Properties

Label 2268.2.x.g
Level $2268$
Weight $2$
Character orbit 2268.x
Analytic conductor $18.110$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(377,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.377");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.x (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \zeta_{6} q^{5} + (\zeta_{6} - 3) q^{7} + (3 \zeta_{6} + 3) q^{11} + ( - 2 \zeta_{6} + 4) q^{13} + 6 q^{17} + (2 \zeta_{6} - 1) q^{19} + ( - 3 \zeta_{6} + 6) q^{23} + (4 \zeta_{6} - 4) q^{25} + ( - 6 \zeta_{6} - 6) q^{29}+ \cdots + (4 \zeta_{6} + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - 5 q^{7} + 9 q^{11} + 6 q^{13} + 12 q^{17} + 9 q^{23} - 4 q^{25} - 18 q^{29} + 9 q^{31} - 12 q^{35} + 2 q^{37} - 3 q^{41} - 10 q^{43} - 6 q^{47} + 11 q^{49} + 6 q^{59} + 24 q^{61} + 18 q^{65}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(-1\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
377.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 1.50000 2.59808i 0 −2.50000 0.866025i 0 0 0
1889.1 0 0 0 1.50000 + 2.59808i 0 −2.50000 + 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.o even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2268.2.x.g 2
3.b odd 2 1 2268.2.x.a 2
7.b odd 2 1 2268.2.x.b 2
9.c even 3 1 756.2.f.a 2
9.c even 3 1 2268.2.x.h 2
9.d odd 6 1 756.2.f.c yes 2
9.d odd 6 1 2268.2.x.b 2
21.c even 2 1 2268.2.x.h 2
36.f odd 6 1 3024.2.k.a 2
36.h even 6 1 3024.2.k.d 2
63.l odd 6 1 756.2.f.c yes 2
63.l odd 6 1 2268.2.x.a 2
63.o even 6 1 756.2.f.a 2
63.o even 6 1 inner 2268.2.x.g 2
252.s odd 6 1 3024.2.k.a 2
252.bi even 6 1 3024.2.k.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.f.a 2 9.c even 3 1
756.2.f.a 2 63.o even 6 1
756.2.f.c yes 2 9.d odd 6 1
756.2.f.c yes 2 63.l odd 6 1
2268.2.x.a 2 3.b odd 2 1
2268.2.x.a 2 63.l odd 6 1
2268.2.x.b 2 7.b odd 2 1
2268.2.x.b 2 9.d odd 6 1
2268.2.x.g 2 1.a even 1 1 trivial
2268.2.x.g 2 63.o even 6 1 inner
2268.2.x.h 2 9.c even 3 1
2268.2.x.h 2 21.c even 2 1
3024.2.k.a 2 36.f odd 6 1
3024.2.k.a 2 252.s odd 6 1
3024.2.k.d 2 36.h even 6 1
3024.2.k.d 2 252.bi even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2268, [\chi])\):

\( T_{5}^{2} - 3T_{5} + 9 \) Copy content Toggle raw display
\( T_{11}^{2} - 9T_{11} + 27 \) Copy content Toggle raw display
\( T_{13}^{2} - 6T_{13} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$13$ \( T^{2} - 6T + 12 \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 3 \) Copy content Toggle raw display
$23$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$29$ \( T^{2} + 18T + 108 \) Copy content Toggle raw display
$31$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$37$ \( (T - 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$61$ \( T^{2} - 24T + 192 \) Copy content Toggle raw display
$67$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} + 27 \) Copy content Toggle raw display
$73$ \( T^{2} + 12 \) Copy content Toggle raw display
$79$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$83$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$89$ \( (T + 9)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 12T + 48 \) Copy content Toggle raw display
show more
show less