Properties

Label 2303.1.d.d
Level $2303$
Weight $1$
Character orbit 2303.d
Self dual yes
Analytic conductor $1.149$
Analytic rank $0$
Dimension $4$
Projective image $D_{15}$
CM discriminant -47
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(2255,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.2255");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 329)
Projective image: \(D_{15}\)
Projective field: Galois closure of 15.1.143108492101942920287.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} - \beta_1 + 1) q^{2} + \beta_{3} q^{3} + ( - \beta_{3} - \beta_{2} + 1) q^{4} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{6} + (2 \beta_{3} - \beta_1 + 1) q^{8} - \beta_{3} q^{9} + (2 \beta_{3} - \beta_1) q^{12}+ \cdots + \beta_1 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - 2 q^{3} + 5 q^{4} + 2 q^{6} - q^{8} + 2 q^{9} - 5 q^{12} + 6 q^{16} + q^{17} - 2 q^{18} + 8 q^{24} + 4 q^{25} - 4 q^{27} - 5 q^{32} - q^{34} + 5 q^{36} + q^{37} + 4 q^{47} - 3 q^{48}+ \cdots + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{15} + \zeta_{15}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2255.1
1.33826
1.82709
−1.95630
−0.209057
−1.95630 −1.61803 2.82709 0 3.16535 0 −3.57433 1.61803 0
2255.2 −0.209057 0.618034 −0.956295 0 −0.129204 0 0.408977 −0.618034 0
2255.3 1.33826 −1.61803 0.790943 0 −2.16535 0 −0.279773 1.61803 0
2255.4 1.82709 0.618034 2.33826 0 1.12920 0 2.44512 −0.618034 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
47.b odd 2 1 CM by \(\Q(\sqrt{-47}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2303.1.d.d 4
7.b odd 2 1 2303.1.d.e 4
7.c even 3 2 329.1.f.b 8
7.d odd 6 2 2303.1.f.d 8
21.h odd 6 2 2961.1.x.d 8
47.b odd 2 1 CM 2303.1.d.d 4
329.c even 2 1 2303.1.d.e 4
329.f odd 6 2 329.1.f.b 8
329.g even 6 2 2303.1.f.d 8
987.m even 6 2 2961.1.x.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
329.1.f.b 8 7.c even 3 2
329.1.f.b 8 329.f odd 6 2
2303.1.d.d 4 1.a even 1 1 trivial
2303.1.d.d 4 47.b odd 2 1 CM
2303.1.d.e 4 7.b odd 2 1
2303.1.d.e 4 329.c even 2 1
2303.1.f.d 8 7.d odd 6 2
2303.1.f.d 8 329.g even 6 2
2961.1.x.d 8 21.h odd 6 2
2961.1.x.d 8 987.m even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2303, [\chi])\):

\( T_{2}^{4} - T_{2}^{3} - 4T_{2}^{2} + 4T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{2} + T_{3} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T - 1)^{4} \) Copy content Toggle raw display
$53$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$59$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$61$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$83$ \( (T + 1)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - T^{3} - 4 T^{2} + \cdots + 1 \) Copy content Toggle raw display
show more
show less