Properties

Label 2303.1.j.b.1268.3
Level $2303$
Weight $1$
Character 2303.1268
Analytic conductor $1.149$
Analytic rank $0$
Dimension $24$
Projective image $D_{35}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(281,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([4, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.281");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{35})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{19} - x^{18} + x^{17} - x^{16} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{35}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{35} - \cdots)\)

Embedding invariants

Embedding label 1268.3
Root \(-0.0448648 - 0.998993i\) of defining polynomial
Character \(\chi\) \(=\) 2303.1268
Dual form 2303.1.j.b.939.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.385338 - 0.483198i) q^{2} +(-1.35699 - 0.653491i) q^{3} +(0.137526 + 0.602539i) q^{4} +(-0.838665 + 0.403880i) q^{6} +(0.936235 - 0.351375i) q^{7} +(0.900969 + 0.433884i) q^{8} +(0.790876 + 0.991727i) q^{9} +(0.207133 - 0.907509i) q^{12} +(0.190983 - 0.587785i) q^{14} +(-0.210891 + 0.923976i) q^{17} +0.783955 q^{18} +(-1.50008 - 0.135010i) q^{21} +(-0.939065 - 1.17755i) q^{24} +(0.623490 + 0.781831i) q^{25} +(-0.0899761 - 0.394211i) q^{27} +(0.340473 + 0.515795i) q^{28} +(-0.222521 + 0.974928i) q^{32} +(0.365199 + 0.457945i) q^{34} +(-0.488788 + 0.612921i) q^{36} +(0.0199667 - 0.0874800i) q^{37} +(-0.643274 + 0.672812i) q^{42} +(0.623490 - 0.781831i) q^{47} +(0.753071 - 0.657939i) q^{49} +0.618034 q^{50} +(0.889987 - 1.11601i) q^{51} +(0.443250 + 1.94201i) q^{53} +(-0.225153 - 0.108428i) q^{54} +(0.995974 + 0.0896393i) q^{56} +(-0.241880 + 0.116483i) q^{59} +(0.245172 - 1.07417i) q^{61} +(1.08891 + 0.650596i) q^{63} +(0.385338 + 0.483198i) q^{64} -0.585734 q^{68} +(-0.335148 - 1.46838i) q^{71} +(0.282260 + 1.23666i) q^{72} +(-0.0345762 - 0.0433572i) q^{74} +(-0.335148 - 1.46838i) q^{75} +1.96786 q^{79} +(0.146743 - 0.642925i) q^{81} +(-0.277479 - 0.347948i) q^{83} +(-0.124951 - 0.922423i) q^{84} +(0.385338 + 0.483198i) q^{89} +(-0.137526 - 0.602539i) q^{94} +(0.939065 - 1.17755i) q^{96} +0.618034 q^{97} +(-0.0277280 - 0.617412i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} + q^{7} + 4 q^{8} - 2 q^{9} + 10 q^{12} + 18 q^{14} + 2 q^{17} - 18 q^{18} - 5 q^{21} - 2 q^{24} - 4 q^{25} - 3 q^{27} + 3 q^{28} - 4 q^{32} + 4 q^{34} + 4 q^{36}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.385338 0.483198i 0.385338 0.483198i −0.550897 0.834573i \(-0.685714\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(3\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(4\) 0.137526 + 0.602539i 0.137526 + 0.602539i
\(5\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(6\) −0.838665 + 0.403880i −0.838665 + 0.403880i
\(7\) 0.936235 0.351375i 0.936235 0.351375i
\(8\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(9\) 0.790876 + 0.991727i 0.790876 + 0.991727i
\(10\) 0 0
\(11\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(12\) 0.207133 0.907509i 0.207133 0.907509i
\(13\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(14\) 0.190983 0.587785i 0.190983 0.587785i
\(15\) 0 0
\(16\) 0 0
\(17\) −0.210891 + 0.923976i −0.210891 + 0.923976i 0.753071 + 0.657939i \(0.228571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(18\) 0.783955 0.783955
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −1.50008 0.135010i −1.50008 0.135010i
\(22\) 0 0
\(23\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(24\) −0.939065 1.17755i −0.939065 1.17755i
\(25\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(26\) 0 0
\(27\) −0.0899761 0.394211i −0.0899761 0.394211i
\(28\) 0.340473 + 0.515795i 0.340473 + 0.515795i
\(29\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(33\) 0 0
\(34\) 0.365199 + 0.457945i 0.365199 + 0.457945i
\(35\) 0 0
\(36\) −0.488788 + 0.612921i −0.488788 + 0.612921i
\(37\) 0.0199667 0.0874800i 0.0199667 0.0874800i −0.963963 0.266037i \(-0.914286\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(42\) −0.643274 + 0.672812i −0.643274 + 0.672812i
\(43\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.623490 0.781831i 0.623490 0.781831i
\(48\) 0 0
\(49\) 0.753071 0.657939i 0.753071 0.657939i
\(50\) 0.618034 0.618034
\(51\) 0.889987 1.11601i 0.889987 1.11601i
\(52\) 0 0
\(53\) 0.443250 + 1.94201i 0.443250 + 1.94201i 0.309017 + 0.951057i \(0.400000\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(54\) −0.225153 0.108428i −0.225153 0.108428i
\(55\) 0 0
\(56\) 0.995974 + 0.0896393i 0.995974 + 0.0896393i
\(57\) 0 0
\(58\) 0 0
\(59\) −0.241880 + 0.116483i −0.241880 + 0.116483i −0.550897 0.834573i \(-0.685714\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(60\) 0 0
\(61\) 0.245172 1.07417i 0.245172 1.07417i −0.691063 0.722795i \(-0.742857\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(62\) 0 0
\(63\) 1.08891 + 0.650596i 1.08891 + 0.650596i
\(64\) 0.385338 + 0.483198i 0.385338 + 0.483198i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −0.585734 −0.585734
\(69\) 0 0
\(70\) 0 0
\(71\) −0.335148 1.46838i −0.335148 1.46838i −0.809017 0.587785i \(-0.800000\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(72\) 0.282260 + 1.23666i 0.282260 + 1.23666i
\(73\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(74\) −0.0345762 0.0433572i −0.0345762 0.0433572i
\(75\) −0.335148 1.46838i −0.335148 1.46838i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.96786 1.96786 0.983930 0.178557i \(-0.0571429\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(80\) 0 0
\(81\) 0.146743 0.642925i 0.146743 0.642925i
\(82\) 0 0
\(83\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(84\) −0.124951 0.922423i −0.124951 0.922423i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.385338 + 0.483198i 0.385338 + 0.483198i 0.936235 0.351375i \(-0.114286\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −0.137526 0.602539i −0.137526 0.602539i
\(95\) 0 0
\(96\) 0.939065 1.17755i 0.939065 1.17755i
\(97\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(98\) −0.0277280 0.617412i −0.0277280 0.617412i
\(99\) 0 0
\(100\) −0.385338 + 0.483198i −0.385338 + 0.483198i
\(101\) −0.853882 0.411208i −0.853882 0.411208i −0.0448648 0.998993i \(-0.514286\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(102\) −0.196308 0.860080i −0.196308 0.860080i
\(103\) 0.0808436 + 0.0389322i 0.0808436 + 0.0389322i 0.473869 0.880596i \(-0.342857\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.10918 + 0.534151i 1.10918 + 0.534151i
\(107\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(108\) 0.225153 0.108428i 0.225153 0.108428i
\(109\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(110\) 0 0
\(111\) −0.0842620 + 0.105661i −0.0842620 + 0.105661i
\(112\) 0 0
\(113\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.0369210 + 0.161761i −0.0369210 + 0.161761i
\(119\) 0.127218 + 0.939160i 0.127218 + 0.939160i
\(120\) 0 0
\(121\) −0.222521 0.974928i −0.222521 0.974928i
\(122\) −0.424563 0.532385i −0.424563 0.532385i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0.733966 0.275462i 0.733966 0.275462i
\(127\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(128\) −0.618034 −0.618034
\(129\) 0 0
\(130\) 0 0
\(131\) 0.992682 0.478050i 0.992682 0.478050i 0.134233 0.990950i \(-0.457143\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.590905 + 0.740971i −0.590905 + 0.740971i
\(137\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(138\) 0 0
\(139\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(140\) 0 0
\(141\) −1.35699 + 0.653491i −1.35699 + 0.653491i
\(142\) −0.838665 0.403880i −0.838665 0.403880i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.45187 + 0.400690i −1.45187 + 0.400690i
\(148\) 0.0554560 0.0554560
\(149\) −0.490094 + 0.614559i −0.490094 + 0.614559i −0.963963 0.266037i \(-0.914286\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(150\) −0.838665 0.403880i −0.838665 0.403880i
\(151\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(152\) 0 0
\(153\) −1.08312 + 0.521603i −1.08312 + 0.521603i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.68704 + 0.812434i −1.68704 + 0.812434i −0.691063 + 0.722795i \(0.742857\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(158\) 0.758291 0.950866i 0.758291 0.950866i
\(159\) 0.667598 2.92494i 0.667598 2.92494i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.254115 0.318650i −0.254115 0.318650i
\(163\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.275051 −0.275051
\(167\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(168\) −1.29295 0.772500i −1.29295 0.772500i
\(169\) −0.222521 0.974928i −0.222521 0.974928i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.443250 + 1.94201i 0.443250 + 1.94201i 0.309017 + 0.951057i \(0.400000\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(174\) 0 0
\(175\) 0.858449 + 0.512899i 0.858449 + 0.512899i
\(176\) 0 0
\(177\) 0.404349 0.404349
\(178\) 0.381966 0.381966
\(179\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(180\) 0 0
\(181\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(182\) 0 0
\(183\) −1.03466 + 1.29742i −1.03466 + 1.29742i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0.556829 + 0.268155i 0.556829 + 0.268155i
\(189\) −0.222755 0.337459i −0.222755 0.337459i
\(190\) 0 0
\(191\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(192\) −0.207133 0.907509i −0.207133 0.907509i
\(193\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(194\) 0.238152 0.298633i 0.238152 0.298633i
\(195\) 0 0
\(196\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(197\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(198\) 0 0
\(199\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(200\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(201\) 0 0
\(202\) −0.527728 + 0.254140i −0.527728 + 0.254140i
\(203\) 0 0
\(204\) 0.794834 + 0.382772i 0.794834 + 0.382772i
\(205\) 0 0
\(206\) 0.0499641 0.0240614i 0.0499641 0.0240614i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(212\) −1.10918 + 0.534151i −1.10918 + 0.534151i
\(213\) −0.504781 + 2.21159i −0.504781 + 2.21159i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.0899761 0.394211i 0.0899761 0.394211i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0.0185860 + 0.0814305i 0.0185860 + 0.0814305i
\(223\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(224\) 0.134233 + 0.990950i 0.134233 + 0.990950i
\(225\) −0.282260 + 1.23666i −0.282260 + 1.23666i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.103450 0.129723i −0.103450 0.129723i
\(237\) −2.67036 1.28598i −2.67036 1.28598i
\(238\) 0.502823 + 0.300422i 0.502823 + 0.300422i
\(239\) 0.0808436 0.0389322i 0.0808436 0.0389322i −0.393025 0.919528i \(-0.628571\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(240\) 0 0
\(241\) 0.429004 + 1.87959i 0.429004 + 1.87959i 0.473869 + 0.880596i \(0.342857\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(242\) −0.556829 0.268155i −0.556829 0.268155i
\(243\) −0.871382 + 1.09268i −0.871382 + 1.09268i
\(244\) 0.680946 0.680946
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.149155 + 0.653491i 0.149155 + 0.653491i
\(250\) 0 0
\(251\) −1.77298 + 0.853822i −1.77298 + 0.853822i −0.809017 + 0.587785i \(0.800000\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(252\) −0.242256 + 0.745586i −0.242256 + 0.745586i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(257\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(258\) 0 0
\(259\) −0.0120447 0.0889176i −0.0120447 0.0889176i
\(260\) 0 0
\(261\) 0 0
\(262\) 0.151525 0.663873i 0.151525 0.663873i
\(263\) −1.10179 −1.10179 −0.550897 0.834573i \(-0.685714\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.207133 0.907509i −0.207133 0.907509i
\(268\) 0 0
\(269\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(270\) 0 0
\(271\) 0.0199667 + 0.0874800i 0.0199667 + 0.0874800i 0.983930 0.178557i \(-0.0571429\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.0199667 0.0874800i 0.0199667 0.0874800i −0.963963 0.266037i \(-0.914286\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(282\) −0.207133 + 0.907509i −0.207133 + 0.907509i
\(283\) 1.16747 1.46396i 1.16747 1.46396i 0.309017 0.951057i \(-0.400000\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(284\) 0.838665 0.403880i 0.838665 0.403880i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.14285 + 0.550367i −1.14285 + 0.550367i
\(289\) 0.0917132 + 0.0441667i 0.0917132 + 0.0441667i
\(290\) 0 0
\(291\) −0.838665 0.403880i −0.838665 0.403880i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −0.365846 + 0.855940i −0.365846 + 0.855940i
\(295\) 0 0
\(296\) 0.0559455 0.0701535i 0.0559455 0.0701535i
\(297\) 0 0
\(298\) 0.108102 + 0.473625i 0.108102 + 0.473625i
\(299\) 0 0
\(300\) 0.838665 0.403880i 0.838665 0.403880i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.889987 + 1.11601i 0.889987 + 1.11601i
\(304\) 0 0
\(305\) 0 0
\(306\) −0.165329 + 0.724356i −0.165329 + 0.724356i
\(307\) 0.939065 1.17755i 0.939065 1.17755i −0.0448648 0.998993i \(-0.514286\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(308\) 0 0
\(309\) −0.0842620 0.105661i −0.0842620 0.105661i
\(310\) 0 0
\(311\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −0.257512 + 1.12824i −0.257512 + 1.12824i
\(315\) 0 0
\(316\) 0.270631 + 1.18571i 0.270631 + 1.18571i
\(317\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(318\) −1.15608 1.44967i −1.15608 1.44967i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.407568 0.407568
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.309017 0.951057i 0.309017 0.951057i
\(330\) 0 0
\(331\) 0.443250 1.94201i 0.443250 1.94201i 0.134233 0.990950i \(-0.457143\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(332\) 0.171491 0.215044i 0.171491 0.215044i
\(333\) 0.102547 0.0493842i 0.102547 0.0493842i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(338\) −0.556829 0.268155i −0.556829 0.268155i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.473869 0.880596i 0.473869 0.880596i
\(344\) 0 0
\(345\) 0 0
\(346\) 1.10918 + 0.534151i 1.10918 + 0.534151i
\(347\) −0.437890 1.91852i −0.437890 1.91852i −0.393025 0.919528i \(-0.628571\pi\)
−0.0448648 0.998993i \(-0.514286\pi\)
\(348\) 0 0
\(349\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) 0.578625 0.217162i 0.578625 0.217162i
\(351\) 0 0
\(352\) 0 0
\(353\) −0.556829 + 0.268155i −0.556829 + 0.268155i −0.691063 0.722795i \(-0.742857\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(354\) 0.155811 0.195381i 0.155811 0.195381i
\(355\) 0 0
\(356\) −0.238152 + 0.298633i −0.238152 + 0.298633i
\(357\) 0.441099 1.35756i 0.441099 1.35756i
\(358\) 0 0
\(359\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −0.335148 + 1.46838i −0.335148 + 1.46838i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.228218 + 0.999888i 0.228218 + 0.999888i
\(367\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.09736 + 1.66243i 1.09736 + 1.66243i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.900969 0.433884i 0.900969 0.433884i
\(377\) 0 0
\(378\) −0.248895 0.0224010i −0.248895 0.0224010i
\(379\) 0.167386 0.209896i 0.167386 0.209896i −0.691063 0.722795i \(-0.742857\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.694355 + 0.334384i −0.694355 + 0.334384i
\(383\) 0.939065 + 1.17755i 0.939065 + 1.17755i 0.983930 + 0.178557i \(0.0571429\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(384\) 0.838665 + 0.403880i 0.838665 + 0.403880i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.0849954 + 0.372389i 0.0849954 + 0.372389i
\(389\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.963963 0.266037i 0.963963 0.266037i
\(393\) −1.65946 −1.65946
\(394\) −0.694355 + 0.870693i −0.694355 + 0.870693i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.490094 0.614559i −0.490094 0.614559i 0.473869 0.880596i \(-0.342857\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.130338 0.571048i 0.130338 0.571048i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.28607 0.619338i 1.28607 0.619338i
\(409\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.0123401 + 0.0540656i −0.0123401 + 0.0540656i
\(413\) −0.185527 + 0.194046i −0.185527 + 0.194046i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(420\) 0 0
\(421\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(422\) 0 0
\(423\) 1.26847 1.26847
\(424\) −0.443250 + 1.94201i −0.443250 + 1.94201i
\(425\) −0.853882 + 0.411208i −0.853882 + 0.411208i
\(426\) 0.874126 + 1.09612i 0.874126 + 1.09612i
\(427\) −0.147897 1.09182i −0.147897 1.09182i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(432\) 0 0
\(433\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(440\) 0 0
\(441\) 1.24808 + 0.226493i 1.24808 + 0.226493i
\(442\) 0 0
\(443\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(444\) −0.0752531 0.0362400i −0.0752531 0.0362400i
\(445\) 0 0
\(446\) 0 0
\(447\) 1.06666 0.513677i 1.06666 0.513677i
\(448\) 0.530551 + 0.316989i 0.530551 + 0.316989i
\(449\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(450\) 0.488788 + 0.612921i 0.488788 + 0.612921i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.853882 + 0.411208i −0.853882 + 0.411208i −0.809017 0.587785i \(-0.800000\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(458\) 0 0
\(459\) 0.383217 0.383217
\(460\) 0 0
\(461\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(462\) 0 0
\(463\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.82021 2.82021
\(472\) −0.268467 −0.268467
\(473\) 0 0
\(474\) −1.65037 + 0.794778i −1.65037 + 0.794778i
\(475\) 0 0
\(476\) −0.548384 + 0.205812i −0.548384 + 0.205812i
\(477\) −1.57538 + 1.97547i −1.57538 + 1.97547i
\(478\) 0.0123401 0.0540656i 0.0123401 0.0540656i
\(479\) 1.07047 1.34232i 1.07047 1.34232i 0.134233 0.990950i \(-0.457143\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 1.07353 + 0.516983i 1.07353 + 0.516983i
\(483\) 0 0
\(484\) 0.556829 0.268155i 0.556829 0.268155i
\(485\) 0 0
\(486\) 0.192204 + 0.842101i 0.192204 + 0.842101i
\(487\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(488\) 0.686957 0.861417i 0.686957 0.861417i
\(489\) 0 0
\(490\) 0 0
\(491\) −1.38213 −1.38213 −0.691063 0.722795i \(-0.742857\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.829730 1.25699i −0.829730 1.25699i
\(498\) 0.373241 + 0.179743i 0.373241 + 0.179743i
\(499\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.270631 + 1.18571i −0.270631 + 1.18571i
\(503\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(504\) 0.698794 + 1.05863i 0.698794 + 1.05863i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.335148 + 1.46838i −0.335148 + 1.46838i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −0.0476061 0.0284433i −0.0476061 0.0284433i
\(519\) 0.667598 2.92494i 0.667598 2.92494i
\(520\) 0 0
\(521\) 1.87247 1.87247 0.936235 0.351375i \(-0.114286\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(522\) 0 0
\(523\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(524\) 0.424563 + 0.532385i 0.424563 + 0.532385i
\(525\) −0.829730 1.25699i −0.829730 1.25699i
\(526\) −0.424563 + 0.532385i −0.424563 + 0.532385i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(530\) 0 0
\(531\) −0.306817 0.147755i −0.306817 0.147755i
\(532\) 0 0
\(533\) 0 0
\(534\) −0.518323 0.249611i −0.518323 0.249611i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.11366 −1.11366
\(539\) 0 0
\(540\) 0 0
\(541\) 1.16747 1.46396i 1.16747 1.46396i 0.309017 0.951057i \(-0.400000\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(542\) 0.0499641 + 0.0240614i 0.0499641 + 0.0240614i
\(543\) 0 0
\(544\) −0.853882 0.411208i −0.853882 0.411208i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(548\) 0 0
\(549\) 1.25918 0.606391i 1.25918 0.606391i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.84238 0.691456i 1.84238 0.691456i
\(554\) −0.0345762 0.0433572i −0.0345762 0.0433572i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(564\) −0.580374 0.727766i −0.580374 0.727766i
\(565\) 0 0
\(566\) −0.257512 1.12824i −0.257512 1.12824i
\(567\) −0.0885214 0.653491i −0.0885214 0.653491i
\(568\) 0.335148 1.46838i 0.335148 1.46838i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0.429004 1.87959i 0.429004 1.87959i −0.0448648 0.998993i \(-0.514286\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(572\) 0 0
\(573\) 1.17099 + 1.46838i 1.17099 + 1.46838i
\(574\) 0 0
\(575\) 0 0
\(576\) −0.174446 + 0.764300i −0.174446 + 0.764300i
\(577\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(578\) 0.0566819 0.0272965i 0.0566819 0.0272965i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.382046 0.228262i −0.382046 0.228262i
\(582\) −0.518323 + 0.249611i −0.518323 + 0.249611i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −0.441099 0.819700i −0.441099 0.819700i
\(589\) 0 0
\(590\) 0 0
\(591\) 2.44521 + 1.17755i 2.44521 + 1.17755i
\(592\) 0 0
\(593\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.437696 0.210783i −0.437696 0.210783i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(600\) 0.335148 1.46838i 0.335148 1.46838i
\(601\) 0.167386 0.209896i 0.167386 0.209896i −0.691063 0.722795i \(-0.742857\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0.882199 0.882199
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.463243 0.580888i −0.463243 0.580888i
\(613\) 1.07047 + 1.34232i 1.07047 + 1.34232i 0.936235 + 0.351375i \(0.114286\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(614\) −0.207133 0.907509i −0.207133 0.907509i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.429004 1.87959i 0.429004 1.87959i −0.0448648 0.998993i \(-0.514286\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(618\) −0.0835246 −0.0835246
\(619\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.530551 + 0.316989i 0.530551 + 0.316989i
\(624\) 0 0
\(625\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.721534 0.904774i −0.721534 0.904774i
\(629\) 0.0766185 + 0.0368975i 0.0766185 + 0.0368975i
\(630\) 0 0
\(631\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(632\) 1.77298 + 0.853822i 1.77298 + 0.853822i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 1.85420 1.85420
\(637\) 0 0
\(638\) 0 0
\(639\) 1.19117 1.49368i 1.19117 1.49368i
\(640\) 0 0
\(641\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(642\) 0 0
\(643\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.241880 + 0.116483i −0.241880 + 0.116483i −0.550897 0.834573i \(-0.685714\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(648\) 0.411166 0.515586i 0.411166 0.515586i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.708207 0.341054i 0.708207 0.341054i −0.0448648 0.998993i \(-0.514286\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −0.340473 0.515795i −0.340473 0.515795i
\(659\) 0.0199667 + 0.0874800i 0.0199667 + 0.0874800i 0.983930 0.178557i \(-0.0571429\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(660\) 0 0
\(661\) −1.20204 1.50731i −1.20204 1.50731i −0.809017 0.587785i \(-0.800000\pi\)
−0.393025 0.919528i \(-0.628571\pi\)
\(662\) −0.767573 0.962506i −0.767573 0.962506i
\(663\) 0 0
\(664\) −0.0990311 0.433884i −0.0990311 0.433884i
\(665\) 0 0
\(666\) 0.0156530 0.0685804i 0.0156530 0.0685804i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.465424 1.43243i 0.465424 1.43243i
\(673\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(674\) −0.236117 + 1.03450i −0.236117 + 1.03450i
\(675\) 0.252107 0.316133i 0.252107 0.316133i
\(676\) 0.556829 0.268155i 0.556829 0.268155i
\(677\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(678\) 0 0
\(679\) 0.578625 0.217162i 0.578625 0.217162i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −0.556829 0.268155i −0.556829 0.268155i 0.134233 0.990950i \(-0.457143\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.242903 0.568299i −0.242903 0.568299i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(692\) −1.10918 + 0.534151i −1.10918 + 0.534151i
\(693\) 0 0
\(694\) −1.09576 0.527691i −1.09576 0.527691i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(701\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.0849954 + 0.372389i −0.0849954 + 0.372389i
\(707\) −0.943922 0.0849545i −0.943922 0.0849545i
\(708\) 0.0556083 + 0.243636i 0.0556083 + 0.243636i
\(709\) −0.0597394 0.261736i −0.0597394 0.261736i 0.936235 0.351375i \(-0.114286\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(710\) 0 0
\(711\) 1.55633 + 1.95158i 1.55633 + 1.95158i
\(712\) 0.137526 + 0.602539i 0.137526 + 0.602539i
\(713\) 0 0
\(714\) −0.486001 0.736260i −0.486001 0.736260i
\(715\) 0 0
\(716\) 0 0
\(717\) −0.135146 −0.135146
\(718\) 0 0
\(719\) −1.68704 + 0.812434i −1.68704 + 0.812434i −0.691063 + 0.722795i \(0.742857\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(720\) 0 0
\(721\) 0.0893684 + 0.00804330i 0.0893684 + 0.00804330i
\(722\) 0.385338 0.483198i 0.385338 0.483198i
\(723\) 0.646141 2.83093i 0.646141 2.83093i
\(724\) 0 0
\(725\) 0 0
\(726\) 0.580374 + 0.727766i 0.580374 + 0.727766i
\(727\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(728\) 0 0
\(729\) 1.30236 0.627183i 1.30236 0.627183i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.924036 0.444992i −0.924036 0.444992i
\(733\) −0.490094 + 0.614559i −0.490094 + 0.614559i −0.963963 0.266037i \(-0.914286\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.245172 + 1.07417i 0.245172 + 1.07417i 0.936235 + 0.351375i \(0.114286\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.22614 + 0.110354i 1.22614 + 0.110354i
\(743\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.125618 0.550367i 0.125618 0.550367i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(752\) 0 0
\(753\) 2.96388 2.96388
\(754\) 0 0
\(755\) 0 0
\(756\) 0.172698 0.180627i 0.172698 0.180627i
\(757\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(758\) −0.0369210 0.161761i −0.0369210 0.161761i
\(759\) 0 0
\(760\) 0 0
\(761\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.171491 0.751353i 0.171491 0.751353i
\(765\) 0 0
\(766\) 0.930848 0.930848
\(767\) 0 0
\(768\) 1.35699 0.653491i 1.35699 0.653491i
\(769\) 0.590905 + 0.740971i 0.590905 + 0.740971i 0.983930 0.178557i \(-0.0571429\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.0559455 + 0.0701535i −0.0559455 + 0.0701535i −0.809017 0.587785i \(-0.800000\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0.556829 + 0.268155i 0.556829 + 0.268155i
\(777\) −0.0417623 + 0.128531i −0.0417623 + 0.128531i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) −0.639453 + 0.801848i −0.639453 + 0.801848i
\(787\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(788\) −0.247812 1.08574i −0.247812 1.08574i
\(789\) 1.49512 + 0.720012i 1.49512 + 0.720012i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −0.838665 + 0.403880i −0.838665 + 0.403880i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(798\) 0 0
\(799\) 0.590905 + 0.740971i 0.590905 + 0.740971i
\(800\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(801\) −0.174446 + 0.764300i −0.174446 + 0.764300i
\(802\) −0.485806 −0.485806
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.603916 + 2.64593i 0.603916 + 2.64593i
\(808\) −0.590905 0.740971i −0.590905 0.740971i
\(809\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(810\) 0 0
\(811\) 0.360046 + 1.57747i 0.360046 + 1.57747i 0.753071 + 0.657939i \(0.228571\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(812\) 0 0
\(813\) 0.0300727 0.131757i 0.0300727 0.131757i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(822\) 0 0
\(823\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(824\) 0.0559455 + 0.0701535i 0.0559455 + 0.0701535i
\(825\) 0 0
\(826\) 0.0222722 + 0.164420i 0.0222722 + 0.164420i
\(827\) 1.24525 0.599682i 1.24525 0.599682i 0.309017 0.951057i \(-0.400000\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(828\) 0 0
\(829\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(830\) 0 0
\(831\) −0.0842620 + 0.105661i −0.0842620 + 0.105661i
\(832\) 0 0
\(833\) 0.449103 + 0.834573i 0.449103 + 0.834573i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(840\) 0 0
\(841\) −0.900969 0.433884i −0.900969 0.433884i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0.488788 0.612921i 0.488788 0.612921i
\(847\) −0.550897 0.834573i −0.550897 0.834573i
\(848\) 0 0
\(849\) −2.54092 + 1.22364i −2.54092 + 1.22364i
\(850\) −0.130338 + 0.571048i −0.130338 + 0.571048i
\(851\) 0 0
\(852\) −1.40199 −1.40199
\(853\) 0.360046 1.57747i 0.360046 1.57747i −0.393025 0.919528i \(-0.628571\pi\)
0.753071 0.657939i \(-0.228571\pi\)
\(854\) −0.584557 0.349257i −0.584557 0.349257i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(858\) 0 0
\(859\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.236117 + 1.03450i −0.236117 + 1.03450i
\(863\) 1.50614 1.50614 0.753071 0.657939i \(-0.228571\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(864\) 0.404349 0.404349
\(865\) 0 0
\(866\) 0 0
\(867\) −0.0955911 0.119867i −0.0955911 0.119867i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.488788 + 0.612921i 0.488788 + 0.612921i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(878\) 0.247812 + 1.08574i 0.247812 + 1.08574i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0.590374 0.515795i 0.590374 0.515795i
\(883\) −1.38213 −1.38213 −0.691063 0.722795i \(-0.742857\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(888\) −0.121762 + 0.0586375i −0.121762 + 0.0586375i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0.162817 0.713348i 0.162817 0.713348i
\(895\) 0 0
\(896\) −0.578625 + 0.217162i −0.578625 + 0.217162i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.783955 −0.783955
\(901\) −1.88784 −1.88784
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.24698 + 1.56366i 1.24698 + 1.56366i 0.623490 + 0.781831i \(0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(908\) 0 0
\(909\) −0.267509 1.17203i −0.267509 1.17203i
\(910\) 0 0
\(911\) 0.245172 1.07417i 0.245172 1.07417i −0.691063 0.722795i \(-0.742857\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.130338 + 0.571048i −0.130338 + 0.571048i
\(915\) 0 0
\(916\) 0 0
\(917\) 0.761409 0.796371i 0.761409 0.796371i
\(918\) 0.147668 0.185170i 0.147668 0.185170i
\(919\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(920\) 0 0
\(921\) −2.04382 + 0.984251i −2.04382 + 0.984251i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.0808436 0.0389322i 0.0808436 0.0389322i
\(926\) 0 0
\(927\) 0.0253271 + 0.110965i 0.0253271 + 0.110965i
\(928\) 0 0
\(929\) −0.490094 + 0.614559i −0.490094 + 0.614559i −0.963963 0.266037i \(-0.914286\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.24525 0.599682i 1.24525 0.599682i 0.309017 0.951057i \(-0.400000\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(942\) 1.08673 1.36272i 1.08673 1.36272i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(948\) 0.407609 1.78585i 0.407609 1.78585i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −0.292867 + 0.901352i −0.292867 + 0.901352i
\(953\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(954\) 0.347488 + 1.52245i 0.347488 + 1.52245i
\(955\) 0 0
\(956\) 0.0345762 + 0.0433572i 0.0345762 + 0.0433572i
\(957\) 0 0
\(958\) −0.236117 1.03450i −0.236117 1.03450i
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −1.07353 + 0.516983i −1.07353 + 0.516983i
\(965\) 0 0
\(966\) 0 0
\(967\) −0.861741 + 1.08059i −0.861741 + 1.08059i 0.134233 + 0.990950i \(0.457143\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(968\) 0.222521 0.974928i 0.222521 0.974928i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(972\) −0.778218 0.374770i −0.778218 0.374770i
\(973\) 0 0
\(974\) −0.694355 + 0.334384i −0.694355 + 0.334384i
\(975\) 0 0
\(976\) 0 0
\(977\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.532585 + 0.667841i −0.532585 + 0.667841i
\(983\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.04084 + 1.08863i −1.04084 + 1.08863i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.24196 + 1.55737i −1.24196 + 1.55737i −0.550897 + 0.834573i \(0.685714\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(992\) 0 0
\(993\) −1.87057 + 2.34562i −1.87057 + 2.34562i
\(994\) −0.927100 0.0834405i −0.927100 0.0834405i
\(995\) 0 0
\(996\) −0.373241 + 0.179743i −0.373241 + 0.179743i
\(997\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(998\) 0 0
\(999\) −0.0362821 −0.0362821
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2303.1.j.b.1268.3 yes 24
47.46 odd 2 CM 2303.1.j.b.1268.3 yes 24
49.8 even 7 inner 2303.1.j.b.939.3 24
2303.939 odd 14 inner 2303.1.j.b.939.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2303.1.j.b.939.3 24 49.8 even 7 inner
2303.1.j.b.939.3 24 2303.939 odd 14 inner
2303.1.j.b.1268.3 yes 24 1.1 even 1 trivial
2303.1.j.b.1268.3 yes 24 47.46 odd 2 CM