Properties

Label 2303.1.j.b.939.1
Level $2303$
Weight $1$
Character 2303.939
Analytic conductor $1.149$
Analytic rank $0$
Dimension $24$
Projective image $D_{35}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(281,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([4, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.281");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{35})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{19} - x^{18} + x^{17} - x^{16} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{35}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{35} - \cdots)\)

Embedding invariants

Embedding label 939.1
Root \(0.936235 + 0.351375i\) of defining polynomial
Character \(\chi\) \(=\) 2303.939
Dual form 2303.1.j.b.1268.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00883 - 1.26503i) q^{2} +(-1.54687 + 0.744934i) q^{3} +(-0.360046 + 1.57747i) q^{4} +(2.50289 + 1.20533i) q^{6} +(-0.963963 + 0.266037i) q^{7} +(0.900969 - 0.433884i) q^{8} +(1.21439 - 1.52280i) q^{9} +(-0.618163 - 2.70835i) q^{12} +(1.30902 + 0.951057i) q^{14} +(0.307552 + 1.34747i) q^{17} -3.15151 q^{18} +(1.29295 - 1.12961i) q^{21} +(-1.07047 + 1.34232i) q^{24} +(0.623490 - 0.781831i) q^{25} +(-0.362079 + 1.58637i) q^{27} +(-0.0725928 - 1.61640i) q^{28} +(-0.222521 - 0.974928i) q^{32} +(1.39433 - 1.74843i) q^{34} +(1.96493 + 2.46395i) q^{36} +(-0.416664 - 1.82552i) q^{37} +(-2.73336 - 0.496031i) q^{42} +(0.623490 + 0.781831i) q^{47} +(0.858449 - 0.512899i) q^{49} -1.61803 q^{50} +(-1.47952 - 1.85526i) q^{51} +(-0.335148 + 1.46838i) q^{53} +(2.37208 - 1.14233i) q^{54} +(-0.753071 + 0.657939i) q^{56} +(-0.853882 - 0.411208i) q^{59} +(0.0199667 + 0.0874800i) q^{61} +(-0.765510 + 1.79100i) q^{63} +(-1.00883 + 1.26503i) q^{64} -2.23633 q^{68} +(-0.382046 + 1.67385i) q^{71} +(0.433412 - 1.89890i) q^{72} +(-1.88900 + 2.36873i) q^{74} +(-0.382046 + 1.67385i) q^{75} +0.268467 q^{79} +(-0.188240 - 0.824734i) q^{81} +(-0.277479 + 0.347948i) q^{83} +(1.31641 + 2.44629i) q^{84} +(-1.00883 + 1.26503i) q^{89} +(0.360046 - 1.57747i) q^{94} +(1.07047 + 1.34232i) q^{96} -1.61803 q^{97} +(-1.51486 - 0.568536i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} + q^{7} + 4 q^{8} - 2 q^{9} + 10 q^{12} + 18 q^{14} + 2 q^{17} - 18 q^{18} - 5 q^{21} - 2 q^{24} - 4 q^{25} - 3 q^{27} + 3 q^{28} - 4 q^{32} + 4 q^{34} + 4 q^{36}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{6}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00883 1.26503i −1.00883 1.26503i −0.963963 0.266037i \(-0.914286\pi\)
−0.0448648 0.998993i \(-0.514286\pi\)
\(3\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(4\) −0.360046 + 1.57747i −0.360046 + 1.57747i
\(5\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(6\) 2.50289 + 1.20533i 2.50289 + 1.20533i
\(7\) −0.963963 + 0.266037i −0.963963 + 0.266037i
\(8\) 0.900969 0.433884i 0.900969 0.433884i
\(9\) 1.21439 1.52280i 1.21439 1.52280i
\(10\) 0 0
\(11\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(12\) −0.618163 2.70835i −0.618163 2.70835i
\(13\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(14\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(15\) 0 0
\(16\) 0 0
\(17\) 0.307552 + 1.34747i 0.307552 + 1.34747i 0.858449 + 0.512899i \(0.171429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(18\) −3.15151 −3.15151
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 1.29295 1.12961i 1.29295 1.12961i
\(22\) 0 0
\(23\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(24\) −1.07047 + 1.34232i −1.07047 + 1.34232i
\(25\) 0.623490 0.781831i 0.623490 0.781831i
\(26\) 0 0
\(27\) −0.362079 + 1.58637i −0.362079 + 1.58637i
\(28\) −0.0725928 1.61640i −0.0725928 1.61640i
\(29\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.222521 0.974928i −0.222521 0.974928i
\(33\) 0 0
\(34\) 1.39433 1.74843i 1.39433 1.74843i
\(35\) 0 0
\(36\) 1.96493 + 2.46395i 1.96493 + 2.46395i
\(37\) −0.416664 1.82552i −0.416664 1.82552i −0.550897 0.834573i \(-0.685714\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(42\) −2.73336 0.496031i −2.73336 0.496031i
\(43\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(48\) 0 0
\(49\) 0.858449 0.512899i 0.858449 0.512899i
\(50\) −1.61803 −1.61803
\(51\) −1.47952 1.85526i −1.47952 1.85526i
\(52\) 0 0
\(53\) −0.335148 + 1.46838i −0.335148 + 1.46838i 0.473869 + 0.880596i \(0.342857\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(54\) 2.37208 1.14233i 2.37208 1.14233i
\(55\) 0 0
\(56\) −0.753071 + 0.657939i −0.753071 + 0.657939i
\(57\) 0 0
\(58\) 0 0
\(59\) −0.853882 0.411208i −0.853882 0.411208i −0.0448648 0.998993i \(-0.514286\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(60\) 0 0
\(61\) 0.0199667 + 0.0874800i 0.0199667 + 0.0874800i 0.983930 0.178557i \(-0.0571429\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(62\) 0 0
\(63\) −0.765510 + 1.79100i −0.765510 + 1.79100i
\(64\) −1.00883 + 1.26503i −1.00883 + 1.26503i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −2.23633 −2.23633
\(69\) 0 0
\(70\) 0 0
\(71\) −0.382046 + 1.67385i −0.382046 + 1.67385i 0.309017 + 0.951057i \(0.400000\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(72\) 0.433412 1.89890i 0.433412 1.89890i
\(73\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(74\) −1.88900 + 2.36873i −1.88900 + 2.36873i
\(75\) −0.382046 + 1.67385i −0.382046 + 1.67385i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.268467 0.268467 0.134233 0.990950i \(-0.457143\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(80\) 0 0
\(81\) −0.188240 0.824734i −0.188240 0.824734i
\(82\) 0 0
\(83\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(84\) 1.31641 + 2.44629i 1.31641 + 2.44629i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.00883 + 1.26503i −1.00883 + 1.26503i −0.0448648 + 0.998993i \(0.514286\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0.360046 1.57747i 0.360046 1.57747i
\(95\) 0 0
\(96\) 1.07047 + 1.34232i 1.07047 + 1.34232i
\(97\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) −1.51486 0.568536i −1.51486 0.568536i
\(99\) 0 0
\(100\) 1.00883 + 1.26503i 1.00883 + 1.26503i
\(101\) 1.24525 0.599682i 1.24525 0.599682i 0.309017 0.951057i \(-0.400000\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(102\) −0.854379 + 3.74328i −0.854379 + 3.74328i
\(103\) −1.68704 + 0.812434i −1.68704 + 0.812434i −0.691063 + 0.722795i \(0.742857\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.19565 1.05737i 2.19565 1.05737i
\(107\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(108\) −2.37208 1.14233i −2.37208 1.14233i
\(109\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(110\) 0 0
\(111\) 2.00442 + 2.51346i 2.00442 + 2.51346i
\(112\) 0 0
\(113\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0.341229 + 1.49502i 0.341229 + 1.49502i
\(119\) −0.654946 1.21709i −0.654946 1.21709i
\(120\) 0 0
\(121\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(122\) 0.0905218 0.113511i 0.0905218 0.113511i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 3.03793 0.838417i 3.03793 0.838417i
\(127\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(128\) 1.61803 1.61803
\(129\) 0 0
\(130\) 0 0
\(131\) 0.0808436 + 0.0389322i 0.0808436 + 0.0389322i 0.473869 0.880596i \(-0.342857\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.861741 + 1.08059i 0.861741 + 1.08059i
\(137\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(138\) 0 0
\(139\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(140\) 0 0
\(141\) −1.54687 0.744934i −1.54687 0.744934i
\(142\) 2.50289 1.20533i 2.50289 1.20533i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.945834 + 1.43288i −0.945834 + 1.43288i
\(148\) 3.02972 3.02972
\(149\) −1.24196 1.55737i −1.24196 1.55737i −0.691063 0.722795i \(-0.742857\pi\)
−0.550897 0.834573i \(-0.685714\pi\)
\(150\) 2.50289 1.20533i 2.50289 1.20533i
\(151\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(152\) 0 0
\(153\) 2.42542 + 1.16802i 2.42542 + 1.16802i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.73700 + 0.836496i 1.73700 + 0.836496i 0.983930 + 0.178557i \(0.0571429\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(158\) −0.270836 0.339618i −0.270836 0.339618i
\(159\) −0.575415 2.52106i −0.575415 2.52106i
\(160\) 0 0
\(161\) 0 0
\(162\) −0.853411 + 1.07014i −0.853411 + 1.07014i
\(163\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.720093 0.720093
\(167\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(168\) 0.674784 1.57874i 0.674784 1.57874i
\(169\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.335148 + 1.46838i −0.335148 + 1.46838i 0.473869 + 0.880596i \(0.342857\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(174\) 0 0
\(175\) −0.393025 + 0.919528i −0.393025 + 0.919528i
\(176\) 0 0
\(177\) 1.62717 1.62717
\(178\) 2.61803 2.61803
\(179\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(180\) 0 0
\(181\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(182\) 0 0
\(183\) −0.0960527 0.120446i −0.0960527 0.120446i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1.45780 + 0.702039i −1.45780 + 0.702039i
\(189\) −0.0730026 1.62553i −0.0730026 1.62553i
\(190\) 0 0
\(191\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(192\) 0.618163 2.70835i 0.618163 2.70835i
\(193\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(194\) 1.63232 + 2.04686i 1.63232 + 2.04686i
\(195\) 0 0
\(196\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(197\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(198\) 0 0
\(199\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(200\) 0.222521 0.974928i 0.222521 0.974928i
\(201\) 0 0
\(202\) −2.01486 0.970305i −2.01486 0.970305i
\(203\) 0 0
\(204\) 3.45931 1.66591i 3.45931 1.66591i
\(205\) 0 0
\(206\) 2.72968 + 1.31455i 2.72968 + 1.31455i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) −2.19565 1.05737i −2.19565 1.05737i
\(213\) −0.655933 2.87383i −0.655933 2.87383i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.362079 + 1.58637i 0.362079 + 1.58637i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 1.15749 5.07130i 1.15749 5.07130i
\(223\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(224\) 0.473869 + 0.880596i 0.473869 + 0.880596i
\(225\) −0.433412 1.89890i −0.433412 1.89890i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.956104 1.19892i 0.956104 1.19892i
\(237\) −0.415283 + 0.199990i −0.415283 + 0.199990i
\(238\) −0.878932 + 2.05636i −0.878932 + 2.05636i
\(239\) −1.68704 0.812434i −1.68704 0.812434i −0.995974 0.0896393i \(-0.971429\pi\)
−0.691063 0.722795i \(-0.742857\pi\)
\(240\) 0 0
\(241\) 0.245172 1.07417i 0.245172 1.07417i −0.691063 0.722795i \(-0.742857\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(242\) 1.45780 0.702039i 1.45780 0.702039i
\(243\) −0.108967 0.136641i −0.108967 0.136641i
\(244\) −0.145186 −0.145186
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0.170026 0.744934i 0.170026 0.744934i
\(250\) 0 0
\(251\) −0.241880 0.116483i −0.241880 0.116483i 0.309017 0.951057i \(-0.400000\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(252\) −2.54962 1.85241i −2.54962 1.85241i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.623490 0.781831i −0.623490 0.781831i
\(257\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(258\) 0 0
\(259\) 0.887305 + 1.64889i 0.887305 + 1.64889i
\(260\) 0 0
\(261\) 0 0
\(262\) −0.0323068 0.141546i −0.0323068 0.141546i
\(263\) −0.0897297 −0.0897297 −0.0448648 0.998993i \(-0.514286\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0.618163 2.70835i 0.618163 2.70835i
\(268\) 0 0
\(269\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(270\) 0 0
\(271\) −0.416664 + 1.82552i −0.416664 + 1.82552i 0.134233 + 0.990950i \(0.457143\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.416664 1.82552i −0.416664 1.82552i −0.550897 0.834573i \(-0.685714\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(282\) 0.618163 + 2.70835i 0.618163 + 2.70835i
\(283\) −1.20204 1.50731i −1.20204 1.50731i −0.809017 0.587785i \(-0.800000\pi\)
−0.393025 0.919528i \(-0.628571\pi\)
\(284\) −2.50289 1.20533i −2.50289 1.20533i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.75485 0.845092i −1.75485 0.845092i
\(289\) −0.820125 + 0.394951i −0.820125 + 0.394951i
\(290\) 0 0
\(291\) 2.50289 1.20533i 2.50289 1.20533i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 2.76682 0.249018i 2.76682 0.249018i
\(295\) 0 0
\(296\) −1.16747 1.46396i −1.16747 1.46396i
\(297\) 0 0
\(298\) −0.717194 + 3.14223i −0.717194 + 3.14223i
\(299\) 0 0
\(300\) −2.50289 1.20533i −2.50289 1.20533i
\(301\) 0 0
\(302\) 0 0
\(303\) −1.47952 + 1.85526i −1.47952 + 1.85526i
\(304\) 0 0
\(305\) 0 0
\(306\) −0.969251 4.24657i −0.969251 4.24657i
\(307\) 1.07047 + 1.34232i 1.07047 + 1.34232i 0.936235 + 0.351375i \(0.114286\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(308\) 0 0
\(309\) 2.00442 2.51346i 2.00442 2.51346i
\(310\) 0 0
\(311\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −0.694143 3.04124i −0.694143 3.04124i
\(315\) 0 0
\(316\) −0.0966604 + 0.423497i −0.0966604 + 0.423497i
\(317\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(318\) −2.60872 + 3.27123i −2.60872 + 3.27123i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 1.36877 1.36877
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.809017 0.587785i −0.809017 0.587785i
\(330\) 0 0
\(331\) −0.335148 1.46838i −0.335148 1.46838i −0.809017 0.587785i \(-0.800000\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(332\) −0.448971 0.562991i −0.448971 0.562991i
\(333\) −3.28590 1.58241i −3.28590 1.58241i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.708207 + 0.341054i 0.708207 + 0.341054i 0.753071 0.657939i \(-0.228571\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(338\) 1.45780 0.702039i 1.45780 0.702039i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.691063 + 0.722795i −0.691063 + 0.722795i
\(344\) 0 0
\(345\) 0 0
\(346\) 2.19565 1.05737i 2.19565 1.05737i
\(347\) −0.0597394 + 0.261736i −0.0597394 + 0.261736i −0.995974 0.0896393i \(-0.971429\pi\)
0.936235 + 0.351375i \(0.114286\pi\)
\(348\) 0 0
\(349\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(350\) 1.55972 0.430457i 1.55972 0.430457i
\(351\) 0 0
\(352\) 0 0
\(353\) 1.45780 + 0.702039i 1.45780 + 0.702039i 0.983930 0.178557i \(-0.0571429\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(354\) −1.64153 2.05842i −1.64153 2.05842i
\(355\) 0 0
\(356\) −1.63232 2.04686i −1.63232 2.04686i
\(357\) 1.91977 + 1.39480i 1.91977 + 1.39480i
\(358\) 0 0
\(359\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) −0.382046 1.67385i −0.382046 1.67385i
\(364\) 0 0
\(365\) 0 0
\(366\) −0.0554675 + 0.243019i −0.0554675 + 0.243019i
\(367\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.0675728 1.50463i −0.0675728 1.50463i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(377\) 0 0
\(378\) −1.98270 + 1.73223i −1.98270 + 1.73223i
\(379\) 0.590905 + 0.740971i 0.590905 + 0.740971i 0.983930 0.178557i \(-0.0571429\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.81784 + 0.875428i 1.81784 + 0.875428i
\(383\) 1.07047 1.34232i 1.07047 1.34232i 0.134233 0.990950i \(-0.457143\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(384\) −2.50289 + 1.20533i −2.50289 + 1.20533i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.582567 2.55239i 0.582567 2.55239i
\(389\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.550897 0.834573i 0.550897 0.834573i
\(393\) −0.154057 −0.154057
\(394\) 1.81784 + 2.27951i 1.81784 + 2.27951i
\(395\) 0 0
\(396\) 0 0
\(397\) −1.54687 + 0.744934i −1.54687 + 0.744934i −0.995974 0.0896393i \(-0.971429\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.24196 + 1.55737i −1.24196 + 1.55737i −0.550897 + 0.834573i \(0.685714\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.497629 + 2.18026i 0.497629 + 2.18026i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −2.13797 1.02959i −2.13797 1.02959i
\(409\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.674176 2.95376i −0.674176 2.95376i
\(413\) 0.932507 + 0.169225i 0.932507 + 0.169225i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(420\) 0 0
\(421\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(422\) 0 0
\(423\) 1.94774 1.94774
\(424\) 0.335148 + 1.46838i 0.335148 + 1.46838i
\(425\) 1.24525 + 0.599682i 1.24525 + 0.599682i
\(426\) −2.97376 + 3.72898i −2.97376 + 3.72898i
\(427\) −0.0425201 0.0790155i −0.0425201 0.0790155i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.708207 + 0.341054i 0.708207 + 0.341054i 0.753071 0.657939i \(-0.228571\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(432\) 0 0
\(433\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(440\) 0 0
\(441\) 0.261451 1.93011i 0.261451 1.93011i
\(442\) 0 0
\(443\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(444\) −4.68659 + 2.25694i −4.68659 + 2.25694i
\(445\) 0 0
\(446\) 0 0
\(447\) 3.08129 + 1.48387i 3.08129 + 1.48387i
\(448\) 0.635928 1.48783i 0.635928 1.48783i
\(449\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(450\) −1.96493 + 2.46395i −1.96493 + 2.46395i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.24525 + 0.599682i 1.24525 + 0.599682i 0.936235 0.351375i \(-0.114286\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(458\) 0 0
\(459\) −2.24895 −2.24895
\(460\) 0 0
\(461\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(462\) 0 0
\(463\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −3.31005 −3.31005
\(472\) −0.947737 −0.947737
\(473\) 0 0
\(474\) 0.671942 + 0.323590i 0.671942 + 0.323590i
\(475\) 0 0
\(476\) 2.15573 0.594945i 2.15573 0.594945i
\(477\) 1.82905 + 2.29356i 1.82905 + 2.29356i
\(478\) 0.674176 + 2.95376i 0.674176 + 2.95376i
\(479\) −0.490094 0.614559i −0.490094 0.614559i 0.473869 0.880596i \(-0.342857\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −1.60619 + 0.773502i −1.60619 + 0.773502i
\(483\) 0 0
\(484\) −1.45780 0.702039i −1.45780 0.702039i
\(485\) 0 0
\(486\) −0.0629252 + 0.275694i −0.0629252 + 0.275694i
\(487\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(488\) 0.0559455 + 0.0701535i 0.0559455 + 0.0701535i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.96786 1.96786 0.983930 0.178557i \(-0.0571429\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.0770283 1.71517i −0.0770283 1.71517i
\(498\) −1.11389 + 0.536422i −1.11389 + 0.536422i
\(499\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0.0966604 + 0.423497i 0.0966604 + 0.423497i
\(503\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(504\) 0.0873849 + 1.94578i 0.0873849 + 1.94578i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.382046 1.67385i −0.382046 1.67385i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 1.19076 2.78591i 1.19076 2.78591i
\(519\) −0.575415 2.52106i −0.575415 2.52106i
\(520\) 0 0
\(521\) −1.92793 −1.92793 −0.963963 0.266037i \(-0.914286\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(522\) 0 0
\(523\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(524\) −0.0905218 + 0.113511i −0.0905218 + 0.113511i
\(525\) −0.0770283 1.71517i −0.0770283 1.71517i
\(526\) 0.0905218 + 0.113511i 0.0905218 + 0.113511i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.900969 0.433884i −0.900969 0.433884i
\(530\) 0 0
\(531\) −1.66314 + 0.800925i −1.66314 + 0.800925i
\(532\) 0 0
\(533\) 0 0
\(534\) −4.04976 + 1.95026i −4.04976 + 1.95026i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 2.91560 2.91560
\(539\) 0 0
\(540\) 0 0
\(541\) −1.20204 1.50731i −1.20204 1.50731i −0.809017 0.587785i \(-0.800000\pi\)
−0.393025 0.919528i \(-0.628571\pi\)
\(542\) 2.72968 1.31455i 2.72968 1.31455i
\(543\) 0 0
\(544\) 1.24525 0.599682i 1.24525 0.599682i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(548\) 0 0
\(549\) 0.157462 + 0.0758298i 0.157462 + 0.0758298i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.258792 + 0.0714220i −0.258792 + 0.0714220i
\(554\) −1.88900 + 2.36873i −1.88900 + 2.36873i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(564\) 1.73205 2.17193i 1.73205 2.17193i
\(565\) 0 0
\(566\) −0.694143 + 3.04124i −0.694143 + 3.04124i
\(567\) 0.400866 + 0.744934i 0.400866 + 0.744934i
\(568\) 0.382046 + 1.67385i 0.382046 + 1.67385i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0.245172 + 1.07417i 0.245172 + 1.07417i 0.936235 + 0.351375i \(0.114286\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(572\) 0 0
\(573\) 1.33485 1.67385i 1.33485 1.67385i
\(574\) 0 0
\(575\) 0 0
\(576\) 0.701276 + 3.07249i 0.701276 + 3.07249i
\(577\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(578\) 1.32699 + 0.639045i 1.32699 + 0.639045i
\(579\) 0 0
\(580\) 0 0
\(581\) 0.174913 0.409228i 0.174913 0.409228i
\(582\) −4.04976 1.95026i −4.04976 1.95026i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.91977 2.00792i −1.91977 2.00792i
\(589\) 0 0
\(590\) 0 0
\(591\) 2.78737 1.34232i 2.78737 1.34232i
\(592\) 0 0
\(593\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.90386 1.39842i 2.90386 1.39842i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(600\) 0.382046 + 1.67385i 0.382046 + 1.67385i
\(601\) 0.590905 + 0.740971i 0.590905 + 0.740971i 0.983930 0.178557i \(-0.0571429\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 3.83954 3.83954
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −2.71578 + 3.40548i −2.71578 + 3.40548i
\(613\) −0.490094 + 0.614559i −0.490094 + 0.614559i −0.963963 0.266037i \(-0.914286\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(614\) 0.618163 2.70835i 0.618163 2.70835i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.245172 + 1.07417i 0.245172 + 1.07417i 0.936235 + 0.351375i \(0.114286\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(618\) −5.20172 −5.20172
\(619\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.635928 1.48783i 0.635928 1.48783i
\(624\) 0 0
\(625\) −0.222521 0.974928i −0.222521 0.974928i
\(626\) 0 0
\(627\) 0 0
\(628\) −1.94494 + 2.43888i −1.94494 + 2.43888i
\(629\) 2.33170 1.12289i 2.33170 1.12289i
\(630\) 0 0
\(631\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(632\) 0.241880 0.116483i 0.241880 0.116483i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 4.18406 4.18406
\(637\) 0 0
\(638\) 0 0
\(639\) 2.08499 + 2.61450i 2.08499 + 2.61450i
\(640\) 0 0
\(641\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(642\) 0 0
\(643\) 0.708207 + 0.341054i 0.708207 + 0.341054i 0.753071 0.657939i \(-0.228571\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.853882 0.411208i −0.853882 0.411208i −0.0448648 0.998993i \(-0.514286\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(648\) −0.527437 0.661385i −0.527437 0.661385i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.79468 + 0.864274i 1.79468 + 0.864274i 0.936235 + 0.351375i \(0.114286\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0.0725928 + 1.61640i 0.0725928 + 1.61640i
\(659\) −0.416664 + 1.82552i −0.416664 + 1.82552i 0.134233 + 0.990950i \(0.457143\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(660\) 0 0
\(661\) −0.686957 + 0.861417i −0.686957 + 0.861417i −0.995974 0.0896393i \(-0.971429\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(662\) −1.51944 + 1.90532i −1.51944 + 1.90532i
\(663\) 0 0
\(664\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(665\) 0 0
\(666\) 1.31312 + 5.75315i 1.31312 + 5.75315i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −1.38900 1.00917i −1.38900 1.00917i
\(673\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(674\) −0.283015 1.23997i −0.283015 1.23997i
\(675\) 1.01452 + 1.27217i 1.01452 + 1.27217i
\(676\) −1.45780 0.702039i −1.45780 0.702039i
\(677\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(678\) 0 0
\(679\) 1.55972 0.430457i 1.55972 0.430457i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.45780 0.702039i 1.45780 0.702039i 0.473869 0.880596i \(-0.342857\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.61152 + 0.145039i 1.61152 + 0.145039i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(692\) −2.19565 1.05737i −2.19565 1.05737i
\(693\) 0 0
\(694\) 0.391370 0.188474i 0.391370 0.188474i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.30902 0.951057i −1.30902 0.951057i
\(701\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.582567 2.55239i −0.582567 2.55239i
\(707\) −1.04084 + 0.909354i −1.04084 + 0.909354i
\(708\) −0.585856 + 2.56680i −0.585856 + 2.56680i
\(709\) −0.210891 + 0.923976i −0.210891 + 0.923976i 0.753071 + 0.657939i \(0.228571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(710\) 0 0
\(711\) 0.326024 0.408821i 0.326024 0.408821i
\(712\) −0.360046 + 1.57747i −0.360046 + 1.57747i
\(713\) 0 0
\(714\) −0.172260 3.83568i −0.172260 3.83568i
\(715\) 0 0
\(716\) 0 0
\(717\) 3.21484 3.21484
\(718\) 0 0
\(719\) 1.73700 + 0.836496i 1.73700 + 0.836496i 0.983930 + 0.178557i \(0.0571429\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(720\) 0 0
\(721\) 1.41010 1.23197i 1.41010 1.23197i
\(722\) −1.00883 1.26503i −1.00883 1.26503i
\(723\) 0.420936 + 1.84424i 0.420936 + 1.84424i
\(724\) 0 0
\(725\) 0 0
\(726\) −1.73205 + 2.17193i −1.73205 + 2.17193i
\(727\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(728\) 0 0
\(729\) 1.03252 + 0.497233i 1.03252 + 0.497233i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.224583 0.108154i 0.224583 0.108154i
\(733\) −1.24196 1.55737i −1.24196 1.55737i −0.691063 0.722795i \(-0.742857\pi\)
−0.550897 0.834573i \(-0.685714\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.0199667 0.0874800i 0.0199667 0.0874800i −0.963963 0.266037i \(-0.914286\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −1.83523 + 1.60339i −1.83523 + 1.60339i
\(743\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.192887 + 0.845092i 0.192887 + 0.845092i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(752\) 0 0
\(753\) 0.460930 0.460930
\(754\) 0 0
\(755\) 0 0
\(756\) 2.59050 + 0.470107i 2.59050 + 0.470107i
\(757\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(758\) 0.341229 1.49502i 0.341229 1.49502i
\(759\) 0 0
\(760\) 0 0
\(761\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.448971 1.96707i −0.448971 1.96707i
\(765\) 0 0
\(766\) −2.77800 −2.77800
\(767\) 0 0
\(768\) 1.54687 + 0.744934i 1.54687 + 0.744934i
\(769\) −0.861741 + 1.08059i −0.861741 + 1.08059i 0.134233 + 0.990950i \(0.457143\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.16747 + 1.46396i 1.16747 + 1.46396i 0.858449 + 0.512899i \(0.171429\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.45780 + 0.702039i −1.45780 + 0.702039i
\(777\) −2.60086 1.88963i −2.60086 1.88963i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0.155417 + 0.194886i 0.155417 + 0.194886i
\(787\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(788\) 0.648781 2.84250i 0.648781 2.84250i
\(789\) 0.138800 0.0668427i 0.138800 0.0668427i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 2.50289 + 1.20533i 2.50289 + 1.20533i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(798\) 0 0
\(799\) −0.861741 + 1.08059i −0.861741 + 1.08059i
\(800\) −0.900969 0.433884i −0.900969 0.433884i
\(801\) 0.701276 + 3.07249i 0.701276 + 3.07249i
\(802\) 3.22304 3.22304
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0.688422 3.01618i 0.688422 3.01618i
\(808\) 0.861741 1.08059i 0.861741 1.08059i
\(809\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(810\) 0 0
\(811\) −0.137526 + 0.602539i −0.137526 + 0.602539i 0.858449 + 0.512899i \(0.171429\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(812\) 0 0
\(813\) −0.715369 3.13424i −0.715369 3.13424i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(822\) 0 0
\(823\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(824\) −1.16747 + 1.46396i −1.16747 + 1.46396i
\(825\) 0 0
\(826\) −0.726664 1.35037i −0.726664 1.35037i
\(827\) −1.77298 0.853822i −1.77298 0.853822i −0.963963 0.266037i \(-0.914286\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(828\) 0 0
\(829\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(830\) 0 0
\(831\) 2.00442 + 2.51346i 2.00442 + 2.51346i
\(832\) 0 0
\(833\) 0.955135 + 0.998993i 0.955135 + 0.998993i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(840\) 0 0
\(841\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) −1.96493 2.46395i −1.96493 2.46395i
\(847\) −0.0448648 0.998993i −0.0448648 0.998993i
\(848\) 0 0
\(849\) 2.98225 + 1.43618i 2.98225 + 1.43618i
\(850\) −0.497629 2.18026i −0.497629 2.18026i
\(851\) 0 0
\(852\) 4.76954 4.76954
\(853\) −0.137526 0.602539i −0.137526 0.602539i −0.995974 0.0896393i \(-0.971429\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(854\) −0.0570616 + 0.133502i −0.0570616 + 0.133502i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(858\) 0 0
\(859\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −0.283015 1.23997i −0.283015 1.23997i
\(863\) 1.71690 1.71690 0.858449 0.512899i \(-0.171429\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(864\) 1.62717 1.62717
\(865\) 0 0
\(866\) 0 0
\(867\) 0.974415 1.22188i 0.974415 1.22188i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.96493 + 2.46395i −1.96493 + 2.46395i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(878\) −0.648781 + 2.84250i −0.648781 + 2.84250i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −2.70541 + 1.61640i −2.70541 + 1.61640i
\(883\) 1.96786 1.96786 0.983930 0.178557i \(-0.0571429\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(888\) 2.89647 + 1.39487i 2.89647 + 1.39487i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −1.23135 5.39489i −1.23135 5.39489i
\(895\) 0 0
\(896\) −1.55972 + 0.430457i −1.55972 + 0.430457i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 3.15151 3.15151
\(901\) −2.08168 −2.08168
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.24698 1.56366i 1.24698 1.56366i 0.623490 0.781831i \(-0.285714\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(908\) 0 0
\(909\) 0.599030 2.62452i 0.599030 2.62452i
\(910\) 0 0
\(911\) 0.0199667 + 0.0874800i 0.0199667 + 0.0874800i 0.983930 0.178557i \(-0.0571429\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.497629 2.18026i −0.497629 2.18026i
\(915\) 0 0
\(916\) 0 0
\(917\) −0.0882877 0.0160218i −0.0882877 0.0160218i
\(918\) 2.26880 + 2.84499i 2.26880 + 2.84499i
\(919\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(920\) 0 0
\(921\) −2.65582 1.27898i −2.65582 1.27898i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.68704 0.812434i −1.68704 0.812434i
\(926\) 0 0
\(927\) −0.811551 + 3.55564i −0.811551 + 3.55564i
\(928\) 0 0
\(929\) −1.24196 1.55737i −1.24196 1.55737i −0.691063 0.722795i \(-0.742857\pi\)
−0.550897 0.834573i \(-0.685714\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.77298 0.853822i −1.77298 0.853822i −0.963963 0.266037i \(-0.914286\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(942\) 3.33927 + 4.18731i 3.33927 + 4.18731i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(948\) −0.165956 0.727101i −0.165956 0.727101i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) −1.11816 0.812393i −1.11816 0.812393i
\(953\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(954\) 1.05622 4.62761i 1.05622 4.62761i
\(955\) 0 0
\(956\) 1.88900 2.36873i 1.88900 2.36873i
\(957\) 0 0
\(958\) −0.283015 + 1.23997i −0.283015 + 1.23997i
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 1.60619 + 0.773502i 1.60619 + 0.773502i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.22694 + 1.53853i 1.22694 + 1.53853i 0.753071 + 0.657939i \(0.228571\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(968\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(972\) 0.254779 0.122695i 0.254779 0.122695i
\(973\) 0 0
\(974\) 1.81784 + 0.875428i 1.81784 + 0.875428i
\(975\) 0 0
\(976\) 0 0
\(977\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −1.98523 2.48940i −1.98523 2.48940i
\(983\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.68931 + 0.306564i 1.68931 + 0.306564i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0.939065 + 1.17755i 0.939065 + 1.17755i 0.983930 + 0.178557i \(0.0571429\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(992\) 0 0
\(993\) 1.61228 + 2.02173i 1.61228 + 2.02173i
\(994\) −2.09203 + 1.82775i −2.09203 + 1.82775i
\(995\) 0 0
\(996\) 1.11389 + 0.536422i 1.11389 + 0.536422i
\(997\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(998\) 0 0
\(999\) 3.04682 3.04682
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2303.1.j.b.939.1 24
47.46 odd 2 CM 2303.1.j.b.939.1 24
49.43 even 7 inner 2303.1.j.b.1268.1 yes 24
2303.1268 odd 14 inner 2303.1.j.b.1268.1 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2303.1.j.b.939.1 24 1.1 even 1 trivial
2303.1.j.b.939.1 24 47.46 odd 2 CM
2303.1.j.b.1268.1 yes 24 49.43 even 7 inner
2303.1.j.b.1268.1 yes 24 2303.1268 odd 14 inner