Properties

Label 2303.1.j.b.1597.3
Level $2303$
Weight $1$
Character 2303.1597
Analytic conductor $1.149$
Analytic rank $0$
Dimension $24$
Projective image $D_{35}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(281,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([4, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.281");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{35})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{19} - x^{18} + x^{17} - x^{16} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{35}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{35} - \cdots)\)

Embedding invariants

Embedding label 1597.3
Root \(-0.691063 - 0.722795i\) of defining polynomial
Character \(\chi\) \(=\) 2303.1597
Dual form 2303.1.j.b.610.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45780 + 0.702039i) q^{2} +(-0.416664 - 1.82552i) q^{3} +(1.00883 + 1.26503i) q^{4} +(0.674176 - 2.95376i) q^{6} +(0.983930 + 0.178557i) q^{7} +(0.222521 + 0.974928i) q^{8} +(-2.25796 + 1.08737i) q^{9} +(1.88900 - 2.36873i) q^{12} +(1.30902 + 0.951057i) q^{14} +(1.07047 - 1.34232i) q^{17} -4.05502 q^{18} +(-0.0840080 - 1.87058i) q^{21} +(1.68704 - 0.812434i) q^{24} +(-0.900969 + 0.433884i) q^{25} +(1.75837 + 2.20493i) q^{27} +(0.766736 + 1.42483i) q^{28} +(0.623490 - 0.781831i) q^{32} +(2.50289 - 1.20533i) q^{34} +(-3.65345 - 1.75941i) q^{36} +(-0.861741 + 1.08059i) q^{37} +(1.19076 - 2.78591i) q^{42} +(-0.900969 - 0.433884i) q^{47} +(0.936235 + 0.351375i) q^{49} -1.61803 q^{50} +(-2.89647 - 1.39487i) q^{51} +(-0.0559455 - 0.0701535i) q^{53} +(1.01541 + 4.44878i) q^{54} +(0.0448648 + 0.998993i) q^{56} +(-0.335148 + 1.46838i) q^{59} +(0.590905 - 0.740971i) q^{61} +(-2.41583 + 0.666726i) q^{63} +(1.45780 - 0.702039i) q^{64} +2.77800 q^{68} +(1.16747 + 1.46396i) q^{71} +(-1.56255 - 1.95938i) q^{72} +(-2.01486 + 0.970305i) q^{74} +(1.16747 + 1.46396i) q^{75} -1.99195 q^{79} +(1.72994 - 2.16928i) q^{81} +(-1.12349 + 0.541044i) q^{83} +(2.28160 - 1.99337i) q^{84} +(1.45780 - 0.702039i) q^{89} +(-1.00883 - 1.26503i) q^{94} +(-1.68704 - 0.812434i) q^{96} -1.61803 q^{97} +(1.11816 + 1.16951i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} + q^{7} + 4 q^{8} - 2 q^{9} + 10 q^{12} + 18 q^{14} + 2 q^{17} - 18 q^{18} - 5 q^{21} - 2 q^{24} - 4 q^{25} - 3 q^{27} + 3 q^{28} - 4 q^{32} + 4 q^{34} + 4 q^{36}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.45780 + 0.702039i 1.45780 + 0.702039i 0.983930 0.178557i \(-0.0571429\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(3\) −0.416664 1.82552i −0.416664 1.82552i −0.550897 0.834573i \(-0.685714\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(4\) 1.00883 + 1.26503i 1.00883 + 1.26503i
\(5\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(6\) 0.674176 2.95376i 0.674176 2.95376i
\(7\) 0.983930 + 0.178557i 0.983930 + 0.178557i
\(8\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(9\) −2.25796 + 1.08737i −2.25796 + 1.08737i
\(10\) 0 0
\(11\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(12\) 1.88900 2.36873i 1.88900 2.36873i
\(13\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(14\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(15\) 0 0
\(16\) 0 0
\(17\) 1.07047 1.34232i 1.07047 1.34232i 0.134233 0.990950i \(-0.457143\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(18\) −4.05502 −4.05502
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −0.0840080 1.87058i −0.0840080 1.87058i
\(22\) 0 0
\(23\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(24\) 1.68704 0.812434i 1.68704 0.812434i
\(25\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(26\) 0 0
\(27\) 1.75837 + 2.20493i 1.75837 + 2.20493i
\(28\) 0.766736 + 1.42483i 0.766736 + 1.42483i
\(29\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.623490 0.781831i 0.623490 0.781831i
\(33\) 0 0
\(34\) 2.50289 1.20533i 2.50289 1.20533i
\(35\) 0 0
\(36\) −3.65345 1.75941i −3.65345 1.75941i
\(37\) −0.861741 + 1.08059i −0.861741 + 1.08059i 0.134233 + 0.990950i \(0.457143\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(42\) 1.19076 2.78591i 1.19076 2.78591i
\(43\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.900969 0.433884i −0.900969 0.433884i
\(48\) 0 0
\(49\) 0.936235 + 0.351375i 0.936235 + 0.351375i
\(50\) −1.61803 −1.61803
\(51\) −2.89647 1.39487i −2.89647 1.39487i
\(52\) 0 0
\(53\) −0.0559455 0.0701535i −0.0559455 0.0701535i 0.753071 0.657939i \(-0.228571\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(54\) 1.01541 + 4.44878i 1.01541 + 4.44878i
\(55\) 0 0
\(56\) 0.0448648 + 0.998993i 0.0448648 + 0.998993i
\(57\) 0 0
\(58\) 0 0
\(59\) −0.335148 + 1.46838i −0.335148 + 1.46838i 0.473869 + 0.880596i \(0.342857\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(60\) 0 0
\(61\) 0.590905 0.740971i 0.590905 0.740971i −0.393025 0.919528i \(-0.628571\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(62\) 0 0
\(63\) −2.41583 + 0.666726i −2.41583 + 0.666726i
\(64\) 1.45780 0.702039i 1.45780 0.702039i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 2.77800 2.77800
\(69\) 0 0
\(70\) 0 0
\(71\) 1.16747 + 1.46396i 1.16747 + 1.46396i 0.858449 + 0.512899i \(0.171429\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) −1.56255 1.95938i −1.56255 1.95938i
\(73\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(74\) −2.01486 + 0.970305i −2.01486 + 0.970305i
\(75\) 1.16747 + 1.46396i 1.16747 + 1.46396i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.99195 −1.99195 −0.995974 0.0896393i \(-0.971429\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(80\) 0 0
\(81\) 1.72994 2.16928i 1.72994 2.16928i
\(82\) 0 0
\(83\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(84\) 2.28160 1.99337i 2.28160 1.99337i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.45780 0.702039i 1.45780 0.702039i 0.473869 0.880596i \(-0.342857\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −1.00883 1.26503i −1.00883 1.26503i
\(95\) 0 0
\(96\) −1.68704 0.812434i −1.68704 0.812434i
\(97\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 1.11816 + 1.16951i 1.11816 + 1.16951i
\(99\) 0 0
\(100\) −1.45780 0.702039i −1.45780 0.702039i
\(101\) −0.382046 1.67385i −0.382046 1.67385i −0.691063 0.722795i \(-0.742857\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(102\) −3.24322 4.06687i −3.24322 4.06687i
\(103\) 0.307552 + 1.34747i 0.307552 + 1.34747i 0.858449 + 0.512899i \(0.171429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.0323068 0.141546i −0.0323068 0.141546i
\(107\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(108\) −1.01541 + 4.44878i −1.01541 + 4.44878i
\(109\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(110\) 0 0
\(111\) 2.33170 + 1.12289i 2.33170 + 1.12289i
\(112\) 0 0
\(113\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −1.51944 + 1.90532i −1.51944 + 1.90532i
\(119\) 1.29295 1.12961i 1.29295 1.12961i
\(120\) 0 0
\(121\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(122\) 1.38161 0.665348i 1.38161 0.665348i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −3.98986 0.724053i −3.98986 0.724053i
\(127\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(128\) 1.61803 1.61803
\(129\) 0 0
\(130\) 0 0
\(131\) −0.210891 + 0.923976i −0.210891 + 0.923976i 0.753071 + 0.657939i \(0.228571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 1.54687 + 0.744934i 1.54687 + 0.744934i
\(137\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(138\) 0 0
\(139\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(140\) 0 0
\(141\) −0.416664 + 1.82552i −0.416664 + 1.82552i
\(142\) 0.674176 + 2.95376i 0.674176 + 2.95376i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0.251348 1.85552i 0.251348 1.85552i
\(148\) −2.23633 −2.23633
\(149\) 0.992682 + 0.478050i 0.992682 + 0.478050i 0.858449 0.512899i \(-0.171429\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(150\) 0.674176 + 2.95376i 0.674176 + 2.95376i
\(151\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(152\) 0 0
\(153\) −0.957461 + 4.19491i −0.957461 + 4.19491i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.437890 + 1.91852i −0.437890 + 1.91852i −0.0448648 + 0.998993i \(0.514286\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(158\) −2.90386 1.39842i −2.90386 1.39842i
\(159\) −0.104756 + 0.131360i −0.104756 + 0.131360i
\(160\) 0 0
\(161\) 0 0
\(162\) 4.04482 1.94788i 4.04482 1.94788i
\(163\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −2.01766 −2.01766
\(167\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(168\) 1.80499 0.498146i 1.80499 0.498146i
\(169\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.0559455 0.0701535i −0.0559455 0.0701535i 0.753071 0.657939i \(-0.228571\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(174\) 0 0
\(175\) −0.963963 + 0.266037i −0.963963 + 0.266037i
\(176\) 0 0
\(177\) 2.82021 2.82021
\(178\) 2.61803 2.61803
\(179\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(180\) 0 0
\(181\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(182\) 0 0
\(183\) −1.59887 0.769974i −1.59887 0.769974i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −0.360046 1.57747i −0.360046 1.57747i
\(189\) 1.33641 + 2.48346i 1.33641 + 2.48346i
\(190\) 0 0
\(191\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(192\) −1.88900 2.36873i −1.88900 2.36873i
\(193\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(194\) −2.35877 1.13592i −2.35877 1.13592i
\(195\) 0 0
\(196\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(197\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(198\) 0 0
\(199\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(200\) −0.623490 0.781831i −0.623490 0.781831i
\(201\) 0 0
\(202\) 0.618163 2.70835i 0.618163 2.70835i
\(203\) 0 0
\(204\) −1.15749 5.07130i −1.15749 5.07130i
\(205\) 0 0
\(206\) −0.497629 + 2.18026i −0.497629 + 2.18026i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(212\) 0.0323068 0.141546i 0.0323068 0.141546i
\(213\) 2.18604 2.74121i 2.18604 2.74121i
\(214\) 0 0
\(215\) 0 0
\(216\) −1.75837 + 2.20493i −1.75837 + 2.20493i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 2.61083 + 3.27388i 2.61083 + 3.27388i
\(223\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(224\) 0.753071 0.657939i 0.753071 0.657939i
\(225\) 1.56255 1.95938i 1.56255 1.95938i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.19565 + 1.05737i −2.19565 + 1.05737i
\(237\) 0.829973 + 3.63635i 0.829973 + 3.63635i
\(238\) 2.67789 0.739050i 2.67789 0.739050i
\(239\) 0.307552 1.34747i 0.307552 1.34747i −0.550897 0.834573i \(-0.685714\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(240\) 0 0
\(241\) 0.167386 + 0.209896i 0.167386 + 0.209896i 0.858449 0.512899i \(-0.171429\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(242\) 0.360046 + 1.57747i 0.360046 + 1.57747i
\(243\) −2.13995 1.03055i −2.13995 1.03055i
\(244\) 1.53347 1.53347
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.45581 + 1.82552i 1.45581 + 1.82552i
\(250\) 0 0
\(251\) 0.443250 1.94201i 0.443250 1.94201i 0.134233 0.990950i \(-0.457143\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(252\) −3.28058 2.38348i −3.28058 2.38348i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(257\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(258\) 0 0
\(259\) −1.04084 + 0.909354i −1.04084 + 0.909354i
\(260\) 0 0
\(261\) 0 0
\(262\) −0.956104 + 1.19892i −0.956104 + 1.19892i
\(263\) 0.947737 0.947737 0.473869 0.880596i \(-0.342857\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.88900 2.36873i −1.88900 2.36873i
\(268\) 0 0
\(269\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(270\) 0 0
\(271\) −0.861741 1.08059i −0.861741 1.08059i −0.995974 0.0896393i \(-0.971429\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.861741 + 1.08059i −0.861741 + 1.08059i 0.134233 + 0.990950i \(0.457143\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(282\) −1.88900 + 2.36873i −1.88900 + 2.36873i
\(283\) −1.77298 0.853822i −1.77298 0.853822i −0.963963 0.266037i \(-0.914286\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(284\) −0.674176 + 2.95376i −0.674176 + 2.95376i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.557669 + 2.44331i −0.557669 + 2.44331i
\(289\) −0.433412 1.89890i −0.433412 1.89890i
\(290\) 0 0
\(291\) 0.674176 + 2.95376i 0.674176 + 2.95376i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 1.66906 2.52852i 1.66906 2.52852i
\(295\) 0 0
\(296\) −1.24525 0.599682i −1.24525 0.599682i
\(297\) 0 0
\(298\) 1.11152 + 1.39380i 1.11152 + 1.39380i
\(299\) 0 0
\(300\) −0.674176 + 2.95376i −0.674176 + 2.95376i
\(301\) 0 0
\(302\) 0 0
\(303\) −2.89647 + 1.39487i −2.89647 + 1.39487i
\(304\) 0 0
\(305\) 0 0
\(306\) −4.34077 + 5.44316i −4.34077 + 5.44316i
\(307\) −1.68704 0.812434i −1.68704 0.812434i −0.995974 0.0896393i \(-0.971429\pi\)
−0.691063 0.722795i \(-0.742857\pi\)
\(308\) 0 0
\(309\) 2.33170 1.12289i 2.33170 1.12289i
\(310\) 0 0
\(311\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −1.98523 + 2.48940i −1.98523 + 2.48940i
\(315\) 0 0
\(316\) −2.00953 2.51987i −2.00953 2.51987i
\(317\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(318\) −0.244934 + 0.117954i −0.244934 + 0.117954i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 4.48941 4.48941
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.809017 0.587785i −0.809017 0.587785i
\(330\) 0 0
\(331\) −0.0559455 + 0.0701535i −0.0559455 + 0.0701535i −0.809017 0.587785i \(-0.800000\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(332\) −1.81784 0.875428i −1.81784 0.875428i
\(333\) 0.770769 3.37696i 0.770769 3.37696i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.429004 1.87959i 0.429004 1.87959i −0.0448648 0.998993i \(-0.514286\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(338\) 0.360046 + 1.57747i 0.360046 + 1.57747i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.858449 + 0.512899i 0.858449 + 0.512899i
\(344\) 0 0
\(345\) 0 0
\(346\) −0.0323068 0.141546i −0.0323068 0.141546i
\(347\) −1.24196 1.55737i −1.24196 1.55737i −0.691063 0.722795i \(-0.742857\pi\)
−0.550897 0.834573i \(-0.685714\pi\)
\(348\) 0 0
\(349\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(350\) −1.59203 0.288911i −1.59203 0.288911i
\(351\) 0 0
\(352\) 0 0
\(353\) 0.360046 1.57747i 0.360046 1.57747i −0.393025 0.919528i \(-0.628571\pi\)
0.753071 0.657939i \(-0.228571\pi\)
\(354\) 4.11129 + 1.97989i 4.11129 + 1.97989i
\(355\) 0 0
\(356\) 2.35877 + 1.13592i 2.35877 + 1.13592i
\(357\) −2.60086 1.88963i −2.60086 1.88963i
\(358\) 0 0
\(359\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 1.16747 1.46396i 1.16747 1.46396i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.79028 2.24493i −1.79028 2.24493i
\(367\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.0425201 0.0790155i −0.0425201 0.0790155i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.222521 0.974928i 0.222521 0.974928i
\(377\) 0 0
\(378\) 0.204727 + 4.55860i 0.204727 + 4.55860i
\(379\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.648781 + 2.84250i −0.648781 + 2.84250i
\(383\) −1.68704 + 0.812434i −1.68704 + 0.812434i −0.691063 + 0.722795i \(0.742857\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(384\) −0.674176 2.95376i −0.674176 2.95376i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −1.63232 2.04686i −1.63232 2.04686i
\(389\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.134233 + 0.990950i −0.134233 + 0.990950i
\(393\) 1.77461 1.77461
\(394\) −0.648781 0.312437i −0.648781 0.312437i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.416664 1.82552i −0.416664 1.82552i −0.550897 0.834573i \(-0.685714\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0.992682 0.478050i 0.992682 0.478050i 0.134233 0.990950i \(-0.457143\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.73205 2.17193i 1.73205 2.17193i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0.715369 3.13424i 0.715369 3.13424i
\(409\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.39433 + 1.74843i −1.39433 + 1.74843i
\(413\) −0.591952 + 1.38494i −0.591952 + 1.38494i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(420\) 0 0
\(421\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(422\) 0 0
\(423\) 2.50614 2.50614
\(424\) 0.0559455 0.0701535i 0.0559455 0.0701535i
\(425\) −0.382046 + 1.67385i −0.382046 + 1.67385i
\(426\) 5.11125 2.46145i 5.11125 2.46145i
\(427\) 0.713714 0.623553i 0.713714 0.623553i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.429004 1.87959i 0.429004 1.87959i −0.0448648 0.998993i \(-0.514286\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(432\) 0 0
\(433\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(440\) 0 0
\(441\) −2.49605 + 0.224649i −2.49605 + 0.224649i
\(442\) 0 0
\(443\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(444\) 0.931796 + 4.08246i 0.931796 + 4.08246i
\(445\) 0 0
\(446\) 0 0
\(447\) 0.459078 2.01135i 0.459078 2.01135i
\(448\) 1.55972 0.430457i 1.55972 0.430457i
\(449\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(450\) 3.65345 1.75941i 3.65345 1.75941i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.382046 + 1.67385i −0.382046 + 1.67385i 0.309017 + 0.951057i \(0.400000\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(458\) 0 0
\(459\) 4.84201 4.84201
\(460\) 0 0
\(461\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(462\) 0 0
\(463\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.68476 3.68476
\(472\) −1.50614 −1.50614
\(473\) 0 0
\(474\) −1.34292 + 5.88373i −1.34292 + 5.88373i
\(475\) 0 0
\(476\) 2.73336 + 0.496031i 2.73336 + 0.496031i
\(477\) 0.202606 + 0.0975698i 0.202606 + 0.0975698i
\(478\) 1.39433 1.74843i 1.39433 1.74843i
\(479\) 1.73700 + 0.836496i 1.73700 + 0.836496i 0.983930 + 0.178557i \(0.0571429\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0.0966604 + 0.423497i 0.0966604 + 0.423497i
\(483\) 0 0
\(484\) −0.360046 + 1.57747i −0.360046 + 1.57747i
\(485\) 0 0
\(486\) −2.39613 3.00466i −2.39613 3.00466i
\(487\) 0.400969 + 1.75676i 0.400969 + 1.75676i 0.623490 + 0.781831i \(0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(488\) 0.853882 + 0.411208i 0.853882 + 0.411208i
\(489\) 0 0
\(490\) 0 0
\(491\) −0.786050 −0.786050 −0.393025 0.919528i \(-0.628571\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.887305 + 1.64889i 0.887305 + 1.64889i
\(498\) 0.840684 + 3.68328i 0.840684 + 3.68328i
\(499\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 2.00953 2.51987i 2.00953 2.51987i
\(503\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(504\) −1.18758 2.20690i −1.18758 2.20690i
\(505\) 0 0
\(506\) 0 0
\(507\) 1.16747 1.46396i 1.16747 1.46396i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −2.15573 + 0.594945i −2.15573 + 0.594945i
\(519\) −0.104756 + 0.131360i −0.104756 + 0.131360i
\(520\) 0 0
\(521\) 1.96786 1.96786 0.983930 0.178557i \(-0.0571429\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(522\) 0 0
\(523\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(524\) −1.38161 + 0.665348i −1.38161 + 0.665348i
\(525\) 0.887305 + 1.64889i 0.887305 + 1.64889i
\(526\) 1.38161 + 0.665348i 1.38161 + 0.665348i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(530\) 0 0
\(531\) −0.839930 3.67997i −0.839930 3.67997i
\(532\) 0 0
\(533\) 0 0
\(534\) −1.09084 4.77928i −1.09084 4.77928i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0.720093 0.720093
\(539\) 0 0
\(540\) 0 0
\(541\) −1.77298 0.853822i −1.77298 0.853822i −0.963963 0.266037i \(-0.914286\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(542\) −0.497629 2.18026i −0.497629 2.18026i
\(543\) 0 0
\(544\) −0.382046 1.67385i −0.382046 1.67385i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(548\) 0 0
\(549\) −0.528524 + 2.31561i −0.528524 + 2.31561i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −1.95994 0.355676i −1.95994 0.355676i
\(554\) −2.01486 + 0.970305i −2.01486 + 0.970305i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(564\) −2.72968 + 1.31455i −2.72968 + 1.31455i
\(565\) 0 0
\(566\) −1.98523 2.48940i −1.98523 2.48940i
\(567\) 2.08948 1.82552i 2.08948 1.82552i
\(568\) −1.16747 + 1.46396i −1.16747 + 1.46396i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0.167386 0.209896i 0.167386 0.209896i −0.691063 0.722795i \(-0.742857\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(572\) 0 0
\(573\) 3.03994 1.46396i 3.03994 1.46396i
\(574\) 0 0
\(575\) 0 0
\(576\) −2.52827 + 3.17035i −2.52827 + 3.17035i
\(577\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(578\) 0.701276 3.07249i 0.701276 3.07249i
\(579\) 0 0
\(580\) 0 0
\(581\) −1.20204 + 0.331743i −1.20204 + 0.331743i
\(582\) −1.09084 + 4.77928i −1.09084 + 4.77928i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 2.60086 1.55394i 2.60086 1.55394i
\(589\) 0 0
\(590\) 0 0
\(591\) 0.185433 + 0.812434i 0.185433 + 0.812434i
\(592\) 0 0
\(593\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.396697 + 1.73804i 0.396697 + 1.73804i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(600\) −1.16747 + 1.46396i −1.16747 + 1.46396i
\(601\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) −5.20172 −5.20172
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −6.27260 + 3.02073i −6.27260 + 3.02073i
\(613\) 1.73700 0.836496i 1.73700 0.836496i 0.753071 0.657939i \(-0.228571\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(614\) −1.88900 2.36873i −1.88900 2.36873i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.167386 0.209896i 0.167386 0.209896i −0.691063 0.722795i \(-0.742857\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(618\) 4.18745 4.18745
\(619\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.55972 0.430457i 1.55972 0.430457i
\(624\) 0 0
\(625\) 0.623490 0.781831i 0.623490 0.781831i
\(626\) 0 0
\(627\) 0 0
\(628\) −2.86874 + 1.38151i −2.86874 + 1.38151i
\(629\) 0.528035 + 2.31347i 0.528035 + 2.31347i
\(630\) 0 0
\(631\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(632\) −0.443250 1.94201i −0.443250 1.94201i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −0.271856 −0.271856
\(637\) 0 0
\(638\) 0 0
\(639\) −4.22796 2.03608i −4.22796 2.03608i
\(640\) 0 0
\(641\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(642\) 0 0
\(643\) 0.429004 1.87959i 0.429004 1.87959i −0.0448648 0.998993i \(-0.514286\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.335148 + 1.46838i −0.335148 + 1.46838i 0.473869 + 0.880596i \(0.342857\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(648\) 2.49984 + 1.20386i 2.49984 + 1.20386i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.245172 1.07417i 0.245172 1.07417i −0.691063 0.722795i \(-0.742857\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −0.766736 1.42483i −0.766736 1.42483i
\(659\) −0.861741 1.08059i −0.861741 1.08059i −0.995974 0.0896393i \(-0.971429\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(660\) 0 0
\(661\) −0.241880 + 0.116483i −0.241880 + 0.116483i −0.550897 0.834573i \(-0.685714\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(662\) −0.130808 + 0.0629937i −0.130808 + 0.0629937i
\(663\) 0 0
\(664\) −0.777479 0.974928i −0.777479 0.974928i
\(665\) 0 0
\(666\) 3.49438 4.38182i 3.49438 4.38182i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −1.51486 1.10061i −1.51486 1.10061i
\(673\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(674\) 1.94494 2.43888i 1.94494 2.43888i
\(675\) −2.54092 1.22364i −2.54092 1.22364i
\(676\) −0.360046 + 1.57747i −0.360046 + 1.57747i
\(677\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(678\) 0 0
\(679\) −1.59203 0.288911i −1.59203 0.288911i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0.360046 + 1.57747i 0.360046 + 1.57747i 0.753071 + 0.657939i \(0.228571\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.891370 + 1.35037i 0.891370 + 1.35037i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(692\) 0.0323068 0.141546i 0.0323068 0.141546i
\(693\) 0 0
\(694\) −0.717194 3.14223i −0.717194 3.14223i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.30902 0.951057i −1.30902 0.951057i
\(701\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 1.63232 2.04686i 1.63232 2.04686i
\(707\) −0.0770283 1.71517i −0.0770283 1.71517i
\(708\) 2.84510 + 3.56765i 2.84510 + 3.56765i
\(709\) 0.939065 + 1.17755i 0.939065 + 1.17755i 0.983930 + 0.178557i \(0.0571429\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(710\) 0 0
\(711\) 4.49773 2.16599i 4.49773 2.16599i
\(712\) 1.00883 + 1.26503i 1.00883 + 1.26503i
\(713\) 0 0
\(714\) −2.46493 4.58061i −2.46493 4.58061i
\(715\) 0 0
\(716\) 0 0
\(717\) −2.58799 −2.58799
\(718\) 0 0
\(719\) −0.437890 + 1.91852i −0.437890 + 1.91852i −0.0448648 + 0.998993i \(0.514286\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(720\) 0 0
\(721\) 0.0620088 + 1.38073i 0.0620088 + 1.38073i
\(722\) 1.45780 + 0.702039i 1.45780 + 0.702039i
\(723\) 0.313425 0.393023i 0.313425 0.393023i
\(724\) 0 0
\(725\) 0 0
\(726\) 2.72968 1.31455i 2.72968 1.31455i
\(727\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(728\) 0 0
\(729\) −0.372236 + 1.63087i −0.372236 + 1.63087i
\(730\) 0 0
\(731\) 0 0
\(732\) −0.638942 2.79939i −0.638942 2.79939i
\(733\) 0.992682 + 0.478050i 0.992682 + 0.478050i 0.858449 0.512899i \(-0.171429\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.590905 + 0.740971i 0.590905 + 0.740971i 0.983930 0.178557i \(-0.0571429\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.00651373 0.145039i −0.00651373 0.145039i
\(743\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.94847 2.44331i 1.94847 2.44331i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(752\) 0 0
\(753\) −3.72986 −3.72986
\(754\) 0 0
\(755\) 0 0
\(756\) −1.79345 + 4.19598i −1.79345 + 4.19598i
\(757\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(758\) −1.51944 1.90532i −1.51944 1.90532i
\(759\) 0 0
\(760\) 0 0
\(761\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.81784 + 2.27951i −1.81784 + 2.27951i
\(765\) 0 0
\(766\) −3.02972 −3.02972
\(767\) 0 0
\(768\) 0.416664 1.82552i 0.416664 1.82552i
\(769\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.24525 + 0.599682i 1.24525 + 0.599682i 0.936235 0.351375i \(-0.114286\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.360046 1.57747i −0.360046 1.57747i
\(777\) 2.09373 + 1.52118i 2.09373 + 1.52118i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 2.58702 + 1.24584i 2.58702 + 1.24584i
\(787\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(788\) −0.448971 0.562991i −0.448971 0.562991i
\(789\) −0.394888 1.73012i −0.394888 1.73012i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0.674176 2.95376i 0.674176 2.95376i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(798\) 0 0
\(799\) −1.54687 + 0.744934i −1.54687 + 0.744934i
\(800\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(801\) −2.52827 + 3.17035i −2.52827 + 3.17035i
\(802\) 1.78274 1.78274
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.519571 0.651522i −0.519571 0.651522i
\(808\) 1.54687 0.744934i 1.54687 0.744934i
\(809\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(810\) 0 0
\(811\) 0.385338 + 0.483198i 0.385338 + 0.483198i 0.936235 0.351375i \(-0.114286\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(812\) 0 0
\(813\) −1.61358 + 2.02337i −1.61358 + 2.02337i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(822\) 0 0
\(823\) 0.0990311 0.433884i 0.0990311 0.433884i −0.900969 0.433884i \(-0.857143\pi\)
1.00000 \(0\)
\(824\) −1.24525 + 0.599682i −1.24525 + 0.599682i
\(825\) 0 0
\(826\) −1.83523 + 1.60339i −1.83523 + 1.60339i
\(827\) 0.174913 0.766342i 0.174913 0.766342i −0.809017 0.587785i \(-0.800000\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(828\) 0 0
\(829\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(830\) 0 0
\(831\) 2.33170 + 1.12289i 2.33170 + 1.12289i
\(832\) 0 0
\(833\) 1.47387 0.880596i 1.47387 0.880596i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(840\) 0 0
\(841\) −0.222521 0.974928i −0.222521 0.974928i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 3.65345 + 1.75941i 3.65345 + 1.75941i
\(847\) 0.473869 + 0.880596i 0.473869 + 0.880596i
\(848\) 0 0
\(849\) −0.819936 + 3.59237i −0.819936 + 3.59237i
\(850\) −1.73205 + 2.17193i −1.73205 + 2.17193i
\(851\) 0 0
\(852\) 5.67306 5.67306
\(853\) 0.385338 0.483198i 0.385338 0.483198i −0.550897 0.834573i \(-0.685714\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(854\) 1.47821 0.407960i 1.47821 0.407960i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(858\) 0 0
\(859\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 1.94494 2.43888i 1.94494 2.43888i
\(863\) 1.87247 1.87247 0.936235 0.351375i \(-0.114286\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(864\) 2.82021 2.82021
\(865\) 0 0
\(866\) 0 0
\(867\) −3.28590 + 1.58241i −3.28590 + 1.58241i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 3.65345 1.75941i 3.65345 1.75941i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(878\) 0.448971 + 0.562991i 0.448971 + 0.562991i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −3.79646 1.42483i −3.79646 1.42483i
\(883\) −0.786050 −0.786050 −0.393025 0.919528i \(-0.628571\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(888\) −0.575881 + 2.52310i −0.575881 + 2.52310i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 2.08129 2.60985i 2.08129 2.60985i
\(895\) 0 0
\(896\) 1.59203 + 0.288911i 1.59203 + 0.288911i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 4.05502 4.05502
\(901\) −0.154057 −0.154057
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.80194 + 0.867767i −1.80194 + 0.867767i −0.900969 + 0.433884i \(0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(908\) 0 0
\(909\) 2.68275 + 3.36406i 2.68275 + 3.36406i
\(910\) 0 0
\(911\) 0.590905 0.740971i 0.590905 0.740971i −0.393025 0.919528i \(-0.628571\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.73205 + 2.17193i −1.73205 + 2.17193i
\(915\) 0 0
\(916\) 0 0
\(917\) −0.372484 + 0.871471i −0.372484 + 0.871471i
\(918\) 7.05867 + 3.39928i 7.05867 + 3.39928i
\(919\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(920\) 0 0
\(921\) −0.780190 + 3.41824i −0.780190 + 3.41824i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.307552 1.34747i 0.307552 1.34747i
\(926\) 0 0
\(927\) −2.15965 2.70811i −2.15965 2.70811i
\(928\) 0 0
\(929\) 0.992682 + 0.478050i 0.992682 + 0.478050i 0.858449 0.512899i \(-0.171429\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.174913 0.766342i 0.174913 0.766342i −0.809017 0.587785i \(-0.800000\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(942\) 5.37163 + 2.58684i 5.37163 + 2.58684i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(948\) −3.76279 + 4.71839i −3.76279 + 4.71839i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 1.38900 + 1.00917i 1.38900 + 1.00917i
\(953\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(954\) 0.226860 + 0.284474i 0.226860 + 0.284474i
\(955\) 0 0
\(956\) 2.01486 0.970305i 2.01486 0.970305i
\(957\) 0 0
\(958\) 1.94494 + 2.43888i 1.94494 + 2.43888i
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −0.0966604 + 0.423497i −0.0966604 + 0.423497i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.708207 + 0.341054i 0.708207 + 0.341054i 0.753071 0.657939i \(-0.228571\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(968\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(972\) −0.855170 3.74674i −0.855170 3.74674i
\(973\) 0 0
\(974\) −0.648781 + 2.84250i −0.648781 + 2.84250i
\(975\) 0 0
\(976\) 0 0
\(977\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −1.14590 0.551838i −1.14590 0.551838i
\(983\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.735927 + 1.72179i −0.735927 + 1.72179i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.0808436 + 0.0389322i 0.0808436 + 0.0389322i 0.473869 0.880596i \(-0.342857\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(992\) 0 0
\(993\) 0.151377 + 0.0728994i 0.151377 + 0.0728994i
\(994\) 0.135928 + 3.02667i 0.135928 + 3.02667i
\(995\) 0 0
\(996\) −0.840684 + 3.68328i −0.840684 + 3.68328i
\(997\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(998\) 0 0
\(999\) −3.89788 −3.89788
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2303.1.j.b.1597.3 yes 24
47.46 odd 2 CM 2303.1.j.b.1597.3 yes 24
49.22 even 7 inner 2303.1.j.b.610.3 24
2303.610 odd 14 inner 2303.1.j.b.610.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2303.1.j.b.610.3 24 49.22 even 7 inner
2303.1.j.b.610.3 24 2303.610 odd 14 inner
2303.1.j.b.1597.3 yes 24 1.1 even 1 trivial
2303.1.j.b.1597.3 yes 24 47.46 odd 2 CM