Properties

Label 225.4.b.a.199.1
Level 225225
Weight 44
Character 225.199
Analytic conductor 13.27513.275
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [225,4,Mod(199,225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("225.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 225=3252 225 = 3^{2} \cdot 5^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 225.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.275429751313.2754297513
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 5 5
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 199.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 225.199
Dual form 225.4.b.a.199.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q5.00000iq217.0000q430.0000iq7+45.0000iq850.0000q11+20.0000iq13150.000q14+89.0000q16+10.0000iq17+44.0000q19+250.000iq22+120.000iq23+100.000q26+510.000iq2850.0000q29+108.000q3185.0000iq32+50.0000q3440.0000iq37220.000iq38400.000q41280.000iq43+850.000q44+600.000q46+280.000iq47557.000q49340.000iq52610.000iq53+1350.00q56+250.000iq58+50.0000q59518.000q61540.000iq62+287.000q64180.000iq67170.000iq68700.000q71+410.000iq73200.000q74748.000q76+1500.00iq77+516.000q79+2000.00iq82+660.000iq831400.00q862250.00iq881500.00q89+600.000q912040.00iq92+1400.00q941630.00iq97+2785.00iq98+O(q100)q-5.00000i q^{2} -17.0000 q^{4} -30.0000i q^{7} +45.0000i q^{8} -50.0000 q^{11} +20.0000i q^{13} -150.000 q^{14} +89.0000 q^{16} +10.0000i q^{17} +44.0000 q^{19} +250.000i q^{22} +120.000i q^{23} +100.000 q^{26} +510.000i q^{28} -50.0000 q^{29} +108.000 q^{31} -85.0000i q^{32} +50.0000 q^{34} -40.0000i q^{37} -220.000i q^{38} -400.000 q^{41} -280.000i q^{43} +850.000 q^{44} +600.000 q^{46} +280.000i q^{47} -557.000 q^{49} -340.000i q^{52} -610.000i q^{53} +1350.00 q^{56} +250.000i q^{58} +50.0000 q^{59} -518.000 q^{61} -540.000i q^{62} +287.000 q^{64} -180.000i q^{67} -170.000i q^{68} -700.000 q^{71} +410.000i q^{73} -200.000 q^{74} -748.000 q^{76} +1500.00i q^{77} +516.000 q^{79} +2000.00i q^{82} +660.000i q^{83} -1400.00 q^{86} -2250.00i q^{88} -1500.00 q^{89} +600.000 q^{91} -2040.00i q^{92} +1400.00 q^{94} -1630.00i q^{97} +2785.00i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q34q4100q11300q14+178q16+88q19+200q26100q29+216q31+100q34800q41+1700q44+1200q461114q49+2700q56+100q591036q61++2800q94+O(q100) 2 q - 34 q^{4} - 100 q^{11} - 300 q^{14} + 178 q^{16} + 88 q^{19} + 200 q^{26} - 100 q^{29} + 216 q^{31} + 100 q^{34} - 800 q^{41} + 1700 q^{44} + 1200 q^{46} - 1114 q^{49} + 2700 q^{56} + 100 q^{59} - 1036 q^{61}+ \cdots + 2800 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/225Z)×\left(\mathbb{Z}/225\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 5.00000i − 1.76777i −0.467707 0.883883i 0.654920π-0.654920\pi
0.467707 0.883883i 0.345080π-0.345080\pi
33 0 0
44 −17.0000 −2.12500
55 0 0
66 0 0
77 − 30.0000i − 1.61985i −0.586535 0.809924i 0.699508π-0.699508\pi
0.586535 0.809924i 0.300492π-0.300492\pi
88 45.0000i 1.98874i
99 0 0
1010 0 0
1111 −50.0000 −1.37051 −0.685253 0.728305i 0.740308π-0.740308\pi
−0.685253 + 0.728305i 0.740308π0.740308\pi
1212 0 0
1313 20.0000i 0.426692i 0.976977 + 0.213346i 0.0684362π0.0684362\pi
−0.976977 + 0.213346i 0.931564π0.931564\pi
1414 −150.000 −2.86351
1515 0 0
1616 89.0000 1.39062
1717 10.0000i 0.142668i 0.997452 + 0.0713340i 0.0227256π0.0227256\pi
−0.997452 + 0.0713340i 0.977274π0.977274\pi
1818 0 0
1919 44.0000 0.531279 0.265639 0.964072i 0.414417π-0.414417\pi
0.265639 + 0.964072i 0.414417π0.414417\pi
2020 0 0
2121 0 0
2222 250.000i 2.42274i
2323 120.000i 1.08790i 0.839117 + 0.543951i 0.183072π0.183072\pi
−0.839117 + 0.543951i 0.816928π0.816928\pi
2424 0 0
2525 0 0
2626 100.000 0.754293
2727 0 0
2828 510.000i 3.44218i
2929 −50.0000 −0.320164 −0.160082 0.987104i 0.551176π-0.551176\pi
−0.160082 + 0.987104i 0.551176π0.551176\pi
3030 0 0
3131 108.000 0.625722 0.312861 0.949799i 0.398713π-0.398713\pi
0.312861 + 0.949799i 0.398713π0.398713\pi
3232 − 85.0000i − 0.469563i
3333 0 0
3434 50.0000 0.252204
3535 0 0
3636 0 0
3737 − 40.0000i − 0.177729i −0.996044 0.0888643i 0.971676π-0.971676\pi
0.996044 0.0888643i 0.0283238π-0.0283238\pi
3838 − 220.000i − 0.939177i
3939 0 0
4040 0 0
4141 −400.000 −1.52365 −0.761823 0.647785i 0.775696π-0.775696\pi
−0.761823 + 0.647785i 0.775696π0.775696\pi
4242 0 0
4343 − 280.000i − 0.993014i −0.868033 0.496507i 0.834616π-0.834616\pi
0.868033 0.496507i 0.165384π-0.165384\pi
4444 850.000 2.91233
4545 0 0
4646 600.000 1.92316
4747 280.000i 0.868983i 0.900676 + 0.434491i 0.143072π0.143072\pi
−0.900676 + 0.434491i 0.856928π0.856928\pi
4848 0 0
4949 −557.000 −1.62391
5050 0 0
5151 0 0
5252 − 340.000i − 0.906721i
5353 − 610.000i − 1.58094i −0.612499 0.790471i 0.709836π-0.709836\pi
0.612499 0.790471i 0.290164π-0.290164\pi
5454 0 0
5555 0 0
5656 1350.00 3.22145
5757 0 0
5858 250.000i 0.565976i
5959 50.0000 0.110330 0.0551648 0.998477i 0.482432π-0.482432\pi
0.0551648 + 0.998477i 0.482432π0.482432\pi
6060 0 0
6161 −518.000 −1.08726 −0.543632 0.839324i 0.682951π-0.682951\pi
−0.543632 + 0.839324i 0.682951π0.682951\pi
6262 − 540.000i − 1.10613i
6363 0 0
6464 287.000 0.560547
6565 0 0
6666 0 0
6767 − 180.000i − 0.328216i −0.986442 0.164108i 0.947525π-0.947525\pi
0.986442 0.164108i 0.0524746π-0.0524746\pi
6868 − 170.000i − 0.303170i
6969 0 0
7070 0 0
7171 −700.000 −1.17007 −0.585033 0.811009i 0.698919π-0.698919\pi
−0.585033 + 0.811009i 0.698919π0.698919\pi
7272 0 0
7373 410.000i 0.657354i 0.944442 + 0.328677i 0.106603π0.106603\pi
−0.944442 + 0.328677i 0.893397π0.893397\pi
7474 −200.000 −0.314183
7575 0 0
7676 −748.000 −1.12897
7777 1500.00i 2.22001i
7878 0 0
7979 516.000 0.734868 0.367434 0.930050i 0.380236π-0.380236\pi
0.367434 + 0.930050i 0.380236π0.380236\pi
8080 0 0
8181 0 0
8282 2000.00i 2.69345i
8383 660.000i 0.872824i 0.899747 + 0.436412i 0.143751π0.143751\pi
−0.899747 + 0.436412i 0.856249π0.856249\pi
8484 0 0
8585 0 0
8686 −1400.00 −1.75542
8787 0 0
8888 − 2250.00i − 2.72558i
8989 −1500.00 −1.78651 −0.893257 0.449547i 0.851585π-0.851585\pi
−0.893257 + 0.449547i 0.851585π0.851585\pi
9090 0 0
9191 600.000 0.691177
9292 − 2040.00i − 2.31179i
9393 0 0
9494 1400.00 1.53616
9595 0 0
9696 0 0
9797 − 1630.00i − 1.70620i −0.521747 0.853100i 0.674720π-0.674720\pi
0.521747 0.853100i 0.325280π-0.325280\pi
9898 2785.00i 2.87069i
9999 0 0
100100 0 0
101101 450.000 0.443333 0.221667 0.975122i 0.428850π-0.428850\pi
0.221667 + 0.975122i 0.428850π0.428850\pi
102102 0 0
103103 − 770.000i − 0.736605i −0.929706 0.368303i 0.879939π-0.879939\pi
0.929706 0.368303i 0.120061π-0.120061\pi
104104 −900.000 −0.848579
105105 0 0
106106 −3050.00 −2.79474
107107 − 660.000i − 0.596305i −0.954518 0.298152i 0.903630π-0.903630\pi
0.954518 0.298152i 0.0963704π-0.0963704\pi
108108 0 0
109109 −1754.00 −1.54131 −0.770655 0.637253i 0.780071π-0.780071\pi
−0.770655 + 0.637253i 0.780071π0.780071\pi
110110 0 0
111111 0 0
112112 − 2670.00i − 2.25260i
113113 − 310.000i − 0.258074i −0.991640 0.129037i 0.958811π-0.958811\pi
0.991640 0.129037i 0.0411886π-0.0411886\pi
114114 0 0
115115 0 0
116116 850.000 0.680349
117117 0 0
118118 − 250.000i − 0.195037i
119119 300.000 0.231100
120120 0 0
121121 1169.00 0.878287
122122 2590.00i 1.92203i
123123 0 0
124124 −1836.00 −1.32966
125125 0 0
126126 0 0
127127 − 1070.00i − 0.747615i −0.927506 0.373808i 0.878052π-0.878052\pi
0.927506 0.373808i 0.121948π-0.121948\pi
128128 − 2115.00i − 1.46048i
129129 0 0
130130 0 0
131131 −1950.00 −1.30055 −0.650276 0.759698i 0.725347π-0.725347\pi
−0.650276 + 0.759698i 0.725347π0.725347\pi
132132 0 0
133133 − 1320.00i − 0.860590i
134134 −900.000 −0.580210
135135 0 0
136136 −450.000 −0.283729
137137 − 1050.00i − 0.654800i −0.944886 0.327400i 0.893828π-0.893828\pi
0.944886 0.327400i 0.106172π-0.106172\pi
138138 0 0
139139 −1676.00 −1.02271 −0.511354 0.859370i 0.670856π-0.670856\pi
−0.511354 + 0.859370i 0.670856π0.670856\pi
140140 0 0
141141 0 0
142142 3500.00i 2.06840i
143143 − 1000.00i − 0.584785i
144144 0 0
145145 0 0
146146 2050.00 1.16205
147147 0 0
148148 680.000i 0.377673i
149149 2050.00 1.12713 0.563566 0.826071i 0.309429π-0.309429\pi
0.563566 + 0.826071i 0.309429π0.309429\pi
150150 0 0
151151 448.000 0.241442 0.120721 0.992686i 0.461479π-0.461479\pi
0.120721 + 0.992686i 0.461479π0.461479\pi
152152 1980.00i 1.05657i
153153 0 0
154154 7500.00 3.92446
155155 0 0
156156 0 0
157157 − 100.000i − 0.0508336i −0.999677 0.0254168i 0.991909π-0.991909\pi
0.999677 0.0254168i 0.00809128π-0.00809128\pi
158158 − 2580.00i − 1.29907i
159159 0 0
160160 0 0
161161 3600.00 1.76223
162162 0 0
163163 1900.00i 0.913003i 0.889723 + 0.456501i 0.150898π0.150898\pi
−0.889723 + 0.456501i 0.849102π0.849102\pi
164164 6800.00 3.23775
165165 0 0
166166 3300.00 1.54295
167167 − 1920.00i − 0.889665i −0.895614 0.444833i 0.853263π-0.853263\pi
0.895614 0.444833i 0.146737π-0.146737\pi
168168 0 0
169169 1797.00 0.817934
170170 0 0
171171 0 0
172172 4760.00i 2.11015i
173173 2550.00i 1.12065i 0.828272 + 0.560326i 0.189324π0.189324\pi
−0.828272 + 0.560326i 0.810676π0.810676\pi
174174 0 0
175175 0 0
176176 −4450.00 −1.90586
177177 0 0
178178 7500.00i 3.15814i
179179 3650.00 1.52410 0.762050 0.647518i 0.224193π-0.224193\pi
0.762050 + 0.647518i 0.224193π0.224193\pi
180180 0 0
181181 −4342.00 −1.78308 −0.891542 0.452937i 0.850376π-0.850376\pi
−0.891542 + 0.452937i 0.850376π0.850376\pi
182182 − 3000.00i − 1.22184i
183183 0 0
184184 −5400.00 −2.16355
185185 0 0
186186 0 0
187187 − 500.000i − 0.195527i
188188 − 4760.00i − 1.84659i
189189 0 0
190190 0 0
191191 3500.00 1.32592 0.662961 0.748654i 0.269299π-0.269299\pi
0.662961 + 0.748654i 0.269299π0.269299\pi
192192 0 0
193193 − 3350.00i − 1.24942i −0.780856 0.624711i 0.785217π-0.785217\pi
0.780856 0.624711i 0.214783π-0.214783\pi
194194 −8150.00 −3.01616
195195 0 0
196196 9469.00 3.45080
197197 − 90.0000i − 0.0325494i −0.999868 0.0162747i 0.994819π-0.994819\pi
0.999868 0.0162747i 0.00518063π-0.00518063\pi
198198 0 0
199199 −3664.00 −1.30520 −0.652598 0.757704i 0.726321π-0.726321\pi
−0.652598 + 0.757704i 0.726321π0.726321\pi
200200 0 0
201201 0 0
202202 − 2250.00i − 0.783710i
203203 1500.00i 0.518618i
204204 0 0
205205 0 0
206206 −3850.00 −1.30215
207207 0 0
208208 1780.00i 0.593369i
209209 −2200.00 −0.728120
210210 0 0
211211 −268.000 −0.0874402 −0.0437201 0.999044i 0.513921π-0.513921\pi
−0.0437201 + 0.999044i 0.513921π0.513921\pi
212212 10370.0i 3.35950i
213213 0 0
214214 −3300.00 −1.05413
215215 0 0
216216 0 0
217217 − 3240.00i − 1.01357i
218218 8770.00i 2.72468i
219219 0 0
220220 0 0
221221 −200.000 −0.0608754
222222 0 0
223223 3670.00i 1.10207i 0.834482 + 0.551034i 0.185767π0.185767\pi
−0.834482 + 0.551034i 0.814233π0.814233\pi
224224 −2550.00 −0.760621
225225 0 0
226226 −1550.00 −0.456214
227227 − 3760.00i − 1.09938i −0.835368 0.549692i 0.814745π-0.814745\pi
0.835368 0.549692i 0.185255π-0.185255\pi
228228 0 0
229229 1434.00 0.413805 0.206903 0.978362i 0.433662π-0.433662\pi
0.206903 + 0.978362i 0.433662π0.433662\pi
230230 0 0
231231 0 0
232232 − 2250.00i − 0.636723i
233233 − 3450.00i − 0.970030i −0.874506 0.485015i 0.838814π-0.838814\pi
0.874506 0.485015i 0.161186π-0.161186\pi
234234 0 0
235235 0 0
236236 −850.000 −0.234450
237237 0 0
238238 − 1500.00i − 0.408532i
239239 −4900.00 −1.32617 −0.663085 0.748544i 0.730753π-0.730753\pi
−0.663085 + 0.748544i 0.730753π0.730753\pi
240240 0 0
241241 4822.00 1.28885 0.644424 0.764668i 0.277097π-0.277097\pi
0.644424 + 0.764668i 0.277097π0.277097\pi
242242 − 5845.00i − 1.55261i
243243 0 0
244244 8806.00 2.31044
245245 0 0
246246 0 0
247247 880.000i 0.226693i
248248 4860.00i 1.24440i
249249 0 0
250250 0 0
251251 4650.00 1.16934 0.584672 0.811270i 0.301223π-0.301223\pi
0.584672 + 0.811270i 0.301223π0.301223\pi
252252 0 0
253253 − 6000.00i − 1.49098i
254254 −5350.00 −1.32161
255255 0 0
256256 −8279.00 −2.02124
257257 − 5130.00i − 1.24514i −0.782565 0.622569i 0.786089π-0.786089\pi
0.782565 0.622569i 0.213911π-0.213911\pi
258258 0 0
259259 −1200.00 −0.287893
260260 0 0
261261 0 0
262262 9750.00i 2.29907i
263263 − 1280.00i − 0.300107i −0.988678 0.150054i 0.952055π-0.952055\pi
0.988678 0.150054i 0.0479446π-0.0479446\pi
264264 0 0
265265 0 0
266266 −6600.00 −1.52132
267267 0 0
268268 3060.00i 0.697460i
269269 3350.00 0.759305 0.379653 0.925129i 0.376044π-0.376044\pi
0.379653 + 0.925129i 0.376044π0.376044\pi
270270 0 0
271271 5512.00 1.23554 0.617768 0.786361i 0.288037π-0.288037\pi
0.617768 + 0.786361i 0.288037π0.288037\pi
272272 890.000i 0.198398i
273273 0 0
274274 −5250.00 −1.15753
275275 0 0
276276 0 0
277277 4920.00i 1.06720i 0.845737 + 0.533600i 0.179161π0.179161\pi
−0.845737 + 0.533600i 0.820839π0.820839\pi
278278 8380.00i 1.80791i
279279 0 0
280280 0 0
281281 −4500.00 −0.955329 −0.477665 0.878542i 0.658517π-0.658517\pi
−0.477665 + 0.878542i 0.658517π0.658517\pi
282282 0 0
283283 6900.00i 1.44934i 0.689098 + 0.724669i 0.258007π0.258007\pi
−0.689098 + 0.724669i 0.741993π0.741993\pi
284284 11900.0 2.48639
285285 0 0
286286 −5000.00 −1.03376
287287 12000.0i 2.46808i
288288 0 0
289289 4813.00 0.979646
290290 0 0
291291 0 0
292292 − 6970.00i − 1.39688i
293293 1530.00i 0.305063i 0.988299 + 0.152532i 0.0487426π0.0487426\pi
−0.988299 + 0.152532i 0.951257π0.951257\pi
294294 0 0
295295 0 0
296296 1800.00 0.353456
297297 0 0
298298 − 10250.0i − 1.99251i
299299 −2400.00 −0.464199
300300 0 0
301301 −8400.00 −1.60853
302302 − 2240.00i − 0.426813i
303303 0 0
304304 3916.00 0.738809
305305 0 0
306306 0 0
307307 3040.00i 0.565153i 0.959245 + 0.282576i 0.0911891π0.0911891\pi
−0.959245 + 0.282576i 0.908811π0.908811\pi
308308 − 25500.0i − 4.71752i
309309 0 0
310310 0 0
311311 5700.00 1.03928 0.519642 0.854384i 0.326065π-0.326065\pi
0.519642 + 0.854384i 0.326065π0.326065\pi
312312 0 0
313313 − 3110.00i − 0.561622i −0.959763 0.280811i 0.909397π-0.909397\pi
0.959763 0.280811i 0.0906034π-0.0906034\pi
314314 −500.000 −0.0898619
315315 0 0
316316 −8772.00 −1.56159
317317 950.000i 0.168320i 0.996452 + 0.0841598i 0.0268206π0.0268206\pi
−0.996452 + 0.0841598i 0.973179π0.973179\pi
318318 0 0
319319 2500.00 0.438787
320320 0 0
321321 0 0
322322 − 18000.0i − 3.11522i
323323 440.000i 0.0757965i
324324 0 0
325325 0 0
326326 9500.00 1.61398
327327 0 0
328328 − 18000.0i − 3.03013i
329329 8400.00 1.40762
330330 0 0
331331 2292.00 0.380603 0.190302 0.981726i 0.439053π-0.439053\pi
0.190302 + 0.981726i 0.439053π0.439053\pi
332332 − 11220.0i − 1.85475i
333333 0 0
334334 −9600.00 −1.57272
335335 0 0
336336 0 0
337337 − 7730.00i − 1.24950i −0.780827 0.624748i 0.785202π-0.785202\pi
0.780827 0.624748i 0.214798π-0.214798\pi
338338 − 8985.00i − 1.44592i
339339 0 0
340340 0 0
341341 −5400.00 −0.857555
342342 0 0
343343 6420.00i 1.01063i
344344 12600.0 1.97484
345345 0 0
346346 12750.0 1.98105
347347 1120.00i 0.173270i 0.996240 + 0.0866351i 0.0276114π0.0276114\pi
−0.996240 + 0.0866351i 0.972389π0.972389\pi
348348 0 0
349349 −1186.00 −0.181906 −0.0909529 0.995855i 0.528991π-0.528991\pi
−0.0909529 + 0.995855i 0.528991π0.528991\pi
350350 0 0
351351 0 0
352352 4250.00i 0.643539i
353353 3630.00i 0.547324i 0.961826 + 0.273662i 0.0882350π0.0882350\pi
−0.961826 + 0.273662i 0.911765π0.911765\pi
354354 0 0
355355 0 0
356356 25500.0 3.79634
357357 0 0
358358 − 18250.0i − 2.69425i
359359 −1800.00 −0.264625 −0.132312 0.991208i 0.542240π-0.542240\pi
−0.132312 + 0.991208i 0.542240π0.542240\pi
360360 0 0
361361 −4923.00 −0.717743
362362 21710.0i 3.15208i
363363 0 0
364364 −10200.0 −1.46875
365365 0 0
366366 0 0
367367 8490.00i 1.20756i 0.797151 + 0.603780i 0.206339π0.206339\pi
−0.797151 + 0.603780i 0.793661π0.793661\pi
368368 10680.0i 1.51286i
369369 0 0
370370 0 0
371371 −18300.0 −2.56089
372372 0 0
373373 − 100.000i − 0.0138815i −0.999976 0.00694076i 0.997791π-0.997791\pi
0.999976 0.00694076i 0.00220933π-0.00220933\pi
374374 −2500.00 −0.345647
375375 0 0
376376 −12600.0 −1.72818
377377 − 1000.00i − 0.136612i
378378 0 0
379379 8084.00 1.09564 0.547820 0.836597i 0.315458π-0.315458\pi
0.547820 + 0.836597i 0.315458π0.315458\pi
380380 0 0
381381 0 0
382382 − 17500.0i − 2.34392i
383383 − 9480.00i − 1.26477i −0.774656 0.632383i 0.782077π-0.782077\pi
0.774656 0.632383i 0.217923π-0.217923\pi
384384 0 0
385385 0 0
386386 −16750.0 −2.20869
387387 0 0
388388 27710.0i 3.62568i
389389 −10950.0 −1.42722 −0.713608 0.700545i 0.752940π-0.752940\pi
−0.713608 + 0.700545i 0.752940π0.752940\pi
390390 0 0
391391 −1200.00 −0.155209
392392 − 25065.0i − 3.22952i
393393 0 0
394394 −450.000 −0.0575398
395395 0 0
396396 0 0
397397 13840.0i 1.74965i 0.484442 + 0.874823i 0.339023π0.339023\pi
−0.484442 + 0.874823i 0.660977π0.660977\pi
398398 18320.0i 2.30728i
399399 0 0
400400 0 0
401401 −9300.00 −1.15815 −0.579077 0.815273i 0.696587π-0.696587\pi
−0.579077 + 0.815273i 0.696587π0.696587\pi
402402 0 0
403403 2160.00i 0.266991i
404404 −7650.00 −0.942083
405405 0 0
406406 7500.00 0.916795
407407 2000.00i 0.243578i
408408 0 0
409409 2854.00 0.345040 0.172520 0.985006i 0.444809π-0.444809\pi
0.172520 + 0.985006i 0.444809π0.444809\pi
410410 0 0
411411 0 0
412412 13090.0i 1.56529i
413413 − 1500.00i − 0.178717i
414414 0 0
415415 0 0
416416 1700.00 0.200359
417417 0 0
418418 11000.0i 1.28715i
419419 1150.00 0.134084 0.0670420 0.997750i 0.478644π-0.478644\pi
0.0670420 + 0.997750i 0.478644π0.478644\pi
420420 0 0
421421 −11162.0 −1.29217 −0.646084 0.763266i 0.723594π-0.723594\pi
−0.646084 + 0.763266i 0.723594π0.723594\pi
422422 1340.00i 0.154574i
423423 0 0
424424 27450.0 3.14408
425425 0 0
426426 0 0
427427 15540.0i 1.76120i
428428 11220.0i 1.26715i
429429 0 0
430430 0 0
431431 1200.00 0.134111 0.0670556 0.997749i 0.478639π-0.478639\pi
0.0670556 + 0.997749i 0.478639π0.478639\pi
432432 0 0
433433 − 1510.00i − 0.167589i −0.996483 0.0837944i 0.973296π-0.973296\pi
0.996483 0.0837944i 0.0267039π-0.0267039\pi
434434 −16200.0 −1.79176
435435 0 0
436436 29818.0 3.27528
437437 5280.00i 0.577979i
438438 0 0
439439 −424.000 −0.0460966 −0.0230483 0.999734i 0.507337π-0.507337\pi
−0.0230483 + 0.999734i 0.507337π0.507337\pi
440440 0 0
441441 0 0
442442 1000.00i 0.107613i
443443 12360.0i 1.32560i 0.748796 + 0.662801i 0.230632π0.230632\pi
−0.748796 + 0.662801i 0.769368π0.769368\pi
444444 0 0
445445 0 0
446446 18350.0 1.94820
447447 0 0
448448 − 8610.00i − 0.908001i
449449 −1300.00 −0.136639 −0.0683194 0.997664i 0.521764π-0.521764\pi
−0.0683194 + 0.997664i 0.521764π0.521764\pi
450450 0 0
451451 20000.0 2.08817
452452 5270.00i 0.548407i
453453 0 0
454454 −18800.0 −1.94345
455455 0 0
456456 0 0
457457 − 7190.00i − 0.735961i −0.929834 0.367980i 0.880049π-0.880049\pi
0.929834 0.367980i 0.119951π-0.119951\pi
458458 − 7170.00i − 0.731511i
459459 0 0
460460 0 0
461461 150.000 0.0151544 0.00757722 0.999971i 0.497588π-0.497588\pi
0.00757722 + 0.999971i 0.497588π0.497588\pi
462462 0 0
463463 − 2670.00i − 0.268003i −0.990981 0.134002i 0.957217π-0.957217\pi
0.990981 0.134002i 0.0427827π-0.0427827\pi
464464 −4450.00 −0.445229
465465 0 0
466466 −17250.0 −1.71479
467467 − 1180.00i − 0.116925i −0.998290 0.0584624i 0.981380π-0.981380\pi
0.998290 0.0584624i 0.0186198π-0.0186198\pi
468468 0 0
469469 −5400.00 −0.531661
470470 0 0
471471 0 0
472472 2250.00i 0.219417i
473473 14000.0i 1.36093i
474474 0 0
475475 0 0
476476 −5100.00 −0.491088
477477 0 0
478478 24500.0i 2.34436i
479479 −14100.0 −1.34498 −0.672490 0.740106i 0.734775π-0.734775\pi
−0.672490 + 0.740106i 0.734775π0.734775\pi
480480 0 0
481481 800.000 0.0758355
482482 − 24110.0i − 2.27838i
483483 0 0
484484 −19873.0 −1.86636
485485 0 0
486486 0 0
487487 − 9850.00i − 0.916522i −0.888818 0.458261i 0.848473π-0.848473\pi
0.888818 0.458261i 0.151527π-0.151527\pi
488488 − 23310.0i − 2.16228i
489489 0 0
490490 0 0
491491 2450.00 0.225187 0.112594 0.993641i 0.464084π-0.464084\pi
0.112594 + 0.993641i 0.464084π0.464084\pi
492492 0 0
493493 − 500.000i − 0.0456772i
494494 4400.00 0.400740
495495 0 0
496496 9612.00 0.870144
497497 21000.0i 1.89533i
498498 0 0
499499 17036.0 1.52833 0.764164 0.645021i 0.223152π-0.223152\pi
0.764164 + 0.645021i 0.223152π0.223152\pi
500500 0 0
501501 0 0
502502 − 23250.0i − 2.06713i
503503 − 20600.0i − 1.82606i −0.407891 0.913030i 0.633736π-0.633736\pi
0.407891 0.913030i 0.366264π-0.366264\pi
504504 0 0
505505 0 0
506506 −30000.0 −2.63570
507507 0 0
508508 18190.0i 1.58868i
509509 5750.00 0.500716 0.250358 0.968153i 0.419452π-0.419452\pi
0.250358 + 0.968153i 0.419452π0.419452\pi
510510 0 0
511511 12300.0 1.06481
512512 24475.0i 2.11260i
513513 0 0
514514 −25650.0 −2.20111
515515 0 0
516516 0 0
517517 − 14000.0i − 1.19095i
518518 6000.00i 0.508928i
519519 0 0
520520 0 0
521521 15500.0 1.30339 0.651696 0.758480i 0.274058π-0.274058\pi
0.651696 + 0.758480i 0.274058π0.274058\pi
522522 0 0
523523 13940.0i 1.16549i 0.812653 + 0.582747i 0.198022π0.198022\pi
−0.812653 + 0.582747i 0.801978π0.801978\pi
524524 33150.0 2.76367
525525 0 0
526526 −6400.00 −0.530520
527527 1080.00i 0.0892705i
528528 0 0
529529 −2233.00 −0.183529
530530 0 0
531531 0 0
532532 22440.0i 1.82875i
533533 − 8000.00i − 0.650128i
534534 0 0
535535 0 0
536536 8100.00 0.652736
537537 0 0
538538 − 16750.0i − 1.34227i
539539 27850.0 2.22557
540540 0 0
541541 −20478.0 −1.62739 −0.813695 0.581292i 0.802547π-0.802547\pi
−0.813695 + 0.581292i 0.802547π0.802547\pi
542542 − 27560.0i − 2.18414i
543543 0 0
544544 850.000 0.0669916
545545 0 0
546546 0 0
547547 12040.0i 0.941121i 0.882368 + 0.470561i 0.155948π0.155948\pi
−0.882368 + 0.470561i 0.844052π0.844052\pi
548548 17850.0i 1.39145i
549549 0 0
550550 0 0
551551 −2200.00 −0.170096
552552 0 0
553553 − 15480.0i − 1.19037i
554554 24600.0 1.88656
555555 0 0
556556 28492.0 2.17326
557557 − 23550.0i − 1.79146i −0.444594 0.895732i 0.646652π-0.646652\pi
0.444594 0.895732i 0.353348π-0.353348\pi
558558 0 0
559559 5600.00 0.423712
560560 0 0
561561 0 0
562562 22500.0i 1.68880i
563563 − 6120.00i − 0.458130i −0.973411 0.229065i 0.926433π-0.926433\pi
0.973411 0.229065i 0.0735669π-0.0735669\pi
564564 0 0
565565 0 0
566566 34500.0 2.56209
567567 0 0
568568 − 31500.0i − 2.32696i
569569 −11700.0 −0.862020 −0.431010 0.902347i 0.641843π-0.641843\pi
−0.431010 + 0.902347i 0.641843π0.641843\pi
570570 0 0
571571 −8188.00 −0.600100 −0.300050 0.953923i 0.597003π-0.597003\pi
−0.300050 + 0.953923i 0.597003π0.597003\pi
572572 17000.0i 1.24267i
573573 0 0
574574 60000.0 4.36298
575575 0 0
576576 0 0
577577 11690.0i 0.843433i 0.906728 + 0.421717i 0.138572π0.138572\pi
−0.906728 + 0.421717i 0.861428π0.861428\pi
578578 − 24065.0i − 1.73179i
579579 0 0
580580 0 0
581581 19800.0 1.41384
582582 0 0
583583 30500.0i 2.16669i
584584 −18450.0 −1.30731
585585 0 0
586586 7650.00 0.539281
587587 − 21060.0i − 1.48082i −0.672157 0.740408i 0.734632π-0.734632\pi
0.672157 0.740408i 0.265368π-0.265368\pi
588588 0 0
589589 4752.00 0.332433
590590 0 0
591591 0 0
592592 − 3560.00i − 0.247154i
593593 − 22910.0i − 1.58651i −0.608889 0.793255i 0.708385π-0.708385\pi
0.608889 0.793255i 0.291615π-0.291615\pi
594594 0 0
595595 0 0
596596 −34850.0 −2.39515
597597 0 0
598598 12000.0i 0.820596i
599599 −1400.00 −0.0954966 −0.0477483 0.998859i 0.515205π-0.515205\pi
−0.0477483 + 0.998859i 0.515205π0.515205\pi
600600 0 0
601601 −11002.0 −0.746724 −0.373362 0.927686i 0.621795π-0.621795\pi
−0.373362 + 0.927686i 0.621795π0.621795\pi
602602 42000.0i 2.84351i
603603 0 0
604604 −7616.00 −0.513064
605605 0 0
606606 0 0
607607 4630.00i 0.309598i 0.987946 + 0.154799i 0.0494730π0.0494730\pi
−0.987946 + 0.154799i 0.950527π0.950527\pi
608608 − 3740.00i − 0.249469i
609609 0 0
610610 0 0
611611 −5600.00 −0.370788
612612 0 0
613613 − 24040.0i − 1.58396i −0.610548 0.791979i 0.709051π-0.709051\pi
0.610548 0.791979i 0.290949π-0.290949\pi
614614 15200.0 0.999059
615615 0 0
616616 −67500.0 −4.41502
617617 1890.00i 0.123320i 0.998097 + 0.0616601i 0.0196395π0.0196395\pi
−0.998097 + 0.0616601i 0.980361π0.980361\pi
618618 0 0
619619 −19244.0 −1.24957 −0.624783 0.780798i 0.714813π-0.714813\pi
−0.624783 + 0.780798i 0.714813π0.714813\pi
620620 0 0
621621 0 0
622622 − 28500.0i − 1.83721i
623623 45000.0i 2.89388i
624624 0 0
625625 0 0
626626 −15550.0 −0.992816
627627 0 0
628628 1700.00i 0.108021i
629629 400.000 0.0253562
630630 0 0
631631 15892.0 1.00262 0.501308 0.865269i 0.332852π-0.332852\pi
0.501308 + 0.865269i 0.332852π0.332852\pi
632632 23220.0i 1.46146i
633633 0 0
634634 4750.00 0.297550
635635 0 0
636636 0 0
637637 − 11140.0i − 0.692909i
638638 − 12500.0i − 0.775674i
639639 0 0
640640 0 0
641641 12600.0 0.776396 0.388198 0.921576i 0.373098π-0.373098\pi
0.388198 + 0.921576i 0.373098π0.373098\pi
642642 0 0
643643 − 7260.00i − 0.445267i −0.974902 0.222633i 0.928535π-0.928535\pi
0.974902 0.222633i 0.0714653π-0.0714653\pi
644644 −61200.0 −3.74475
645645 0 0
646646 2200.00 0.133990
647647 − 7400.00i − 0.449651i −0.974399 0.224825i 0.927819π-0.927819\pi
0.974399 0.224825i 0.0721812π-0.0721812\pi
648648 0 0
649649 −2500.00 −0.151207
650650 0 0
651651 0 0
652652 − 32300.0i − 1.94013i
653653 − 4790.00i − 0.287055i −0.989646 0.143528i 0.954155π-0.954155\pi
0.989646 0.143528i 0.0458446π-0.0458446\pi
654654 0 0
655655 0 0
656656 −35600.0 −2.11882
657657 0 0
658658 − 42000.0i − 2.48834i
659659 −1450.00 −0.0857117 −0.0428558 0.999081i 0.513646π-0.513646\pi
−0.0428558 + 0.999081i 0.513646π0.513646\pi
660660 0 0
661661 11818.0 0.695411 0.347706 0.937604i 0.386961π-0.386961\pi
0.347706 + 0.937604i 0.386961π0.386961\pi
662662 − 11460.0i − 0.672818i
663663 0 0
664664 −29700.0 −1.73582
665665 0 0
666666 0 0
667667 − 6000.00i − 0.348307i
668668 32640.0i 1.89054i
669669 0 0
670670 0 0
671671 25900.0 1.49010
672672 0 0
673673 − 5550.00i − 0.317885i −0.987288 0.158943i 0.949192π-0.949192\pi
0.987288 0.158943i 0.0508085π-0.0508085\pi
674674 −38650.0 −2.20882
675675 0 0
676676 −30549.0 −1.73811
677677 − 12930.0i − 0.734033i −0.930214 0.367016i 0.880379π-0.880379\pi
0.930214 0.367016i 0.119621π-0.119621\pi
678678 0 0
679679 −48900.0 −2.76378
680680 0 0
681681 0 0
682682 27000.0i 1.51596i
683683 32580.0i 1.82524i 0.408809 + 0.912620i 0.365944π0.365944\pi
−0.408809 + 0.912620i 0.634056π0.634056\pi
684684 0 0
685685 0 0
686686 32100.0 1.78657
687687 0 0
688688 − 24920.0i − 1.38091i
689689 12200.0 0.674576
690690 0 0
691691 10228.0 0.563085 0.281542 0.959549i 0.409154π-0.409154\pi
0.281542 + 0.959549i 0.409154π0.409154\pi
692692 − 43350.0i − 2.38139i
693693 0 0
694694 5600.00 0.306301
695695 0 0
696696 0 0
697697 − 4000.00i − 0.217376i
698698 5930.00i 0.321567i
699699 0 0
700700 0 0
701701 −8350.00 −0.449893 −0.224947 0.974371i 0.572221π-0.572221\pi
−0.224947 + 0.974371i 0.572221π0.572221\pi
702702 0 0
703703 − 1760.00i − 0.0944234i
704704 −14350.0 −0.768233
705705 0 0
706706 18150.0 0.967541
707707 − 13500.0i − 0.718133i
708708 0 0
709709 14954.0 0.792115 0.396057 0.918226i 0.370378π-0.370378\pi
0.396057 + 0.918226i 0.370378π0.370378\pi
710710 0 0
711711 0 0
712712 − 67500.0i − 3.55291i
713713 12960.0i 0.680723i
714714 0 0
715715 0 0
716716 −62050.0 −3.23871
717717 0 0
718718 9000.00i 0.467795i
719719 29400.0 1.52494 0.762472 0.647021i 0.223985π-0.223985\pi
0.762472 + 0.647021i 0.223985π0.223985\pi
720720 0 0
721721 −23100.0 −1.19319
722722 24615.0i 1.26880i
723723 0 0
724724 73814.0 3.78905
725725 0 0
726726 0 0
727727 − 16330.0i − 0.833076i −0.909118 0.416538i 0.863243π-0.863243\pi
0.909118 0.416538i 0.136757π-0.136757\pi
728728 27000.0i 1.37457i
729729 0 0
730730 0 0
731731 2800.00 0.141671
732732 0 0
733733 − 30800.0i − 1.55201i −0.630726 0.776005i 0.717243π-0.717243\pi
0.630726 0.776005i 0.282757π-0.282757\pi
734734 42450.0 2.13468
735735 0 0
736736 10200.0 0.510838
737737 9000.00i 0.449823i
738738 0 0
739739 9524.00 0.474081 0.237041 0.971500i 0.423823π-0.423823\pi
0.237041 + 0.971500i 0.423823π0.423823\pi
740740 0 0
741741 0 0
742742 91500.0i 4.52705i
743743 − 28600.0i − 1.41216i −0.708134 0.706078i 0.750463π-0.750463\pi
0.708134 0.706078i 0.249537π-0.249537\pi
744744 0 0
745745 0 0
746746 −500.000 −0.0245393
747747 0 0
748748 8500.00i 0.415496i
749749 −19800.0 −0.965923
750750 0 0
751751 −8252.00 −0.400958 −0.200479 0.979698i 0.564250π-0.564250\pi
−0.200479 + 0.979698i 0.564250π0.564250\pi
752752 24920.0i 1.20843i
753753 0 0
754754 −5000.00 −0.241498
755755 0 0
756756 0 0
757757 − 24920.0i − 1.19648i −0.801318 0.598238i 0.795868π-0.795868\pi
0.801318 0.598238i 0.204132π-0.204132\pi
758758 − 40420.0i − 1.93683i
759759 0 0
760760 0 0
761761 −27900.0 −1.32901 −0.664503 0.747285i 0.731357π-0.731357\pi
−0.664503 + 0.747285i 0.731357π0.731357\pi
762762 0 0
763763 52620.0i 2.49669i
764764 −59500.0 −2.81758
765765 0 0
766766 −47400.0 −2.23581
767767 1000.00i 0.0470768i
768768 0 0
769769 11506.0 0.539554 0.269777 0.962923i 0.413050π-0.413050\pi
0.269777 + 0.962923i 0.413050π0.413050\pi
770770 0 0
771771 0 0
772772 56950.0i 2.65502i
773773 − 12510.0i − 0.582087i −0.956710 0.291044i 0.905998π-0.905998\pi
0.956710 0.291044i 0.0940025π-0.0940025\pi
774774 0 0
775775 0 0
776776 73350.0 3.39318
777777 0 0
778778 54750.0i 2.52299i
779779 −17600.0 −0.809481
780780 0 0
781781 35000.0 1.60358
782782 6000.00i 0.274373i
783783 0 0
784784 −49573.0 −2.25825
785785 0 0
786786 0 0
787787 − 1100.00i − 0.0498231i −0.999690 0.0249115i 0.992070π-0.992070\pi
0.999690 0.0249115i 0.00793041π-0.00793041\pi
788788 1530.00i 0.0691675i
789789 0 0
790790 0 0
791791 −9300.00 −0.418040
792792 0 0
793793 − 10360.0i − 0.463927i
794794 69200.0 3.09297
795795 0 0
796796 62288.0 2.77354
797797 4490.00i 0.199553i 0.995010 + 0.0997766i 0.0318128π0.0318128\pi
−0.995010 + 0.0997766i 0.968187π0.968187\pi
798798 0 0
799799 −2800.00 −0.123976
800800 0 0
801801 0 0
802802 46500.0i 2.04735i
803803 − 20500.0i − 0.900908i
804804 0 0
805805 0 0
806806 10800.0 0.471977
807807 0 0
808808 20250.0i 0.881674i
809809 28600.0 1.24292 0.621460 0.783446i 0.286540π-0.286540\pi
0.621460 + 0.783446i 0.286540π0.286540\pi
810810 0 0
811811 10068.0 0.435925 0.217963 0.975957i 0.430059π-0.430059\pi
0.217963 + 0.975957i 0.430059π0.430059\pi
812812 − 25500.0i − 1.10206i
813813 0 0
814814 10000.0 0.430589
815815 0 0
816816 0 0
817817 − 12320.0i − 0.527567i
818818 − 14270.0i − 0.609950i
819819 0 0
820820 0 0
821821 14250.0 0.605759 0.302880 0.953029i 0.402052π-0.402052\pi
0.302880 + 0.953029i 0.402052π0.402052\pi
822822 0 0
823823 − 6830.00i − 0.289282i −0.989484 0.144641i 0.953797π-0.953797\pi
0.989484 0.144641i 0.0462027π-0.0462027\pi
824824 34650.0 1.46491
825825 0 0
826826 −7500.00 −0.315930
827827 8920.00i 0.375065i 0.982258 + 0.187533i 0.0600490π0.0600490\pi
−0.982258 + 0.187533i 0.939951π0.939951\pi
828828 0 0
829829 3534.00 0.148059 0.0740295 0.997256i 0.476414π-0.476414\pi
0.0740295 + 0.997256i 0.476414π0.476414\pi
830830 0 0
831831 0 0
832832 5740.00i 0.239181i
833833 − 5570.00i − 0.231680i
834834 0 0
835835 0 0
836836 37400.0 1.54726
837837 0 0
838838 − 5750.00i − 0.237029i
839839 −8000.00 −0.329190 −0.164595 0.986361i 0.552632π-0.552632\pi
−0.164595 + 0.986361i 0.552632π0.552632\pi
840840 0 0
841841 −21889.0 −0.897495
842842 55810.0i 2.28425i
843843 0 0
844844 4556.00 0.185810
845845 0 0
846846 0 0
847847 − 35070.0i − 1.42269i
848848 − 54290.0i − 2.19850i
849849 0 0
850850 0 0
851851 4800.00 0.193351
852852 0 0
853853 − 5160.00i − 0.207122i −0.994623 0.103561i 0.966976π-0.966976\pi
0.994623 0.103561i 0.0330237π-0.0330237\pi
854854 77700.0 3.11339
855855 0 0
856856 29700.0 1.18589
857857 − 7670.00i − 0.305720i −0.988248 0.152860i 0.951152π-0.951152\pi
0.988248 0.152860i 0.0488484π-0.0488484\pi
858858 0 0
859859 −25804.0 −1.02494 −0.512469 0.858706i 0.671269π-0.671269\pi
−0.512469 + 0.858706i 0.671269π0.671269\pi
860860 0 0
861861 0 0
862862 − 6000.00i − 0.237078i
863863 400.000i 0.0157777i 0.999969 + 0.00788885i 0.00251113π0.00251113\pi
−0.999969 + 0.00788885i 0.997489π0.997489\pi
864864 0 0
865865 0 0
866866 −7550.00 −0.296258
867867 0 0
868868 55080.0i 2.15384i
869869 −25800.0 −1.00714
870870 0 0
871871 3600.00 0.140047
872872 − 78930.0i − 3.06526i
873873 0 0
874874 26400.0 1.02173
875875 0 0
876876 0 0
877877 − 35100.0i − 1.35147i −0.737143 0.675737i 0.763825π-0.763825\pi
0.737143 0.675737i 0.236175π-0.236175\pi
878878 2120.00i 0.0814881i
879879 0 0
880880 0 0
881881 18700.0 0.715118 0.357559 0.933891i 0.383609π-0.383609\pi
0.357559 + 0.933891i 0.383609π0.383609\pi
882882 0 0
883883 2980.00i 0.113573i 0.998386 + 0.0567865i 0.0180854π0.0180854\pi
−0.998386 + 0.0567865i 0.981915π0.981915\pi
884884 3400.00 0.129360
885885 0 0
886886 61800.0 2.34335
887887 35880.0i 1.35821i 0.734041 + 0.679105i 0.237632π0.237632\pi
−0.734041 + 0.679105i 0.762368π0.762368\pi
888888 0 0
889889 −32100.0 −1.21102
890890 0 0
891891 0 0
892892 − 62390.0i − 2.34190i
893893 12320.0i 0.461672i
894894 0 0
895895 0 0
896896 −63450.0 −2.36575
897897 0 0
898898 6500.00i 0.241545i
899899 −5400.00 −0.200334
900900 0 0
901901 6100.00 0.225550
902902 − 100000.i − 3.69139i
903903 0 0
904904 13950.0 0.513241
905905 0 0
906906 0 0
907907 45240.0i 1.65620i 0.560584 + 0.828098i 0.310577π0.310577\pi
−0.560584 + 0.828098i 0.689423π0.689423\pi
908908 63920.0i 2.33619i
909909 0 0
910910 0 0
911911 −33200.0 −1.20743 −0.603713 0.797202i 0.706313π-0.706313\pi
−0.603713 + 0.797202i 0.706313π0.706313\pi
912912 0 0
913913 − 33000.0i − 1.19621i
914914 −35950.0 −1.30101
915915 0 0
916916 −24378.0 −0.879336
917917 58500.0i 2.10670i
918918 0 0
919919 −35356.0 −1.26908 −0.634541 0.772889i 0.718811π-0.718811\pi
−0.634541 + 0.772889i 0.718811π0.718811\pi
920920 0 0
921921 0 0
922922 − 750.000i − 0.0267895i
923923 − 14000.0i − 0.499259i
924924 0 0
925925 0 0
926926 −13350.0 −0.473767
927927 0 0
928928 4250.00i 0.150337i
929929 −25700.0 −0.907631 −0.453816 0.891096i 0.649938π-0.649938\pi
−0.453816 + 0.891096i 0.649938π0.649938\pi
930930 0 0
931931 −24508.0 −0.862747
932932 58650.0i 2.06131i
933933 0 0
934934 −5900.00 −0.206696
935935 0 0
936936 0 0
937937 52890.0i 1.84401i 0.387173 + 0.922007i 0.373451π0.373451\pi
−0.387173 + 0.922007i 0.626549π0.626549\pi
938938 27000.0i 0.939852i
939939 0 0
940940 0 0
941941 −38050.0 −1.31817 −0.659083 0.752070i 0.729055π-0.729055\pi
−0.659083 + 0.752070i 0.729055π0.729055\pi
942942 0 0
943943 − 48000.0i − 1.65758i
944944 4450.00 0.153427
945945 0 0
946946 70000.0 2.40581
947947 29640.0i 1.01708i 0.861040 + 0.508538i 0.169814π0.169814\pi
−0.861040 + 0.508538i 0.830186π0.830186\pi
948948 0 0
949949 −8200.00 −0.280488
950950 0 0
951951 0 0
952952 13500.0i 0.459598i
953953 15170.0i 0.515640i 0.966193 + 0.257820i 0.0830041π0.0830041\pi
−0.966193 + 0.257820i 0.916996π0.916996\pi
954954 0 0
955955 0 0
956956 83300.0 2.81811
957957 0 0
958958 70500.0i 2.37761i
959959 −31500.0 −1.06068
960960 0 0
961961 −18127.0 −0.608472
962962 − 4000.00i − 0.134059i
963963 0 0
964964 −81974.0 −2.73880
965965 0 0
966966 0 0
967967 − 5470.00i − 0.181906i −0.995855 0.0909531i 0.971009π-0.971009\pi
0.995855 0.0909531i 0.0289913π-0.0289913\pi
968968 52605.0i 1.74668i
969969 0 0
970970 0 0
971971 −15150.0 −0.500707 −0.250354 0.968154i 0.580547π-0.580547\pi
−0.250354 + 0.968154i 0.580547π0.580547\pi
972972 0 0
973973 50280.0i 1.65663i
974974 −49250.0 −1.62020
975975 0 0
976976 −46102.0 −1.51198
977977 − 31190.0i − 1.02135i −0.859775 0.510674i 0.829396π-0.829396\pi
0.859775 0.510674i 0.170604π-0.170604\pi
978978 0 0
979979 75000.0 2.44843
980980 0 0
981981 0 0
982982 − 12250.0i − 0.398079i
983983 − 7560.00i − 0.245297i −0.992450 0.122648i 0.960861π-0.960861\pi
0.992450 0.122648i 0.0391387π-0.0391387\pi
984984 0 0
985985 0 0
986986 −2500.00 −0.0807467
987987 0 0
988988 − 14960.0i − 0.481722i
989989 33600.0 1.08030
990990 0 0
991991 32672.0 1.04729 0.523643 0.851938i 0.324573π-0.324573\pi
0.523643 + 0.851938i 0.324573π0.324573\pi
992992 − 9180.00i − 0.293816i
993993 0 0
994994 105000. 3.35050
995995 0 0
996996 0 0
997997 − 4740.00i − 0.150569i −0.997162 0.0752845i 0.976014π-0.976014\pi
0.997162 0.0752845i 0.0239865π-0.0239865\pi
998998 − 85180.0i − 2.70173i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.b.a.199.1 2
3.2 odd 2 225.4.b.b.199.2 2
5.2 odd 4 225.4.a.h.1.1 1
5.3 odd 4 45.4.a.a.1.1 1
5.4 even 2 inner 225.4.b.a.199.2 2
15.2 even 4 225.4.a.a.1.1 1
15.8 even 4 45.4.a.e.1.1 yes 1
15.14 odd 2 225.4.b.b.199.1 2
20.3 even 4 720.4.a.bc.1.1 1
35.13 even 4 2205.4.a.a.1.1 1
45.13 odd 12 405.4.e.n.136.1 2
45.23 even 12 405.4.e.b.136.1 2
45.38 even 12 405.4.e.b.271.1 2
45.43 odd 12 405.4.e.n.271.1 2
60.23 odd 4 720.4.a.o.1.1 1
105.83 odd 4 2205.4.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.a.a.1.1 1 5.3 odd 4
45.4.a.e.1.1 yes 1 15.8 even 4
225.4.a.a.1.1 1 15.2 even 4
225.4.a.h.1.1 1 5.2 odd 4
225.4.b.a.199.1 2 1.1 even 1 trivial
225.4.b.a.199.2 2 5.4 even 2 inner
225.4.b.b.199.1 2 15.14 odd 2
225.4.b.b.199.2 2 3.2 odd 2
405.4.e.b.136.1 2 45.23 even 12
405.4.e.b.271.1 2 45.38 even 12
405.4.e.n.136.1 2 45.13 odd 12
405.4.e.n.271.1 2 45.43 odd 12
720.4.a.o.1.1 1 60.23 odd 4
720.4.a.bc.1.1 1 20.3 even 4
2205.4.a.a.1.1 1 35.13 even 4
2205.4.a.t.1.1 1 105.83 odd 4