Properties

Label 2254.4.a.d.1.2
Level $2254$
Weight $4$
Character 2254.1
Self dual yes
Analytic conductor $132.990$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2254,4,Mod(1,2254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2254.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2254 = 2 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.990305153\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.70156\) of defining polynomial
Character \(\chi\) \(=\) 2254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +10.1047 q^{3} +4.00000 q^{4} -11.4031 q^{5} -20.2094 q^{6} -8.00000 q^{8} +75.1047 q^{9} +22.8062 q^{10} +10.3875 q^{11} +40.4187 q^{12} +33.0891 q^{13} -115.225 q^{15} +16.0000 q^{16} -138.837 q^{17} -150.209 q^{18} -68.6281 q^{19} -45.6125 q^{20} -20.7750 q^{22} -23.0000 q^{23} -80.8375 q^{24} +5.03124 q^{25} -66.1781 q^{26} +486.083 q^{27} +215.602 q^{29} +230.450 q^{30} -87.9266 q^{31} -32.0000 q^{32} +104.962 q^{33} +277.675 q^{34} +300.419 q^{36} -215.109 q^{37} +137.256 q^{38} +334.355 q^{39} +91.2250 q^{40} -175.267 q^{41} -40.7125 q^{43} +41.5500 q^{44} -856.428 q^{45} +46.0000 q^{46} -405.245 q^{47} +161.675 q^{48} -10.0625 q^{50} -1402.91 q^{51} +132.356 q^{52} -276.994 q^{53} -972.166 q^{54} -118.450 q^{55} -693.466 q^{57} -431.203 q^{58} -293.550 q^{59} -460.900 q^{60} +450.731 q^{61} +175.853 q^{62} +64.0000 q^{64} -377.319 q^{65} -209.925 q^{66} +273.675 q^{67} -555.350 q^{68} -232.408 q^{69} -643.842 q^{71} -600.837 q^{72} -106.345 q^{73} +430.219 q^{74} +50.8391 q^{75} -274.512 q^{76} -668.709 q^{78} +60.0844 q^{79} -182.450 q^{80} +2883.89 q^{81} +350.534 q^{82} +372.878 q^{83} +1583.18 q^{85} +81.4250 q^{86} +2178.59 q^{87} -83.1000 q^{88} +543.947 q^{89} +1712.86 q^{90} -92.0000 q^{92} -888.470 q^{93} +810.491 q^{94} +782.575 q^{95} -323.350 q^{96} -550.944 q^{97} +780.150 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + q^{3} + 8 q^{4} - 10 q^{5} - 2 q^{6} - 16 q^{8} + 131 q^{9} + 20 q^{10} + 72 q^{11} + 4 q^{12} + 111 q^{13} - 128 q^{15} + 32 q^{16} - 124 q^{17} - 262 q^{18} - 22 q^{19} - 40 q^{20} - 144 q^{22}+ \cdots + 4224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 10.1047 1.94465 0.972324 0.233637i \(-0.0750627\pi\)
0.972324 + 0.233637i \(0.0750627\pi\)
\(4\) 4.00000 0.500000
\(5\) −11.4031 −1.01993 −0.509963 0.860196i \(-0.670341\pi\)
−0.509963 + 0.860196i \(0.670341\pi\)
\(6\) −20.2094 −1.37507
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 75.1047 2.78166
\(10\) 22.8062 0.721197
\(11\) 10.3875 0.284723 0.142361 0.989815i \(-0.454530\pi\)
0.142361 + 0.989815i \(0.454530\pi\)
\(12\) 40.4187 0.972324
\(13\) 33.0891 0.705943 0.352971 0.935634i \(-0.385171\pi\)
0.352971 + 0.935634i \(0.385171\pi\)
\(14\) 0 0
\(15\) −115.225 −1.98340
\(16\) 16.0000 0.250000
\(17\) −138.837 −1.98077 −0.990383 0.138350i \(-0.955820\pi\)
−0.990383 + 0.138350i \(0.955820\pi\)
\(18\) −150.209 −1.96693
\(19\) −68.6281 −0.828651 −0.414326 0.910129i \(-0.635982\pi\)
−0.414326 + 0.910129i \(0.635982\pi\)
\(20\) −45.6125 −0.509963
\(21\) 0 0
\(22\) −20.7750 −0.201329
\(23\) −23.0000 −0.208514
\(24\) −80.8375 −0.687537
\(25\) 5.03124 0.0402499
\(26\) −66.1781 −0.499177
\(27\) 486.083 3.46469
\(28\) 0 0
\(29\) 215.602 1.38056 0.690279 0.723543i \(-0.257488\pi\)
0.690279 + 0.723543i \(0.257488\pi\)
\(30\) 230.450 1.40247
\(31\) −87.9266 −0.509422 −0.254711 0.967017i \(-0.581980\pi\)
−0.254711 + 0.967017i \(0.581980\pi\)
\(32\) −32.0000 −0.176777
\(33\) 104.962 0.553685
\(34\) 277.675 1.40061
\(35\) 0 0
\(36\) 300.419 1.39083
\(37\) −215.109 −0.955777 −0.477889 0.878420i \(-0.658598\pi\)
−0.477889 + 0.878420i \(0.658598\pi\)
\(38\) 137.256 0.585945
\(39\) 334.355 1.37281
\(40\) 91.2250 0.360598
\(41\) −175.267 −0.667613 −0.333807 0.942642i \(-0.608333\pi\)
−0.333807 + 0.942642i \(0.608333\pi\)
\(42\) 0 0
\(43\) −40.7125 −0.144386 −0.0721930 0.997391i \(-0.523000\pi\)
−0.0721930 + 0.997391i \(0.523000\pi\)
\(44\) 41.5500 0.142361
\(45\) −856.428 −2.83708
\(46\) 46.0000 0.147442
\(47\) −405.245 −1.25768 −0.628841 0.777534i \(-0.716471\pi\)
−0.628841 + 0.777534i \(0.716471\pi\)
\(48\) 161.675 0.486162
\(49\) 0 0
\(50\) −10.0625 −0.0284610
\(51\) −1402.91 −3.85189
\(52\) 132.356 0.352971
\(53\) −276.994 −0.717887 −0.358944 0.933359i \(-0.616863\pi\)
−0.358944 + 0.933359i \(0.616863\pi\)
\(54\) −972.166 −2.44991
\(55\) −118.450 −0.290396
\(56\) 0 0
\(57\) −693.466 −1.61143
\(58\) −431.203 −0.976202
\(59\) −293.550 −0.647745 −0.323873 0.946101i \(-0.604985\pi\)
−0.323873 + 0.946101i \(0.604985\pi\)
\(60\) −460.900 −0.991699
\(61\) 450.731 0.946069 0.473035 0.881044i \(-0.343159\pi\)
0.473035 + 0.881044i \(0.343159\pi\)
\(62\) 175.853 0.360216
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) −377.319 −0.720010
\(66\) −209.925 −0.391515
\(67\) 273.675 0.499026 0.249513 0.968371i \(-0.419730\pi\)
0.249513 + 0.968371i \(0.419730\pi\)
\(68\) −555.350 −0.990383
\(69\) −232.408 −0.405487
\(70\) 0 0
\(71\) −643.842 −1.07620 −0.538099 0.842882i \(-0.680857\pi\)
−0.538099 + 0.842882i \(0.680857\pi\)
\(72\) −600.837 −0.983464
\(73\) −106.345 −0.170504 −0.0852519 0.996359i \(-0.527169\pi\)
−0.0852519 + 0.996359i \(0.527169\pi\)
\(74\) 430.219 0.675837
\(75\) 50.8391 0.0782720
\(76\) −274.512 −0.414326
\(77\) 0 0
\(78\) −668.709 −0.970723
\(79\) 60.0844 0.0855699 0.0427850 0.999084i \(-0.486377\pi\)
0.0427850 + 0.999084i \(0.486377\pi\)
\(80\) −182.450 −0.254982
\(81\) 2883.89 3.95595
\(82\) 350.534 0.472074
\(83\) 372.878 0.493117 0.246558 0.969128i \(-0.420700\pi\)
0.246558 + 0.969128i \(0.420700\pi\)
\(84\) 0 0
\(85\) 1583.18 2.02024
\(86\) 81.4250 0.102096
\(87\) 2178.59 2.68470
\(88\) −83.1000 −0.100665
\(89\) 543.947 0.647846 0.323923 0.946084i \(-0.394998\pi\)
0.323923 + 0.946084i \(0.394998\pi\)
\(90\) 1712.86 2.00612
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) −888.470 −0.990646
\(94\) 810.491 0.889316
\(95\) 782.575 0.845163
\(96\) −323.350 −0.343768
\(97\) −550.944 −0.576700 −0.288350 0.957525i \(-0.593107\pi\)
−0.288350 + 0.957525i \(0.593107\pi\)
\(98\) 0 0
\(99\) 780.150 0.792000
\(100\) 20.1250 0.0201250
\(101\) −1084.57 −1.06851 −0.534254 0.845324i \(-0.679407\pi\)
−0.534254 + 0.845324i \(0.679407\pi\)
\(102\) 2805.82 2.72370
\(103\) −1369.19 −1.30981 −0.654905 0.755712i \(-0.727291\pi\)
−0.654905 + 0.755712i \(0.727291\pi\)
\(104\) −264.713 −0.249588
\(105\) 0 0
\(106\) 553.987 0.507623
\(107\) −1193.82 −1.07861 −0.539304 0.842111i \(-0.681313\pi\)
−0.539304 + 0.842111i \(0.681313\pi\)
\(108\) 1944.33 1.73235
\(109\) −893.309 −0.784986 −0.392493 0.919755i \(-0.628387\pi\)
−0.392493 + 0.919755i \(0.628387\pi\)
\(110\) 236.900 0.205341
\(111\) −2173.61 −1.85865
\(112\) 0 0
\(113\) 1842.16 1.53359 0.766797 0.641890i \(-0.221849\pi\)
0.766797 + 0.641890i \(0.221849\pi\)
\(114\) 1386.93 1.13946
\(115\) 262.272 0.212669
\(116\) 862.406 0.690279
\(117\) 2485.14 1.96369
\(118\) 587.100 0.458025
\(119\) 0 0
\(120\) 921.800 0.701237
\(121\) −1223.10 −0.918933
\(122\) −901.462 −0.668972
\(123\) −1771.02 −1.29827
\(124\) −351.706 −0.254711
\(125\) 1368.02 0.978874
\(126\) 0 0
\(127\) 599.361 0.418777 0.209389 0.977833i \(-0.432853\pi\)
0.209389 + 0.977833i \(0.432853\pi\)
\(128\) −128.000 −0.0883883
\(129\) −411.387 −0.280780
\(130\) 754.637 0.509124
\(131\) 560.136 0.373582 0.186791 0.982400i \(-0.440191\pi\)
0.186791 + 0.982400i \(0.440191\pi\)
\(132\) 419.850 0.276843
\(133\) 0 0
\(134\) −547.350 −0.352864
\(135\) −5542.86 −3.53373
\(136\) 1110.70 0.700307
\(137\) −2111.69 −1.31689 −0.658445 0.752629i \(-0.728785\pi\)
−0.658445 + 0.752629i \(0.728785\pi\)
\(138\) 464.816 0.286723
\(139\) 944.952 0.576617 0.288308 0.957538i \(-0.406907\pi\)
0.288308 + 0.957538i \(0.406907\pi\)
\(140\) 0 0
\(141\) −4094.88 −2.44575
\(142\) 1287.68 0.760986
\(143\) 343.713 0.200998
\(144\) 1201.67 0.695414
\(145\) −2458.53 −1.40807
\(146\) 212.691 0.120564
\(147\) 0 0
\(148\) −860.437 −0.477889
\(149\) −2480.47 −1.36381 −0.681906 0.731440i \(-0.738849\pi\)
−0.681906 + 0.731440i \(0.738849\pi\)
\(150\) −101.678 −0.0553466
\(151\) 1164.53 0.627605 0.313802 0.949488i \(-0.398397\pi\)
0.313802 + 0.949488i \(0.398397\pi\)
\(152\) 549.025 0.292972
\(153\) −10427.3 −5.50981
\(154\) 0 0
\(155\) 1002.64 0.519573
\(156\) 1337.42 0.686405
\(157\) 1525.27 0.775347 0.387673 0.921797i \(-0.373279\pi\)
0.387673 + 0.921797i \(0.373279\pi\)
\(158\) −120.169 −0.0605071
\(159\) −2798.93 −1.39604
\(160\) 364.900 0.180299
\(161\) 0 0
\(162\) −5767.77 −2.79728
\(163\) 1944.47 0.934371 0.467185 0.884159i \(-0.345268\pi\)
0.467185 + 0.884159i \(0.345268\pi\)
\(164\) −701.069 −0.333807
\(165\) −1196.90 −0.564718
\(166\) −745.756 −0.348686
\(167\) 2632.58 1.21985 0.609926 0.792458i \(-0.291199\pi\)
0.609926 + 0.792458i \(0.291199\pi\)
\(168\) 0 0
\(169\) −1102.11 −0.501645
\(170\) −3166.36 −1.42852
\(171\) −5154.29 −2.30502
\(172\) −162.850 −0.0721930
\(173\) −1189.63 −0.522806 −0.261403 0.965230i \(-0.584185\pi\)
−0.261403 + 0.965230i \(0.584185\pi\)
\(174\) −4357.17 −1.89837
\(175\) 0 0
\(176\) 166.200 0.0711807
\(177\) −2966.23 −1.25964
\(178\) −1087.89 −0.458096
\(179\) −1548.97 −0.646790 −0.323395 0.946264i \(-0.604824\pi\)
−0.323395 + 0.946264i \(0.604824\pi\)
\(180\) −3425.71 −1.41854
\(181\) 1908.38 0.783697 0.391848 0.920030i \(-0.371836\pi\)
0.391848 + 0.920030i \(0.371836\pi\)
\(182\) 0 0
\(183\) 4554.50 1.83977
\(184\) 184.000 0.0737210
\(185\) 2452.92 0.974823
\(186\) 1776.94 0.700492
\(187\) −1442.17 −0.563969
\(188\) −1620.98 −0.628841
\(189\) 0 0
\(190\) −1565.15 −0.597621
\(191\) 352.625 0.133587 0.0667933 0.997767i \(-0.478723\pi\)
0.0667933 + 0.997767i \(0.478723\pi\)
\(192\) 646.700 0.243081
\(193\) −1414.28 −0.527472 −0.263736 0.964595i \(-0.584955\pi\)
−0.263736 + 0.964595i \(0.584955\pi\)
\(194\) 1101.89 0.407788
\(195\) −3812.69 −1.40017
\(196\) 0 0
\(197\) −432.530 −0.156429 −0.0782144 0.996937i \(-0.524922\pi\)
−0.0782144 + 0.996937i \(0.524922\pi\)
\(198\) −1560.30 −0.560029
\(199\) 108.519 0.0386567 0.0193283 0.999813i \(-0.493847\pi\)
0.0193283 + 0.999813i \(0.493847\pi\)
\(200\) −40.2499 −0.0142305
\(201\) 2765.40 0.970429
\(202\) 2169.15 0.755549
\(203\) 0 0
\(204\) −5611.64 −1.92595
\(205\) 1998.59 0.680916
\(206\) 2738.38 0.926175
\(207\) −1727.41 −0.580015
\(208\) 529.425 0.176486
\(209\) −712.875 −0.235936
\(210\) 0 0
\(211\) −1082.37 −0.353144 −0.176572 0.984288i \(-0.556501\pi\)
−0.176572 + 0.984288i \(0.556501\pi\)
\(212\) −1107.97 −0.358944
\(213\) −6505.82 −2.09282
\(214\) 2387.64 0.762691
\(215\) 464.250 0.147263
\(216\) −3888.66 −1.22495
\(217\) 0 0
\(218\) 1786.62 0.555069
\(219\) −1074.59 −0.331570
\(220\) −473.800 −0.145198
\(221\) −4594.00 −1.39831
\(222\) 4347.22 1.31426
\(223\) 1619.44 0.486303 0.243151 0.969988i \(-0.421819\pi\)
0.243151 + 0.969988i \(0.421819\pi\)
\(224\) 0 0
\(225\) 377.870 0.111961
\(226\) −3684.32 −1.08441
\(227\) −6746.10 −1.97249 −0.986244 0.165299i \(-0.947141\pi\)
−0.986244 + 0.165299i \(0.947141\pi\)
\(228\) −2773.86 −0.805717
\(229\) −1192.63 −0.344155 −0.172077 0.985083i \(-0.555048\pi\)
−0.172077 + 0.985083i \(0.555048\pi\)
\(230\) −524.544 −0.150380
\(231\) 0 0
\(232\) −1724.81 −0.488101
\(233\) −2860.16 −0.804187 −0.402093 0.915599i \(-0.631717\pi\)
−0.402093 + 0.915599i \(0.631717\pi\)
\(234\) −4970.29 −1.38854
\(235\) 4621.06 1.28274
\(236\) −1174.20 −0.323873
\(237\) 607.134 0.166403
\(238\) 0 0
\(239\) −594.373 −0.160865 −0.0804327 0.996760i \(-0.525630\pi\)
−0.0804327 + 0.996760i \(0.525630\pi\)
\(240\) −1843.60 −0.495849
\(241\) −3930.15 −1.05047 −0.525234 0.850958i \(-0.676022\pi\)
−0.525234 + 0.850958i \(0.676022\pi\)
\(242\) 2446.20 0.649784
\(243\) 16016.5 4.22824
\(244\) 1802.92 0.473035
\(245\) 0 0
\(246\) 3542.04 0.918017
\(247\) −2270.84 −0.584980
\(248\) 703.412 0.180108
\(249\) 3767.82 0.958938
\(250\) −2736.04 −0.692169
\(251\) −2122.07 −0.533641 −0.266821 0.963746i \(-0.585973\pi\)
−0.266821 + 0.963746i \(0.585973\pi\)
\(252\) 0 0
\(253\) −238.913 −0.0593688
\(254\) −1198.72 −0.296120
\(255\) 15997.5 3.92865
\(256\) 256.000 0.0625000
\(257\) −1143.68 −0.277591 −0.138795 0.990321i \(-0.544323\pi\)
−0.138795 + 0.990321i \(0.544323\pi\)
\(258\) 822.775 0.198541
\(259\) 0 0
\(260\) −1509.27 −0.360005
\(261\) 16192.7 3.84024
\(262\) −1120.27 −0.264163
\(263\) −947.534 −0.222158 −0.111079 0.993812i \(-0.535431\pi\)
−0.111079 + 0.993812i \(0.535431\pi\)
\(264\) −839.700 −0.195757
\(265\) 3158.59 0.732192
\(266\) 0 0
\(267\) 5496.41 1.25983
\(268\) 1094.70 0.249513
\(269\) −3217.70 −0.729317 −0.364659 0.931141i \(-0.618814\pi\)
−0.364659 + 0.931141i \(0.618814\pi\)
\(270\) 11085.7 2.49872
\(271\) 7284.05 1.63275 0.816374 0.577524i \(-0.195981\pi\)
0.816374 + 0.577524i \(0.195981\pi\)
\(272\) −2221.40 −0.495192
\(273\) 0 0
\(274\) 4223.38 0.931182
\(275\) 52.2620 0.0114601
\(276\) −929.631 −0.202744
\(277\) 2524.08 0.547498 0.273749 0.961801i \(-0.411736\pi\)
0.273749 + 0.961801i \(0.411736\pi\)
\(278\) −1889.90 −0.407730
\(279\) −6603.70 −1.41704
\(280\) 0 0
\(281\) −6277.44 −1.33267 −0.666336 0.745652i \(-0.732138\pi\)
−0.666336 + 0.745652i \(0.732138\pi\)
\(282\) 8189.75 1.72941
\(283\) 8.34415 0.00175268 0.000876340 1.00000i \(-0.499721\pi\)
0.000876340 1.00000i \(0.499721\pi\)
\(284\) −2575.37 −0.538099
\(285\) 7907.67 1.64354
\(286\) −687.426 −0.142127
\(287\) 0 0
\(288\) −2403.35 −0.491732
\(289\) 14362.8 2.92344
\(290\) 4917.06 0.995655
\(291\) −5567.11 −1.12148
\(292\) −425.381 −0.0852519
\(293\) −3075.15 −0.613147 −0.306573 0.951847i \(-0.599182\pi\)
−0.306573 + 0.951847i \(0.599182\pi\)
\(294\) 0 0
\(295\) 3347.39 0.660652
\(296\) 1720.87 0.337918
\(297\) 5049.19 0.986476
\(298\) 4960.94 0.964360
\(299\) −761.048 −0.147199
\(300\) 203.357 0.0391360
\(301\) 0 0
\(302\) −2329.07 −0.443784
\(303\) −10959.3 −2.07787
\(304\) −1098.05 −0.207163
\(305\) −5139.74 −0.964921
\(306\) 20854.7 3.89602
\(307\) 1039.90 0.193323 0.0966616 0.995317i \(-0.469184\pi\)
0.0966616 + 0.995317i \(0.469184\pi\)
\(308\) 0 0
\(309\) −13835.2 −2.54712
\(310\) −2005.27 −0.367393
\(311\) −5917.12 −1.07887 −0.539436 0.842027i \(-0.681362\pi\)
−0.539436 + 0.842027i \(0.681362\pi\)
\(312\) −2674.84 −0.485362
\(313\) −2581.67 −0.466213 −0.233107 0.972451i \(-0.574889\pi\)
−0.233107 + 0.972451i \(0.574889\pi\)
\(314\) −3050.53 −0.548253
\(315\) 0 0
\(316\) 240.338 0.0427850
\(317\) 7203.26 1.27626 0.638132 0.769927i \(-0.279708\pi\)
0.638132 + 0.769927i \(0.279708\pi\)
\(318\) 5597.87 0.987147
\(319\) 2239.56 0.393076
\(320\) −729.800 −0.127491
\(321\) −12063.2 −2.09751
\(322\) 0 0
\(323\) 9528.16 1.64136
\(324\) 11535.5 1.97797
\(325\) 166.479 0.0284142
\(326\) −3888.93 −0.660700
\(327\) −9026.61 −1.52652
\(328\) 1402.14 0.236037
\(329\) 0 0
\(330\) 2393.80 0.399316
\(331\) −11007.6 −1.82789 −0.913943 0.405843i \(-0.866978\pi\)
−0.913943 + 0.405843i \(0.866978\pi\)
\(332\) 1491.51 0.246558
\(333\) −16155.7 −2.65864
\(334\) −5265.16 −0.862565
\(335\) −3120.75 −0.508969
\(336\) 0 0
\(337\) 1436.15 0.232143 0.116072 0.993241i \(-0.462970\pi\)
0.116072 + 0.993241i \(0.462970\pi\)
\(338\) 2204.23 0.354716
\(339\) 18614.5 2.98230
\(340\) 6332.72 1.01012
\(341\) −913.337 −0.145044
\(342\) 10308.6 1.62990
\(343\) 0 0
\(344\) 325.700 0.0510482
\(345\) 2650.17 0.413567
\(346\) 2379.25 0.369680
\(347\) 4296.61 0.664710 0.332355 0.943154i \(-0.392157\pi\)
0.332355 + 0.943154i \(0.392157\pi\)
\(348\) 8714.34 1.34235
\(349\) −3496.28 −0.536250 −0.268125 0.963384i \(-0.586404\pi\)
−0.268125 + 0.963384i \(0.586404\pi\)
\(350\) 0 0
\(351\) 16084.0 2.44587
\(352\) −332.400 −0.0503323
\(353\) −2884.90 −0.434980 −0.217490 0.976063i \(-0.569787\pi\)
−0.217490 + 0.976063i \(0.569787\pi\)
\(354\) 5932.46 0.890697
\(355\) 7341.81 1.09764
\(356\) 2175.79 0.323923
\(357\) 0 0
\(358\) 3097.94 0.457350
\(359\) −9774.21 −1.43694 −0.718472 0.695556i \(-0.755158\pi\)
−0.718472 + 0.695556i \(0.755158\pi\)
\(360\) 6851.42 1.00306
\(361\) −2149.18 −0.313337
\(362\) −3816.77 −0.554157
\(363\) −12359.0 −1.78700
\(364\) 0 0
\(365\) 1212.67 0.173901
\(366\) −9108.99 −1.30091
\(367\) 5245.42 0.746073 0.373036 0.927817i \(-0.378317\pi\)
0.373036 + 0.927817i \(0.378317\pi\)
\(368\) −368.000 −0.0521286
\(369\) −13163.4 −1.85707
\(370\) −4905.84 −0.689304
\(371\) 0 0
\(372\) −3553.88 −0.495323
\(373\) −12320.9 −1.71032 −0.855160 0.518364i \(-0.826541\pi\)
−0.855160 + 0.518364i \(0.826541\pi\)
\(374\) 2884.35 0.398787
\(375\) 13823.4 1.90357
\(376\) 3241.96 0.444658
\(377\) 7134.05 0.974595
\(378\) 0 0
\(379\) −1216.68 −0.164899 −0.0824495 0.996595i \(-0.526274\pi\)
−0.0824495 + 0.996595i \(0.526274\pi\)
\(380\) 3130.30 0.422582
\(381\) 6056.35 0.814374
\(382\) −705.250 −0.0944600
\(383\) 3989.13 0.532206 0.266103 0.963945i \(-0.414264\pi\)
0.266103 + 0.963945i \(0.414264\pi\)
\(384\) −1293.40 −0.171884
\(385\) 0 0
\(386\) 2828.56 0.372979
\(387\) −3057.70 −0.401632
\(388\) −2203.78 −0.288350
\(389\) 15077.7 1.96522 0.982608 0.185693i \(-0.0594530\pi\)
0.982608 + 0.185693i \(0.0594530\pi\)
\(390\) 7625.37 0.990066
\(391\) 3193.26 0.413018
\(392\) 0 0
\(393\) 5660.00 0.726486
\(394\) 865.060 0.110612
\(395\) −685.150 −0.0872750
\(396\) 3120.60 0.396000
\(397\) 12767.4 1.61405 0.807026 0.590515i \(-0.201075\pi\)
0.807026 + 0.590515i \(0.201075\pi\)
\(398\) −217.037 −0.0273344
\(399\) 0 0
\(400\) 80.4999 0.0100625
\(401\) −8846.67 −1.10170 −0.550850 0.834604i \(-0.685696\pi\)
−0.550850 + 0.834604i \(0.685696\pi\)
\(402\) −5530.80 −0.686197
\(403\) −2909.41 −0.359623
\(404\) −4338.30 −0.534254
\(405\) −32885.3 −4.03478
\(406\) 0 0
\(407\) −2234.45 −0.272132
\(408\) 11223.3 1.36185
\(409\) 3945.27 0.476970 0.238485 0.971146i \(-0.423349\pi\)
0.238485 + 0.971146i \(0.423349\pi\)
\(410\) −3997.19 −0.481481
\(411\) −21338.0 −2.56089
\(412\) −5476.76 −0.654905
\(413\) 0 0
\(414\) 3454.82 0.410133
\(415\) −4251.97 −0.502943
\(416\) −1058.85 −0.124794
\(417\) 9548.44 1.12132
\(418\) 1425.75 0.166832
\(419\) −13937.2 −1.62500 −0.812502 0.582958i \(-0.801895\pi\)
−0.812502 + 0.582958i \(0.801895\pi\)
\(420\) 0 0
\(421\) −2471.55 −0.286119 −0.143059 0.989714i \(-0.545694\pi\)
−0.143059 + 0.989714i \(0.545694\pi\)
\(422\) 2164.74 0.249710
\(423\) −30435.8 −3.49844
\(424\) 2215.95 0.253811
\(425\) −698.525 −0.0797257
\(426\) 13011.6 1.47985
\(427\) 0 0
\(428\) −4775.29 −0.539304
\(429\) 3473.11 0.390870
\(430\) −928.500 −0.104131
\(431\) 7340.81 0.820404 0.410202 0.911995i \(-0.365458\pi\)
0.410202 + 0.911995i \(0.365458\pi\)
\(432\) 7777.32 0.866173
\(433\) 8838.13 0.980909 0.490455 0.871467i \(-0.336831\pi\)
0.490455 + 0.871467i \(0.336831\pi\)
\(434\) 0 0
\(435\) −24842.7 −2.73820
\(436\) −3573.24 −0.392493
\(437\) 1578.45 0.172786
\(438\) 2149.17 0.234455
\(439\) 10403.7 1.13107 0.565534 0.824725i \(-0.308670\pi\)
0.565534 + 0.824725i \(0.308670\pi\)
\(440\) 947.600 0.102671
\(441\) 0 0
\(442\) 9188.01 0.988753
\(443\) −4415.27 −0.473535 −0.236767 0.971566i \(-0.576088\pi\)
−0.236767 + 0.971566i \(0.576088\pi\)
\(444\) −8694.45 −0.929325
\(445\) −6202.69 −0.660755
\(446\) −3238.88 −0.343868
\(447\) −25064.4 −2.65213
\(448\) 0 0
\(449\) 3711.34 0.390087 0.195044 0.980795i \(-0.437515\pi\)
0.195044 + 0.980795i \(0.437515\pi\)
\(450\) −755.740 −0.0791687
\(451\) −1820.59 −0.190085
\(452\) 7368.65 0.766797
\(453\) 11767.2 1.22047
\(454\) 13492.2 1.39476
\(455\) 0 0
\(456\) 5547.72 0.569728
\(457\) 15711.9 1.60825 0.804124 0.594461i \(-0.202635\pi\)
0.804124 + 0.594461i \(0.202635\pi\)
\(458\) 2385.27 0.243354
\(459\) −67486.5 −6.86275
\(460\) 1049.09 0.106335
\(461\) −3177.04 −0.320975 −0.160488 0.987038i \(-0.551307\pi\)
−0.160488 + 0.987038i \(0.551307\pi\)
\(462\) 0 0
\(463\) −14774.8 −1.48303 −0.741516 0.670935i \(-0.765893\pi\)
−0.741516 + 0.670935i \(0.765893\pi\)
\(464\) 3449.62 0.345140
\(465\) 10131.3 1.01039
\(466\) 5720.33 0.568646
\(467\) 2408.12 0.238618 0.119309 0.992857i \(-0.461932\pi\)
0.119309 + 0.992857i \(0.461932\pi\)
\(468\) 9940.58 0.981845
\(469\) 0 0
\(470\) −9242.12 −0.907037
\(471\) 15412.3 1.50778
\(472\) 2348.40 0.229012
\(473\) −422.901 −0.0411100
\(474\) −1214.27 −0.117665
\(475\) −345.285 −0.0333532
\(476\) 0 0
\(477\) −20803.5 −1.99691
\(478\) 1188.75 0.113749
\(479\) 12528.3 1.19506 0.597528 0.801848i \(-0.296150\pi\)
0.597528 + 0.801848i \(0.296150\pi\)
\(480\) 3687.20 0.350618
\(481\) −7117.77 −0.674724
\(482\) 7860.29 0.742794
\(483\) 0 0
\(484\) −4892.40 −0.459466
\(485\) 6282.48 0.588191
\(486\) −32033.1 −2.98982
\(487\) 16798.6 1.56307 0.781537 0.623858i \(-0.214436\pi\)
0.781537 + 0.623858i \(0.214436\pi\)
\(488\) −3605.85 −0.334486
\(489\) 19648.2 1.81702
\(490\) 0 0
\(491\) −18007.7 −1.65514 −0.827571 0.561361i \(-0.810278\pi\)
−0.827571 + 0.561361i \(0.810278\pi\)
\(492\) −7084.08 −0.649136
\(493\) −29933.6 −2.73456
\(494\) 4541.68 0.413643
\(495\) −8896.15 −0.807782
\(496\) −1406.82 −0.127355
\(497\) 0 0
\(498\) −7535.63 −0.678072
\(499\) 696.627 0.0624956 0.0312478 0.999512i \(-0.490052\pi\)
0.0312478 + 0.999512i \(0.490052\pi\)
\(500\) 5472.07 0.489437
\(501\) 26601.4 2.37218
\(502\) 4244.14 0.377341
\(503\) 20469.0 1.81444 0.907222 0.420652i \(-0.138199\pi\)
0.907222 + 0.420652i \(0.138199\pi\)
\(504\) 0 0
\(505\) 12367.5 1.08980
\(506\) 477.825 0.0419801
\(507\) −11136.5 −0.975523
\(508\) 2397.44 0.209389
\(509\) −13437.5 −1.17015 −0.585073 0.810980i \(-0.698934\pi\)
−0.585073 + 0.810980i \(0.698934\pi\)
\(510\) −31995.1 −2.77797
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −33358.9 −2.87102
\(514\) 2287.36 0.196286
\(515\) 15613.0 1.33591
\(516\) −1645.55 −0.140390
\(517\) −4209.49 −0.358091
\(518\) 0 0
\(519\) −12020.8 −1.01667
\(520\) 3018.55 0.254562
\(521\) 4917.10 0.413478 0.206739 0.978396i \(-0.433715\pi\)
0.206739 + 0.978396i \(0.433715\pi\)
\(522\) −32385.4 −2.71546
\(523\) −15959.4 −1.33434 −0.667168 0.744908i \(-0.732493\pi\)
−0.667168 + 0.744908i \(0.732493\pi\)
\(524\) 2240.54 0.186791
\(525\) 0 0
\(526\) 1895.07 0.157089
\(527\) 12207.5 1.00905
\(528\) 1679.40 0.138421
\(529\) 529.000 0.0434783
\(530\) −6317.19 −0.517738
\(531\) −22047.0 −1.80180
\(532\) 0 0
\(533\) −5799.43 −0.471297
\(534\) −10992.8 −0.890835
\(535\) 13613.3 1.10010
\(536\) −2189.40 −0.176432
\(537\) −15651.9 −1.25778
\(538\) 6435.39 0.515705
\(539\) 0 0
\(540\) −22171.4 −1.76687
\(541\) −8018.32 −0.637217 −0.318608 0.947886i \(-0.603216\pi\)
−0.318608 + 0.947886i \(0.603216\pi\)
\(542\) −14568.1 −1.15453
\(543\) 19283.6 1.52401
\(544\) 4442.80 0.350153
\(545\) 10186.5 0.800628
\(546\) 0 0
\(547\) 13255.0 1.03609 0.518047 0.855352i \(-0.326659\pi\)
0.518047 + 0.855352i \(0.326659\pi\)
\(548\) −8446.76 −0.658445
\(549\) 33852.0 2.63164
\(550\) −104.524 −0.00810349
\(551\) −14796.3 −1.14400
\(552\) 1859.26 0.143361
\(553\) 0 0
\(554\) −5048.15 −0.387140
\(555\) 24786.0 1.89569
\(556\) 3779.81 0.288308
\(557\) −10410.3 −0.791918 −0.395959 0.918268i \(-0.629588\pi\)
−0.395959 + 0.918268i \(0.629588\pi\)
\(558\) 13207.4 1.00200
\(559\) −1347.14 −0.101928
\(560\) 0 0
\(561\) −14572.7 −1.09672
\(562\) 12554.9 0.942341
\(563\) −19009.9 −1.42304 −0.711520 0.702666i \(-0.751993\pi\)
−0.711520 + 0.702666i \(0.751993\pi\)
\(564\) −16379.5 −1.22288
\(565\) −21006.4 −1.56415
\(566\) −16.6883 −0.00123933
\(567\) 0 0
\(568\) 5150.74 0.380493
\(569\) 11671.7 0.859934 0.429967 0.902845i \(-0.358525\pi\)
0.429967 + 0.902845i \(0.358525\pi\)
\(570\) −15815.3 −1.16216
\(571\) −21359.8 −1.56546 −0.782732 0.622359i \(-0.786174\pi\)
−0.782732 + 0.622359i \(0.786174\pi\)
\(572\) 1374.85 0.100499
\(573\) 3563.16 0.259779
\(574\) 0 0
\(575\) −115.719 −0.00839269
\(576\) 4806.70 0.347707
\(577\) −13416.4 −0.967996 −0.483998 0.875069i \(-0.660816\pi\)
−0.483998 + 0.875069i \(0.660816\pi\)
\(578\) −28725.7 −2.06718
\(579\) −14290.9 −1.02575
\(580\) −9834.12 −0.704034
\(581\) 0 0
\(582\) 11134.2 0.793005
\(583\) −2877.27 −0.204399
\(584\) 850.762 0.0602822
\(585\) −28338.4 −2.00282
\(586\) 6150.29 0.433560
\(587\) 11542.3 0.811586 0.405793 0.913965i \(-0.366995\pi\)
0.405793 + 0.913965i \(0.366995\pi\)
\(588\) 0 0
\(589\) 6034.23 0.422133
\(590\) −6694.77 −0.467152
\(591\) −4370.58 −0.304199
\(592\) −3441.75 −0.238944
\(593\) −3151.02 −0.218207 −0.109104 0.994030i \(-0.534798\pi\)
−0.109104 + 0.994030i \(0.534798\pi\)
\(594\) −10098.4 −0.697544
\(595\) 0 0
\(596\) −9921.87 −0.681906
\(597\) 1096.55 0.0751736
\(598\) 1522.10 0.104086
\(599\) −293.676 −0.0200322 −0.0100161 0.999950i \(-0.503188\pi\)
−0.0100161 + 0.999950i \(0.503188\pi\)
\(600\) −406.713 −0.0276733
\(601\) 19297.6 1.30976 0.654881 0.755732i \(-0.272719\pi\)
0.654881 + 0.755732i \(0.272719\pi\)
\(602\) 0 0
\(603\) 20554.3 1.38812
\(604\) 4658.13 0.313802
\(605\) 13947.2 0.937244
\(606\) 21918.6 1.46928
\(607\) 24573.1 1.64315 0.821573 0.570103i \(-0.193097\pi\)
0.821573 + 0.570103i \(0.193097\pi\)
\(608\) 2196.10 0.146486
\(609\) 0 0
\(610\) 10279.5 0.682302
\(611\) −13409.2 −0.887852
\(612\) −41709.4 −2.75491
\(613\) 14171.5 0.933738 0.466869 0.884326i \(-0.345382\pi\)
0.466869 + 0.884326i \(0.345382\pi\)
\(614\) −2079.80 −0.136700
\(615\) 20195.2 1.32414
\(616\) 0 0
\(617\) −3693.48 −0.240995 −0.120498 0.992714i \(-0.538449\pi\)
−0.120498 + 0.992714i \(0.538449\pi\)
\(618\) 27670.5 1.80108
\(619\) −29215.7 −1.89705 −0.948527 0.316697i \(-0.897426\pi\)
−0.948527 + 0.316697i \(0.897426\pi\)
\(620\) 4010.55 0.259786
\(621\) −11179.9 −0.722438
\(622\) 11834.2 0.762878
\(623\) 0 0
\(624\) 5349.67 0.343202
\(625\) −16228.6 −1.03863
\(626\) 5163.34 0.329663
\(627\) −7203.38 −0.458812
\(628\) 6101.06 0.387673
\(629\) 29865.2 1.89317
\(630\) 0 0
\(631\) −10216.8 −0.644571 −0.322286 0.946643i \(-0.604451\pi\)
−0.322286 + 0.946643i \(0.604451\pi\)
\(632\) −480.675 −0.0302535
\(633\) −10937.0 −0.686740
\(634\) −14406.5 −0.902454
\(635\) −6834.59 −0.427122
\(636\) −11195.7 −0.698019
\(637\) 0 0
\(638\) −4479.12 −0.277947
\(639\) −48355.6 −2.99361
\(640\) 1459.60 0.0901496
\(641\) 11330.1 0.698148 0.349074 0.937095i \(-0.386496\pi\)
0.349074 + 0.937095i \(0.386496\pi\)
\(642\) 24126.4 1.48317
\(643\) 18572.6 1.13908 0.569542 0.821962i \(-0.307121\pi\)
0.569542 + 0.821962i \(0.307121\pi\)
\(644\) 0 0
\(645\) 4691.10 0.286375
\(646\) −19056.3 −1.16062
\(647\) 13995.8 0.850436 0.425218 0.905091i \(-0.360198\pi\)
0.425218 + 0.905091i \(0.360198\pi\)
\(648\) −23071.1 −1.39864
\(649\) −3049.25 −0.184428
\(650\) −332.958 −0.0200918
\(651\) 0 0
\(652\) 7777.87 0.467185
\(653\) 20473.1 1.22691 0.613456 0.789729i \(-0.289779\pi\)
0.613456 + 0.789729i \(0.289779\pi\)
\(654\) 18053.2 1.07941
\(655\) −6387.30 −0.381027
\(656\) −2804.28 −0.166903
\(657\) −7987.03 −0.474283
\(658\) 0 0
\(659\) −27951.8 −1.65227 −0.826135 0.563473i \(-0.809465\pi\)
−0.826135 + 0.563473i \(0.809465\pi\)
\(660\) −4787.60 −0.282359
\(661\) −20698.3 −1.21796 −0.608980 0.793185i \(-0.708421\pi\)
−0.608980 + 0.793185i \(0.708421\pi\)
\(662\) 22015.1 1.29251
\(663\) −46421.0 −2.71922
\(664\) −2983.02 −0.174343
\(665\) 0 0
\(666\) 32311.4 1.87994
\(667\) −4958.84 −0.287866
\(668\) 10530.3 0.609926
\(669\) 16363.9 0.945688
\(670\) 6241.50 0.359896
\(671\) 4681.97 0.269367
\(672\) 0 0
\(673\) 28428.7 1.62830 0.814150 0.580654i \(-0.197203\pi\)
0.814150 + 0.580654i \(0.197203\pi\)
\(674\) −2872.31 −0.164150
\(675\) 2445.60 0.139454
\(676\) −4408.46 −0.250822
\(677\) 7179.44 0.407575 0.203787 0.979015i \(-0.434675\pi\)
0.203787 + 0.979015i \(0.434675\pi\)
\(678\) −37228.9 −2.10880
\(679\) 0 0
\(680\) −12665.4 −0.714261
\(681\) −68167.3 −3.83579
\(682\) 1826.67 0.102562
\(683\) 5146.87 0.288345 0.144172 0.989553i \(-0.453948\pi\)
0.144172 + 0.989553i \(0.453948\pi\)
\(684\) −20617.2 −1.15251
\(685\) 24079.9 1.34313
\(686\) 0 0
\(687\) −12051.2 −0.669260
\(688\) −651.400 −0.0360965
\(689\) −9165.46 −0.506787
\(690\) −5300.35 −0.292436
\(691\) −29679.6 −1.63396 −0.816978 0.576669i \(-0.804352\pi\)
−0.816978 + 0.576669i \(0.804352\pi\)
\(692\) −4758.50 −0.261403
\(693\) 0 0
\(694\) −8593.23 −0.470021
\(695\) −10775.4 −0.588107
\(696\) −17428.7 −0.949185
\(697\) 24333.7 1.32239
\(698\) 6992.55 0.379186
\(699\) −28901.1 −1.56386
\(700\) 0 0
\(701\) 9627.78 0.518739 0.259370 0.965778i \(-0.416485\pi\)
0.259370 + 0.965778i \(0.416485\pi\)
\(702\) −32168.0 −1.72949
\(703\) 14762.5 0.792006
\(704\) 664.800 0.0355903
\(705\) 46694.4 2.49449
\(706\) 5769.80 0.307577
\(707\) 0 0
\(708\) −11864.9 −0.629818
\(709\) 11527.4 0.610606 0.305303 0.952255i \(-0.401242\pi\)
0.305303 + 0.952255i \(0.401242\pi\)
\(710\) −14683.6 −0.776150
\(711\) 4512.62 0.238026
\(712\) −4351.57 −0.229048
\(713\) 2022.31 0.106222
\(714\) 0 0
\(715\) −3919.40 −0.205003
\(716\) −6195.88 −0.323395
\(717\) −6005.96 −0.312826
\(718\) 19548.4 1.01607
\(719\) 7837.87 0.406542 0.203271 0.979123i \(-0.434843\pi\)
0.203271 + 0.979123i \(0.434843\pi\)
\(720\) −13702.8 −0.709271
\(721\) 0 0
\(722\) 4298.36 0.221563
\(723\) −39712.9 −2.04279
\(724\) 7633.54 0.391848
\(725\) 1084.74 0.0555674
\(726\) 24718.1 1.26360
\(727\) −726.845 −0.0370800 −0.0185400 0.999828i \(-0.505902\pi\)
−0.0185400 + 0.999828i \(0.505902\pi\)
\(728\) 0 0
\(729\) 83977.2 4.26648
\(730\) −2425.34 −0.122967
\(731\) 5652.42 0.285995
\(732\) 18218.0 0.919886
\(733\) 378.674 0.0190814 0.00954069 0.999954i \(-0.496963\pi\)
0.00954069 + 0.999954i \(0.496963\pi\)
\(734\) −10490.8 −0.527553
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 2842.80 0.142084
\(738\) 26326.8 1.31315
\(739\) 18952.9 0.943428 0.471714 0.881752i \(-0.343636\pi\)
0.471714 + 0.881752i \(0.343636\pi\)
\(740\) 9811.67 0.487411
\(741\) −22946.1 −1.13758
\(742\) 0 0
\(743\) −19317.8 −0.953838 −0.476919 0.878947i \(-0.658246\pi\)
−0.476919 + 0.878947i \(0.658246\pi\)
\(744\) 7107.76 0.350246
\(745\) 28285.1 1.39099
\(746\) 24641.7 1.20938
\(747\) 28004.9 1.37168
\(748\) −5768.70 −0.281985
\(749\) 0 0
\(750\) −27646.8 −1.34602
\(751\) −25592.6 −1.24353 −0.621763 0.783206i \(-0.713583\pi\)
−0.621763 + 0.783206i \(0.713583\pi\)
\(752\) −6483.92 −0.314421
\(753\) −21442.9 −1.03774
\(754\) −14268.1 −0.689143
\(755\) −13279.3 −0.640111
\(756\) 0 0
\(757\) −36790.6 −1.76642 −0.883208 0.468981i \(-0.844621\pi\)
−0.883208 + 0.468981i \(0.844621\pi\)
\(758\) 2433.36 0.116601
\(759\) −2414.14 −0.115451
\(760\) −6260.60 −0.298810
\(761\) −2257.71 −0.107545 −0.0537726 0.998553i \(-0.517125\pi\)
−0.0537726 + 0.998553i \(0.517125\pi\)
\(762\) −12112.7 −0.575849
\(763\) 0 0
\(764\) 1410.50 0.0667933
\(765\) 118904. 5.61960
\(766\) −7978.26 −0.376327
\(767\) −9713.30 −0.457271
\(768\) 2586.80 0.121540
\(769\) −6903.74 −0.323739 −0.161869 0.986812i \(-0.551752\pi\)
−0.161869 + 0.986812i \(0.551752\pi\)
\(770\) 0 0
\(771\) −11556.5 −0.539816
\(772\) −5657.12 −0.263736
\(773\) 30096.1 1.40036 0.700182 0.713965i \(-0.253102\pi\)
0.700182 + 0.713965i \(0.253102\pi\)
\(774\) 6115.40 0.283997
\(775\) −442.380 −0.0205042
\(776\) 4407.55 0.203894
\(777\) 0 0
\(778\) −30155.4 −1.38962
\(779\) 12028.3 0.553218
\(780\) −15250.7 −0.700083
\(781\) −6687.91 −0.306418
\(782\) −6386.52 −0.292048
\(783\) 104800. 4.78321
\(784\) 0 0
\(785\) −17392.8 −0.790797
\(786\) −11320.0 −0.513703
\(787\) 6753.37 0.305885 0.152943 0.988235i \(-0.451125\pi\)
0.152943 + 0.988235i \(0.451125\pi\)
\(788\) −1730.12 −0.0782144
\(789\) −9574.54 −0.432018
\(790\) 1370.30 0.0617128
\(791\) 0 0
\(792\) −6241.20 −0.280014
\(793\) 14914.3 0.667871
\(794\) −25534.9 −1.14131
\(795\) 31916.6 1.42386
\(796\) 434.074 0.0193283
\(797\) −26666.0 −1.18514 −0.592570 0.805519i \(-0.701887\pi\)
−0.592570 + 0.805519i \(0.701887\pi\)
\(798\) 0 0
\(799\) 56263.2 2.49118
\(800\) −161.000 −0.00711525
\(801\) 40853.0 1.80208
\(802\) 17693.3 0.779019
\(803\) −1104.66 −0.0485463
\(804\) 11061.6 0.485215
\(805\) 0 0
\(806\) 5818.82 0.254292
\(807\) −32513.8 −1.41827
\(808\) 8676.60 0.377774
\(809\) −16430.2 −0.714035 −0.357018 0.934098i \(-0.616206\pi\)
−0.357018 + 0.934098i \(0.616206\pi\)
\(810\) 65770.7 2.85302
\(811\) 23394.6 1.01294 0.506470 0.862257i \(-0.330950\pi\)
0.506470 + 0.862257i \(0.330950\pi\)
\(812\) 0 0
\(813\) 73603.0 3.17512
\(814\) 4468.90 0.192426
\(815\) −22173.0 −0.952989
\(816\) −22446.5 −0.962974
\(817\) 2794.02 0.119646
\(818\) −7890.54 −0.337269
\(819\) 0 0
\(820\) 7994.37 0.340458
\(821\) 30615.7 1.30145 0.650727 0.759312i \(-0.274464\pi\)
0.650727 + 0.759312i \(0.274464\pi\)
\(822\) 42675.9 1.81082
\(823\) −959.744 −0.0406496 −0.0203248 0.999793i \(-0.506470\pi\)
−0.0203248 + 0.999793i \(0.506470\pi\)
\(824\) 10953.5 0.463087
\(825\) 528.092 0.0222858
\(826\) 0 0
\(827\) 37507.5 1.57710 0.788551 0.614970i \(-0.210832\pi\)
0.788551 + 0.614970i \(0.210832\pi\)
\(828\) −6909.63 −0.290008
\(829\) 27029.9 1.13243 0.566217 0.824256i \(-0.308406\pi\)
0.566217 + 0.824256i \(0.308406\pi\)
\(830\) 8503.95 0.355634
\(831\) 25505.0 1.06469
\(832\) 2117.70 0.0882428
\(833\) 0 0
\(834\) −19096.9 −0.792891
\(835\) −30019.6 −1.24416
\(836\) −2851.50 −0.117968
\(837\) −42739.6 −1.76499
\(838\) 27874.4 1.14905
\(839\) −38982.8 −1.60409 −0.802047 0.597261i \(-0.796256\pi\)
−0.802047 + 0.597261i \(0.796256\pi\)
\(840\) 0 0
\(841\) 22095.0 0.905942
\(842\) 4943.10 0.202316
\(843\) −63431.6 −2.59158
\(844\) −4329.48 −0.176572
\(845\) 12567.5 0.511641
\(846\) 60871.6 2.47377
\(847\) 0 0
\(848\) −4431.90 −0.179472
\(849\) 84.3151 0.00340835
\(850\) 1397.05 0.0563746
\(851\) 4947.52 0.199293
\(852\) −26023.3 −1.04641
\(853\) 16634.7 0.667715 0.333858 0.942624i \(-0.391650\pi\)
0.333858 + 0.942624i \(0.391650\pi\)
\(854\) 0 0
\(855\) 58775.0 2.35095
\(856\) 9550.57 0.381346
\(857\) 15234.4 0.607230 0.303615 0.952795i \(-0.401806\pi\)
0.303615 + 0.952795i \(0.401806\pi\)
\(858\) −6946.22 −0.276387
\(859\) −31925.2 −1.26807 −0.634036 0.773303i \(-0.718603\pi\)
−0.634036 + 0.773303i \(0.718603\pi\)
\(860\) 1857.00 0.0736316
\(861\) 0 0
\(862\) −14681.6 −0.580113
\(863\) −19518.9 −0.769910 −0.384955 0.922935i \(-0.625783\pi\)
−0.384955 + 0.922935i \(0.625783\pi\)
\(864\) −15554.6 −0.612477
\(865\) 13565.4 0.533224
\(866\) −17676.3 −0.693607
\(867\) 145132. 5.68506
\(868\) 0 0
\(869\) 624.127 0.0243637
\(870\) 49685.4 1.93620
\(871\) 9055.65 0.352284
\(872\) 7146.48 0.277535
\(873\) −41378.5 −1.60418
\(874\) −3156.89 −0.122178
\(875\) 0 0
\(876\) −4298.34 −0.165785
\(877\) 16853.3 0.648913 0.324456 0.945901i \(-0.394819\pi\)
0.324456 + 0.945901i \(0.394819\pi\)
\(878\) −20807.3 −0.799786
\(879\) −31073.4 −1.19235
\(880\) −1895.20 −0.0725991
\(881\) −10834.3 −0.414320 −0.207160 0.978307i \(-0.566422\pi\)
−0.207160 + 0.978307i \(0.566422\pi\)
\(882\) 0 0
\(883\) −23506.2 −0.895863 −0.447931 0.894068i \(-0.647839\pi\)
−0.447931 + 0.894068i \(0.647839\pi\)
\(884\) −18376.0 −0.699154
\(885\) 33824.3 1.28474
\(886\) 8830.54 0.334840
\(887\) −34287.2 −1.29792 −0.648958 0.760824i \(-0.724795\pi\)
−0.648958 + 0.760824i \(0.724795\pi\)
\(888\) 17388.9 0.657132
\(889\) 0 0
\(890\) 12405.4 0.467224
\(891\) 29956.4 1.12635
\(892\) 6477.75 0.243151
\(893\) 27811.2 1.04218
\(894\) 50128.7 1.87534
\(895\) 17663.1 0.659679
\(896\) 0 0
\(897\) −7690.16 −0.286251
\(898\) −7422.69 −0.275833
\(899\) −18957.1 −0.703287
\(900\) 1511.48 0.0559807
\(901\) 38457.1 1.42197
\(902\) 3641.18 0.134410
\(903\) 0 0
\(904\) −14737.3 −0.542207
\(905\) −21761.5 −0.799313
\(906\) −23534.5 −0.863003
\(907\) 47930.9 1.75471 0.877354 0.479844i \(-0.159307\pi\)
0.877354 + 0.479844i \(0.159307\pi\)
\(908\) −26984.4 −0.986244
\(909\) −81456.7 −2.97222
\(910\) 0 0
\(911\) 9787.98 0.355972 0.177986 0.984033i \(-0.443042\pi\)
0.177986 + 0.984033i \(0.443042\pi\)
\(912\) −11095.4 −0.402859
\(913\) 3873.27 0.140402
\(914\) −31423.7 −1.13720
\(915\) −51935.5 −1.87643
\(916\) −4770.54 −0.172077
\(917\) 0 0
\(918\) 134973. 4.85269
\(919\) 25226.6 0.905495 0.452748 0.891639i \(-0.350444\pi\)
0.452748 + 0.891639i \(0.350444\pi\)
\(920\) −2098.17 −0.0751900
\(921\) 10507.9 0.375946
\(922\) 6354.08 0.226964
\(923\) −21304.1 −0.759734
\(924\) 0 0
\(925\) −1082.27 −0.0384700
\(926\) 29549.6 1.04866
\(927\) −102833. −3.64344
\(928\) −6899.25 −0.244051
\(929\) −38214.5 −1.34960 −0.674800 0.738001i \(-0.735770\pi\)
−0.674800 + 0.738001i \(0.735770\pi\)
\(930\) −20262.7 −0.714451
\(931\) 0 0
\(932\) −11440.7 −0.402093
\(933\) −59790.6 −2.09803
\(934\) −4816.25 −0.168728
\(935\) 16445.3 0.575207
\(936\) −19881.2 −0.694269
\(937\) 19742.9 0.688338 0.344169 0.938908i \(-0.388161\pi\)
0.344169 + 0.938908i \(0.388161\pi\)
\(938\) 0 0
\(939\) −26087.0 −0.906621
\(940\) 18484.2 0.641372
\(941\) 39767.5 1.37767 0.688833 0.724920i \(-0.258123\pi\)
0.688833 + 0.724920i \(0.258123\pi\)
\(942\) −30824.7 −1.06616
\(943\) 4031.15 0.139207
\(944\) −4696.80 −0.161936
\(945\) 0 0
\(946\) 845.803 0.0290692
\(947\) 32884.3 1.12840 0.564200 0.825638i \(-0.309185\pi\)
0.564200 + 0.825638i \(0.309185\pi\)
\(948\) 2428.54 0.0832017
\(949\) −3518.87 −0.120366
\(950\) 690.569 0.0235842
\(951\) 72786.7 2.48188
\(952\) 0 0
\(953\) 4674.79 0.158899 0.0794497 0.996839i \(-0.474684\pi\)
0.0794497 + 0.996839i \(0.474684\pi\)
\(954\) 41607.1 1.41203
\(955\) −4021.02 −0.136248
\(956\) −2377.49 −0.0804327
\(957\) 22630.1 0.764395
\(958\) −25056.6 −0.845032
\(959\) 0 0
\(960\) −7374.40 −0.247925
\(961\) −22059.9 −0.740489
\(962\) 14235.5 0.477102
\(963\) −89661.6 −3.00032
\(964\) −15720.6 −0.525234
\(965\) 16127.2 0.537982
\(966\) 0 0
\(967\) −27165.3 −0.903390 −0.451695 0.892173i \(-0.649180\pi\)
−0.451695 + 0.892173i \(0.649180\pi\)
\(968\) 9784.80 0.324892
\(969\) 96279.0 3.19188
\(970\) −12565.0 −0.415914
\(971\) −14597.4 −0.482443 −0.241221 0.970470i \(-0.577548\pi\)
−0.241221 + 0.970470i \(0.577548\pi\)
\(972\) 64066.2 2.11412
\(973\) 0 0
\(974\) −33597.2 −1.10526
\(975\) 1682.22 0.0552555
\(976\) 7211.70 0.236517
\(977\) 33327.5 1.09134 0.545670 0.838000i \(-0.316275\pi\)
0.545670 + 0.838000i \(0.316275\pi\)
\(978\) −39296.5 −1.28483
\(979\) 5650.25 0.184456
\(980\) 0 0
\(981\) −67091.7 −2.18356
\(982\) 36015.4 1.17036
\(983\) 21834.8 0.708465 0.354232 0.935157i \(-0.384742\pi\)
0.354232 + 0.935157i \(0.384742\pi\)
\(984\) 14168.2 0.459009
\(985\) 4932.19 0.159546
\(986\) 59867.2 1.93363
\(987\) 0 0
\(988\) −9083.36 −0.292490
\(989\) 936.388 0.0301066
\(990\) 17792.3 0.571188
\(991\) 45191.9 1.44861 0.724303 0.689482i \(-0.242162\pi\)
0.724303 + 0.689482i \(0.242162\pi\)
\(992\) 2813.65 0.0900539
\(993\) −111228. −3.55459
\(994\) 0 0
\(995\) −1237.45 −0.0394269
\(996\) 15071.3 0.479469
\(997\) −18760.0 −0.595924 −0.297962 0.954578i \(-0.596307\pi\)
−0.297962 + 0.954578i \(0.596307\pi\)
\(998\) −1393.25 −0.0441911
\(999\) −104561. −3.31147
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2254.4.a.d.1.2 2
7.6 odd 2 46.4.a.c.1.1 2
21.20 even 2 414.4.a.j.1.1 2
28.27 even 2 368.4.a.g.1.2 2
35.13 even 4 1150.4.b.i.599.3 4
35.27 even 4 1150.4.b.i.599.2 4
35.34 odd 2 1150.4.a.k.1.2 2
56.13 odd 2 1472.4.a.m.1.2 2
56.27 even 2 1472.4.a.l.1.1 2
161.160 even 2 1058.4.a.f.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.a.c.1.1 2 7.6 odd 2
368.4.a.g.1.2 2 28.27 even 2
414.4.a.j.1.1 2 21.20 even 2
1058.4.a.f.1.1 2 161.160 even 2
1150.4.a.k.1.2 2 35.34 odd 2
1150.4.b.i.599.2 4 35.27 even 4
1150.4.b.i.599.3 4 35.13 even 4
1472.4.a.l.1.1 2 56.27 even 2
1472.4.a.m.1.2 2 56.13 odd 2
2254.4.a.d.1.2 2 1.1 even 1 trivial