Properties

Label 756.2.j.a.505.3
Level 756756
Weight 22
Character 756.505
Analytic conductor 6.0376.037
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [756,2,Mod(253,756)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(756, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("756.253");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 756=22337 756 = 2^{2} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 756.j (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.036690392816.03669039281
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x63x5+10x415x3+19x212x+3 x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 33 3^{3}
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

Embedding invariants

Embedding label 505.3
Root 0.5000002.05195i0.500000 - 2.05195i of defining polynomial
Character χ\chi == 756.505
Dual form 756.2.j.a.253.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(1.02704+1.77889i)q5+(0.500000+0.866025i)q7+(2.52704+4.37697i)q11+(0.500000+0.866025i)q130.273346q175.38151q19+(2.663724.61369i)q23+(0.3903690.676139i)q25+(4.16372+7.21177i)q29+(5.08113+8.80077i)q312.05408q35+8.16225q37+(2.527044.37697i)q41+(2.30039+3.98439i)q43+(0.6907571.19643i)q47+(0.5000000.866025i)q493.43560q5310.3815q55+(0.890369+1.54216i)q59+(0.390369+0.676139i)q61+(1.02704+1.77889i)q65+(4.19076+7.25860i)q67+7.78074q71+9.38151q73+(2.527044.37697i)q77+(6.47150+11.2090i)q79+(2.86333+4.95943i)q83+(0.2807380.486253i)q85+13.8171q891.00000q91+(5.527049.57312i)q95+(1.109631.92194i)q97+O(q100)q+(1.02704 + 1.77889i) q^{5} +(-0.500000 + 0.866025i) q^{7} +(-2.52704 + 4.37697i) q^{11} +(0.500000 + 0.866025i) q^{13} -0.273346 q^{17} -5.38151 q^{19} +(-2.66372 - 4.61369i) q^{23} +(0.390369 - 0.676139i) q^{25} +(-4.16372 + 7.21177i) q^{29} +(5.08113 + 8.80077i) q^{31} -2.05408 q^{35} +8.16225 q^{37} +(-2.52704 - 4.37697i) q^{41} +(-2.30039 + 3.98439i) q^{43} +(0.690757 - 1.19643i) q^{47} +(-0.500000 - 0.866025i) q^{49} -3.43560 q^{53} -10.3815 q^{55} +(0.890369 + 1.54216i) q^{59} +(-0.390369 + 0.676139i) q^{61} +(-1.02704 + 1.77889i) q^{65} +(4.19076 + 7.25860i) q^{67} +7.78074 q^{71} +9.38151 q^{73} +(-2.52704 - 4.37697i) q^{77} +(-6.47150 + 11.2090i) q^{79} +(-2.86333 + 4.95943i) q^{83} +(-0.280738 - 0.486253i) q^{85} +13.8171 q^{89} -1.00000 q^{91} +(-5.52704 - 9.57312i) q^{95} +(1.10963 - 1.92194i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q3q53q76q11+3q13+6q196q236q2515q29+3q31+6q356q376q413q4315q473q49+36q5324q553q59++15q97+O(q100) 6 q - 3 q^{5} - 3 q^{7} - 6 q^{11} + 3 q^{13} + 6 q^{19} - 6 q^{23} - 6 q^{25} - 15 q^{29} + 3 q^{31} + 6 q^{35} - 6 q^{37} - 6 q^{41} - 3 q^{43} - 15 q^{47} - 3 q^{49} + 36 q^{53} - 24 q^{55} - 3 q^{59}+ \cdots + 15 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/756Z)×\left(\mathbb{Z}/756\mathbb{Z}\right)^\times.

nn 2929 325325 379379
χ(n)\chi(n) e(23)e\left(\frac{2}{3}\right) 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 1.02704 + 1.77889i 0.459307 + 0.795543i 0.998924 0.0463670i 0.0147644π-0.0147644\pi
−0.539617 + 0.841910i 0.681431π0.681431\pi
66 0 0
77 −0.500000 + 0.866025i −0.188982 + 0.327327i
88 0 0
99 0 0
1010 0 0
1111 −2.52704 + 4.37697i −0.761932 + 1.31970i 0.179922 + 0.983681i 0.442416π0.442416\pi
−0.941854 + 0.336024i 0.890918π0.890918\pi
1212 0 0
1313 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i 0.122382π-0.122382\pi
−0.788320 + 0.615265i 0.789049π0.789049\pi
1414 0 0
1515 0 0
1616 0 0
1717 −0.273346 −0.0662962 −0.0331481 0.999450i 0.510553π-0.510553\pi
−0.0331481 + 0.999450i 0.510553π0.510553\pi
1818 0 0
1919 −5.38151 −1.23460 −0.617302 0.786726i 0.711774π-0.711774\pi
−0.617302 + 0.786726i 0.711774π0.711774\pi
2020 0 0
2121 0 0
2222 0 0
2323 −2.66372 4.61369i −0.555423 0.962021i −0.997870 0.0652265i 0.979223π-0.979223\pi
0.442447 0.896794i 0.354110π-0.354110\pi
2424 0 0
2525 0.390369 0.676139i 0.0780738 0.135228i
2626 0 0
2727 0 0
2828 0 0
2929 −4.16372 + 7.21177i −0.773183 + 1.33919i 0.162628 + 0.986687i 0.448003π0.448003\pi
−0.935810 + 0.352504i 0.885330π0.885330\pi
3030 0 0
3131 5.08113 + 8.80077i 0.912597 + 1.58066i 0.810382 + 0.585903i 0.199260π0.199260\pi
0.102216 + 0.994762i 0.467407π0.467407\pi
3232 0 0
3333 0 0
3434 0 0
3535 −2.05408 −0.347204
3636 0 0
3737 8.16225 1.34187 0.670933 0.741518i 0.265894π-0.265894\pi
0.670933 + 0.741518i 0.265894π0.265894\pi
3838 0 0
3939 0 0
4040 0 0
4141 −2.52704 4.37697i −0.394658 0.683567i 0.598400 0.801198i 0.295803π-0.295803\pi
−0.993057 + 0.117631i 0.962470π0.962470\pi
4242 0 0
4343 −2.30039 + 3.98439i −0.350806 + 0.607614i −0.986391 0.164417i 0.947426π-0.947426\pi
0.635585 + 0.772031i 0.280759π0.280759\pi
4444 0 0
4545 0 0
4646 0 0
4747 0.690757 1.19643i 0.100757 0.174517i −0.811240 0.584714i 0.801207π-0.801207\pi
0.911997 + 0.410197i 0.134540π0.134540\pi
4848 0 0
4949 −0.500000 0.866025i −0.0714286 0.123718i
5050 0 0
5151 0 0
5252 0 0
5353 −3.43560 −0.471916 −0.235958 0.971763i 0.575823π-0.575823\pi
−0.235958 + 0.971763i 0.575823π0.575823\pi
5454 0 0
5555 −10.3815 −1.39984
5656 0 0
5757 0 0
5858 0 0
5959 0.890369 + 1.54216i 0.115916 + 0.200773i 0.918146 0.396243i 0.129686π-0.129686\pi
−0.802229 + 0.597016i 0.796353π0.796353\pi
6060 0 0
6161 −0.390369 + 0.676139i −0.0499816 + 0.0865707i −0.889934 0.456090i 0.849250π-0.849250\pi
0.839952 + 0.542660i 0.182583π0.182583\pi
6262 0 0
6363 0 0
6464 0 0
6565 −1.02704 + 1.77889i −0.127389 + 0.220644i
6666 0 0
6767 4.19076 + 7.25860i 0.511982 + 0.886780i 0.999904 + 0.0138919i 0.00442207π0.00442207\pi
−0.487921 + 0.872888i 0.662245π0.662245\pi
6868 0 0
6969 0 0
7070 0 0
7171 7.78074 0.923404 0.461702 0.887035i 0.347239π-0.347239\pi
0.461702 + 0.887035i 0.347239π0.347239\pi
7272 0 0
7373 9.38151 1.09802 0.549012 0.835815i 0.315004π-0.315004\pi
0.549012 + 0.835815i 0.315004π0.315004\pi
7474 0 0
7575 0 0
7676 0 0
7777 −2.52704 4.37697i −0.287983 0.498801i
7878 0 0
7979 −6.47150 + 11.2090i −0.728100 + 1.26111i 0.229585 + 0.973289i 0.426263π0.426263\pi
−0.957685 + 0.287818i 0.907070π0.907070\pi
8080 0 0
8181 0 0
8282 0 0
8383 −2.86333 + 4.95943i −0.314291 + 0.544368i −0.979287 0.202479i 0.935100π-0.935100\pi
0.664996 + 0.746847i 0.268433π0.268433\pi
8484 0 0
8585 −0.280738 0.486253i −0.0304503 0.0527415i
8686 0 0
8787 0 0
8888 0 0
8989 13.8171 1.46461 0.732306 0.680976i 0.238444π-0.238444\pi
0.732306 + 0.680976i 0.238444π0.238444\pi
9090 0 0
9191 −1.00000 −0.104828
9292 0 0
9393 0 0
9494 0 0
9595 −5.52704 9.57312i −0.567063 0.982181i
9696 0 0
9797 1.10963 1.92194i 0.112666 0.195143i −0.804178 0.594388i 0.797394π-0.797394\pi
0.916844 + 0.399245i 0.130728π0.130728\pi
9898 0 0
9999 0 0
100100 0 0
101101 1.36333 2.36135i 0.135656 0.234963i −0.790192 0.612860i 0.790019π-0.790019\pi
0.925848 + 0.377896i 0.123352π0.123352\pi
102102 0 0
103103 −8.99115 15.5731i −0.885924 1.53447i −0.844651 0.535317i 0.820192π-0.820192\pi
−0.0412728 0.999148i 0.513141π-0.513141\pi
104104 0 0
105105 0 0
106106 0 0
107107 −1.10817 −0.107131 −0.0535653 0.998564i 0.517059π-0.517059\pi
−0.0535653 + 0.998564i 0.517059π0.517059\pi
108108 0 0
109109 3.38151 0.323890 0.161945 0.986800i 0.448223π-0.448223\pi
0.161945 + 0.986800i 0.448223π0.448223\pi
110110 0 0
111111 0 0
112112 0 0
113113 9.43560 + 16.3429i 0.887626 + 1.53741i 0.842673 + 0.538425i 0.180980π0.180980\pi
0.0449531 + 0.998989i 0.485686π0.485686\pi
114114 0 0
115115 5.47150 9.47691i 0.510220 0.883726i
116116 0 0
117117 0 0
118118 0 0
119119 0.136673 0.236725i 0.0125288 0.0217005i
120120 0 0
121121 −7.27188 12.5953i −0.661080 1.14502i
122122 0 0
123123 0 0
124124 0 0
125125 11.8741 1.06205
126126 0 0
127127 17.1623 1.52290 0.761452 0.648221i 0.224487π-0.224487\pi
0.761452 + 0.648221i 0.224487π0.224487\pi
128128 0 0
129129 0 0
130130 0 0
131131 −8.94445 15.4922i −0.781481 1.35356i −0.931079 0.364817i 0.881132π-0.881132\pi
0.149599 0.988747i 0.452202π-0.452202\pi
132132 0 0
133133 2.69076 4.66053i 0.233318 0.404119i
134134 0 0
135135 0 0
136136 0 0
137137 −2.24630 + 3.89071i −0.191915 + 0.332406i −0.945885 0.324503i 0.894803π-0.894803\pi
0.753970 + 0.656909i 0.228136π0.228136\pi
138138 0 0
139139 −9.07227 15.7136i −0.769500 1.33281i −0.937834 0.347083i 0.887172π-0.887172\pi
0.168334 0.985730i 0.446161π-0.446161\pi
140140 0 0
141141 0 0
142142 0 0
143143 −5.05408 −0.422644
144144 0 0
145145 −17.1052 −1.42051
146146 0 0
147147 0 0
148148 0 0
149149 −2.25370 3.90352i −0.184630 0.319788i 0.758822 0.651298i 0.225775π-0.225775\pi
−0.943452 + 0.331510i 0.892442π0.892442\pi
150150 0 0
151151 5.49115 9.51094i 0.446863 0.773990i −0.551317 0.834296i 0.685874π-0.685874\pi
0.998180 + 0.0603064i 0.0192078π0.0192078\pi
152152 0 0
153153 0 0
154154 0 0
155155 −10.4371 + 18.0775i −0.838325 + 1.45202i
156156 0 0
157157 −2.08998 3.61995i −0.166799 0.288904i 0.770494 0.637447i 0.220010π-0.220010\pi
−0.937293 + 0.348544i 0.886676π0.886676\pi
158158 0 0
159159 0 0
160160 0 0
161161 5.32743 0.419860
162162 0 0
163163 −5.61849 −0.440074 −0.220037 0.975492i 0.570618π-0.570618\pi
−0.220037 + 0.975492i 0.570618π0.570618\pi
164164 0 0
165165 0 0
166166 0 0
167167 −5.44592 9.43260i −0.421418 0.729917i 0.574661 0.818392i 0.305134π-0.305134\pi
−0.996078 + 0.0884750i 0.971801π0.971801\pi
168168 0 0
169169 6.00000 10.3923i 0.461538 0.799408i
170170 0 0
171171 0 0
172172 0 0
173173 7.30039 12.6446i 0.555038 0.961354i −0.442862 0.896590i 0.646037π-0.646037\pi
0.997901 0.0647648i 0.0206297π-0.0206297\pi
174174 0 0
175175 0.390369 + 0.676139i 0.0295091 + 0.0511113i
176176 0 0
177177 0 0
178178 0 0
179179 23.4897 1.75570 0.877851 0.478934i 0.158977π-0.158977\pi
0.877851 + 0.478934i 0.158977π0.158977\pi
180180 0 0
181181 −1.39922 −0.104003 −0.0520017 0.998647i 0.516560π-0.516560\pi
−0.0520017 + 0.998647i 0.516560π0.516560\pi
182182 0 0
183183 0 0
184184 0 0
185185 8.38298 + 14.5197i 0.616329 + 1.06751i
186186 0 0
187187 0.690757 1.19643i 0.0505132 0.0874914i
188188 0 0
189189 0 0
190190 0 0
191191 11.6819 20.2336i 0.845273 1.46406i −0.0401112 0.999195i 0.512771π-0.512771\pi
0.885384 0.464860i 0.153895π-0.153895\pi
192192 0 0
193193 7.27188 + 12.5953i 0.523442 + 0.906628i 0.999628 + 0.0272830i 0.00868552π0.00868552\pi
−0.476186 + 0.879345i 0.657981π0.657981\pi
194194 0 0
195195 0 0
196196 0 0
197197 17.3422 1.23558 0.617791 0.786343i 0.288028π-0.288028\pi
0.617791 + 0.786343i 0.288028π0.288028\pi
198198 0 0
199199 −11.5438 −0.818316 −0.409158 0.912464i 0.634178π-0.634178\pi
−0.409158 + 0.912464i 0.634178π0.634178\pi
200200 0 0
201201 0 0
202202 0 0
203203 −4.16372 7.21177i −0.292236 0.506167i
204204 0 0
205205 5.19076 8.99066i 0.362538 0.627935i
206206 0 0
207207 0 0
208208 0 0
209209 13.5993 23.5547i 0.940684 1.62931i
210210 0 0
211211 12.2630 + 21.2402i 0.844222 + 1.46223i 0.886295 + 0.463120i 0.153270π0.153270\pi
−0.0420736 + 0.999115i 0.513396π0.513396\pi
212212 0 0
213213 0 0
214214 0 0
215215 −9.45038 −0.644511
216216 0 0
217217 −10.1623 −0.689859
218218 0 0
219219 0 0
220220 0 0
221221 −0.136673 0.236725i −0.00919363 0.0159238i
222222 0 0
223223 −4.28074 + 7.41446i −0.286659 + 0.496509i −0.973010 0.230762i 0.925878π-0.925878\pi
0.686351 + 0.727271i 0.259211π0.259211\pi
224224 0 0
225225 0 0
226226 0 0
227227 −10.5993 + 18.3586i −0.703501 + 1.21850i 0.263729 + 0.964597i 0.415048π0.415048\pi
−0.967230 + 0.253903i 0.918286π0.918286\pi
228228 0 0
229229 2.28074 + 3.95035i 0.150715 + 0.261047i 0.931491 0.363765i 0.118509π-0.118509\pi
−0.780775 + 0.624812i 0.785176π0.785176\pi
230230 0 0
231231 0 0
232232 0 0
233233 −13.5074 −0.884899 −0.442449 0.896794i 0.645890π-0.645890\pi
−0.442449 + 0.896794i 0.645890π0.645890\pi
234234 0 0
235235 2.83775 0.185114
236236 0 0
237237 0 0
238238 0 0
239239 −6.82743 11.8255i −0.441630 0.764925i 0.556181 0.831061i 0.312266π-0.312266\pi
−0.997811 + 0.0661361i 0.978933π0.978933\pi
240240 0 0
241241 −1.60963 + 2.78796i −0.103685 + 0.179588i −0.913200 0.407511i 0.866397π-0.866397\pi
0.809515 + 0.587099i 0.199730π0.199730\pi
242242 0 0
243243 0 0
244244 0 0
245245 1.02704 1.77889i 0.0656153 0.113649i
246246 0 0
247247 −2.69076 4.66053i −0.171209 0.296542i
248248 0 0
249249 0 0
250250 0 0
251251 −4.38151 −0.276559 −0.138279 0.990393i 0.544157π-0.544157\pi
−0.138279 + 0.990393i 0.544157π0.544157\pi
252252 0 0
253253 26.9253 1.69278
254254 0 0
255255 0 0
256256 0 0
257257 5.72665 + 9.91886i 0.357219 + 0.618721i 0.987495 0.157650i 0.0503917π-0.0503917\pi
−0.630276 + 0.776371i 0.717058π0.717058\pi
258258 0 0
259259 −4.08113 + 7.06872i −0.253589 + 0.439229i
260260 0 0
261261 0 0
262262 0 0
263263 −3.41741 + 5.91913i −0.210727 + 0.364989i −0.951942 0.306278i 0.900916π-0.900916\pi
0.741216 + 0.671267i 0.234250π0.234250\pi
264264 0 0
265265 −3.52850 6.11155i −0.216754 0.375429i
266266 0 0
267267 0 0
268268 0 0
269269 −9.67257 −0.589747 −0.294873 0.955536i 0.595278π-0.595278\pi
−0.294873 + 0.955536i 0.595278π0.595278\pi
270270 0 0
271271 −12.8377 −0.779838 −0.389919 0.920849i 0.627497π-0.627497\pi
−0.389919 + 0.920849i 0.627497π0.627497\pi
272272 0 0
273273 0 0
274274 0 0
275275 1.97296 + 3.41726i 0.118974 + 0.206069i
276276 0 0
277277 −5.79153 + 10.0312i −0.347980 + 0.602718i −0.985890 0.167392i 0.946465π-0.946465\pi
0.637911 + 0.770110i 0.279799π0.279799\pi
278278 0 0
279279 0 0
280280 0 0
281281 −2.46410 + 4.26795i −0.146996 + 0.254605i −0.930116 0.367266i 0.880294π-0.880294\pi
0.783120 + 0.621871i 0.213627π0.213627\pi
282282 0 0
283283 9.30039 + 16.1087i 0.552851 + 0.957565i 0.998067 + 0.0621426i 0.0197934π0.0197934\pi
−0.445217 + 0.895423i 0.646873π0.646873\pi
284284 0 0
285285 0 0
286286 0 0
287287 5.05408 0.298333
288288 0 0
289289 −16.9253 −0.995605
290290 0 0
291291 0 0
292292 0 0
293293 −12.3801 21.4429i −0.723250 1.25271i −0.959690 0.281060i 0.909314π-0.909314\pi
0.236440 0.971646i 0.424019π-0.424019\pi
294294 0 0
295295 −1.82889 + 3.16774i −0.106482 + 0.184433i
296296 0 0
297297 0 0
298298 0 0
299299 2.66372 4.61369i 0.154047 0.266817i
300300 0 0
301301 −2.30039 3.98439i −0.132592 0.229656i
302302 0 0
303303 0 0
304304 0 0
305305 −1.60370 −0.0918277
306306 0 0
307307 21.9430 1.25235 0.626176 0.779681i 0.284619π-0.284619\pi
0.626176 + 0.779681i 0.284619π0.284619\pi
308308 0 0
309309 0 0
310310 0 0
311311 13.5811 + 23.5232i 0.770115 + 1.33388i 0.937499 + 0.347987i 0.113135π0.113135\pi
−0.167384 + 0.985892i 0.553532π0.553532\pi
312312 0 0
313313 4.27188 7.39912i 0.241461 0.418223i −0.719670 0.694317i 0.755707π-0.755707\pi
0.961131 + 0.276094i 0.0890400π0.0890400\pi
314314 0 0
315315 0 0
316316 0 0
317317 0.199612 0.345738i 0.0112113 0.0194186i −0.860365 0.509678i 0.829765π-0.829765\pi
0.871577 + 0.490259i 0.163098π0.163098\pi
318318 0 0
319319 −21.0438 36.4489i −1.17822 2.04075i
320320 0 0
321321 0 0
322322 0 0
323323 1.47102 0.0818495
324324 0 0
325325 0.780738 0.0433076
326326 0 0
327327 0 0
328328 0 0
329329 0.690757 + 1.19643i 0.0380827 + 0.0659611i
330330 0 0
331331 2.80924 4.86575i 0.154410 0.267446i −0.778434 0.627726i 0.783986π-0.783986\pi
0.932844 + 0.360281i 0.117319π0.117319\pi
332332 0 0
333333 0 0
334334 0 0
335335 −8.60817 + 14.9098i −0.470314 + 0.814609i
336336 0 0
337337 14.4911 + 25.0994i 0.789383 + 1.36725i 0.926345 + 0.376675i 0.122933π0.122933\pi
−0.136962 + 0.990576i 0.543734π0.543734\pi
338338 0 0
339339 0 0
340340 0 0
341341 −51.3609 −2.78135
342342 0 0
343343 1.00000 0.0539949
344344 0 0
345345 0 0
346346 0 0
347347 17.2345 + 29.8511i 0.925198 + 1.60249i 0.791243 + 0.611502i 0.209434π0.209434\pi
0.133955 + 0.990987i 0.457232π0.457232\pi
348348 0 0
349349 −8.78074 + 15.2087i −0.470022 + 0.814102i −0.999412 0.0342762i 0.989087π-0.989087\pi
0.529390 + 0.848378i 0.322421π0.322421\pi
350350 0 0
351351 0 0
352352 0 0
353353 16.4445 28.4826i 0.875250 1.51598i 0.0187537 0.999824i 0.494030π-0.494030\pi
0.856496 0.516153i 0.172636π-0.172636\pi
354354 0 0
355355 7.99115 + 13.8411i 0.424126 + 0.734608i
356356 0 0
357357 0 0
358358 0 0
359359 −2.96362 −0.156414 −0.0782071 0.996937i 0.524920π-0.524920\pi
−0.0782071 + 0.996937i 0.524920π0.524920\pi
360360 0 0
361361 9.96070 0.524247
362362 0 0
363363 0 0
364364 0 0
365365 9.63521 + 16.6887i 0.504330 + 0.873525i
366366 0 0
367367 −6.68190 + 11.5734i −0.348792 + 0.604126i −0.986035 0.166537i 0.946742π-0.946742\pi
0.637243 + 0.770663i 0.280075π0.280075\pi
368368 0 0
369369 0 0
370370 0 0
371371 1.71780 2.97532i 0.0891837 0.154471i
372372 0 0
373373 −2.30039 3.98439i −0.119110 0.206304i 0.800305 0.599592i 0.204671π-0.204671\pi
−0.919415 + 0.393289i 0.871337π0.871337\pi
374374 0 0
375375 0 0
376376 0 0
377377 −8.32743 −0.428884
378378 0 0
379379 −2.21926 −0.113996 −0.0569979 0.998374i 0.518153π-0.518153\pi
−0.0569979 + 0.998374i 0.518153π0.518153\pi
380380 0 0
381381 0 0
382382 0 0
383383 −15.5167 26.8758i −0.792868 1.37329i −0.924184 0.381947i 0.875254π-0.875254\pi
0.131317 0.991340i 0.458079π-0.458079\pi
384384 0 0
385385 5.19076 8.99066i 0.264545 0.458206i
386386 0 0
387387 0 0
388388 0 0
389389 −12.4174 + 21.5076i −0.629588 + 1.09048i 0.358047 + 0.933704i 0.383443π0.383443\pi
−0.987634 + 0.156774i 0.949890π0.949890\pi
390390 0 0
391391 0.728116 + 1.26113i 0.0368224 + 0.0637783i
392392 0 0
393393 0 0
394394 0 0
395395 −26.5860 −1.33769
396396 0 0
397397 17.7237 0.889528 0.444764 0.895648i 0.353287π-0.353287\pi
0.444764 + 0.895648i 0.353287π0.353287\pi
398398 0 0
399399 0 0
400400 0 0
401401 15.0885 + 26.1341i 0.753485 + 1.30507i 0.946124 + 0.323804i 0.104962π0.104962\pi
−0.192640 + 0.981270i 0.561705π0.561705\pi
402402 0 0
403403 −5.08113 + 8.80077i −0.253109 + 0.438398i
404404 0 0
405405 0 0
406406 0 0
407407 −20.6264 + 35.7259i −1.02241 + 1.77087i
408408 0 0
409409 −8.38151 14.5172i −0.414439 0.717830i 0.580930 0.813953i 0.302689π-0.302689\pi
−0.995369 + 0.0961236i 0.969356π0.969356\pi
410410 0 0
411411 0 0
412412 0 0
413413 −1.78074 −0.0876244
414414 0 0
415415 −11.7630 −0.577424
416416 0 0
417417 0 0
418418 0 0
419419 1.44445 + 2.50187i 0.0705662 + 0.122224i 0.899150 0.437641i 0.144186π-0.144186\pi
−0.828583 + 0.559866i 0.810853π0.810853\pi
420420 0 0
421421 0.0899807 0.155851i 0.00438539 0.00759572i −0.863824 0.503793i 0.831937π-0.831937\pi
0.868210 + 0.496197i 0.165271π0.165271\pi
422422 0 0
423423 0 0
424424 0 0
425425 −0.106706 + 0.184820i −0.00517600 + 0.00896509i
426426 0 0
427427 −0.390369 0.676139i −0.0188913 0.0327207i
428428 0 0
429429 0 0
430430 0 0
431431 4.76595 0.229568 0.114784 0.993390i 0.463382π-0.463382\pi
0.114784 + 0.993390i 0.463382π0.463382\pi
432432 0 0
433433 −27.7630 −1.33421 −0.667103 0.744965i 0.732466π-0.732466\pi
−0.667103 + 0.744965i 0.732466π0.732466\pi
434434 0 0
435435 0 0
436436 0 0
437437 14.3348 + 24.8286i 0.685728 + 1.18771i
438438 0 0
439439 2.32889 4.03376i 0.111152 0.192521i −0.805083 0.593162i 0.797879π-0.797879\pi
0.916235 + 0.400641i 0.131213π0.131213\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.38151 + 2.39285i −0.0656377 + 0.113688i −0.896977 0.442078i 0.854242π-0.854242\pi
0.831339 + 0.555766i 0.187575π0.187575\pi
444444 0 0
445445 14.1908 + 24.5791i 0.672706 + 1.16516i
446446 0 0
447447 0 0
448448 0 0
449449 −19.9430 −0.941168 −0.470584 0.882355i 0.655957π-0.655957\pi
−0.470584 + 0.882355i 0.655957π0.655957\pi
450450 0 0
451451 25.5438 1.20281
452452 0 0
453453 0 0
454454 0 0
455455 −1.02704 1.77889i −0.0481485 0.0833956i
456456 0 0
457457 −13.6908 + 23.7131i −0.640427 + 1.10925i 0.344911 + 0.938635i 0.387909π0.387909\pi
−0.985338 + 0.170616i 0.945424π0.945424\pi
458458 0 0
459459 0 0
460460 0 0
461461 −3.02558 + 5.24046i −0.140915 + 0.244072i −0.927842 0.372975i 0.878338π-0.878338\pi
0.786926 + 0.617047i 0.211671π0.211671\pi
462462 0 0
463463 8.77188 + 15.1933i 0.407664 + 0.706095i 0.994628 0.103519i 0.0330101π-0.0330101\pi
−0.586964 + 0.809613i 0.699677π0.699677\pi
464464 0 0
465465 0 0
466466 0 0
467467 23.6156 1.09280 0.546399 0.837525i 0.315998π-0.315998\pi
0.546399 + 0.837525i 0.315998π0.315998\pi
468468 0 0
469469 −8.38151 −0.387022
470470 0 0
471471 0 0
472472 0 0
473473 −11.6264 20.1374i −0.534580 0.925920i
474474 0 0
475475 −2.10078 + 3.63865i −0.0963902 + 0.166953i
476476 0 0
477477 0 0
478478 0 0
479479 19.1264 33.1278i 0.873906 1.51365i 0.0159814 0.999872i 0.494913π-0.494913\pi
0.857924 0.513776i 0.171754π-0.171754\pi
480480 0 0
481481 4.08113 + 7.06872i 0.186083 + 0.322306i
482482 0 0
483483 0 0
484484 0 0
485485 4.55855 0.206993
486486 0 0
487487 −6.57918 −0.298131 −0.149066 0.988827i 0.547627π-0.547627\pi
−0.149066 + 0.988827i 0.547627π0.547627\pi
488488 0 0
489489 0 0
490490 0 0
491491 −1.02704 1.77889i −0.0463498 0.0802801i 0.841920 0.539603i 0.181426π-0.181426\pi
−0.888270 + 0.459323i 0.848092π0.848092\pi
492492 0 0
493493 1.13814 1.97131i 0.0512591 0.0887833i
494494 0 0
495495 0 0
496496 0 0
497497 −3.89037 + 6.73832i −0.174507 + 0.302255i
498498 0 0
499499 8.16225 + 14.1374i 0.365393 + 0.632879i 0.988839 0.148987i 0.0476014π-0.0476014\pi
−0.623446 + 0.781866i 0.714268π0.714268\pi
500500 0 0
501501 0 0
502502 0 0
503503 5.60078 0.249726 0.124863 0.992174i 0.460151π-0.460151\pi
0.124863 + 0.992174i 0.460151π0.460151\pi
504504 0 0
505505 5.60078 0.249231
506506 0 0
507507 0 0
508508 0 0
509509 0.336285 + 0.582462i 0.0149056 + 0.0258172i 0.873382 0.487036i 0.161922π-0.161922\pi
−0.858476 + 0.512853i 0.828589π0.828589\pi
510510 0 0
511511 −4.69076 + 8.12463i −0.207507 + 0.359412i
512512 0 0
513513 0 0
514514 0 0
515515 18.4686 31.9885i 0.813822 1.40958i
516516 0 0
517517 3.49115 + 6.04684i 0.153540 + 0.265940i
518518 0 0
519519 0 0
520520 0 0
521521 −26.4533 −1.15894 −0.579470 0.814993i 0.696740π-0.696740\pi
−0.579470 + 0.814993i 0.696740π0.696740\pi
522522 0 0
523523 27.3068 1.19404 0.597021 0.802225i 0.296351π-0.296351\pi
0.597021 + 0.802225i 0.296351π0.296351\pi
524524 0 0
525525 0 0
526526 0 0
527527 −1.38891 2.40566i −0.0605017 0.104792i
528528 0 0
529529 −2.69076 + 4.66053i −0.116989 + 0.202632i
530530 0 0
531531 0 0
532532 0 0
533533 2.52704 4.37697i 0.109458 0.189587i
534534 0 0
535535 −1.13814 1.97131i −0.0492059 0.0852271i
536536 0 0
537537 0 0
538538 0 0
539539 5.05408 0.217695
540540 0 0
541541 −19.3245 −0.830825 −0.415413 0.909633i 0.636363π-0.636363\pi
−0.415413 + 0.909633i 0.636363π0.636363\pi
542542 0 0
543543 0 0
544544 0 0
545545 3.47296 + 6.01534i 0.148765 + 0.257669i
546546 0 0
547547 9.17111 15.8848i 0.392128 0.679186i −0.600602 0.799548i 0.705072π-0.705072\pi
0.992730 + 0.120362i 0.0384056π0.0384056\pi
548548 0 0
549549 0 0
550550 0 0
551551 22.4071 38.8102i 0.954574 1.65337i
552552 0 0
553553 −6.47150 11.2090i −0.275196 0.476653i
554554 0 0
555555 0 0
556556 0 0
557557 −9.19863 −0.389758 −0.194879 0.980827i 0.562431π-0.562431\pi
−0.194879 + 0.980827i 0.562431π0.562431\pi
558558 0 0
559559 −4.60078 −0.194592
560560 0 0
561561 0 0
562562 0 0
563563 16.5811 + 28.7194i 0.698811 + 1.21038i 0.968879 + 0.247535i 0.0796206π0.0796206\pi
−0.270068 + 0.962841i 0.587046π0.587046\pi
564564 0 0
565565 −19.3815 + 33.5698i −0.815386 + 1.41229i
566566 0 0
567567 0 0
568568 0 0
569569 13.1008 22.6912i 0.549213 0.951265i −0.449116 0.893474i 0.648261π-0.648261\pi
0.998329 0.0577914i 0.0184058π-0.0184058\pi
570570 0 0
571571 −4.89037 8.47037i −0.204656 0.354474i 0.745367 0.666654i 0.232274π-0.232274\pi
−0.950023 + 0.312180i 0.898941π0.898941\pi
572572 0 0
573573 0 0
574574 0 0
575575 −4.15933 −0.173456
576576 0 0
577577 36.3068 1.51147 0.755736 0.654877i 0.227279π-0.227279\pi
0.755736 + 0.654877i 0.227279π0.227279\pi
578578 0 0
579579 0 0
580580 0 0
581581 −2.86333 4.95943i −0.118791 0.205752i
582582 0 0
583583 8.68190 15.0375i 0.359568 0.622789i
584584 0 0
585585 0 0
586586 0 0
587587 −12.0737 + 20.9123i −0.498336 + 0.863144i −0.999998 0.00191995i 0.999389π-0.999389\pi
0.501662 + 0.865064i 0.332722π0.332722\pi
588588 0 0
589589 −27.3442 47.3615i −1.12670 1.95150i
590590 0 0
591591 0 0
592592 0 0
593593 −41.4897 −1.70378 −0.851889 0.523723i 0.824543π-0.824543\pi
−0.851889 + 0.523723i 0.824543π0.824543\pi
594594 0 0
595595 0.561476 0.0230183
596596 0 0
597597 0 0
598598 0 0
599599 −11.3422 19.6453i −0.463430 0.802685i 0.535699 0.844409i 0.320048π-0.320048\pi
−0.999129 + 0.0417243i 0.986715π0.986715\pi
600600 0 0
601601 20.1249 34.8573i 0.820912 1.42186i −0.0840927 0.996458i 0.526799π-0.526799\pi
0.905004 0.425403i 0.139867π-0.139867\pi
602602 0 0
603603 0 0
604604 0 0
605605 14.9371 25.8717i 0.607278 1.05184i
606606 0 0
607607 −8.66225 15.0035i −0.351590 0.608972i 0.634938 0.772563i 0.281026π-0.281026\pi
−0.986528 + 0.163591i 0.947692π0.947692\pi
608608 0 0
609609 0 0
610610 0 0
611611 1.38151 0.0558901
612612 0 0
613613 −32.9646 −1.33143 −0.665713 0.746207i 0.731873π-0.731873\pi
−0.665713 + 0.746207i 0.731873π0.731873\pi
614614 0 0
615615 0 0
616616 0 0
617617 −13.4700 23.3308i −0.542283 0.939262i −0.998772 0.0495330i 0.984227π-0.984227\pi
0.456489 0.889729i 0.349107π-0.349107\pi
618618 0 0
619619 0.991146 1.71671i 0.0398375 0.0690006i −0.845419 0.534103i 0.820649π-0.820649\pi
0.885257 + 0.465103i 0.153983π0.153983\pi
620620 0 0
621621 0 0
622622 0 0
623623 −6.90856 + 11.9660i −0.276785 + 0.479407i
624624 0 0
625625 10.2434 + 17.7421i 0.409735 + 0.709682i
626626 0 0
627627 0 0
628628 0 0
629629 −2.23112 −0.0889606
630630 0 0
631631 −25.4868 −1.01461 −0.507306 0.861766i 0.669359π-0.669359\pi
−0.507306 + 0.861766i 0.669359π0.669359\pi
632632 0 0
633633 0 0
634634 0 0
635635 17.6264 + 30.5297i 0.699481 + 1.21154i
636636 0 0
637637 0.500000 0.866025i 0.0198107 0.0343132i
638638 0 0
639639 0 0
640640 0 0
641641 −20.0423 + 34.7143i −0.791623 + 1.37113i 0.133338 + 0.991071i 0.457430π0.457430\pi
−0.924961 + 0.380061i 0.875903π0.875903\pi
642642 0 0
643643 −3.50885 6.07751i −0.138376 0.239674i 0.788506 0.615027i 0.210855π-0.210855\pi
−0.926882 + 0.375353i 0.877521π0.877521\pi
644644 0 0
645645 0 0
646646 0 0
647647 11.8142 0.464464 0.232232 0.972660i 0.425397π-0.425397\pi
0.232232 + 0.972660i 0.425397π0.425397\pi
648648 0 0
649649 −9.00000 −0.353281
650650 0 0
651651 0 0
652652 0 0
653653 0.136673 + 0.236725i 0.00534843 + 0.00926375i 0.868687 0.495361i 0.164964π-0.164964\pi
−0.863339 + 0.504625i 0.831631π0.831631\pi
654654 0 0
655655 18.3727 31.8224i 0.717879 1.24340i
656656 0 0
657657 0 0
658658 0 0
659659 7.39970 12.8167i 0.288251 0.499266i −0.685141 0.728410i 0.740259π-0.740259\pi
0.973392 + 0.229144i 0.0735928π0.0735928\pi
660660 0 0
661661 4.50885 + 7.80956i 0.175374 + 0.303757i 0.940291 0.340372i 0.110553π-0.110553\pi
−0.764917 + 0.644129i 0.777220π0.777220\pi
662662 0 0
663663 0 0
664664 0 0
665665 11.0541 0.428659
666666 0 0
667667 44.3638 1.71777
668668 0 0
669669 0 0
670670 0 0
671671 −1.97296 3.41726i −0.0761652 0.131922i
672672 0 0
673673 −11.9803 + 20.7506i −0.461809 + 0.799876i −0.999051 0.0435519i 0.986133π-0.986133\pi
0.537243 + 0.843428i 0.319466π0.319466\pi
674674 0 0
675675 0 0
676676 0 0
677677 −3.32889 + 5.76581i −0.127940 + 0.221598i −0.922878 0.385092i 0.874170π-0.874170\pi
0.794938 + 0.606690i 0.207503π0.207503\pi
678678 0 0
679679 1.10963 + 1.92194i 0.0425837 + 0.0737572i
680680 0 0
681681 0 0
682682 0 0
683683 30.0728 1.15070 0.575351 0.817907i 0.304865π-0.304865\pi
0.575351 + 0.817907i 0.304865π0.304865\pi
684684 0 0
685685 −9.22820 −0.352591
686686 0 0
687687 0 0
688688 0 0
689689 −1.71780 2.97532i −0.0654429 0.113351i
690690 0 0
691691 1.63814 2.83733i 0.0623176 0.107937i −0.833183 0.552997i 0.813484π-0.813484\pi
0.895501 + 0.445060i 0.146817π0.146817\pi
692692 0 0
693693 0 0
694694 0 0
695695 18.6352 32.2771i 0.706874 1.22434i
696696 0 0
697697 0.690757 + 1.19643i 0.0261643 + 0.0453179i
698698 0 0
699699 0 0
700700 0 0
701701 32.2891 1.21954 0.609771 0.792578i 0.291261π-0.291261\pi
0.609771 + 0.792578i 0.291261π0.291261\pi
702702 0 0
703703 −43.9253 −1.65667
704704 0 0
705705 0 0
706706 0 0
707707 1.36333 + 2.36135i 0.0512732 + 0.0888078i
708708 0 0
709709 24.5438 42.5111i 0.921761 1.59654i 0.125071 0.992148i 0.460084π-0.460084\pi
0.796690 0.604388i 0.206582π-0.206582\pi
710710 0 0
711711 0 0
712712 0 0
713713 27.0693 46.8855i 1.01376 1.75588i
714714 0 0
715715 −5.19076 8.99066i −0.194123 0.336231i
716716 0 0
717717 0 0
718718 0 0
719719 41.9617 1.56491 0.782453 0.622710i 0.213968π-0.213968\pi
0.782453 + 0.622710i 0.213968π0.213968\pi
720720 0 0
721721 17.9823 0.669696
722722 0 0
723723 0 0
724724 0 0
725725 3.25077 + 5.63050i 0.120731 + 0.209112i
726726 0 0
727727 14.2434 24.6703i 0.528258 0.914969i −0.471200 0.882027i 0.656179π-0.656179\pi
0.999457 0.0329425i 0.0104878π-0.0104878\pi
728728 0 0
729729 0 0
730730 0 0
731731 0.628802 1.08912i 0.0232571 0.0402825i
732732 0 0
733733 −14.2630 24.7043i −0.526817 0.912474i −0.999512 0.0312475i 0.990052π-0.990052\pi
0.472695 0.881226i 0.343281π-0.343281\pi
734734 0 0
735735 0 0
736736 0 0
737737 −42.3609 −1.56038
738738 0 0
739739 7.85934 0.289110 0.144555 0.989497i 0.453825π-0.453825\pi
0.144555 + 0.989497i 0.453825π0.453825\pi
740740 0 0
741741 0 0
742742 0 0
743743 −3.37364 5.84332i −0.123767 0.214371i 0.797483 0.603341i 0.206164π-0.206164\pi
−0.921250 + 0.388970i 0.872831π0.872831\pi
744744 0 0
745745 4.62928 8.01815i 0.169604 0.293762i
746746 0 0
747747 0 0
748748 0 0
749749 0.554084 0.959702i 0.0202458 0.0350667i
750750 0 0
751751 −11.0900 19.2084i −0.404679 0.700925i 0.589605 0.807692i 0.299283π-0.299283\pi
−0.994284 + 0.106767i 0.965950π0.965950\pi
752752 0 0
753753 0 0
754754 0 0
755755 22.5586 0.820990
756756 0 0
757757 −20.3815 −0.740779 −0.370389 0.928877i 0.620776π-0.620776\pi
−0.370389 + 0.928877i 0.620776π0.620776\pi
758758 0 0
759759 0 0
760760 0 0
761761 20.3274 + 35.2081i 0.736869 + 1.27629i 0.953899 + 0.300129i 0.0970298π0.0970298\pi
−0.217030 + 0.976165i 0.569637π0.569637\pi
762762 0 0
763763 −1.69076 + 2.92848i −0.0612095 + 0.106018i
764764 0 0
765765 0 0
766766 0 0
767767 −0.890369 + 1.54216i −0.0321494 + 0.0556843i
768768 0 0
769769 16.9518 + 29.3615i 0.611299 + 1.05880i 0.991022 + 0.133701i 0.0426861π0.0426861\pi
−0.379723 + 0.925100i 0.623981π0.623981\pi
770770 0 0
771771 0 0
772772 0 0
773773 8.74825 0.314653 0.157326 0.987547i 0.449713π-0.449713\pi
0.157326 + 0.987547i 0.449713π0.449713\pi
774774 0 0
775775 7.93406 0.285000
776776 0 0
777777 0 0
778778 0 0
779779 13.5993 + 23.5547i 0.487246 + 0.843935i
780780 0 0
781781 −19.6623 + 34.0560i −0.703571 + 1.21862i
782782 0 0
783783 0 0
784784 0 0
785785 4.29300 7.43569i 0.153224 0.265391i
786786 0 0
787787 −4.64260 8.04122i −0.165491 0.286639i 0.771339 0.636425i 0.219588π-0.219588\pi
−0.936830 + 0.349786i 0.886254π0.886254\pi
788788 0 0
789789 0 0
790790 0 0
791791 −18.8712 −0.670983
792792 0 0
793793 −0.780738 −0.0277248
794794 0 0
795795 0 0
796796 0 0
797797 11.2271 + 19.4460i 0.397685 + 0.688811i 0.993440 0.114355i 0.0364802π-0.0364802\pi
−0.595754 + 0.803167i 0.703147π0.703147\pi
798798 0 0
799799 −0.188816 + 0.327039i −0.00667983 + 0.0115698i
800800 0 0
801801 0 0
802802 0 0
803803 −23.7075 + 41.0626i −0.836619 + 1.44907i
804804 0 0
805805 5.47150 + 9.47691i 0.192845 + 0.334017i
806806 0 0
807807 0 0
808808 0 0
809809 5.40215 0.189929 0.0949647 0.995481i 0.469726π-0.469726\pi
0.0949647 + 0.995481i 0.469726π0.469726\pi
810810 0 0
811811 −0.0177088 −0.000621841 −0.000310920 1.00000i 0.500099π-0.500099\pi
−0.000310920 1.00000i 0.500099π0.500099\pi
812812 0 0
813813 0 0
814814 0 0
815815 −5.77042 9.99466i −0.202129 0.350098i
816816 0 0
817817 12.3796 21.4420i 0.433106 0.750162i
818818 0 0
819819 0 0
820820 0 0
821821 −0.528505 + 0.915397i −0.0184449 + 0.0319476i −0.875101 0.483941i 0.839205π-0.839205\pi
0.856656 + 0.515889i 0.172538π0.172538\pi
822822 0 0
823823 −6.76303 11.7139i −0.235744 0.408321i 0.723744 0.690068i 0.242419π-0.242419\pi
−0.959489 + 0.281747i 0.909086π0.909086\pi
824824 0 0
825825 0 0
826826 0 0
827827 49.3068 1.71457 0.857283 0.514846i 0.172151π-0.172151\pi
0.857283 + 0.514846i 0.172151π0.172151\pi
828828 0 0
829829 −53.7060 −1.86529 −0.932644 0.360799i 0.882504π-0.882504\pi
−0.932644 + 0.360799i 0.882504π0.882504\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.136673 + 0.236725i 0.00473544 + 0.00820203i
834834 0 0
835835 11.1864 19.3754i 0.387120 0.670512i
836836 0 0
837837 0 0
838838 0 0
839839 −18.7163 + 32.4176i −0.646160 + 1.11918i 0.337873 + 0.941192i 0.390293π0.390293\pi
−0.984032 + 0.177990i 0.943041π0.943041\pi
840840 0 0
841841 −20.1730 34.9407i −0.695622 1.20485i
842842 0 0
843843 0 0
844844 0 0
845845 24.6490 0.847952
846846 0 0
847847 14.5438 0.499730
848848 0 0
849849 0 0
850850 0 0
851851 −21.7419 37.6581i −0.745303 1.29090i
852852 0 0
853853 10.3092 17.8561i 0.352982 0.611382i −0.633789 0.773506i 0.718501π-0.718501\pi
0.986770 + 0.162124i 0.0518344π0.0518344\pi
854854 0 0
855855 0 0
856856 0 0
857857 10.4445 18.0903i 0.356776 0.617954i −0.630644 0.776072i 0.717209π-0.717209\pi
0.987420 + 0.158118i 0.0505427π0.0505427\pi
858858 0 0
859859 −13.4430 23.2839i −0.458669 0.794438i 0.540222 0.841523i 0.318340π-0.318340\pi
−0.998891 + 0.0470847i 0.985007π0.985007\pi
860860 0 0
861861 0 0
862862 0 0
863863 −26.8142 −0.912766 −0.456383 0.889784i 0.650855π-0.650855\pi
−0.456383 + 0.889784i 0.650855π0.650855\pi
864864 0 0
865865 29.9912 1.01973
866866 0 0
867867 0 0
868868 0 0
869869 −32.7075 56.6510i −1.10953 1.92175i
870870 0 0
871871 −4.19076 + 7.25860i −0.141998 + 0.245948i
872872 0 0
873873 0 0
874874 0 0
875875 −5.93706 + 10.2833i −0.200709 + 0.347639i
876876 0 0
877877 18.9538 + 32.8289i 0.640024 + 1.10855i 0.985427 + 0.170099i 0.0544089π0.0544089\pi
−0.345403 + 0.938454i 0.612258π0.612258\pi
878878 0 0
879879 0 0
880880 0 0
881881 −7.47782 −0.251934 −0.125967 0.992034i 0.540203π-0.540203\pi
−0.125967 + 0.992034i 0.540203π0.540203\pi
882882 0 0
883883 5.07472 0.170778 0.0853889 0.996348i 0.472787π-0.472787\pi
0.0853889 + 0.996348i 0.472787π0.472787\pi
884884 0 0
885885 0 0
886886 0 0
887887 9.26157 + 16.0415i 0.310973 + 0.538621i 0.978573 0.205899i 0.0660118π-0.0660118\pi
−0.667600 + 0.744520i 0.732678π0.732678\pi
888888 0 0
889889 −8.58113 + 14.8629i −0.287802 + 0.498487i
890890 0 0
891891 0 0
892892 0 0
893893 −3.71732 + 6.43859i −0.124395 + 0.215459i
894894 0 0
895895 24.1249 + 41.7855i 0.806406 + 1.39674i
896896 0 0
897897 0 0
898898 0 0
899899 −84.6255 −2.82242
900900 0 0
901901 0.939108 0.0312862
902902 0 0
903903 0 0
904904 0 0
905905 −1.43706 2.48906i −0.0477695 0.0827393i
906906 0 0
907907 24.8245 42.9973i 0.824284 1.42770i −0.0781810 0.996939i 0.524911π-0.524911\pi
0.902465 0.430763i 0.141755π-0.141755\pi
908908 0 0
909909 0 0
910910 0 0
911911 11.9808 20.7514i 0.396943 0.687525i −0.596404 0.802684i 0.703405π-0.703405\pi
0.993347 + 0.115159i 0.0367379π0.0367379\pi
912912 0 0
913913 −14.4715 25.0654i −0.478937 0.829543i
914914 0 0
915915 0 0
916916 0 0
917917 17.8889 0.590744
918918 0 0
919919 −18.8377 −0.621400 −0.310700 0.950508i 0.600563π-0.600563\pi
−0.310700 + 0.950508i 0.600563π0.600563\pi
920920 0 0
921921 0 0
922922 0 0
923923 3.89037 + 6.73832i 0.128053 + 0.221794i
924924 0 0
925925 3.18629 5.51882i 0.104765 0.181458i
926926 0 0
927927 0 0
928928 0 0
929929 7.45185 12.9070i 0.244487 0.423464i −0.717500 0.696558i 0.754714π-0.754714\pi
0.961987 + 0.273094i 0.0880471π0.0880471\pi
930930 0 0
931931 2.69076 + 4.66053i 0.0881860 + 0.152743i
932932 0 0
933933 0 0
934934 0 0
935935 2.83775 0.0928043
936936 0 0
937937 3.94299 0.128812 0.0644059 0.997924i 0.479485π-0.479485\pi
0.0644059 + 0.997924i 0.479485π0.479485\pi
938938 0 0
939939 0 0
940940 0 0
941941 −21.4056 37.0756i −0.697804 1.20863i −0.969226 0.246171i 0.920827π-0.920827\pi
0.271423 0.962460i 0.412506π-0.412506\pi
942942 0 0
943943 −13.4626 + 23.3180i −0.438404 + 0.759338i
944944 0 0
945945 0 0
946946 0 0
947947 −13.5919 + 23.5419i −0.441678 + 0.765009i −0.997814 0.0660823i 0.978950π-0.978950\pi
0.556136 + 0.831091i 0.312283π0.312283\pi
948948 0 0
949949 4.69076 + 8.12463i 0.152268 + 0.263737i
950950 0 0
951951 0 0
952952 0 0
953953 −1.12295 −0.0363760 −0.0181880 0.999835i 0.505790π-0.505790\pi
−0.0181880 + 0.999835i 0.505790π0.505790\pi
954954 0 0
955955 47.9912 1.55296
956956 0 0
957957 0 0
958958 0 0
959959 −2.24630 3.89071i −0.0725369 0.125638i
960960 0 0
961961 −36.1357 + 62.5889i −1.16567 + 2.01900i
962962 0 0
963963 0 0
964964 0 0
965965 −14.9371 + 25.8717i −0.480841 + 0.832841i
966966 0 0
967967 4.75223 + 8.23111i 0.152822 + 0.264695i 0.932264 0.361780i 0.117831π-0.117831\pi
−0.779442 + 0.626474i 0.784497π0.784497\pi
968968 0 0
969969 0 0
970970 0 0
971971 24.5979 0.789383 0.394691 0.918814i 0.370852π-0.370852\pi
0.394691 + 0.918814i 0.370852π0.370852\pi
972972 0 0
973973 18.1445 0.581687
974974 0 0
975975 0 0
976976 0 0
977977 −12.7016 21.9997i −0.406359 0.703834i 0.588120 0.808774i 0.299868π-0.299868\pi
−0.994479 + 0.104940i 0.966535π0.966535\pi
978978 0 0
979979 −34.9164 + 60.4770i −1.11593 + 1.93285i
980980 0 0
981981 0 0
982982 0 0
983983 11.4267 19.7917i 0.364457 0.631257i −0.624232 0.781239i 0.714588π-0.714588\pi
0.988689 + 0.149982i 0.0479214π0.0479214\pi
984984 0 0
985985 17.8112 + 30.8499i 0.567512 + 0.982959i
986986 0 0
987987 0 0
988988 0 0
989989 24.5103 0.779383
990990 0 0
991991 24.4690 0.777285 0.388642 0.921389i 0.372944π-0.372944\pi
0.388642 + 0.921389i 0.372944π0.372944\pi
992992 0 0
993993 0 0
994994 0 0
995995 −11.8559 20.5351i −0.375858 0.651006i
996996 0 0
997997 −13.0000 + 22.5167i −0.411714 + 0.713110i −0.995077 0.0991016i 0.968403π-0.968403\pi
0.583363 + 0.812211i 0.301736π0.301736\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.j.a.505.3 6
3.2 odd 2 252.2.j.b.169.2 yes 6
4.3 odd 2 3024.2.r.i.2017.3 6
7.2 even 3 5292.2.i.d.2125.3 6
7.3 odd 6 5292.2.l.d.3313.3 6
7.4 even 3 5292.2.l.g.3313.1 6
7.5 odd 6 5292.2.i.g.2125.1 6
7.6 odd 2 5292.2.j.e.3529.1 6
9.2 odd 6 2268.2.a.g.1.3 3
9.4 even 3 inner 756.2.j.a.253.3 6
9.5 odd 6 252.2.j.b.85.2 6
9.7 even 3 2268.2.a.j.1.1 3
12.11 even 2 1008.2.r.g.673.2 6
21.2 odd 6 1764.2.i.f.1537.2 6
21.5 even 6 1764.2.i.e.1537.2 6
21.11 odd 6 1764.2.l.d.961.1 6
21.17 even 6 1764.2.l.g.961.3 6
21.20 even 2 1764.2.j.d.1177.2 6
36.7 odd 6 9072.2.a.bz.1.1 3
36.11 even 6 9072.2.a.bt.1.3 3
36.23 even 6 1008.2.r.g.337.2 6
36.31 odd 6 3024.2.r.i.1009.3 6
63.4 even 3 5292.2.i.d.1549.3 6
63.5 even 6 1764.2.l.g.949.3 6
63.13 odd 6 5292.2.j.e.1765.1 6
63.23 odd 6 1764.2.l.d.949.1 6
63.31 odd 6 5292.2.i.g.1549.1 6
63.32 odd 6 1764.2.i.f.373.2 6
63.40 odd 6 5292.2.l.d.361.3 6
63.41 even 6 1764.2.j.d.589.2 6
63.58 even 3 5292.2.l.g.361.1 6
63.59 even 6 1764.2.i.e.373.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.b.85.2 6 9.5 odd 6
252.2.j.b.169.2 yes 6 3.2 odd 2
756.2.j.a.253.3 6 9.4 even 3 inner
756.2.j.a.505.3 6 1.1 even 1 trivial
1008.2.r.g.337.2 6 36.23 even 6
1008.2.r.g.673.2 6 12.11 even 2
1764.2.i.e.373.2 6 63.59 even 6
1764.2.i.e.1537.2 6 21.5 even 6
1764.2.i.f.373.2 6 63.32 odd 6
1764.2.i.f.1537.2 6 21.2 odd 6
1764.2.j.d.589.2 6 63.41 even 6
1764.2.j.d.1177.2 6 21.20 even 2
1764.2.l.d.949.1 6 63.23 odd 6
1764.2.l.d.961.1 6 21.11 odd 6
1764.2.l.g.949.3 6 63.5 even 6
1764.2.l.g.961.3 6 21.17 even 6
2268.2.a.g.1.3 3 9.2 odd 6
2268.2.a.j.1.1 3 9.7 even 3
3024.2.r.i.1009.3 6 36.31 odd 6
3024.2.r.i.2017.3 6 4.3 odd 2
5292.2.i.d.1549.3 6 63.4 even 3
5292.2.i.d.2125.3 6 7.2 even 3
5292.2.i.g.1549.1 6 63.31 odd 6
5292.2.i.g.2125.1 6 7.5 odd 6
5292.2.j.e.1765.1 6 63.13 odd 6
5292.2.j.e.3529.1 6 7.6 odd 2
5292.2.l.d.361.3 6 63.40 odd 6
5292.2.l.d.3313.3 6 7.3 odd 6
5292.2.l.g.361.1 6 63.58 even 3
5292.2.l.g.3313.1 6 7.4 even 3
9072.2.a.bt.1.3 3 36.11 even 6
9072.2.a.bz.1.1 3 36.7 odd 6