 yes 4
15.2 even 4 240.3.bg.a.97.2 4
15.8 even 4 1200.3.bg.k.1057.1 4
15.14 odd 2 1200.3.bg.k.193.1 4
20.3 even 4 225.3.g.a.82.2 4
20.7 even 4 45.3.g.b.37.1 4
20.19 odd 2 225.3.g.a.118.2 4
24.5 odd 2 960.3.bg.h.193.1 4
24.11 even 2 960.3.bg.i.193.2 4
36.7 odd 6 405.3.l.f.28.2 8
36.11 even 6 405.3.l.h.28.1 8
36.23 even 6 405.3.l.h.298.2 8
36.31 odd 6 405.3.l.f.298.1 8
60.23 odd 4 75.3.f.c.7.1 4
60.47 odd 4 15.3.f.a.7.2 4
60.59 even 2 75.3.f.c.43.1 4
120.77 even 4 960.3.bg.h.577.1 4
120.107 odd 4 960.3.bg.i.577.2 4
180.7 even 12 405.3.l.f.352.1 8
180.47 odd 12 405.3.l.h.352.2 8
180.67 even 12 405.3.l.f.217.2 8
180.167 odd 12 405.3.l.h.217.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.3.f.a.7.2 4 60.47 odd 4
15.3.f.a.13.2 yes 4 12.11 even 2
45.3.g.b.28.1 4 4.3 odd 2
45.3.g.b.37.1 4 20.7 even 4
75.3.f.c.7.1 4 60.23 odd 4
75.3.f.c.43.1 4 60.59 even 2
225.3.g.a.82.2 4 20.3 even 4
225.3.g.a.118.2 4 20.19 odd 2
240.3.bg.a.97.2 4 15.2 even 4
240.3.bg.a.193.2 4 3.2 odd 2
405.3.l.f.28.2 8 36.7 odd 6
405.3.l.f.217.2 8 180.67 even 12
405.3.l.f.298.1 8 36.31 odd 6
405.3.l.f.352.1 8 180.7 even 12
405.3.l.h.28.1 8 36.11 even 6
405.3.l.h.217.1 8 180.167 odd 12
405.3.l.h.298.2 8 36.23 even 6
405.3.l.h.352.2 8 180.47 odd 12
720.3.bh.k.433.2 4 1.1 even 1 trivial
720.3.bh.k.577.2 4 5.2 odd 4 inner
960.3.bg.h.193.1 4 24.5 odd 2
960.3.bg.h.577.1 4 120.77 even 4
960.3.bg.i.193.2 4 24.11 even 2
960.3.bg.i.577.2 4 120.107 odd 4
1200.3.bg.k.193.1 4 15.14 odd 2
1200.3.bg.k.1057.1 4 15.8 even 4