Properties

Label 756.1.h.c.755.1
Level $756$
Weight $1$
Character 756.755
Self dual yes
Analytic conductor $0.377$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -84
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [756,1,Mod(755,756)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(756, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("756.755");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 756.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.377293149551\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.756.1
Artin image: $S_3$
Artin field: Galois closure of 3.1.756.1
Stark unit: Root of $x^{3} - 1221x^{2} - 51x - 1$

Embedding invariants

Embedding label 755.1
Character \(\chi\) \(=\) 756.755

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{5} +1.00000 q^{7} +1.00000 q^{8} -1.00000 q^{10} -1.00000 q^{11} +1.00000 q^{14} +1.00000 q^{16} +2.00000 q^{17} -1.00000 q^{19} -1.00000 q^{20} -1.00000 q^{22} -1.00000 q^{23} +1.00000 q^{28} -1.00000 q^{31} +1.00000 q^{32} +2.00000 q^{34} -1.00000 q^{35} -1.00000 q^{37} -1.00000 q^{38} -1.00000 q^{40} -1.00000 q^{41} -1.00000 q^{44} -1.00000 q^{46} +1.00000 q^{49} +1.00000 q^{55} +1.00000 q^{56} -1.00000 q^{62} +1.00000 q^{64} +2.00000 q^{68} -1.00000 q^{70} -1.00000 q^{71} -1.00000 q^{74} -1.00000 q^{76} -1.00000 q^{77} -1.00000 q^{80} -1.00000 q^{82} -2.00000 q^{85} -1.00000 q^{88} -1.00000 q^{89} -1.00000 q^{92} +1.00000 q^{95} +1.00000 q^{98} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000
\(3\) 0 0
\(4\) 1.00000 1.00000
\(5\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) 0 0
\(7\) 1.00000 1.00000
\(8\) 1.00000 1.00000
\(9\) 0 0
\(10\) −1.00000 −1.00000
\(11\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 1.00000 1.00000
\(15\) 0 0
\(16\) 1.00000 1.00000
\(17\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(18\) 0 0
\(19\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −1.00000 −1.00000
\(21\) 0 0
\(22\) −1.00000 −1.00000
\(23\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 1.00000 1.00000
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 1.00000 1.00000
\(33\) 0 0
\(34\) 2.00000 2.00000
\(35\) −1.00000 −1.00000
\(36\) 0 0
\(37\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −1.00000 −1.00000
\(39\) 0 0
\(40\) −1.00000 −1.00000
\(41\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −1.00000 −1.00000
\(45\) 0 0
\(46\) −1.00000 −1.00000
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 1.00000 1.00000
\(56\) 1.00000 1.00000
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −1.00000 −1.00000
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 2.00000 2.00000
\(69\) 0 0
\(70\) −1.00000 −1.00000
\(71\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −1.00000 −1.00000
\(75\) 0 0
\(76\) −1.00000 −1.00000
\(77\) −1.00000 −1.00000
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0 0
\(82\) −1.00000 −1.00000
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) −2.00000 −2.00000
\(86\) 0 0
\(87\) 0 0
\(88\) −1.00000 −1.00000
\(89\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.00000 −1.00000
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 1.00000
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.00000 1.00000
\(99\) 0 0
\(100\) 0 0
\(101\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(102\) 0 0
\(103\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(108\) 0 0
\(109\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 1.00000 1.00000
\(111\) 0 0
\(112\) 1.00000 1.00000
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 1.00000 1.00000
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.00000 2.00000
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) −1.00000 −1.00000
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −1.00000 −1.00000
\(134\) 0 0
\(135\) 0 0
\(136\) 2.00000 2.00000
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(140\) −1.00000 −1.00000
\(141\) 0 0
\(142\) −1.00000 −1.00000
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.00000 −1.00000
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −1.00000 −1.00000
\(153\) 0 0
\(154\) −1.00000 −1.00000
\(155\) 1.00000 1.00000
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.00000 −1.00000
\(161\) −1.00000 −1.00000
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) −1.00000 −1.00000
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 1.00000 1.00000
\(170\) −2.00000 −2.00000
\(171\) 0 0
\(172\) 0 0
\(173\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −1.00000
\(177\) 0 0
\(178\) −1.00000 −1.00000
\(179\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.00000 −1.00000
\(185\) 1.00000 1.00000
\(186\) 0 0
\(187\) −2.00000 −2.00000
\(188\) 0 0
\(189\) 0 0
\(190\) 1.00000 1.00000
\(191\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.00000 2.00000
\(203\) 0 0
\(204\) 0 0
\(205\) 1.00000 1.00000
\(206\) −1.00000 −1.00000
\(207\) 0 0
\(208\) 0 0
\(209\) 1.00000 1.00000
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 2.00000 2.00000
\(215\) 0 0
\(216\) 0 0
\(217\) −1.00000 −1.00000
\(218\) −1.00000 −1.00000
\(219\) 0 0
\(220\) 1.00000 1.00000
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 1.00000 1.00000
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 1.00000 1.00000
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 2.00000 2.00000
\(239\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.00000 −1.00000
\(246\) 0 0
\(247\) 0 0
\(248\) −1.00000 −1.00000
\(249\) 0 0
\(250\) 1.00000 1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 1.00000 1.00000
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) −1.00000 −1.00000
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.00000 −1.00000
\(267\) 0 0
\(268\) 0 0
\(269\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(270\) 0 0
\(271\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(272\) 2.00000 2.00000
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 2.00000 2.00000
\(279\) 0 0
\(280\) −1.00000 −1.00000
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(284\) −1.00000 −1.00000
\(285\) 0 0
\(286\) 0 0
\(287\) −1.00000 −1.00000
\(288\) 0 0
\(289\) 3.00000 3.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.00000 −1.00000
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.00000 −1.00000
\(305\) 0 0
\(306\) 0 0
\(307\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) −1.00000 −1.00000
\(309\) 0 0
\(310\) 1.00000 1.00000
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.00000 −1.00000
\(321\) 0 0
\(322\) −1.00000 −1.00000
\(323\) −2.00000 −2.00000
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −1.00000 −1.00000
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 1.00000 1.00000
\(339\) 0 0
\(340\) −2.00000 −2.00000
\(341\) 1.00000 1.00000
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) −1.00000 −1.00000
\(347\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −1.00000
\(353\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 1.00000 1.00000
\(356\) −1.00000 −1.00000
\(357\) 0 0
\(358\) 2.00000 2.00000
\(359\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −1.00000 −1.00000
\(369\) 0 0
\(370\) 1.00000 1.00000
\(371\) 0 0
\(372\) 0 0
\(373\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) −2.00000 −2.00000
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 1.00000 1.00000
\(381\) 0 0
\(382\) −1.00000 −1.00000
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 1.00000 1.00000
\(386\) 2.00000 2.00000
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −2.00000 −2.00000
\(392\) 1.00000 1.00000
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) −1.00000 −1.00000
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 2.00000 2.00000
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00000 1.00000
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 1.00000 1.00000
\(411\) 0 0
\(412\) −1.00000 −1.00000
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 1.00000 1.00000
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.00000 2.00000
\(429\) 0 0
\(430\) 0 0
\(431\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) −1.00000 −1.00000
\(435\) 0 0
\(436\) −1.00000 −1.00000
\(437\) 1.00000 1.00000
\(438\) 0 0
\(439\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(440\) 1.00000 1.00000
\(441\) 0 0
\(442\) 0 0
\(443\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 1.00000 1.00000
\(446\) −1.00000 −1.00000
\(447\) 0 0
\(448\) 1.00000 1.00000
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 1.00000 1.00000
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 1.00000 1.00000
\(461\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 2.00000
\(477\) 0 0
\(478\) 2.00000 2.00000
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.00000 −1.00000
\(491\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 −1.00000
\(497\) −1.00000 −1.00000
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 1.00000 1.00000
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) −2.00000 −2.00000
\(506\) 1.00000 1.00000
\(507\) 0 0
\(508\) 0 0
\(509\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) −1.00000 −1.00000
\(515\) 1.00000 1.00000
\(516\) 0 0
\(517\) 0 0
\(518\) −1.00000 −1.00000
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −1.00000 −1.00000
\(527\) −2.00000 −2.00000
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 0 0
\(532\) −1.00000 −1.00000
\(533\) 0 0
\(534\) 0 0
\(535\) −2.00000 −2.00000
\(536\) 0 0
\(537\) 0 0
\(538\) −1.00000 −1.00000
\(539\) −1.00000 −1.00000
\(540\) 0 0
\(541\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 2.00000 2.00000
\(543\) 0 0
\(544\) 2.00000 2.00000
\(545\) 1.00000 1.00000
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.00000 −1.00000
\(555\) 0 0
\(556\) 2.00000 2.00000
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.00000 −1.00000
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2.00000 2.00000
\(567\) 0 0
\(568\) −1.00000 −1.00000
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.00000 −1.00000
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 3.00000 3.00000
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 2.00000 2.00000
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 1.00000 1.00000
\(590\) 0 0
\(591\) 0 0
\(592\) −1.00000 −1.00000
\(593\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 0 0
\(595\) −2.00000 −2.00000
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(608\) −1.00000 −1.00000
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) −1.00000 −1.00000
\(615\) 0 0
\(616\) −1.00000 −1.00000
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 1.00000 1.00000
\(621\) 0 0
\(622\) 0 0
\(623\) −1.00000 −1.00000
\(624\) 0 0
\(625\) −1.00000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.00000 −2.00000
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −1.00000 −1.00000
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(644\) −1.00000 −1.00000
\(645\) 0 0
\(646\) −2.00000 −2.00000
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.00000 −1.00000
\(657\) 0 0
\(658\) 0 0
\(659\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.00000 1.00000
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(674\) −1.00000 −1.00000
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.00000 −2.00000
\(681\) 0 0
\(682\) 1.00000 1.00000
\(683\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000 1.00000
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) −1.00000 −1.00000
\(693\) 0 0
\(694\) −1.00000 −1.00000
\(695\) −2.00000 −2.00000
\(696\) 0 0
\(697\) −2.00000 −2.00000
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 1.00000 1.00000
\(704\) −1.00000 −1.00000
\(705\) 0 0
\(706\) −1.00000 −1.00000
\(707\) 2.00000 2.00000
\(708\) 0 0
\(709\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 1.00000 1.00000
\(711\) 0 0
\(712\) −1.00000 −1.00000
\(713\) 1.00000 1.00000
\(714\) 0 0
\(715\) 0 0
\(716\) 2.00000 2.00000
\(717\) 0 0
\(718\) 2.00000 2.00000
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −1.00000 −1.00000
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) −1.00000 −1.00000
\(735\) 0 0
\(736\) −1.00000 −1.00000
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 1.00000 1.00000
\(741\) 0 0
\(742\) 0 0
\(743\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.00000 −1.00000
\(747\) 0 0
\(748\) −2.00000 −2.00000
\(749\) 2.00000 2.00000
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(758\) 0 0
\(759\) 0 0
\(760\) 1.00000 1.00000
\(761\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(762\) 0 0
\(763\) −1.00000 −1.00000
\(764\) −1.00000 −1.00000
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 1.00000 1.00000
\(771\) 0 0
\(772\) 2.00000 2.00000
\(773\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.00000 1.00000
\(780\) 0 0
\(781\) 1.00000 1.00000
\(782\) −2.00000 −2.00000
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.00000 −1.00000
\(797\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1.00000 1.00000
\(806\) 0 0
\(807\) 0 0
\(808\) 2.00000 2.00000
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.00000 1.00000
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 1.00000 1.00000
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) −1.00000 −1.00000
\(825\) 0 0
\(826\) 0 0
\(827\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.00000 2.00000
\(834\) 0 0
\(835\) 0 0
\(836\) 1.00000 1.00000
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) −1.00000 −1.00000
\(843\) 0 0
\(844\) 0 0
\(845\) −1.00000 −1.00000
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.00000 1.00000
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 2.00000 2.00000
\(857\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1.00000 −1.00000
\(863\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(864\) 0 0
\(865\) 1.00000 1.00000
\(866\) 0 0
\(867\) 0 0
\(868\) −1.00000 −1.00000
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −1.00000 −1.00000
\(873\) 0 0
\(874\) 1.00000 1.00000
\(875\) 1.00000 1.00000
\(876\) 0 0
\(877\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(878\) 2.00000 2.00000
\(879\) 0 0
\(880\) 1.00000 1.00000
\(881\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.00000 −1.00000
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.00000 1.00000
\(891\) 0 0
\(892\) −1.00000 −1.00000
\(893\) 0 0
\(894\) 0 0
\(895\) −2.00000 −2.00000
\(896\) 1.00000 1.00000
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 1.00000 1.00000
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.00000 −1.00000
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 1.00000 1.00000
\(921\) 0 0
\(922\) −1.00000 −1.00000
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(930\) 0 0
\(931\) −1.00000 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.00000 2.00000
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) 1.00000 1.00000
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 2.00000 2.00000
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 1.00000 1.00000
\(956\) 2.00000 2.00000
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.00000 −2.00000
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 2.00000 2.00000
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 1.00000 1.00000
\(980\) −1.00000 −1.00000
\(981\) 0 0
\(982\) −1.00000 −1.00000
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −1.00000 −1.00000
\(993\) 0 0
\(994\) −1.00000 −1.00000
\(995\) 1.00000 1.00000
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.1.h.c.755.1 yes 1
3.2 odd 2 756.1.h.b.755.1 yes 1
4.3 odd 2 756.1.h.a.755.1 1
7.6 odd 2 756.1.h.d.755.1 yes 1
9.2 odd 6 2268.1.s.c.1511.1 2
9.4 even 3 2268.1.s.b.755.1 2
9.5 odd 6 2268.1.s.c.755.1 2
9.7 even 3 2268.1.s.b.1511.1 2
12.11 even 2 756.1.h.d.755.1 yes 1
21.20 even 2 756.1.h.a.755.1 1
28.27 even 2 756.1.h.b.755.1 yes 1
36.7 odd 6 2268.1.s.d.1511.1 2
36.11 even 6 2268.1.s.a.1511.1 2
36.23 even 6 2268.1.s.a.755.1 2
36.31 odd 6 2268.1.s.d.755.1 2
63.13 odd 6 2268.1.s.a.755.1 2
63.20 even 6 2268.1.s.d.1511.1 2
63.34 odd 6 2268.1.s.a.1511.1 2
63.41 even 6 2268.1.s.d.755.1 2
84.83 odd 2 CM 756.1.h.c.755.1 yes 1
252.83 odd 6 2268.1.s.b.1511.1 2
252.139 even 6 2268.1.s.c.755.1 2
252.167 odd 6 2268.1.s.b.755.1 2
252.223 even 6 2268.1.s.c.1511.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.1.h.a.755.1 1 4.3 odd 2
756.1.h.a.755.1 1 21.20 even 2
756.1.h.b.755.1 yes 1 3.2 odd 2
756.1.h.b.755.1 yes 1 28.27 even 2
756.1.h.c.755.1 yes 1 1.1 even 1 trivial
756.1.h.c.755.1 yes 1 84.83 odd 2 CM
756.1.h.d.755.1 yes 1 7.6 odd 2
756.1.h.d.755.1 yes 1 12.11 even 2
2268.1.s.a.755.1 2 36.23 even 6
2268.1.s.a.755.1 2 63.13 odd 6
2268.1.s.a.1511.1 2 36.11 even 6
2268.1.s.a.1511.1 2 63.34 odd 6
2268.1.s.b.755.1 2 9.4 even 3
2268.1.s.b.755.1 2 252.167 odd 6
2268.1.s.b.1511.1 2 9.7 even 3
2268.1.s.b.1511.1 2 252.83 odd 6
2268.1.s.c.755.1 2 9.5 odd 6
2268.1.s.c.755.1 2 252.139 even 6
2268.1.s.c.1511.1 2 9.2 odd 6
2268.1.s.c.1511.1 2 252.223 even 6
2268.1.s.d.755.1 2 36.31 odd 6
2268.1.s.d.755.1 2 63.41 even 6
2268.1.s.d.1511.1 2 36.7 odd 6
2268.1.s.d.1511.1 2 63.20 even 6