Properties

Label 2268.2.a.g.1.3
Level $2268$
Weight $2$
Character 2268.1
Self dual yes
Analytic conductor $18.110$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(1,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.1100711784\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.321.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.46050\) of defining polynomial
Character \(\chi\) \(=\) 2268.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.05408 q^{5} +1.00000 q^{7} -5.05408 q^{11} -1.00000 q^{13} +0.273346 q^{17} -5.38151 q^{19} -5.32743 q^{23} -0.780738 q^{25} -8.32743 q^{29} -10.1623 q^{31} +2.05408 q^{35} +8.16225 q^{37} -5.05408 q^{41} +4.60078 q^{43} +1.38151 q^{47} +1.00000 q^{49} +3.43560 q^{53} -10.3815 q^{55} +1.78074 q^{59} +0.780738 q^{61} -2.05408 q^{65} -8.38151 q^{67} -7.78074 q^{71} +9.38151 q^{73} -5.05408 q^{77} +12.9430 q^{79} -5.72665 q^{83} +0.561476 q^{85} -13.8171 q^{89} -1.00000 q^{91} -11.0541 q^{95} -2.21926 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 3 q^{7} - 6 q^{11} - 3 q^{13} + 3 q^{19} - 6 q^{23} + 6 q^{25} - 15 q^{29} - 3 q^{31} - 3 q^{35} - 3 q^{37} - 6 q^{41} + 3 q^{43} - 15 q^{47} + 3 q^{49} - 18 q^{53} - 12 q^{55} - 3 q^{59}+ \cdots - 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.05408 0.918614 0.459307 0.888277i \(-0.348098\pi\)
0.459307 + 0.888277i \(0.348098\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.05408 −1.52386 −0.761932 0.647657i \(-0.775749\pi\)
−0.761932 + 0.647657i \(0.775749\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.273346 0.0662962 0.0331481 0.999450i \(-0.489447\pi\)
0.0331481 + 0.999450i \(0.489447\pi\)
\(18\) 0 0
\(19\) −5.38151 −1.23460 −0.617302 0.786726i \(-0.711774\pi\)
−0.617302 + 0.786726i \(0.711774\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.32743 −1.11085 −0.555423 0.831568i \(-0.687444\pi\)
−0.555423 + 0.831568i \(0.687444\pi\)
\(24\) 0 0
\(25\) −0.780738 −0.156148
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.32743 −1.54637 −0.773183 0.634184i \(-0.781336\pi\)
−0.773183 + 0.634184i \(0.781336\pi\)
\(30\) 0 0
\(31\) −10.1623 −1.82519 −0.912597 0.408860i \(-0.865927\pi\)
−0.912597 + 0.408860i \(0.865927\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.05408 0.347204
\(36\) 0 0
\(37\) 8.16225 1.34187 0.670933 0.741518i \(-0.265894\pi\)
0.670933 + 0.741518i \(0.265894\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.05408 −0.789315 −0.394658 0.918828i \(-0.629137\pi\)
−0.394658 + 0.918828i \(0.629137\pi\)
\(42\) 0 0
\(43\) 4.60078 0.701612 0.350806 0.936448i \(-0.385908\pi\)
0.350806 + 0.936448i \(0.385908\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.38151 0.201515 0.100757 0.994911i \(-0.467873\pi\)
0.100757 + 0.994911i \(0.467873\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.43560 0.471916 0.235958 0.971763i \(-0.424177\pi\)
0.235958 + 0.971763i \(0.424177\pi\)
\(54\) 0 0
\(55\) −10.3815 −1.39984
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.78074 0.231832 0.115916 0.993259i \(-0.463020\pi\)
0.115916 + 0.993259i \(0.463020\pi\)
\(60\) 0 0
\(61\) 0.780738 0.0999633 0.0499816 0.998750i \(-0.484084\pi\)
0.0499816 + 0.998750i \(0.484084\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.05408 −0.254778
\(66\) 0 0
\(67\) −8.38151 −1.02396 −0.511982 0.858996i \(-0.671089\pi\)
−0.511982 + 0.858996i \(0.671089\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −7.78074 −0.923404 −0.461702 0.887035i \(-0.652761\pi\)
−0.461702 + 0.887035i \(0.652761\pi\)
\(72\) 0 0
\(73\) 9.38151 1.09802 0.549012 0.835815i \(-0.315004\pi\)
0.549012 + 0.835815i \(0.315004\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.05408 −0.575966
\(78\) 0 0
\(79\) 12.9430 1.45620 0.728100 0.685471i \(-0.240404\pi\)
0.728100 + 0.685471i \(0.240404\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.72665 −0.628582 −0.314291 0.949327i \(-0.601767\pi\)
−0.314291 + 0.949327i \(0.601767\pi\)
\(84\) 0 0
\(85\) 0.561476 0.0609006
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.8171 −1.46461 −0.732306 0.680976i \(-0.761556\pi\)
−0.732306 + 0.680976i \(0.761556\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −11.0541 −1.13413
\(96\) 0 0
\(97\) −2.21926 −0.225332 −0.112666 0.993633i \(-0.535939\pi\)
−0.112666 + 0.993633i \(0.535939\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.72665 0.271312 0.135656 0.990756i \(-0.456686\pi\)
0.135656 + 0.990756i \(0.456686\pi\)
\(102\) 0 0
\(103\) 17.9823 1.77185 0.885924 0.463831i \(-0.153525\pi\)
0.885924 + 0.463831i \(0.153525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.10817 0.107131 0.0535653 0.998564i \(-0.482941\pi\)
0.0535653 + 0.998564i \(0.482941\pi\)
\(108\) 0 0
\(109\) 3.38151 0.323890 0.161945 0.986800i \(-0.448223\pi\)
0.161945 + 0.986800i \(0.448223\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.8712 1.77525 0.887626 0.460564i \(-0.152353\pi\)
0.887626 + 0.460564i \(0.152353\pi\)
\(114\) 0 0
\(115\) −10.9430 −1.02044
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.273346 0.0250576
\(120\) 0 0
\(121\) 14.5438 1.32216
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8741 −1.06205
\(126\) 0 0
\(127\) 17.1623 1.52290 0.761452 0.648221i \(-0.224487\pi\)
0.761452 + 0.648221i \(0.224487\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −17.8889 −1.56296 −0.781481 0.623930i \(-0.785535\pi\)
−0.781481 + 0.623930i \(0.785535\pi\)
\(132\) 0 0
\(133\) −5.38151 −0.466636
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.49261 −0.383829 −0.191915 0.981412i \(-0.561470\pi\)
−0.191915 + 0.981412i \(0.561470\pi\)
\(138\) 0 0
\(139\) 18.1445 1.53900 0.769500 0.638647i \(-0.220505\pi\)
0.769500 + 0.638647i \(0.220505\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.05408 0.422644
\(144\) 0 0
\(145\) −17.1052 −1.42051
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.50739 −0.369260 −0.184630 0.982808i \(-0.559109\pi\)
−0.184630 + 0.982808i \(0.559109\pi\)
\(150\) 0 0
\(151\) −10.9823 −0.893726 −0.446863 0.894602i \(-0.647459\pi\)
−0.446863 + 0.894602i \(0.647459\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −20.8741 −1.67665
\(156\) 0 0
\(157\) 4.17996 0.333597 0.166799 0.985991i \(-0.446657\pi\)
0.166799 + 0.985991i \(0.446657\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.32743 −0.419860
\(162\) 0 0
\(163\) −5.61849 −0.440074 −0.220037 0.975492i \(-0.570618\pi\)
−0.220037 + 0.975492i \(0.570618\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.8918 −0.842835 −0.421418 0.906867i \(-0.638467\pi\)
−0.421418 + 0.906867i \(0.638467\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.6008 1.11008 0.555038 0.831825i \(-0.312704\pi\)
0.555038 + 0.831825i \(0.312704\pi\)
\(174\) 0 0
\(175\) −0.780738 −0.0590182
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −23.4897 −1.75570 −0.877851 0.478934i \(-0.841023\pi\)
−0.877851 + 0.478934i \(0.841023\pi\)
\(180\) 0 0
\(181\) −1.39922 −0.104003 −0.0520017 0.998647i \(-0.516560\pi\)
−0.0520017 + 0.998647i \(0.516560\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 16.7660 1.23266
\(186\) 0 0
\(187\) −1.38151 −0.101026
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 23.3638 1.69055 0.845273 0.534335i \(-0.179438\pi\)
0.845273 + 0.534335i \(0.179438\pi\)
\(192\) 0 0
\(193\) −14.5438 −1.04688 −0.523442 0.852062i \(-0.675352\pi\)
−0.523442 + 0.852062i \(0.675352\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.3422 −1.23558 −0.617791 0.786343i \(-0.711972\pi\)
−0.617791 + 0.786343i \(0.711972\pi\)
\(198\) 0 0
\(199\) −11.5438 −0.818316 −0.409158 0.912464i \(-0.634178\pi\)
−0.409158 + 0.912464i \(0.634178\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.32743 −0.584471
\(204\) 0 0
\(205\) −10.3815 −0.725076
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 27.1986 1.88137
\(210\) 0 0
\(211\) −24.5261 −1.68844 −0.844222 0.535994i \(-0.819937\pi\)
−0.844222 + 0.535994i \(0.819937\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.45038 0.644511
\(216\) 0 0
\(217\) −10.1623 −0.689859
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.273346 −0.0183873
\(222\) 0 0
\(223\) 8.56148 0.573319 0.286659 0.958033i \(-0.407455\pi\)
0.286659 + 0.958033i \(0.407455\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.1986 −1.40700 −0.703501 0.710694i \(-0.748381\pi\)
−0.703501 + 0.710694i \(0.748381\pi\)
\(228\) 0 0
\(229\) −4.56148 −0.301431 −0.150715 0.988577i \(-0.548158\pi\)
−0.150715 + 0.988577i \(0.548158\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 13.5074 0.884899 0.442449 0.896794i \(-0.354110\pi\)
0.442449 + 0.896794i \(0.354110\pi\)
\(234\) 0 0
\(235\) 2.83775 0.185114
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.6549 −0.883260 −0.441630 0.897197i \(-0.645600\pi\)
−0.441630 + 0.897197i \(0.645600\pi\)
\(240\) 0 0
\(241\) 3.21926 0.207371 0.103685 0.994610i \(-0.466936\pi\)
0.103685 + 0.994610i \(0.466936\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.05408 0.131231
\(246\) 0 0
\(247\) 5.38151 0.342418
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.38151 0.276559 0.138279 0.990393i \(-0.455843\pi\)
0.138279 + 0.990393i \(0.455843\pi\)
\(252\) 0 0
\(253\) 26.9253 1.69278
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.4533 0.714438 0.357219 0.934021i \(-0.383725\pi\)
0.357219 + 0.934021i \(0.383725\pi\)
\(258\) 0 0
\(259\) 8.16225 0.507178
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.83482 −0.421453 −0.210727 0.977545i \(-0.567583\pi\)
−0.210727 + 0.977545i \(0.567583\pi\)
\(264\) 0 0
\(265\) 7.05701 0.433509
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.67257 0.589747 0.294873 0.955536i \(-0.404722\pi\)
0.294873 + 0.955536i \(0.404722\pi\)
\(270\) 0 0
\(271\) −12.8377 −0.779838 −0.389919 0.920849i \(-0.627497\pi\)
−0.389919 + 0.920849i \(0.627497\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.94592 0.237948
\(276\) 0 0
\(277\) 11.5831 0.695959 0.347980 0.937502i \(-0.386868\pi\)
0.347980 + 0.937502i \(0.386868\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.92821 −0.293992 −0.146996 0.989137i \(-0.546960\pi\)
−0.146996 + 0.989137i \(0.546960\pi\)
\(282\) 0 0
\(283\) −18.6008 −1.10570 −0.552851 0.833280i \(-0.686460\pi\)
−0.552851 + 0.833280i \(0.686460\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.05408 −0.298333
\(288\) 0 0
\(289\) −16.9253 −0.995605
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.7601 −1.44650 −0.723250 0.690586i \(-0.757353\pi\)
−0.723250 + 0.690586i \(0.757353\pi\)
\(294\) 0 0
\(295\) 3.65779 0.212965
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.32743 0.308093
\(300\) 0 0
\(301\) 4.60078 0.265184
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.60370 0.0918277
\(306\) 0 0
\(307\) 21.9430 1.25235 0.626176 0.779681i \(-0.284619\pi\)
0.626176 + 0.779681i \(0.284619\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.1623 1.54023 0.770115 0.637905i \(-0.220199\pi\)
0.770115 + 0.637905i \(0.220199\pi\)
\(312\) 0 0
\(313\) −8.54377 −0.482922 −0.241461 0.970410i \(-0.577627\pi\)
−0.241461 + 0.970410i \(0.577627\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.399223 0.0224226 0.0112113 0.999937i \(-0.496431\pi\)
0.0112113 + 0.999937i \(0.496431\pi\)
\(318\) 0 0
\(319\) 42.0875 2.35645
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.47102 −0.0818495
\(324\) 0 0
\(325\) 0.780738 0.0433076
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.38151 0.0761654
\(330\) 0 0
\(331\) −5.61849 −0.308820 −0.154410 0.988007i \(-0.549348\pi\)
−0.154410 + 0.988007i \(0.549348\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.2163 −0.940629
\(336\) 0 0
\(337\) −28.9823 −1.57877 −0.789383 0.613901i \(-0.789599\pi\)
−0.789383 + 0.613901i \(0.789599\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 51.3609 2.78135
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 34.4690 1.85040 0.925198 0.379485i \(-0.123899\pi\)
0.925198 + 0.379485i \(0.123899\pi\)
\(348\) 0 0
\(349\) 17.5615 0.940044 0.470022 0.882655i \(-0.344246\pi\)
0.470022 + 0.882655i \(0.344246\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.8889 1.75050 0.875250 0.483671i \(-0.160697\pi\)
0.875250 + 0.483671i \(0.160697\pi\)
\(354\) 0 0
\(355\) −15.9823 −0.848252
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.96362 0.156414 0.0782071 0.996937i \(-0.475080\pi\)
0.0782071 + 0.996937i \(0.475080\pi\)
\(360\) 0 0
\(361\) 9.96070 0.524247
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 19.2704 1.00866
\(366\) 0 0
\(367\) 13.3638 0.697585 0.348792 0.937200i \(-0.386592\pi\)
0.348792 + 0.937200i \(0.386592\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.43560 0.178367
\(372\) 0 0
\(373\) 4.60078 0.238219 0.119110 0.992881i \(-0.461996\pi\)
0.119110 + 0.992881i \(0.461996\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.32743 0.428884
\(378\) 0 0
\(379\) −2.21926 −0.113996 −0.0569979 0.998374i \(-0.518153\pi\)
−0.0569979 + 0.998374i \(0.518153\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −31.0335 −1.58574 −0.792868 0.609394i \(-0.791413\pi\)
−0.792868 + 0.609394i \(0.791413\pi\)
\(384\) 0 0
\(385\) −10.3815 −0.529091
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −24.8348 −1.25918 −0.629588 0.776929i \(-0.716776\pi\)
−0.629588 + 0.776929i \(0.716776\pi\)
\(390\) 0 0
\(391\) −1.45623 −0.0736449
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 26.5860 1.33769
\(396\) 0 0
\(397\) 17.7237 0.889528 0.444764 0.895648i \(-0.353287\pi\)
0.444764 + 0.895648i \(0.353287\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 30.1770 1.50697 0.753485 0.657466i \(-0.228371\pi\)
0.753485 + 0.657466i \(0.228371\pi\)
\(402\) 0 0
\(403\) 10.1623 0.506218
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −41.2527 −2.04482
\(408\) 0 0
\(409\) 16.7630 0.828878 0.414439 0.910077i \(-0.363978\pi\)
0.414439 + 0.910077i \(0.363978\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.78074 0.0876244
\(414\) 0 0
\(415\) −11.7630 −0.577424
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.88891 0.141132 0.0705662 0.997507i \(-0.477519\pi\)
0.0705662 + 0.997507i \(0.477519\pi\)
\(420\) 0 0
\(421\) −0.179961 −0.00877078 −0.00438539 0.999990i \(-0.501396\pi\)
−0.00438539 + 0.999990i \(0.501396\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.213412 −0.0103520
\(426\) 0 0
\(427\) 0.780738 0.0377826
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.76595 −0.229568 −0.114784 0.993390i \(-0.536618\pi\)
−0.114784 + 0.993390i \(0.536618\pi\)
\(432\) 0 0
\(433\) −27.7630 −1.33421 −0.667103 0.744965i \(-0.732466\pi\)
−0.667103 + 0.744965i \(0.732466\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 28.6696 1.37146
\(438\) 0 0
\(439\) −4.65779 −0.222304 −0.111152 0.993803i \(-0.535454\pi\)
−0.111152 + 0.993803i \(0.535454\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.76303 −0.131275 −0.0656377 0.997844i \(-0.520908\pi\)
−0.0656377 + 0.997844i \(0.520908\pi\)
\(444\) 0 0
\(445\) −28.3815 −1.34541
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.9430 0.941168 0.470584 0.882355i \(-0.344043\pi\)
0.470584 + 0.882355i \(0.344043\pi\)
\(450\) 0 0
\(451\) 25.5438 1.20281
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.05408 −0.0962970
\(456\) 0 0
\(457\) 27.3815 1.28085 0.640427 0.768019i \(-0.278758\pi\)
0.640427 + 0.768019i \(0.278758\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.05116 −0.281831 −0.140915 0.990022i \(-0.545005\pi\)
−0.140915 + 0.990022i \(0.545005\pi\)
\(462\) 0 0
\(463\) −17.5438 −0.815328 −0.407664 0.913132i \(-0.633657\pi\)
−0.407664 + 0.913132i \(0.633657\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.6156 −1.09280 −0.546399 0.837525i \(-0.684002\pi\)
−0.546399 + 0.837525i \(0.684002\pi\)
\(468\) 0 0
\(469\) −8.38151 −0.387022
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −23.2527 −1.06916
\(474\) 0 0
\(475\) 4.20155 0.192780
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 38.2527 1.74781 0.873906 0.486096i \(-0.161579\pi\)
0.873906 + 0.486096i \(0.161579\pi\)
\(480\) 0 0
\(481\) −8.16225 −0.372167
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.55855 −0.206993
\(486\) 0 0
\(487\) −6.57918 −0.298131 −0.149066 0.988827i \(-0.547627\pi\)
−0.149066 + 0.988827i \(0.547627\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.05408 −0.0926995 −0.0463498 0.998925i \(-0.514759\pi\)
−0.0463498 + 0.998925i \(0.514759\pi\)
\(492\) 0 0
\(493\) −2.27627 −0.102518
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.78074 −0.349014
\(498\) 0 0
\(499\) −16.3245 −0.730785 −0.365393 0.930854i \(-0.619065\pi\)
−0.365393 + 0.930854i \(0.619065\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.60078 −0.249726 −0.124863 0.992174i \(-0.539849\pi\)
−0.124863 + 0.992174i \(0.539849\pi\)
\(504\) 0 0
\(505\) 5.60078 0.249231
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.672570 0.0298111 0.0149056 0.999889i \(-0.495255\pi\)
0.0149056 + 0.999889i \(0.495255\pi\)
\(510\) 0 0
\(511\) 9.38151 0.415014
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 36.9371 1.62764
\(516\) 0 0
\(517\) −6.98229 −0.307081
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.4533 1.15894 0.579470 0.814993i \(-0.303260\pi\)
0.579470 + 0.814993i \(0.303260\pi\)
\(522\) 0 0
\(523\) 27.3068 1.19404 0.597021 0.802225i \(-0.296351\pi\)
0.597021 + 0.802225i \(0.296351\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.77781 −0.121003
\(528\) 0 0
\(529\) 5.38151 0.233979
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.05408 0.218917
\(534\) 0 0
\(535\) 2.27627 0.0984118
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.05408 −0.217695
\(540\) 0 0
\(541\) −19.3245 −0.830825 −0.415413 0.909633i \(-0.636363\pi\)
−0.415413 + 0.909633i \(0.636363\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.94592 0.297530
\(546\) 0 0
\(547\) −18.3422 −0.784256 −0.392128 0.919911i \(-0.628261\pi\)
−0.392128 + 0.919911i \(0.628261\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 44.8142 1.90915
\(552\) 0 0
\(553\) 12.9430 0.550392
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.19863 0.389758 0.194879 0.980827i \(-0.437569\pi\)
0.194879 + 0.980827i \(0.437569\pi\)
\(558\) 0 0
\(559\) −4.60078 −0.194592
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 33.1623 1.39762 0.698811 0.715306i \(-0.253713\pi\)
0.698811 + 0.715306i \(0.253713\pi\)
\(564\) 0 0
\(565\) 38.7630 1.63077
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26.2016 1.09843 0.549213 0.835682i \(-0.314928\pi\)
0.549213 + 0.835682i \(0.314928\pi\)
\(570\) 0 0
\(571\) 9.78074 0.409311 0.204656 0.978834i \(-0.434393\pi\)
0.204656 + 0.978834i \(0.434393\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.15933 0.173456
\(576\) 0 0
\(577\) 36.3068 1.51147 0.755736 0.654877i \(-0.227279\pi\)
0.755736 + 0.654877i \(0.227279\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.72665 −0.237582
\(582\) 0 0
\(583\) −17.3638 −0.719135
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.1475 −0.996673 −0.498336 0.866984i \(-0.666056\pi\)
−0.498336 + 0.866984i \(0.666056\pi\)
\(588\) 0 0
\(589\) 54.6883 2.25339
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 41.4897 1.70378 0.851889 0.523723i \(-0.175457\pi\)
0.851889 + 0.523723i \(0.175457\pi\)
\(594\) 0 0
\(595\) 0.561476 0.0230183
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22.6844 −0.926861 −0.463430 0.886133i \(-0.653382\pi\)
−0.463430 + 0.886133i \(0.653382\pi\)
\(600\) 0 0
\(601\) −40.2498 −1.64182 −0.820912 0.571055i \(-0.806534\pi\)
−0.820912 + 0.571055i \(0.806534\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29.8741 1.21456
\(606\) 0 0
\(607\) 17.3245 0.703180 0.351590 0.936154i \(-0.385641\pi\)
0.351590 + 0.936154i \(0.385641\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.38151 −0.0558901
\(612\) 0 0
\(613\) −32.9646 −1.33143 −0.665713 0.746207i \(-0.731873\pi\)
−0.665713 + 0.746207i \(0.731873\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.9401 −1.08457 −0.542283 0.840196i \(-0.682440\pi\)
−0.542283 + 0.840196i \(0.682440\pi\)
\(618\) 0 0
\(619\) −1.98229 −0.0796750 −0.0398375 0.999206i \(-0.512684\pi\)
−0.0398375 + 0.999206i \(0.512684\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.8171 −0.553571
\(624\) 0 0
\(625\) −20.4868 −0.819470
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.23112 0.0889606
\(630\) 0 0
\(631\) −25.4868 −1.01461 −0.507306 0.861766i \(-0.669359\pi\)
−0.507306 + 0.861766i \(0.669359\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 35.2527 1.39896
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −40.0846 −1.58325 −0.791623 0.611009i \(-0.790764\pi\)
−0.791623 + 0.611009i \(0.790764\pi\)
\(642\) 0 0
\(643\) 7.01771 0.276751 0.138376 0.990380i \(-0.455812\pi\)
0.138376 + 0.990380i \(0.455812\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.8142 −0.464464 −0.232232 0.972660i \(-0.574603\pi\)
−0.232232 + 0.972660i \(0.574603\pi\)
\(648\) 0 0
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.273346 0.0106969 0.00534843 0.999986i \(-0.498298\pi\)
0.00534843 + 0.999986i \(0.498298\pi\)
\(654\) 0 0
\(655\) −36.7453 −1.43576
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.7994 0.576503 0.288251 0.957555i \(-0.406926\pi\)
0.288251 + 0.957555i \(0.406926\pi\)
\(660\) 0 0
\(661\) −9.01771 −0.350748 −0.175374 0.984502i \(-0.556113\pi\)
−0.175374 + 0.984502i \(0.556113\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11.0541 −0.428659
\(666\) 0 0
\(667\) 44.3638 1.71777
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.94592 −0.152330
\(672\) 0 0
\(673\) 23.9607 0.923617 0.461809 0.886980i \(-0.347201\pi\)
0.461809 + 0.886980i \(0.347201\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.65779 −0.255879 −0.127940 0.991782i \(-0.540836\pi\)
−0.127940 + 0.991782i \(0.540836\pi\)
\(678\) 0 0
\(679\) −2.21926 −0.0851675
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.0728 −1.15070 −0.575351 0.817907i \(-0.695135\pi\)
−0.575351 + 0.817907i \(0.695135\pi\)
\(684\) 0 0
\(685\) −9.22820 −0.352591
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.43560 −0.130886
\(690\) 0 0
\(691\) −3.27627 −0.124635 −0.0623176 0.998056i \(-0.519849\pi\)
−0.0623176 + 0.998056i \(0.519849\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 37.2704 1.41375
\(696\) 0 0
\(697\) −1.38151 −0.0523286
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −32.2891 −1.21954 −0.609771 0.792578i \(-0.708739\pi\)
−0.609771 + 0.792578i \(0.708739\pi\)
\(702\) 0 0
\(703\) −43.9253 −1.65667
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.72665 0.102546
\(708\) 0 0
\(709\) −49.0875 −1.84352 −0.921761 0.387760i \(-0.873249\pi\)
−0.921761 + 0.387760i \(0.873249\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 54.1387 2.02751
\(714\) 0 0
\(715\) 10.3815 0.388247
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −41.9617 −1.56491 −0.782453 0.622710i \(-0.786032\pi\)
−0.782453 + 0.622710i \(0.786032\pi\)
\(720\) 0 0
\(721\) 17.9823 0.669696
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.50154 0.241461
\(726\) 0 0
\(727\) −28.4868 −1.05652 −0.528258 0.849084i \(-0.677154\pi\)
−0.528258 + 0.849084i \(0.677154\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.25760 0.0465142
\(732\) 0 0
\(733\) 28.5261 1.05363 0.526817 0.849979i \(-0.323385\pi\)
0.526817 + 0.849979i \(0.323385\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42.3609 1.56038
\(738\) 0 0
\(739\) 7.85934 0.289110 0.144555 0.989497i \(-0.453825\pi\)
0.144555 + 0.989497i \(0.453825\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.74729 −0.247534 −0.123767 0.992311i \(-0.539498\pi\)
−0.123767 + 0.992311i \(0.539498\pi\)
\(744\) 0 0
\(745\) −9.25856 −0.339207
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.10817 0.0404916
\(750\) 0 0
\(751\) 22.1800 0.809358 0.404679 0.914459i \(-0.367383\pi\)
0.404679 + 0.914459i \(0.367383\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −22.5586 −0.820990
\(756\) 0 0
\(757\) −20.3815 −0.740779 −0.370389 0.928877i \(-0.620776\pi\)
−0.370389 + 0.928877i \(0.620776\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.6549 1.47374 0.736869 0.676036i \(-0.236304\pi\)
0.736869 + 0.676036i \(0.236304\pi\)
\(762\) 0 0
\(763\) 3.38151 0.122419
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.78074 −0.0642987
\(768\) 0 0
\(769\) −33.9037 −1.22260 −0.611299 0.791400i \(-0.709353\pi\)
−0.611299 + 0.791400i \(0.709353\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.74825 −0.314653 −0.157326 0.987547i \(-0.550287\pi\)
−0.157326 + 0.987547i \(0.550287\pi\)
\(774\) 0 0
\(775\) 7.93406 0.285000
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.1986 0.974492
\(780\) 0 0
\(781\) 39.3245 1.40714
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.58599 0.306447
\(786\) 0 0
\(787\) 9.28520 0.330982 0.165491 0.986211i \(-0.447079\pi\)
0.165491 + 0.986211i \(0.447079\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18.8712 0.670983
\(792\) 0 0
\(793\) −0.780738 −0.0277248
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.4543 0.795371 0.397685 0.917522i \(-0.369814\pi\)
0.397685 + 0.917522i \(0.369814\pi\)
\(798\) 0 0
\(799\) 0.377632 0.0133597
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −47.4150 −1.67324
\(804\) 0 0
\(805\) −10.9430 −0.385690
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.40215 −0.189929 −0.0949647 0.995481i \(-0.530274\pi\)
−0.0949647 + 0.995481i \(0.530274\pi\)
\(810\) 0 0
\(811\) −0.0177088 −0.000621841 0 −0.000310920 1.00000i \(-0.500099\pi\)
−0.000310920 1.00000i \(0.500099\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.5408 −0.404258
\(816\) 0 0
\(817\) −24.7591 −0.866213
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.05701 −0.0368899 −0.0184449 0.999830i \(-0.505872\pi\)
−0.0184449 + 0.999830i \(0.505872\pi\)
\(822\) 0 0
\(823\) 13.5261 0.471489 0.235744 0.971815i \(-0.424247\pi\)
0.235744 + 0.971815i \(0.424247\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −49.3068 −1.71457 −0.857283 0.514846i \(-0.827849\pi\)
−0.857283 + 0.514846i \(0.827849\pi\)
\(828\) 0 0
\(829\) −53.7060 −1.86529 −0.932644 0.360799i \(-0.882504\pi\)
−0.932644 + 0.360799i \(0.882504\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.273346 0.00947088
\(834\) 0 0
\(835\) −22.3727 −0.774241
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −37.4327 −1.29232 −0.646160 0.763202i \(-0.723626\pi\)
−0.646160 + 0.763202i \(0.723626\pi\)
\(840\) 0 0
\(841\) 40.3461 1.39124
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −24.6490 −0.847952
\(846\) 0 0
\(847\) 14.5438 0.499730
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −43.4838 −1.49061
\(852\) 0 0
\(853\) −20.6185 −0.705963 −0.352982 0.935630i \(-0.614832\pi\)
−0.352982 + 0.935630i \(0.614832\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8889 0.713551 0.356776 0.934190i \(-0.383876\pi\)
0.356776 + 0.934190i \(0.383876\pi\)
\(858\) 0 0
\(859\) 26.8860 0.917338 0.458669 0.888607i \(-0.348326\pi\)
0.458669 + 0.888607i \(0.348326\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.8142 0.912766 0.456383 0.889784i \(-0.349145\pi\)
0.456383 + 0.889784i \(0.349145\pi\)
\(864\) 0 0
\(865\) 29.9912 1.01973
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −65.4150 −2.21905
\(870\) 0 0
\(871\) 8.38151 0.283997
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −11.8741 −0.401419
\(876\) 0 0
\(877\) −37.9076 −1.28005 −0.640024 0.768355i \(-0.721076\pi\)
−0.640024 + 0.768355i \(0.721076\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.47782 0.251934 0.125967 0.992034i \(-0.459797\pi\)
0.125967 + 0.992034i \(0.459797\pi\)
\(882\) 0 0
\(883\) 5.07472 0.170778 0.0853889 0.996348i \(-0.472787\pi\)
0.0853889 + 0.996348i \(0.472787\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.5231 0.621946 0.310973 0.950419i \(-0.399345\pi\)
0.310973 + 0.950419i \(0.399345\pi\)
\(888\) 0 0
\(889\) 17.1623 0.575603
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.43464 −0.248791
\(894\) 0 0
\(895\) −48.2498 −1.61281
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 84.6255 2.82242
\(900\) 0 0
\(901\) 0.939108 0.0312862
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.87412 −0.0955391
\(906\) 0 0
\(907\) −49.6490 −1.64857 −0.824284 0.566176i \(-0.808422\pi\)
−0.824284 + 0.566176i \(0.808422\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 23.9617 0.793885 0.396943 0.917843i \(-0.370071\pi\)
0.396943 + 0.917843i \(0.370071\pi\)
\(912\) 0 0
\(913\) 28.9430 0.957873
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.8889 −0.590744
\(918\) 0 0
\(919\) −18.8377 −0.621400 −0.310700 0.950508i \(-0.600563\pi\)
−0.310700 + 0.950508i \(0.600563\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 7.78074 0.256106
\(924\) 0 0
\(925\) −6.37258 −0.209529
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.9037 0.488974 0.244487 0.969653i \(-0.421380\pi\)
0.244487 + 0.969653i \(0.421380\pi\)
\(930\) 0 0
\(931\) −5.38151 −0.176372
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.83775 −0.0928043
\(936\) 0 0
\(937\) 3.94299 0.128812 0.0644059 0.997924i \(-0.479485\pi\)
0.0644059 + 0.997924i \(0.479485\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.8113 −1.39561 −0.697804 0.716289i \(-0.745839\pi\)
−0.697804 + 0.716289i \(0.745839\pi\)
\(942\) 0 0
\(943\) 26.9253 0.876808
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.1838 −0.883356 −0.441678 0.897174i \(-0.645617\pi\)
−0.441678 + 0.897174i \(0.645617\pi\)
\(948\) 0 0
\(949\) −9.38151 −0.304537
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.12295 0.0363760 0.0181880 0.999835i \(-0.494210\pi\)
0.0181880 + 0.999835i \(0.494210\pi\)
\(954\) 0 0
\(955\) 47.9912 1.55296
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.49261 −0.145074
\(960\) 0 0
\(961\) 72.2714 2.33133
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −29.8741 −0.961682
\(966\) 0 0
\(967\) −9.50447 −0.305643 −0.152822 0.988254i \(-0.548836\pi\)
−0.152822 + 0.988254i \(0.548836\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.5979 −0.789383 −0.394691 0.918814i \(-0.629148\pi\)
−0.394691 + 0.918814i \(0.629148\pi\)
\(972\) 0 0
\(973\) 18.1445 0.581687
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.4031 −0.812717 −0.406359 0.913714i \(-0.633202\pi\)
−0.406359 + 0.913714i \(0.633202\pi\)
\(978\) 0 0
\(979\) 69.8329 2.23187
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.8535 0.728913 0.364457 0.931220i \(-0.381255\pi\)
0.364457 + 0.931220i \(0.381255\pi\)
\(984\) 0 0
\(985\) −35.6224 −1.13502
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.5103 −0.779383
\(990\) 0 0
\(991\) 24.4690 0.777285 0.388642 0.921389i \(-0.372944\pi\)
0.388642 + 0.921389i \(0.372944\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −23.7119 −0.751717
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.a.g.1.3 3
3.2 odd 2 2268.2.a.j.1.1 3
4.3 odd 2 9072.2.a.bt.1.3 3
9.2 odd 6 756.2.j.a.253.3 6
9.4 even 3 252.2.j.b.169.2 yes 6
9.5 odd 6 756.2.j.a.505.3 6
9.7 even 3 252.2.j.b.85.2 6
12.11 even 2 9072.2.a.bz.1.1 3
36.7 odd 6 1008.2.r.g.337.2 6
36.11 even 6 3024.2.r.i.1009.3 6
36.23 even 6 3024.2.r.i.2017.3 6
36.31 odd 6 1008.2.r.g.673.2 6
63.2 odd 6 5292.2.l.g.361.1 6
63.4 even 3 1764.2.l.d.961.1 6
63.5 even 6 5292.2.i.g.2125.1 6
63.11 odd 6 5292.2.i.d.1549.3 6
63.13 odd 6 1764.2.j.d.1177.2 6
63.16 even 3 1764.2.l.d.949.1 6
63.20 even 6 5292.2.j.e.1765.1 6
63.23 odd 6 5292.2.i.d.2125.3 6
63.25 even 3 1764.2.i.f.373.2 6
63.31 odd 6 1764.2.l.g.961.3 6
63.32 odd 6 5292.2.l.g.3313.1 6
63.34 odd 6 1764.2.j.d.589.2 6
63.38 even 6 5292.2.i.g.1549.1 6
63.40 odd 6 1764.2.i.e.1537.2 6
63.41 even 6 5292.2.j.e.3529.1 6
63.47 even 6 5292.2.l.d.361.3 6
63.52 odd 6 1764.2.i.e.373.2 6
63.58 even 3 1764.2.i.f.1537.2 6
63.59 even 6 5292.2.l.d.3313.3 6
63.61 odd 6 1764.2.l.g.949.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.2 6 9.7 even 3
252.2.j.b.169.2 yes 6 9.4 even 3
756.2.j.a.253.3 6 9.2 odd 6
756.2.j.a.505.3 6 9.5 odd 6
1008.2.r.g.337.2 6 36.7 odd 6
1008.2.r.g.673.2 6 36.31 odd 6
1764.2.i.e.373.2 6 63.52 odd 6
1764.2.i.e.1537.2 6 63.40 odd 6
1764.2.i.f.373.2 6 63.25 even 3
1764.2.i.f.1537.2 6 63.58 even 3
1764.2.j.d.589.2 6 63.34 odd 6
1764.2.j.d.1177.2 6 63.13 odd 6
1764.2.l.d.949.1 6 63.16 even 3
1764.2.l.d.961.1 6 63.4 even 3
1764.2.l.g.949.3 6 63.61 odd 6
1764.2.l.g.961.3 6 63.31 odd 6
2268.2.a.g.1.3 3 1.1 even 1 trivial
2268.2.a.j.1.1 3 3.2 odd 2
3024.2.r.i.1009.3 6 36.11 even 6
3024.2.r.i.2017.3 6 36.23 even 6
5292.2.i.d.1549.3 6 63.11 odd 6
5292.2.i.d.2125.3 6 63.23 odd 6
5292.2.i.g.1549.1 6 63.38 even 6
5292.2.i.g.2125.1 6 63.5 even 6
5292.2.j.e.1765.1 6 63.20 even 6
5292.2.j.e.3529.1 6 63.41 even 6
5292.2.l.d.361.3 6 63.47 even 6
5292.2.l.d.3313.3 6 63.59 even 6
5292.2.l.g.361.1 6 63.2 odd 6
5292.2.l.g.3313.1 6 63.32 odd 6
9072.2.a.bt.1.3 3 4.3 odd 2
9072.2.a.bz.1.1 3 12.11 even 2