Properties

Label 2303.1.j.b.281.3
Level $2303$
Weight $1$
Character 2303.281
Analytic conductor $1.149$
Analytic rank $0$
Dimension $24$
Projective image $D_{35}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(281,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([4, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.281");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{35})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{19} - x^{18} + x^{17} - x^{16} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{35}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{35} - \cdots)\)

Embedding invariants

Embedding label 281.3
Root \(0.858449 + 0.512899i\) of defining polynomial
Character \(\chi\) \(=\) 2303.281
Dual form 2303.1.j.b.1926.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.360046 + 1.57747i) q^{2} +(-0.861741 - 1.08059i) q^{3} +(-1.45780 + 0.702039i) q^{4} +(1.39433 - 1.74843i) q^{6} +(-0.393025 - 0.919528i) q^{7} +(-0.623490 - 0.781831i) q^{8} +(-0.202554 + 0.887448i) q^{9} +(2.01486 + 0.970305i) q^{12} +(1.30902 - 0.951057i) q^{14} +(-1.68704 - 0.812434i) q^{17} -1.47285 q^{18} +(-0.654946 + 1.21709i) q^{21} +(-0.307552 + 1.34747i) q^{24} +(-0.222521 + 0.974928i) q^{25} +(-0.111736 + 0.0538092i) q^{27} +(1.21850 + 1.06457i) q^{28} +(-0.900969 - 0.433884i) q^{32} +(0.674176 - 2.95376i) q^{34} +(-0.327740 - 1.43592i) q^{36} +(-1.54687 - 0.744934i) q^{37} +(-2.15573 - 0.594945i) q^{42} +(-0.222521 - 0.974928i) q^{47} +(-0.691063 + 0.722795i) q^{49} -1.61803 q^{50} +(0.575881 + 2.52310i) q^{51} +(-0.853882 + 0.411208i) q^{53} +(-0.125112 - 0.156886i) q^{54} +(-0.473869 + 0.880596i) q^{56} +(-0.0559455 + 0.0701535i) q^{59} +(-1.35699 - 0.653491i) q^{61} +(0.895642 - 0.162535i) q^{63} +(0.360046 - 1.57747i) q^{64} +3.02972 q^{68} +(1.24525 - 0.599682i) q^{71} +(0.820125 - 0.394951i) q^{72} +(0.618163 - 2.70835i) q^{74} +(1.24525 - 0.599682i) q^{75} -1.10179 q^{79} +(0.974558 + 0.469323i) q^{81} +(0.400969 - 1.75676i) q^{83} +(0.100332 - 2.23407i) q^{84} +(0.360046 - 1.57747i) q^{89} +(1.45780 - 0.702039i) q^{94} +(0.307552 + 1.34747i) q^{96} -1.61803 q^{97} +(-1.38900 - 0.829888i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} + q^{7} + 4 q^{8} - 2 q^{9} + 10 q^{12} + 18 q^{14} + 2 q^{17} - 18 q^{18} - 5 q^{21} - 2 q^{24} - 4 q^{25} - 3 q^{27} + 3 q^{28} - 4 q^{32} + 4 q^{34} + 4 q^{36}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.360046 + 1.57747i 0.360046 + 1.57747i 0.753071 + 0.657939i \(0.228571\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(3\) −0.861741 1.08059i −0.861741 1.08059i −0.995974 0.0896393i \(-0.971429\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(4\) −1.45780 + 0.702039i −1.45780 + 0.702039i
\(5\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(6\) 1.39433 1.74843i 1.39433 1.74843i
\(7\) −0.393025 0.919528i −0.393025 0.919528i
\(8\) −0.623490 0.781831i −0.623490 0.781831i
\(9\) −0.202554 + 0.887448i −0.202554 + 0.887448i
\(10\) 0 0
\(11\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(12\) 2.01486 + 0.970305i 2.01486 + 0.970305i
\(13\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(14\) 1.30902 0.951057i 1.30902 0.951057i
\(15\) 0 0
\(16\) 0 0
\(17\) −1.68704 0.812434i −1.68704 0.812434i −0.995974 0.0896393i \(-0.971429\pi\)
−0.691063 0.722795i \(-0.742857\pi\)
\(18\) −1.47285 −1.47285
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −0.654946 + 1.21709i −0.654946 + 1.21709i
\(22\) 0 0
\(23\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(24\) −0.307552 + 1.34747i −0.307552 + 1.34747i
\(25\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(26\) 0 0
\(27\) −0.111736 + 0.0538092i −0.111736 + 0.0538092i
\(28\) 1.21850 + 1.06457i 1.21850 + 1.06457i
\(29\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.900969 0.433884i −0.900969 0.433884i
\(33\) 0 0
\(34\) 0.674176 2.95376i 0.674176 2.95376i
\(35\) 0 0
\(36\) −0.327740 1.43592i −0.327740 1.43592i
\(37\) −1.54687 0.744934i −1.54687 0.744934i −0.550897 0.834573i \(-0.685714\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(42\) −2.15573 0.594945i −2.15573 0.594945i
\(43\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.222521 0.974928i −0.222521 0.974928i
\(48\) 0 0
\(49\) −0.691063 + 0.722795i −0.691063 + 0.722795i
\(50\) −1.61803 −1.61803
\(51\) 0.575881 + 2.52310i 0.575881 + 2.52310i
\(52\) 0 0
\(53\) −0.853882 + 0.411208i −0.853882 + 0.411208i −0.809017 0.587785i \(-0.800000\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(54\) −0.125112 0.156886i −0.125112 0.156886i
\(55\) 0 0
\(56\) −0.473869 + 0.880596i −0.473869 + 0.880596i
\(57\) 0 0
\(58\) 0 0
\(59\) −0.0559455 + 0.0701535i −0.0559455 + 0.0701535i −0.809017 0.587785i \(-0.800000\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(60\) 0 0
\(61\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(62\) 0 0
\(63\) 0.895642 0.162535i 0.895642 0.162535i
\(64\) 0.360046 1.57747i 0.360046 1.57747i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 3.02972 3.02972
\(69\) 0 0
\(70\) 0 0
\(71\) 1.24525 0.599682i 1.24525 0.599682i 0.309017 0.951057i \(-0.400000\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(72\) 0.820125 0.394951i 0.820125 0.394951i
\(73\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(74\) 0.618163 2.70835i 0.618163 2.70835i
\(75\) 1.24525 0.599682i 1.24525 0.599682i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.10179 −1.10179 −0.550897 0.834573i \(-0.685714\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(80\) 0 0
\(81\) 0.974558 + 0.469323i 0.974558 + 0.469323i
\(82\) 0 0
\(83\) 0.400969 1.75676i 0.400969 1.75676i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(84\) 0.100332 2.23407i 0.100332 2.23407i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.360046 1.57747i 0.360046 1.57747i −0.393025 0.919528i \(-0.628571\pi\)
0.753071 0.657939i \(-0.228571\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 1.45780 0.702039i 1.45780 0.702039i
\(95\) 0 0
\(96\) 0.307552 + 1.34747i 0.307552 + 1.34747i
\(97\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) −1.38900 0.829888i −1.38900 0.829888i
\(99\) 0 0
\(100\) −0.360046 1.57747i −0.360046 1.57747i
\(101\) 1.16747 + 1.46396i 1.16747 + 1.46396i 0.858449 + 0.512899i \(0.171429\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(102\) −3.77276 + 1.81687i −3.77276 + 1.81687i
\(103\) 1.07047 + 1.34232i 1.07047 + 1.34232i 0.936235 + 0.351375i \(0.114286\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.956104 1.19892i −0.956104 1.19892i
\(107\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(108\) 0.125112 0.156886i 0.125112 0.156886i
\(109\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(110\) 0 0
\(111\) 0.528035 + 2.31347i 0.528035 + 2.31347i
\(112\) 0 0
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −0.130808 0.0629937i −0.130808 0.0629937i
\(119\) −0.0840080 + 1.87058i −0.0840080 + 1.87058i
\(120\) 0 0
\(121\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(122\) 0.542281 2.37589i 0.542281 2.37589i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0.578866 + 1.35432i 0.578866 + 1.35432i
\(127\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(128\) 1.61803 1.61803
\(129\) 0 0
\(130\) 0 0
\(131\) 0.939065 1.17755i 0.939065 1.17755i −0.0448648 0.998993i \(-0.514286\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.416664 + 1.82552i 0.416664 + 1.82552i
\(137\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(138\) 0 0
\(139\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(140\) 0 0
\(141\) −0.861741 + 1.08059i −0.861741 + 1.08059i
\(142\) 1.39433 + 1.74843i 1.39433 + 1.74843i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.37656 + 0.123893i 1.37656 + 0.123893i
\(148\) 2.77800 2.77800
\(149\) −0.0597394 0.261736i −0.0597394 0.261736i 0.936235 0.351375i \(-0.114286\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(150\) 1.39433 + 1.74843i 1.39433 + 1.74843i
\(151\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(152\) 0 0
\(153\) 1.06271 1.33260i 1.06271 1.33260i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.490094 + 0.614559i −0.490094 + 0.614559i −0.963963 0.266037i \(-0.914286\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(158\) −0.396697 1.73804i −0.396697 1.73804i
\(159\) 1.18017 + 0.568341i 1.18017 + 0.568341i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.389454 + 1.70631i −0.389454 + 1.70631i
\(163\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 2.91560 2.91560
\(167\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(168\) 1.35991 0.246788i 1.35991 0.246788i
\(169\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.853882 + 0.411208i −0.853882 + 0.411208i −0.809017 0.587785i \(-0.800000\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(174\) 0 0
\(175\) 0.983930 0.178557i 0.983930 0.178557i
\(176\) 0 0
\(177\) 0.124018 0.124018
\(178\) 2.61803 2.61803
\(179\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(180\) 0 0
\(181\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(182\) 0 0
\(183\) 0.463217 + 2.02949i 0.463217 + 2.02949i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.00883 + 1.26503i 1.00883 + 1.26503i
\(189\) 0.0933941 + 0.0815960i 0.0933941 + 0.0815960i
\(190\) 0 0
\(191\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(192\) −2.01486 + 0.970305i −2.01486 + 0.970305i
\(193\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(194\) −0.582567 2.55239i −0.582567 2.55239i
\(195\) 0 0
\(196\) 0.500000 1.53884i 0.500000 1.53884i
\(197\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(198\) 0 0
\(199\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(200\) 0.900969 0.433884i 0.900969 0.433884i
\(201\) 0 0
\(202\) −1.88900 + 2.36873i −1.88900 + 2.36873i
\(203\) 0 0
\(204\) −2.61083 3.27388i −2.61083 3.27388i
\(205\) 0 0
\(206\) −1.73205 + 2.17193i −1.73205 + 2.17193i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) 0.956104 1.19892i 0.956104 1.19892i
\(213\) −1.72109 0.828835i −1.72109 0.828835i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.111736 + 0.0538092i 0.111736 + 0.0538092i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) −3.45931 + 1.66591i −3.45931 + 1.66591i
\(223\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(224\) −0.0448648 + 0.998993i −0.0448648 + 0.998993i
\(225\) −0.820125 0.394951i −0.820125 0.394951i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.0323068 0.141546i 0.0323068 0.141546i
\(237\) 0.949461 + 1.19059i 0.949461 + 1.19059i
\(238\) −2.98103 + 0.540977i −2.98103 + 0.540977i
\(239\) 1.07047 1.34232i 1.07047 1.34232i 0.134233 0.990950i \(-0.457143\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(240\) 0 0
\(241\) 1.79468 0.864274i 1.79468 0.864274i 0.858449 0.512899i \(-0.171429\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(242\) −1.00883 1.26503i −1.00883 1.26503i
\(243\) −0.305076 1.33662i −0.305076 1.33662i
\(244\) 2.43699 2.43699
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −2.24387 + 1.08059i −2.24387 + 1.08059i
\(250\) 0 0
\(251\) −0.686957 + 0.861417i −0.686957 + 0.861417i −0.995974 0.0896393i \(-0.971429\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(252\) −1.19156 + 0.865719i −1.19156 + 0.865719i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(257\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(258\) 0 0
\(259\) −0.0770283 + 1.71517i −0.0770283 + 1.71517i
\(260\) 0 0
\(261\) 0 0
\(262\) 2.19565 + 1.05737i 2.19565 + 1.05737i
\(263\) 1.50614 1.50614 0.753071 0.657939i \(-0.228571\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.01486 + 0.970305i −2.01486 + 0.970305i
\(268\) 0 0
\(269\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(270\) 0 0
\(271\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.54687 0.744934i −1.54687 0.744934i −0.550897 0.834573i \(-0.685714\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(282\) −2.01486 0.970305i −2.01486 0.970305i
\(283\) 0.174913 + 0.766342i 0.174913 + 0.766342i 0.983930 + 0.178557i \(0.0571429\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(284\) −1.39433 + 1.74843i −1.39433 + 1.74843i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.567544 0.711678i 0.567544 0.711678i
\(289\) 1.56255 + 1.95938i 1.56255 + 1.95938i
\(290\) 0 0
\(291\) 1.39433 + 1.74843i 1.39433 + 1.74843i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.300189 + 2.21609i 0.300189 + 2.21609i
\(295\) 0 0
\(296\) 0.382046 + 1.67385i 0.382046 + 1.67385i
\(297\) 0 0
\(298\) 0.391370 0.188474i 0.391370 0.188474i
\(299\) 0 0
\(300\) −1.39433 + 1.74843i −1.39433 + 1.74843i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.575881 2.52310i 0.575881 2.52310i
\(304\) 0 0
\(305\) 0 0
\(306\) 2.48475 + 1.19659i 2.48475 + 1.19659i
\(307\) 0.307552 + 1.34747i 0.307552 + 1.34747i 0.858449 + 0.512899i \(0.171429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(308\) 0 0
\(309\) 0.528035 2.31347i 0.528035 2.31347i
\(310\) 0 0
\(311\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −1.14590 0.551838i −1.14590 0.551838i
\(315\) 0 0
\(316\) 1.60619 0.773502i 1.60619 0.773502i
\(317\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(318\) −0.471622 + 2.06631i −0.471622 + 2.06631i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.75019 −1.75019
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(330\) 0 0
\(331\) −0.853882 0.411208i −0.853882 0.411208i −0.0448648 0.998993i \(-0.514286\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(332\) 0.648781 + 2.84250i 0.648781 + 2.84250i
\(333\) 0.974415 1.22188i 0.974415 1.22188i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.22694 1.53853i 1.22694 1.53853i 0.473869 0.880596i \(-0.342857\pi\)
0.753071 0.657939i \(-0.228571\pi\)
\(338\) −1.00883 1.26503i −1.00883 1.26503i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.936235 + 0.351375i 0.936235 + 0.351375i
\(344\) 0 0
\(345\) 0 0
\(346\) −0.956104 1.19892i −0.956104 1.19892i
\(347\) 0.992682 0.478050i 0.992682 0.478050i 0.134233 0.990950i \(-0.457143\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(348\) 0 0
\(349\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(350\) 0.635928 + 1.48783i 0.635928 + 1.48783i
\(351\) 0 0
\(352\) 0 0
\(353\) −1.00883 + 1.26503i −1.00883 + 1.26503i −0.0448648 + 0.998993i \(0.514286\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(354\) 0.0446521 + 0.195634i 0.0446521 + 0.195634i
\(355\) 0 0
\(356\) 0.582567 + 2.55239i 0.582567 + 2.55239i
\(357\) 2.09373 1.52118i 2.09373 1.52118i
\(358\) 0 0
\(359\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 1.24525 + 0.599682i 1.24525 + 0.599682i
\(364\) 0 0
\(365\) 0 0
\(366\) −3.03467 + 1.46142i −3.03467 + 1.46142i
\(367\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.713714 + 0.623553i 0.713714 + 0.623553i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(377\) 0 0
\(378\) −0.0950887 + 0.176704i −0.0950887 + 0.176704i
\(379\) 0.0199667 + 0.0874800i 0.0199667 + 0.0874800i 0.983930 0.178557i \(-0.0571429\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.448971 0.562991i 0.448971 0.562991i
\(383\) 0.307552 1.34747i 0.307552 1.34747i −0.550897 0.834573i \(-0.685714\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(384\) −1.39433 1.74843i −1.39433 1.74843i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 2.35877 1.13592i 2.35877 1.13592i
\(389\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.995974 + 0.0896393i 0.995974 + 0.0896393i
\(393\) −2.08168 −2.08168
\(394\) 0.448971 + 1.96707i 0.448971 + 1.96707i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.861741 1.08059i −0.861741 1.08059i −0.995974 0.0896393i \(-0.971429\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.0597394 + 0.261736i −0.0597394 + 0.261736i −0.995974 0.0896393i \(-0.971429\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −2.72968 1.31455i −2.72968 1.31455i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 1.61358 2.02337i 1.61358 2.02337i
\(409\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −2.50289 1.20533i −2.50289 1.20533i
\(413\) 0.0864961 + 0.0238714i 0.0864961 + 0.0238714i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(420\) 0 0
\(421\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(422\) 0 0
\(423\) 0.910270 0.910270
\(424\) 0.853882 + 0.411208i 0.853882 + 0.411208i
\(425\) 1.16747 1.46396i 1.16747 1.46396i
\(426\) 0.687786 3.01339i 0.687786 3.01339i
\(427\) −0.0675728 + 1.50463i −0.0675728 + 1.50463i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.22694 1.53853i 1.22694 1.53853i 0.473869 0.880596i \(-0.342857\pi\)
0.753071 0.657939i \(-0.228571\pi\)
\(432\) 0 0
\(433\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −0.277479 1.21572i −0.277479 1.21572i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(440\) 0 0
\(441\) −0.501465 0.759687i −0.501465 0.759687i
\(442\) 0 0
\(443\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(444\) −2.39392 3.00187i −2.39392 3.00187i
\(445\) 0 0
\(446\) 0 0
\(447\) −0.231349 + 0.290102i −0.231349 + 0.290102i
\(448\) −1.59203 + 0.288911i −1.59203 + 0.288911i
\(449\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(450\) 0.327740 1.43592i 0.327740 1.43592i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.16747 1.46396i 1.16747 1.46396i 0.309017 0.951057i \(-0.400000\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(458\) 0 0
\(459\) 0.232219 0.232219
\(460\) 0 0
\(461\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(462\) 0 0
\(463\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.08642 1.08642
\(472\) 0.0897297 0.0897297
\(473\) 0 0
\(474\) −1.53626 + 1.92641i −1.53626 + 1.92641i
\(475\) 0 0
\(476\) −1.19076 2.78591i −1.19076 2.78591i
\(477\) −0.191968 0.841068i −0.191968 0.841068i
\(478\) 2.50289 + 1.20533i 2.50289 + 1.20533i
\(479\) −0.437890 1.91852i −0.437890 1.91852i −0.393025 0.919528i \(-0.628571\pi\)
−0.0448648 0.998993i \(-0.514286\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.00953 + 2.51987i 2.00953 + 2.51987i
\(483\) 0 0
\(484\) 1.00883 1.26503i 1.00883 1.26503i
\(485\) 0 0
\(486\) 1.99864 0.962493i 1.99864 0.962493i
\(487\) −0.277479 0.347948i −0.277479 0.347948i 0.623490 0.781831i \(-0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(488\) 0.335148 + 1.46838i 0.335148 + 1.46838i
\(489\) 0 0
\(490\) 0 0
\(491\) −1.92793 −1.92793 −0.963963 0.266037i \(-0.914286\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.04084 0.909354i −1.04084 0.909354i
\(498\) −2.51249 3.15056i −2.51249 3.15056i
\(499\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.60619 0.773502i −1.60619 0.773502i
\(503\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(504\) −0.685499 0.598902i −0.685499 0.598902i
\(505\) 0 0
\(506\) 0 0
\(507\) 1.24525 + 0.599682i 1.24525 + 0.599682i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −2.73336 + 0.496031i −2.73336 + 0.496031i
\(519\) 1.18017 + 0.568341i 1.18017 + 0.568341i
\(520\) 0 0
\(521\) −0.786050 −0.786050 −0.393025 0.919528i \(-0.628571\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(522\) 0 0
\(523\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(524\) −0.542281 + 2.37589i −0.542281 + 2.37589i
\(525\) −1.04084 0.909354i −1.04084 0.909354i
\(526\) 0.542281 + 2.37589i 0.542281 + 2.37589i
\(527\) 0 0
\(528\) 0 0
\(529\) 0.623490 0.781831i 0.623490 0.781831i
\(530\) 0 0
\(531\) −0.0509256 0.0638586i −0.0509256 0.0638586i
\(532\) 0 0
\(533\) 0 0
\(534\) −2.25607 2.82902i −2.25607 2.82902i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −2.01766 −2.01766
\(539\) 0 0
\(540\) 0 0
\(541\) 0.174913 + 0.766342i 0.174913 + 0.766342i 0.983930 + 0.178557i \(0.0571429\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) −1.73205 2.17193i −1.73205 2.17193i
\(543\) 0 0
\(544\) 1.16747 + 1.46396i 1.16747 + 1.46396i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(548\) 0 0
\(549\) 0.854803 1.07189i 0.854803 1.07189i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.433033 + 1.01313i 0.433033 + 1.01313i
\(554\) 0.618163 2.70835i 0.618163 2.70835i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(564\) 0.497629 2.18026i 0.497629 2.18026i
\(565\) 0 0
\(566\) −1.14590 + 0.551838i −1.14590 + 0.551838i
\(567\) 0.0485293 1.08059i 0.0485293 1.08059i
\(568\) −1.24525 0.599682i −1.24525 0.599682i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 1.79468 + 0.864274i 1.79468 + 0.864274i 0.936235 + 0.351375i \(0.114286\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(572\) 0 0
\(573\) −0.136873 + 0.599682i −0.136873 + 0.599682i
\(574\) 0 0
\(575\) 0 0
\(576\) 1.32699 + 0.639045i 1.32699 + 0.639045i
\(577\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(578\) −2.52827 + 3.17035i −2.52827 + 3.17035i
\(579\) 0 0
\(580\) 0 0
\(581\) −1.77298 + 0.321748i −1.77298 + 0.321748i
\(582\) −2.25607 + 2.82902i −2.25607 + 2.82902i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −2.09373 + 0.785789i −2.09373 + 0.785789i
\(589\) 0 0
\(590\) 0 0
\(591\) −1.07457 1.34747i −1.07457 1.34747i
\(592\) 0 0
\(593\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.270836 + 0.339618i 0.270836 + 0.339618i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(600\) −1.24525 0.599682i −1.24525 0.599682i
\(601\) 0.0199667 + 0.0874800i 0.0199667 + 0.0874800i 0.983930 0.178557i \(-0.0571429\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 4.18745 4.18745
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.613682 + 2.68872i −0.613682 + 2.68872i
\(613\) −0.437890 + 1.91852i −0.437890 + 1.91852i −0.0448648 + 0.998993i \(0.514286\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(614\) −2.01486 + 0.970305i −2.01486 + 0.970305i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.79468 + 0.864274i 1.79468 + 0.864274i 0.936235 + 0.351375i \(0.114286\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(618\) 3.83954 3.83954
\(619\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.59203 + 0.288911i −1.59203 + 0.288911i
\(624\) 0 0
\(625\) −0.900969 0.433884i −0.900969 0.433884i
\(626\) 0 0
\(627\) 0 0
\(628\) 0.283015 1.23997i 0.283015 1.23997i
\(629\) 2.00442 + 2.51346i 2.00442 + 2.51346i
\(630\) 0 0
\(631\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(632\) 0.686957 + 0.861417i 0.686957 + 0.861417i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) −2.11945 −2.11945
\(637\) 0 0
\(638\) 0 0
\(639\) 0.279955 + 1.22656i 0.279955 + 1.22656i
\(640\) 0 0
\(641\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(642\) 0 0
\(643\) 1.22694 1.53853i 1.22694 1.53853i 0.473869 0.880596i \(-0.342857\pi\)
0.753071 0.657939i \(-0.228571\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.0559455 + 0.0701535i −0.0559455 + 0.0701535i −0.809017 0.587785i \(-0.800000\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(648\) −0.240696 1.05456i −0.240696 1.05456i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.167386 0.209896i 0.167386 0.209896i −0.691063 0.722795i \(-0.742857\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −1.21850 1.06457i −1.21850 1.06457i
\(659\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(660\) 0 0
\(661\) 0.443250 1.94201i 0.443250 1.94201i 0.134233 0.990950i \(-0.457143\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(662\) 0.341229 1.49502i 0.341229 1.49502i
\(663\) 0 0
\(664\) −1.62349 + 0.781831i −1.62349 + 0.781831i
\(665\) 0 0
\(666\) 2.27831 + 1.09717i 2.27831 + 1.09717i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.11816 0.812393i 1.11816 0.812393i
\(673\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(674\) 2.86874 + 1.38151i 2.86874 + 1.38151i
\(675\) −0.0275965 0.120908i −0.0275965 0.120908i
\(676\) 1.00883 1.26503i 1.00883 1.26503i
\(677\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) 0 0
\(679\) 0.635928 + 1.48783i 0.635928 + 1.48783i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.00883 1.26503i −1.00883 1.26503i −0.963963 0.266037i \(-0.914286\pi\)
−0.0448648 0.998993i \(-0.514286\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.217194 + 1.60339i −0.217194 + 1.60339i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(692\) 0.956104 1.19892i 0.956104 1.19892i
\(693\) 0 0
\(694\) 1.11152 + 1.39380i 1.11152 + 1.39380i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(701\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −2.35877 1.13592i −2.35877 1.13592i
\(707\) 0.887305 1.64889i 0.887305 1.64889i
\(708\) −0.180793 + 0.0870652i −0.180793 + 0.0870652i
\(709\) 0.0808436 0.0389322i 0.0808436 0.0389322i −0.393025 0.919528i \(-0.628571\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(710\) 0 0
\(711\) 0.223173 0.977785i 0.223173 0.977785i
\(712\) −1.45780 + 0.702039i −1.45780 + 0.702039i
\(713\) 0 0
\(714\) 3.15345 + 2.75509i 3.15345 + 2.75509i
\(715\) 0 0
\(716\) 0 0
\(717\) −2.37297 −2.37297
\(718\) 0 0
\(719\) −0.490094 + 0.614559i −0.490094 + 0.614559i −0.963963 0.266037i \(-0.914286\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(720\) 0 0
\(721\) 0.813584 1.51189i 0.813584 1.51189i
\(722\) 0.360046 + 1.57747i 0.360046 + 1.57747i
\(723\) −2.48048 1.19454i −2.48048 1.19454i
\(724\) 0 0
\(725\) 0 0
\(726\) −0.497629 + 2.18026i −0.497629 + 2.18026i
\(727\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(728\) 0 0
\(729\) −0.507029 + 0.635795i −0.507029 + 0.635795i
\(730\) 0 0
\(731\) 0 0
\(732\) −2.10005 2.63339i −2.10005 2.63339i
\(733\) −0.0597394 0.261736i −0.0597394 0.261736i 0.936235 0.351375i \(-0.114286\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.35699 + 0.653491i −1.35699 + 0.653491i −0.963963 0.266037i \(-0.914286\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.726664 + 1.35037i −0.726664 + 1.35037i
\(743\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.47781 + 0.711678i 1.47781 + 0.711678i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(752\) 0 0
\(753\) 1.52282 1.52282
\(754\) 0 0
\(755\) 0 0
\(756\) −0.193433 0.0533842i −0.193433 0.0533842i
\(757\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) −0.130808 + 0.0629937i −0.130808 + 0.0629937i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.648781 + 0.312437i 0.648781 + 0.312437i
\(765\) 0 0
\(766\) 2.23633 2.23633
\(767\) 0 0
\(768\) 0.861741 1.08059i 0.861741 1.08059i
\(769\) −0.416664 + 1.82552i −0.416664 + 1.82552i 0.134233 + 0.990950i \(0.457143\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.382046 1.67385i −0.382046 1.67385i −0.691063 0.722795i \(-0.742857\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 1.00883 + 1.26503i 1.00883 + 1.26503i
\(777\) 1.91977 1.39480i 1.91977 1.39480i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) −0.749501 3.28378i −0.749501 3.28378i
\(787\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(788\) −1.81784 + 0.875428i −1.81784 + 0.875428i
\(789\) −1.29791 1.62752i −1.29791 1.62752i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 1.39433 1.74843i 1.39433 1.74843i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(798\) 0 0
\(799\) −0.416664 + 1.82552i −0.416664 + 1.82552i
\(800\) 0.623490 0.781831i 0.623490 0.781831i
\(801\) 1.32699 + 0.639045i 1.32699 + 0.639045i
\(802\) −0.434388 −0.434388
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.55280 0.747791i 1.55280 0.747791i
\(808\) 0.416664 1.82552i 0.416664 1.82552i
\(809\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0 0
\(811\) −0.556829 + 0.268155i −0.556829 + 0.268155i −0.691063 0.722795i \(-0.742857\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(812\) 0 0
\(813\) 2.13797 + 1.02959i 2.13797 + 1.02959i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(822\) 0 0
\(823\) 0.777479 0.974928i 0.777479 0.974928i −0.222521 0.974928i \(-0.571429\pi\)
1.00000 \(0\)
\(824\) 0.382046 1.67385i 0.382046 1.67385i
\(825\) 0 0
\(826\) −0.00651373 + 0.145039i −0.00651373 + 0.145039i
\(827\) −1.20204 + 1.50731i −1.20204 + 1.50731i −0.393025 + 0.919528i \(0.628571\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(828\) 0 0
\(829\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(830\) 0 0
\(831\) 0.528035 + 2.31347i 0.528035 + 2.31347i
\(832\) 0 0
\(833\) 1.75307 0.657939i 1.75307 0.657939i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(840\) 0 0
\(841\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0.327740 + 1.43592i 0.327740 + 1.43592i
\(847\) 0.753071 + 0.657939i 0.753071 + 0.657939i
\(848\) 0 0
\(849\) 0.677372 0.849397i 0.677372 0.849397i
\(850\) 2.72968 + 1.31455i 2.72968 + 1.31455i
\(851\) 0 0
\(852\) 3.09088 3.09088
\(853\) −0.556829 0.268155i −0.556829 0.268155i 0.134233 0.990950i \(-0.457143\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(854\) −2.39783 + 0.435141i −2.39783 + 0.435141i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(858\) 0 0
\(859\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 2.86874 + 1.38151i 2.86874 + 1.38151i
\(863\) −1.38213 −1.38213 −0.691063 0.722795i \(-0.742857\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(864\) 0.124018 0.124018
\(865\) 0 0
\(866\) 0 0
\(867\) 0.770769 3.37696i 0.770769 3.37696i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0.327740 1.43592i 0.327740 1.43592i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(878\) 1.81784 0.875428i 1.81784 0.875428i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.01783 1.06457i 1.01783 1.06457i
\(883\) −1.92793 −1.92793 −0.963963 0.266037i \(-0.914286\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(888\) 1.47952 1.85526i 1.47952 1.85526i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −0.540922 0.260495i −0.540922 0.260495i
\(895\) 0 0
\(896\) −0.635928 1.48783i −0.635928 1.48783i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 1.47285 1.47285
\(901\) 1.77461 1.77461
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −0.445042 + 1.94986i −0.445042 + 1.94986i −0.222521 + 0.974928i \(0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(908\) 0 0
\(909\) −1.53566 + 0.739535i −1.53566 + 0.739535i
\(910\) 0 0
\(911\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 2.72968 + 1.31455i 2.72968 + 1.31455i
\(915\) 0 0
\(916\) 0 0
\(917\) −1.45187 0.400690i −1.45187 0.400690i
\(918\) 0.0836097 + 0.366318i 0.0836097 + 0.366318i
\(919\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(920\) 0 0
\(921\) 1.19103 1.49351i 1.19103 1.49351i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.07047 1.34232i 1.07047 1.34232i
\(926\) 0 0
\(927\) −1.40807 + 0.678091i −1.40807 + 0.678091i
\(928\) 0 0
\(929\) −0.0597394 0.261736i −0.0597394 0.261736i 0.936235 0.351375i \(-0.114286\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.20204 + 1.50731i −1.20204 + 1.50731i −0.393025 + 0.919528i \(0.628571\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(942\) 0.391162 + 1.71379i 0.391162 + 1.71379i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(948\) −2.21996 1.06908i −2.21996 1.06908i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 1.51486 1.10061i 1.51486 1.10061i
\(953\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(954\) 1.25764 0.605647i 1.25764 0.605647i
\(955\) 0 0
\(956\) −0.618163 + 2.70835i −0.618163 + 2.70835i
\(957\) 0 0
\(958\) 2.86874 1.38151i 2.86874 1.38151i
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −2.00953 + 2.51987i −2.00953 + 2.51987i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.429004 + 1.87959i 0.429004 + 1.87959i 0.473869 + 0.880596i \(0.342857\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(968\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(972\) 1.38310 + 1.73435i 1.38310 + 1.73435i
\(973\) 0 0
\(974\) 0.448971 0.562991i 0.448971 0.562991i
\(975\) 0 0
\(976\) 0 0
\(977\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.694143 3.04124i −0.694143 3.04124i
\(983\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.33232 + 0.367696i 1.33232 + 0.367696i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.210891 0.923976i −0.210891 0.923976i −0.963963 0.266037i \(-0.914286\pi\)
0.753071 0.657939i \(-0.228571\pi\)
\(992\) 0 0
\(993\) 0.291478 + 1.27705i 0.291478 + 1.27705i
\(994\) 1.05972 1.96930i 1.05972 1.96930i
\(995\) 0 0
\(996\) 2.51249 3.15056i 2.51249 3.15056i
\(997\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(998\) 0 0
\(999\) 0.212926 0.212926
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2303.1.j.b.281.3 24
47.46 odd 2 CM 2303.1.j.b.281.3 24
49.15 even 7 inner 2303.1.j.b.1926.3 yes 24
2303.1926 odd 14 inner 2303.1.j.b.1926.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2303.1.j.b.281.3 24 1.1 even 1 trivial
2303.1.j.b.281.3 24 47.46 odd 2 CM
2303.1.j.b.1926.3 yes 24 49.15 even 7 inner
2303.1.j.b.1926.3 yes 24 2303.1926 odd 14 inner