Properties

Label 2268.1.s.a.1511.1
Level 22682268
Weight 11
Character 2268.1511
Analytic conductor 1.1321.132
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -84
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,1,Mod(755,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.755");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 2268=22347 2268 = 2^{2} \cdot 3^{4} \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2268.s (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.131879448651.13187944865
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 756)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.756.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

Embedding invariants

Embedding label 1511.1
Root 0.500000+0.866025i0.500000 + 0.866025i of defining polynomial
Character χ\chi == 2268.1511
Dual form 2268.1.s.a.755.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.500000+0.866025i)q4+(0.500000+0.866025i)q5+(0.500000+0.866025i)q7+1.00000q8+1.00000q10+(0.500000+0.866025i)q11+(0.5000000.866025i)q14+(0.5000000.866025i)q162.00000q17+1.00000q19+(0.5000000.866025i)q20+(0.5000000.866025i)q22+(0.5000000.866025i)q231.00000q28+(0.500000+0.866025i)q31+(0.500000+0.866025i)q32+(1.00000+1.73205i)q341.00000q351.00000q37+(0.5000000.866025i)q38+(0.500000+0.866025i)q40+(0.500000+0.866025i)q411.00000q441.00000q46+(0.500000+0.866025i)q491.00000q55+(0.500000+0.866025i)q56+1.00000q62+1.00000q64+(1.000001.73205i)q68+(0.500000+0.866025i)q701.00000q71+(0.500000+0.866025i)q74+(0.500000+0.866025i)q76+(0.500000+0.866025i)q77+1.00000q80+1.00000q82+(1.000001.73205i)q85+(0.500000+0.866025i)q88+1.00000q89+(0.500000+0.866025i)q92+(0.500000+0.866025i)q95+1.00000q98+O(q100)q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} +1.00000 q^{10} +(0.500000 + 0.866025i) q^{11} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} -2.00000 q^{17} +1.00000 q^{19} +(-0.500000 - 0.866025i) q^{20} +(0.500000 - 0.866025i) q^{22} +(0.500000 - 0.866025i) q^{23} -1.00000 q^{28} +(-0.500000 + 0.866025i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(1.00000 + 1.73205i) q^{34} -1.00000 q^{35} -1.00000 q^{37} +(-0.500000 - 0.866025i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(-0.500000 + 0.866025i) q^{41} -1.00000 q^{44} -1.00000 q^{46} +(-0.500000 + 0.866025i) q^{49} -1.00000 q^{55} +(0.500000 + 0.866025i) q^{56} +1.00000 q^{62} +1.00000 q^{64} +(1.00000 - 1.73205i) q^{68} +(0.500000 + 0.866025i) q^{70} -1.00000 q^{71} +(0.500000 + 0.866025i) q^{74} +(-0.500000 + 0.866025i) q^{76} +(-0.500000 + 0.866025i) q^{77} +1.00000 q^{80} +1.00000 q^{82} +(1.00000 - 1.73205i) q^{85} +(0.500000 + 0.866025i) q^{88} +1.00000 q^{89} +(0.500000 + 0.866025i) q^{92} +(-0.500000 + 0.866025i) q^{95} +1.00000 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2q4q5+q7+2q8+2q10+q11+q14q164q17+2q19q20+q22+q232q28q31q32+2q342q352q37++2q98+O(q100) 2 q - q^{2} - q^{4} - q^{5} + q^{7} + 2 q^{8} + 2 q^{10} + q^{11} + q^{14} - q^{16} - 4 q^{17} + 2 q^{19} - q^{20} + q^{22} + q^{23} - 2 q^{28} - q^{31} - q^{32} + 2 q^{34} - 2 q^{35} - 2 q^{37}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2268Z)×\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times.

nn 325325 11351135 15411541
χ(n)\chi(n) 1-1 1-1 e(56)e\left(\frac{5}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.500000 0.866025i −0.500000 0.866025i
33 0 0
44 −0.500000 + 0.866025i −0.500000 + 0.866025i
55 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
66 0 0
77 0.500000 + 0.866025i 0.500000 + 0.866025i
88 1.00000 1.00000
99 0 0
1010 1.00000 1.00000
1111 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 0 0
1313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1414 0.500000 0.866025i 0.500000 0.866025i
1515 0 0
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
1818 0 0
1919 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2020 −0.500000 0.866025i −0.500000 0.866025i
2121 0 0
2222 0.500000 0.866025i 0.500000 0.866025i
2323 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
2424 0 0
2525 0 0
2626 0 0
2727 0 0
2828 −1.00000 −1.00000
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 0 0
3131 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
3232 −0.500000 + 0.866025i −0.500000 + 0.866025i
3333 0 0
3434 1.00000 + 1.73205i 1.00000 + 1.73205i
3535 −1.00000 −1.00000
3636 0 0
3737 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3838 −0.500000 0.866025i −0.500000 0.866025i
3939 0 0
4040 −0.500000 + 0.866025i −0.500000 + 0.866025i
4141 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
4242 0 0
4343 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 −1.00000 −1.00000
4545 0 0
4646 −1.00000 −1.00000
4747 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4848 0 0
4949 −0.500000 + 0.866025i −0.500000 + 0.866025i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −1.00000 −1.00000
5656 0.500000 + 0.866025i 0.500000 + 0.866025i
5757 0 0
5858 0 0
5959 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 0 0
6161 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6262 1.00000 1.00000
6363 0 0
6464 1.00000 1.00000
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 1.00000 1.73205i 1.00000 1.73205i
6969 0 0
7070 0.500000 + 0.866025i 0.500000 + 0.866025i
7171 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0.500000 + 0.866025i 0.500000 + 0.866025i
7575 0 0
7676 −0.500000 + 0.866025i −0.500000 + 0.866025i
7777 −0.500000 + 0.866025i −0.500000 + 0.866025i
7878 0 0
7979 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8080 1.00000 1.00000
8181 0 0
8282 1.00000 1.00000
8383 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8484 0 0
8585 1.00000 1.73205i 1.00000 1.73205i
8686 0 0
8787 0 0
8888 0.500000 + 0.866025i 0.500000 + 0.866025i
8989 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 0 0
9191 0 0
9292 0.500000 + 0.866025i 0.500000 + 0.866025i
9393 0 0
9494 0 0
9595 −0.500000 + 0.866025i −0.500000 + 0.866025i
9696 0 0
9797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9898 1.00000 1.00000
9999 0 0
100100 0 0
101101 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
102102 0 0
103103 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 2.00000 2.00000 1.00000 00
1.00000 00
108108 0 0
109109 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0.500000 + 0.866025i 0.500000 + 0.866025i
111111 0 0
112112 0.500000 0.866025i 0.500000 0.866025i
113113 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 0 0
115115 0.500000 + 0.866025i 0.500000 + 0.866025i
116116 0 0
117117 0 0
118118 0 0
119119 −1.00000 1.73205i −1.00000 1.73205i
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 −0.500000 0.866025i −0.500000 0.866025i
125125 −1.00000 −1.00000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −0.500000 0.866025i −0.500000 0.866025i
129129 0 0
130130 0 0
131131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 0.500000 + 0.866025i 0.500000 + 0.866025i
134134 0 0
135135 0 0
136136 −2.00000 −2.00000
137137 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0 0
139139 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
140140 0.500000 0.866025i 0.500000 0.866025i
141141 0 0
142142 0.500000 + 0.866025i 0.500000 + 0.866025i
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0.500000 0.866025i 0.500000 0.866025i
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
152152 1.00000 1.00000
153153 0 0
154154 1.00000 1.00000
155155 −0.500000 0.866025i −0.500000 0.866025i
156156 0 0
157157 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
158158 0 0
159159 0 0
160160 −0.500000 0.866025i −0.500000 0.866025i
161161 1.00000 1.00000
162162 0 0
163163 0 0 1.00000 00
−1.00000 π\pi
164164 −0.500000 0.866025i −0.500000 0.866025i
165165 0 0
166166 0 0
167167 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
168168 0 0
169169 −0.500000 0.866025i −0.500000 0.866025i
170170 −2.00000 −2.00000
171171 0 0
172172 0 0
173173 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
174174 0 0
175175 0 0
176176 0.500000 0.866025i 0.500000 0.866025i
177177 0 0
178178 −0.500000 0.866025i −0.500000 0.866025i
179179 2.00000 2.00000 1.00000 00
1.00000 00
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0.500000 0.866025i 0.500000 0.866025i
185185 0.500000 0.866025i 0.500000 0.866025i
186186 0 0
187187 −1.00000 1.73205i −1.00000 1.73205i
188188 0 0
189189 0 0
190190 1.00000 1.00000
191191 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0 0
193193 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0 0
195195 0 0
196196 −0.500000 0.866025i −0.500000 0.866025i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 0 0
202202 1.00000 1.73205i 1.00000 1.73205i
203203 0 0
204204 0 0
205205 −0.500000 0.866025i −0.500000 0.866025i
206206 1.00000 1.00000
207207 0 0
208208 0 0
209209 0.500000 + 0.866025i 0.500000 + 0.866025i
210210 0 0
211211 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0 0
213213 0 0
214214 −1.00000 1.73205i −1.00000 1.73205i
215215 0 0
216216 0 0
217217 −1.00000 −1.00000
218218 0.500000 + 0.866025i 0.500000 + 0.866025i
219219 0 0
220220 0.500000 0.866025i 0.500000 0.866025i
221221 0 0
222222 0 0
223223 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
224224 −1.00000 −1.00000
225225 0 0
226226 0 0
227227 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
228228 0 0
229229 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 0.500000 0.866025i 0.500000 0.866025i
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 −1.00000 + 1.73205i −1.00000 + 1.73205i
239239 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 0 0
241241 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
242242 0 0
243243 0 0
244244 0 0
245245 −0.500000 0.866025i −0.500000 0.866025i
246246 0 0
247247 0 0
248248 −0.500000 + 0.866025i −0.500000 + 0.866025i
249249 0 0
250250 0.500000 + 0.866025i 0.500000 + 0.866025i
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 1.00000 1.00000
254254 0 0
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
258258 0 0
259259 −0.500000 0.866025i −0.500000 0.866025i
260260 0 0
261261 0 0
262262 0 0
263263 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0.500000 0.866025i 0.500000 0.866025i
267267 0 0
268268 0 0
269269 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
270270 0 0
271271 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
272272 1.00000 + 1.73205i 1.00000 + 1.73205i
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 −2.00000 −2.00000
279279 0 0
280280 −1.00000 −1.00000
281281 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
282282 0 0
283283 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
284284 0.500000 0.866025i 0.500000 0.866025i
285285 0 0
286286 0 0
287287 −1.00000 −1.00000
288288 0 0
289289 3.00000 3.00000
290290 0 0
291291 0 0
292292 0 0
293293 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
294294 0 0
295295 0 0
296296 −1.00000 −1.00000
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 −0.500000 0.866025i −0.500000 0.866025i
305305 0 0
306306 0 0
307307 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 −0.500000 0.866025i −0.500000 0.866025i
309309 0 0
310310 −0.500000 + 0.866025i −0.500000 + 0.866025i
311311 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
312312 0 0
313313 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
318318 0 0
319319 0 0
320320 −0.500000 + 0.866025i −0.500000 + 0.866025i
321321 0 0
322322 −0.500000 0.866025i −0.500000 0.866025i
323323 −2.00000 −2.00000
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 −0.500000 + 0.866025i −0.500000 + 0.866025i
329329 0 0
330330 0 0
331331 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
338338 −0.500000 + 0.866025i −0.500000 + 0.866025i
339339 0 0
340340 1.00000 + 1.73205i 1.00000 + 1.73205i
341341 −1.00000 −1.00000
342342 0 0
343343 −1.00000 −1.00000
344344 0 0
345345 0 0
346346 −0.500000 + 0.866025i −0.500000 + 0.866025i
347347 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
348348 0 0
349349 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
350350 0 0
351351 0 0
352352 −1.00000 −1.00000
353353 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
354354 0 0
355355 0.500000 0.866025i 0.500000 0.866025i
356356 −0.500000 + 0.866025i −0.500000 + 0.866025i
357357 0 0
358358 −1.00000 1.73205i −1.00000 1.73205i
359359 2.00000 2.00000 1.00000 00
1.00000 00
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
368368 −1.00000 −1.00000
369369 0 0
370370 −1.00000 −1.00000
371371 0 0
372372 0 0
373373 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
374374 −1.00000 + 1.73205i −1.00000 + 1.73205i
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 −0.500000 0.866025i −0.500000 0.866025i
381381 0 0
382382 0.500000 0.866025i 0.500000 0.866025i
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0 0
385385 −0.500000 0.866025i −0.500000 0.866025i
386386 2.00000 2.00000
387387 0 0
388388 0 0
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 −1.00000 + 1.73205i −1.00000 + 1.73205i
392392 −0.500000 + 0.866025i −0.500000 + 0.866025i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 −0.500000 0.866025i −0.500000 0.866025i
399399 0 0
400400 0 0
401401 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
402402 0 0
403403 0 0
404404 −2.00000 −2.00000
405405 0 0
406406 0 0
407407 −0.500000 0.866025i −0.500000 0.866025i
408408 0 0
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 −0.500000 + 0.866025i −0.500000 + 0.866025i
411411 0 0
412412 −0.500000 0.866025i −0.500000 0.866025i
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0.500000 0.866025i 0.500000 0.866025i
419419 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
420420 0 0
421421 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 −1.00000 + 1.73205i −1.00000 + 1.73205i
429429 0 0
430430 0 0
431431 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0.500000 + 0.866025i 0.500000 + 0.866025i
435435 0 0
436436 0.500000 0.866025i 0.500000 0.866025i
437437 0.500000 0.866025i 0.500000 0.866025i
438438 0 0
439439 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
440440 −1.00000 −1.00000
441441 0 0
442442 0 0
443443 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 −0.500000 + 0.866025i −0.500000 + 0.866025i
446446 −0.500000 + 0.866025i −0.500000 + 0.866025i
447447 0 0
448448 0.500000 + 0.866025i 0.500000 + 0.866025i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 −1.00000 −1.00000
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 0 0
459459 0 0
460460 −1.00000 −1.00000
461461 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
462462 0 0
463463 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 2.00000 2.00000
477477 0 0
478478 2.00000 2.00000
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 −0.500000 + 0.866025i −0.500000 + 0.866025i
491491 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 1.00000 1.00000
497497 −0.500000 0.866025i −0.500000 0.866025i
498498 0 0
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0.500000 0.866025i 0.500000 0.866025i
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 −2.00000 −2.00000
506506 −0.500000 0.866025i −0.500000 0.866025i
507507 0 0
508508 0 0
509509 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
510510 0 0
511511 0 0
512512 1.00000 1.00000
513513 0 0
514514 1.00000 1.00000
515515 −0.500000 0.866025i −0.500000 0.866025i
516516 0 0
517517 0 0
518518 −0.500000 + 0.866025i −0.500000 + 0.866025i
519519 0 0
520520 0 0
521521 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
522522 0 0
523523 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
524524 0 0
525525 0 0
526526 0.500000 0.866025i 0.500000 0.866025i
527527 1.00000 1.73205i 1.00000 1.73205i
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 −1.00000 −1.00000
533533 0 0
534534 0 0
535535 −1.00000 + 1.73205i −1.00000 + 1.73205i
536536 0 0
537537 0 0
538538 −0.500000 0.866025i −0.500000 0.866025i
539539 −1.00000 −1.00000
540540 0 0
541541 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
542542 1.00000 + 1.73205i 1.00000 + 1.73205i
543543 0 0
544544 1.00000 1.73205i 1.00000 1.73205i
545545 0.500000 0.866025i 0.500000 0.866025i
546546 0 0
547547 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0.500000 0.866025i 0.500000 0.866025i
555555 0 0
556556 1.00000 + 1.73205i 1.00000 + 1.73205i
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0.500000 + 0.866025i 0.500000 + 0.866025i
561561 0 0
562562 0 0
563563 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 0 0
566566 −2.00000 −2.00000
567567 0 0
568568 −1.00000 −1.00000
569569 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
570570 0 0
571571 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0.500000 + 0.866025i 0.500000 + 0.866025i
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −1.50000 2.59808i −1.50000 2.59808i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −2.00000 −2.00000
587587 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
588588 0 0
589589 −0.500000 + 0.866025i −0.500000 + 0.866025i
590590 0 0
591591 0 0
592592 0.500000 + 0.866025i 0.500000 + 0.866025i
593593 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 0 0
595595 2.00000 2.00000
596596 0 0
597597 0 0
598598 0 0
599599 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
600600 0 0
601601 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
608608 −0.500000 + 0.866025i −0.500000 + 0.866025i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
614614 −0.500000 0.866025i −0.500000 0.866025i
615615 0 0
616616 −0.500000 + 0.866025i −0.500000 + 0.866025i
617617 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
618618 0 0
619619 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
620620 1.00000 1.00000
621621 0 0
622622 0 0
623623 0.500000 + 0.866025i 0.500000 + 0.866025i
624624 0 0
625625 0.500000 0.866025i 0.500000 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 2.00000 2.00000
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 1.00000 1.00000
641641 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
642642 0 0
643643 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
644644 −0.500000 + 0.866025i −0.500000 + 0.866025i
645645 0 0
646646 1.00000 + 1.73205i 1.00000 + 1.73205i
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 0 0
655655 0 0
656656 1.00000 1.00000
657657 0 0
658658 0 0
659659 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 0 0
665665 −1.00000 −1.00000
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
674674 −1.00000 −1.00000
675675 0 0
676676 1.00000 1.00000
677677 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
678678 0 0
679679 0 0
680680 1.00000 1.73205i 1.00000 1.73205i
681681 0 0
682682 0.500000 + 0.866025i 0.500000 + 0.866025i
683683 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 0 0
686686 0.500000 + 0.866025i 0.500000 + 0.866025i
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
692692 1.00000 1.00000
693693 0 0
694694 −1.00000 −1.00000
695695 1.00000 + 1.73205i 1.00000 + 1.73205i
696696 0 0
697697 1.00000 1.73205i 1.00000 1.73205i
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 −1.00000 −1.00000
704704 0.500000 + 0.866025i 0.500000 + 0.866025i
705705 0 0
706706 −0.500000 + 0.866025i −0.500000 + 0.866025i
707707 −1.00000 + 1.73205i −1.00000 + 1.73205i
708708 0 0
709709 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 −1.00000 −1.00000
711711 0 0
712712 1.00000 1.00000
713713 0.500000 + 0.866025i 0.500000 + 0.866025i
714714 0 0
715715 0 0
716716 −1.00000 + 1.73205i −1.00000 + 1.73205i
717717 0 0
718718 −1.00000 1.73205i −1.00000 1.73205i
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 −1.00000 −1.00000
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 −0.500000 + 0.866025i −0.500000 + 0.866025i
735735 0 0
736736 0.500000 + 0.866025i 0.500000 + 0.866025i
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0.500000 + 0.866025i 0.500000 + 0.866025i
741741 0 0
742742 0 0
743743 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
744744 0 0
745745 0 0
746746 −1.00000 −1.00000
747747 0 0
748748 2.00000 2.00000
749749 1.00000 + 1.73205i 1.00000 + 1.73205i
750750 0 0
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 2.00000 2.00000 1.00000 00
1.00000 00
758758 0 0
759759 0 0
760760 −0.500000 + 0.866025i −0.500000 + 0.866025i
761761 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
762762 0 0
763763 −0.500000 0.866025i −0.500000 0.866025i
764764 −1.00000 −1.00000
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 −0.500000 + 0.866025i −0.500000 + 0.866025i
771771 0 0
772772 −1.00000 1.73205i −1.00000 1.73205i
773773 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 −0.500000 + 0.866025i −0.500000 + 0.866025i
780780 0 0
781781 −0.500000 0.866025i −0.500000 0.866025i
782782 2.00000 2.00000
783783 0 0
784784 1.00000 1.00000
785785 0 0
786786 0 0
787787 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −0.500000 + 0.866025i −0.500000 + 0.866025i
797797 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 −0.500000 + 0.866025i −0.500000 + 0.866025i
806806 0 0
807807 0 0
808808 1.00000 + 1.73205i 1.00000 + 1.73205i
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
812812 0 0
813813 0 0
814814 −0.500000 + 0.866025i −0.500000 + 0.866025i
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 1.00000 1.00000
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 −0.500000 + 0.866025i −0.500000 + 0.866025i
825825 0 0
826826 0 0
827827 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 1.00000 1.73205i 1.00000 1.73205i
834834 0 0
835835 0 0
836836 −1.00000 −1.00000
837837 0 0
838838 0 0
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0.500000 0.866025i 0.500000 0.866025i
843843 0 0
844844 0 0
845845 1.00000 1.00000
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 −0.500000 + 0.866025i −0.500000 + 0.866025i
852852 0 0
853853 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
854854 0 0
855855 0 0
856856 2.00000 2.00000
857857 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
858858 0 0
859859 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0.500000 + 0.866025i 0.500000 + 0.866025i
863863 2.00000 2.00000 1.00000 00
1.00000 00
864864 0 0
865865 1.00000 1.00000
866866 0 0
867867 0 0
868868 0.500000 0.866025i 0.500000 0.866025i
869869 0 0
870870 0 0
871871 0 0
872872 −1.00000 −1.00000
873873 0 0
874874 −1.00000 −1.00000
875875 −0.500000 0.866025i −0.500000 0.866025i
876876 0 0
877877 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 1.00000 1.73205i 1.00000 1.73205i
879879 0 0
880880 0.500000 + 0.866025i 0.500000 + 0.866025i
881881 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0.500000 0.866025i 0.500000 0.866025i
887887 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
888888 0 0
889889 0 0
890890 1.00000 1.00000
891891 0 0
892892 1.00000 1.00000
893893 0 0
894894 0 0
895895 −1.00000 + 1.73205i −1.00000 + 1.73205i
896896 0.500000 0.866025i 0.500000 0.866025i
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0.500000 + 0.866025i 0.500000 + 0.866025i
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0 0
909909 0 0
910910 0 0
911911 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
912912 0 0
913913 0 0
914914 0.500000 0.866025i 0.500000 0.866025i
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0.500000 + 0.866025i 0.500000 + 0.866025i
921921 0 0
922922 −0.500000 + 0.866025i −0.500000 + 0.866025i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
930930 0 0
931931 −0.500000 + 0.866025i −0.500000 + 0.866025i
932932 0 0
933933 0 0
934934 0 0
935935 2.00000 2.00000
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
942942 0 0
943943 0.500000 + 0.866025i 0.500000 + 0.866025i
944944 0 0
945945 0 0
946946 0 0
947947 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 −1.00000 1.73205i −1.00000 1.73205i
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 −1.00000 −1.00000
956956 −1.00000 1.73205i −1.00000 1.73205i
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 −1.00000 1.73205i −1.00000 1.73205i
966966 0 0
967967 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 2.00000 2.00000
974974 0 0
975975 0 0
976976 0 0
977977 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0.500000 + 0.866025i 0.500000 + 0.866025i
980980 1.00000 1.00000
981981 0 0
982982 −1.00000 −1.00000
983983 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 −0.500000 0.866025i −0.500000 0.866025i
993993 0 0
994994 −0.500000 + 0.866025i −0.500000 + 0.866025i
995995 −0.500000 + 0.866025i −0.500000 + 0.866025i
996996 0 0
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.1.s.a.1511.1 2
3.2 odd 2 2268.1.s.d.1511.1 2
4.3 odd 2 2268.1.s.c.1511.1 2
7.6 odd 2 2268.1.s.b.1511.1 2
9.2 odd 6 2268.1.s.d.755.1 2
9.4 even 3 756.1.h.d.755.1 yes 1
9.5 odd 6 756.1.h.a.755.1 1
9.7 even 3 inner 2268.1.s.a.755.1 2
12.11 even 2 2268.1.s.b.1511.1 2
21.20 even 2 2268.1.s.c.1511.1 2
28.27 even 2 2268.1.s.d.1511.1 2
36.7 odd 6 2268.1.s.c.755.1 2
36.11 even 6 2268.1.s.b.755.1 2
36.23 even 6 756.1.h.c.755.1 yes 1
36.31 odd 6 756.1.h.b.755.1 yes 1
63.13 odd 6 756.1.h.c.755.1 yes 1
63.20 even 6 2268.1.s.c.755.1 2
63.34 odd 6 2268.1.s.b.755.1 2
63.41 even 6 756.1.h.b.755.1 yes 1
84.83 odd 2 CM 2268.1.s.a.1511.1 2
252.83 odd 6 inner 2268.1.s.a.755.1 2
252.139 even 6 756.1.h.a.755.1 1
252.167 odd 6 756.1.h.d.755.1 yes 1
252.223 even 6 2268.1.s.d.755.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.1.h.a.755.1 1 9.5 odd 6
756.1.h.a.755.1 1 252.139 even 6
756.1.h.b.755.1 yes 1 36.31 odd 6
756.1.h.b.755.1 yes 1 63.41 even 6
756.1.h.c.755.1 yes 1 36.23 even 6
756.1.h.c.755.1 yes 1 63.13 odd 6
756.1.h.d.755.1 yes 1 9.4 even 3
756.1.h.d.755.1 yes 1 252.167 odd 6
2268.1.s.a.755.1 2 9.7 even 3 inner
2268.1.s.a.755.1 2 252.83 odd 6 inner
2268.1.s.a.1511.1 2 1.1 even 1 trivial
2268.1.s.a.1511.1 2 84.83 odd 2 CM
2268.1.s.b.755.1 2 36.11 even 6
2268.1.s.b.755.1 2 63.34 odd 6
2268.1.s.b.1511.1 2 7.6 odd 2
2268.1.s.b.1511.1 2 12.11 even 2
2268.1.s.c.755.1 2 36.7 odd 6
2268.1.s.c.755.1 2 63.20 even 6
2268.1.s.c.1511.1 2 4.3 odd 2
2268.1.s.c.1511.1 2 21.20 even 2
2268.1.s.d.755.1 2 9.2 odd 6
2268.1.s.d.755.1 2 252.223 even 6
2268.1.s.d.1511.1 2 3.2 odd 2
2268.1.s.d.1511.1 2 28.27 even 2