Properties

Label 2303.1.j.b.939.2
Level $2303$
Weight $1$
Character 2303.939
Analytic conductor $1.149$
Analytic rank $0$
Dimension $24$
Projective image $D_{35}$
CM discriminant -47
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2303,1,Mod(281,2303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2303, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([4, 7]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2303.281");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2303 = 7^{2} \cdot 47 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2303.j (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14934672409\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{14})\)
Coefficient field: \(\Q(\zeta_{35})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{23} + x^{19} - x^{18} + x^{17} - x^{16} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{35}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{35} - \cdots)\)

Embedding invariants

Embedding label 939.2
Root \(-0.550897 - 0.834573i\) of defining polynomial
Character \(\chi\) \(=\) 2303.939
Dual form 2303.1.j.b.1268.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00883 - 1.26503i) q^{2} +(1.79468 - 0.864274i) q^{3} +(-0.360046 + 1.57747i) q^{4} +(-2.90386 - 1.39842i) q^{6} +(-0.0448648 + 0.998993i) q^{7} +(0.900969 - 0.433884i) q^{8} +(1.85043 - 2.32037i) q^{9} +(0.717194 + 3.14223i) q^{12} +(1.30902 - 0.951057i) q^{14} +(-0.0597394 - 0.261736i) q^{17} -4.80210 q^{18} +(0.782886 + 1.83165i) q^{21} +(1.24196 - 1.55737i) q^{24} +(0.623490 - 0.781831i) q^{25} +(0.872254 - 3.82159i) q^{27} +(-1.55972 - 0.430457i) q^{28} +(-0.222521 - 0.974928i) q^{32} +(-0.270836 + 0.339618i) q^{34} +(2.99406 + 3.75443i) q^{36} +(0.245172 + 1.07417i) q^{37} +(1.52730 - 2.83820i) q^{42} +(0.623490 + 0.781831i) q^{47} +(-0.995974 - 0.0896393i) q^{49} -1.61803 q^{50} +(-0.333425 - 0.418101i) q^{51} +(0.174913 - 0.766342i) q^{53} +(-5.71439 + 2.75190i) q^{54} +(0.393025 + 0.919528i) q^{56} +(-1.77298 - 0.853822i) q^{59} +(0.429004 + 1.87959i) q^{61} +(2.23501 + 1.95267i) q^{63} +(-1.00883 + 1.26503i) q^{64} +0.434388 q^{68} +(0.443250 - 1.94201i) q^{71} +(0.660411 - 2.89345i) q^{72} +(1.11152 - 1.39380i) q^{74} +(0.443250 - 1.94201i) q^{75} -1.38213 q^{79} +(-1.07707 - 4.71897i) q^{81} +(-0.277479 + 0.347948i) q^{83} +(-3.17124 + 0.575496i) q^{84} +(-1.00883 + 1.26503i) q^{89} +(0.360046 - 1.57747i) q^{94} +(-1.24196 - 1.55737i) q^{96} -1.61803 q^{97} +(0.891370 + 1.35037i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + 4 q^{6} + q^{7} + 4 q^{8} - 2 q^{9} + 10 q^{12} + 18 q^{14} + 2 q^{17} - 18 q^{18} - 5 q^{21} - 2 q^{24} - 4 q^{25} - 3 q^{27} + 3 q^{28} - 4 q^{32} + 4 q^{34} + 4 q^{36}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2303\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(2257\)
\(\chi(n)\) \(-1\) \(e\left(\frac{6}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00883 1.26503i −1.00883 1.26503i −0.963963 0.266037i \(-0.914286\pi\)
−0.0448648 0.998993i \(-0.514286\pi\)
\(3\) 1.79468 0.864274i 1.79468 0.864274i 0.858449 0.512899i \(-0.171429\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(4\) −0.360046 + 1.57747i −0.360046 + 1.57747i
\(5\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(6\) −2.90386 1.39842i −2.90386 1.39842i
\(7\) −0.0448648 + 0.998993i −0.0448648 + 0.998993i
\(8\) 0.900969 0.433884i 0.900969 0.433884i
\(9\) 1.85043 2.32037i 1.85043 2.32037i
\(10\) 0 0
\(11\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(12\) 0.717194 + 3.14223i 0.717194 + 3.14223i
\(13\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(14\) 1.30902 0.951057i 1.30902 0.951057i
\(15\) 0 0
\(16\) 0 0
\(17\) −0.0597394 0.261736i −0.0597394 0.261736i 0.936235 0.351375i \(-0.114286\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(18\) −4.80210 −4.80210
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0.782886 + 1.83165i 0.782886 + 1.83165i
\(22\) 0 0
\(23\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(24\) 1.24196 1.55737i 1.24196 1.55737i
\(25\) 0.623490 0.781831i 0.623490 0.781831i
\(26\) 0 0
\(27\) 0.872254 3.82159i 0.872254 3.82159i
\(28\) −1.55972 0.430457i −1.55972 0.430457i
\(29\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −0.222521 0.974928i −0.222521 0.974928i
\(33\) 0 0
\(34\) −0.270836 + 0.339618i −0.270836 + 0.339618i
\(35\) 0 0
\(36\) 2.99406 + 3.75443i 2.99406 + 3.75443i
\(37\) 0.245172 + 1.07417i 0.245172 + 1.07417i 0.936235 + 0.351375i \(0.114286\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(42\) 1.52730 2.83820i 1.52730 2.83820i
\(43\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(48\) 0 0
\(49\) −0.995974 0.0896393i −0.995974 0.0896393i
\(50\) −1.61803 −1.61803
\(51\) −0.333425 0.418101i −0.333425 0.418101i
\(52\) 0 0
\(53\) 0.174913 0.766342i 0.174913 0.766342i −0.809017 0.587785i \(-0.800000\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(54\) −5.71439 + 2.75190i −5.71439 + 2.75190i
\(55\) 0 0
\(56\) 0.393025 + 0.919528i 0.393025 + 0.919528i
\(57\) 0 0
\(58\) 0 0
\(59\) −1.77298 0.853822i −1.77298 0.853822i −0.963963 0.266037i \(-0.914286\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(60\) 0 0
\(61\) 0.429004 + 1.87959i 0.429004 + 1.87959i 0.473869 + 0.880596i \(0.342857\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(62\) 0 0
\(63\) 2.23501 + 1.95267i 2.23501 + 1.95267i
\(64\) −1.00883 + 1.26503i −1.00883 + 1.26503i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.434388 0.434388
\(69\) 0 0
\(70\) 0 0
\(71\) 0.443250 1.94201i 0.443250 1.94201i 0.134233 0.990950i \(-0.457143\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(72\) 0.660411 2.89345i 0.660411 2.89345i
\(73\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(74\) 1.11152 1.39380i 1.11152 1.39380i
\(75\) 0.443250 1.94201i 0.443250 1.94201i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.38213 −1.38213 −0.691063 0.722795i \(-0.742857\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(80\) 0 0
\(81\) −1.07707 4.71897i −1.07707 4.71897i
\(82\) 0 0
\(83\) −0.277479 + 0.347948i −0.277479 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(84\) −3.17124 + 0.575496i −3.17124 + 0.575496i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.00883 + 1.26503i −1.00883 + 1.26503i −0.0448648 + 0.998993i \(0.514286\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0.360046 1.57747i 0.360046 1.57747i
\(95\) 0 0
\(96\) −1.24196 1.55737i −1.24196 1.55737i
\(97\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 0.891370 + 1.35037i 0.891370 + 1.35037i
\(99\) 0 0
\(100\) 1.00883 + 1.26503i 1.00883 + 1.26503i
\(101\) −0.241880 + 0.116483i −0.241880 + 0.116483i −0.550897 0.834573i \(-0.685714\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(102\) −0.192543 + 0.843584i −0.192543 + 0.843584i
\(103\) 0.992682 0.478050i 0.992682 0.478050i 0.134233 0.990950i \(-0.457143\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −1.14590 + 0.551838i −1.14590 + 0.551838i
\(107\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(108\) 5.71439 + 2.75190i 5.71439 + 2.75190i
\(109\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(110\) 0 0
\(111\) 1.36838 + 1.71590i 1.36838 + 1.71590i
\(112\) 0 0
\(113\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0.708521 + 3.10423i 0.708521 + 3.10423i
\(119\) 0.264152 0.0479366i 0.264152 0.0479366i
\(120\) 0 0
\(121\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(122\) 1.94494 2.43888i 1.94494 2.43888i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0.215445 4.79726i 0.215445 4.79726i
\(127\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(128\) 1.61803 1.61803
\(129\) 0 0
\(130\) 0 0
\(131\) 1.73700 + 0.836496i 1.73700 + 0.836496i 0.983930 + 0.178557i \(0.0571429\pi\)
0.753071 + 0.657939i \(0.228571\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.167386 0.209896i −0.167386 0.209896i
\(137\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(138\) 0 0
\(139\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(140\) 0 0
\(141\) 1.79468 + 0.864274i 1.79468 + 0.864274i
\(142\) −2.90386 + 1.39842i −2.90386 + 1.39842i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.86493 + 0.699921i −1.86493 + 0.699921i
\(148\) −1.78274 −1.78274
\(149\) 1.07047 + 1.34232i 1.07047 + 1.34232i 0.936235 + 0.351375i \(0.114286\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(150\) −2.90386 + 1.39842i −2.90386 + 1.39842i
\(151\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(152\) 0 0
\(153\) −0.717866 0.345706i −0.717866 0.345706i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0.0808436 + 0.0389322i 0.0808436 + 0.0389322i 0.473869 0.880596i \(-0.342857\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(158\) 1.39433 + 1.74843i 1.39433 + 1.74843i
\(159\) −0.348417 1.52651i −0.348417 1.52651i
\(160\) 0 0
\(161\) 0 0
\(162\) −4.88306 + 6.12316i −4.88306 + 6.12316i
\(163\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.720093 0.720093
\(167\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(168\) 1.50008 + 1.31058i 1.50008 + 1.31058i
\(169\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.174913 0.766342i 0.174913 0.766342i −0.809017 0.587785i \(-0.800000\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(174\) 0 0
\(175\) 0.753071 + 0.657939i 0.753071 + 0.657939i
\(176\) 0 0
\(177\) −3.91987 −3.91987
\(178\) 2.61803 2.61803
\(179\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(180\) 0 0
\(181\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(182\) 0 0
\(183\) 2.39441 + 3.00249i 2.39441 + 3.00249i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1.45780 + 0.702039i −1.45780 + 0.702039i
\(189\) 3.77861 + 1.04283i 3.77861 + 1.04283i
\(190\) 0 0
\(191\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(192\) −0.717194 + 3.14223i −0.717194 + 3.14223i
\(193\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(194\) 1.63232 + 2.04686i 1.63232 + 2.04686i
\(195\) 0 0
\(196\) 0.500000 1.53884i 0.500000 1.53884i
\(197\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(198\) 0 0
\(199\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(200\) 0.222521 0.974928i 0.222521 0.974928i
\(201\) 0 0
\(202\) 0.391370 + 0.188474i 0.391370 + 0.188474i
\(203\) 0 0
\(204\) 0.779589 0.375430i 0.779589 0.375430i
\(205\) 0 0
\(206\) −1.60619 0.773502i −1.60619 0.773502i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) 1.14590 + 0.551838i 1.14590 + 0.551838i
\(213\) −0.882932 3.86838i −0.882932 3.86838i
\(214\) 0 0
\(215\) 0 0
\(216\) −0.872254 3.82159i −0.872254 3.82159i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0.790200 3.46209i 0.790200 3.46209i
\(223\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(224\) 0.983930 0.178557i 0.983930 0.178557i
\(225\) −0.660411 2.89345i −0.660411 2.89345i
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.98523 2.48940i 1.98523 2.48940i
\(237\) −2.48048 + 1.19454i −2.48048 + 1.19454i
\(238\) −0.327125 0.285801i −0.327125 0.285801i
\(239\) 0.992682 + 0.478050i 0.992682 + 0.478050i 0.858449 0.512899i \(-0.171429\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(240\) 0 0
\(241\) −0.416664 + 1.82552i −0.416664 + 1.82552i 0.134233 + 0.990950i \(0.457143\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(242\) 1.45780 0.702039i 1.45780 0.702039i
\(243\) −3.56749 4.47349i −3.56749 4.47349i
\(244\) −3.11945 −3.11945
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.197265 + 0.864274i −0.197265 + 0.864274i
\(250\) 0 0
\(251\) 1.24525 + 0.599682i 1.24525 + 0.599682i 0.936235 0.351375i \(-0.114286\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(252\) −3.88498 + 2.82260i −3.88498 + 2.82260i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.623490 0.781831i −0.623490 0.781831i
\(257\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(258\) 0 0
\(259\) −1.08409 + 0.196733i −1.08409 + 0.196733i
\(260\) 0 0
\(261\) 0 0
\(262\) −0.694143 3.04124i −0.694143 3.04124i
\(263\) −1.92793 −1.92793 −0.963963 0.266037i \(-0.914286\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.717194 + 3.14223i −0.717194 + 3.14223i
\(268\) 0 0
\(269\) −1.12349 + 1.40881i −1.12349 + 1.40881i −0.222521 + 0.974928i \(0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(270\) 0 0
\(271\) 0.245172 1.07417i 0.245172 1.07417i −0.691063 0.722795i \(-0.742857\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.245172 + 1.07417i 0.245172 + 1.07417i 0.936235 + 0.351375i \(0.114286\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(282\) −0.717194 3.14223i −0.717194 3.14223i
\(283\) −0.0559455 0.0701535i −0.0559455 0.0701535i 0.753071 0.657939i \(-0.228571\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(284\) 2.90386 + 1.39842i 2.90386 + 1.39842i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −2.67395 1.28771i −2.67395 1.28771i
\(289\) 0.836032 0.402612i 0.836032 0.402612i
\(290\) 0 0
\(291\) −2.90386 + 1.39842i −2.90386 + 1.39842i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 2.76682 + 1.65310i 2.76682 + 1.65310i
\(295\) 0 0
\(296\) 0.686957 + 0.861417i 0.686957 + 0.861417i
\(297\) 0 0
\(298\) 0.618163 2.70835i 0.618163 2.70835i
\(299\) 0 0
\(300\) 2.90386 + 1.39842i 2.90386 + 1.39842i
\(301\) 0 0
\(302\) 0 0
\(303\) −0.333425 + 0.418101i −0.333425 + 0.418101i
\(304\) 0 0
\(305\) 0 0
\(306\) 0.286875 + 1.25688i 0.286875 + 1.25688i
\(307\) −1.24196 1.55737i −1.24196 1.55737i −0.691063 0.722795i \(-0.742857\pi\)
−0.550897 0.834573i \(-0.685714\pi\)
\(308\) 0 0
\(309\) 1.36838 1.71590i 1.36838 1.71590i
\(310\) 0 0
\(311\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −0.0323068 0.141546i −0.0323068 0.141546i
\(315\) 0 0
\(316\) 0.497629 2.18026i 0.497629 2.18026i
\(317\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(318\) −1.57959 + 1.98075i −1.57959 + 1.98075i
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 7.83182 7.83182
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(330\) 0 0
\(331\) 0.174913 + 0.766342i 0.174913 + 0.766342i 0.983930 + 0.178557i \(0.0571429\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(332\) −0.448971 0.562991i −0.448971 0.562991i
\(333\) 2.94614 + 1.41879i 2.94614 + 1.41879i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(338\) 1.45780 0.702039i 1.45780 0.702039i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.134233 0.990950i 0.134233 0.990950i
\(344\) 0 0
\(345\) 0 0
\(346\) −1.14590 + 0.551838i −1.14590 + 0.551838i
\(347\) 0.307552 1.34747i 0.307552 1.34747i −0.550897 0.834573i \(-0.685714\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(348\) 0 0
\(349\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(350\) 0.0725928 1.61640i 0.0725928 1.61640i
\(351\) 0 0
\(352\) 0 0
\(353\) 1.45780 + 0.702039i 1.45780 + 0.702039i 0.983930 0.178557i \(-0.0571429\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(354\) 3.95448 + 4.95876i 3.95448 + 4.95876i
\(355\) 0 0
\(356\) −1.63232 2.04686i −1.63232 2.04686i
\(357\) 0.432639 0.314331i 0.432639 0.314331i
\(358\) 0 0
\(359\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0.443250 + 1.94201i 0.443250 + 1.94201i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.38270 6.05799i 1.38270 6.05799i
\(367\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.757723 + 0.209118i 0.757723 + 0.209118i
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(377\) 0 0
\(378\) −2.49276 5.83210i −2.49276 5.83210i
\(379\) 1.22694 + 1.53853i 1.22694 + 1.53853i 0.753071 + 0.657939i \(0.228571\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.81784 + 0.875428i 1.81784 + 0.875428i
\(383\) −1.24196 + 1.55737i −1.24196 + 1.55737i −0.550897 + 0.834573i \(0.685714\pi\)
−0.691063 + 0.722795i \(0.742857\pi\)
\(384\) 2.90386 1.39842i 2.90386 1.39842i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0.582567 2.55239i 0.582567 2.55239i
\(389\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.936235 + 0.351375i −0.936235 + 0.351375i
\(393\) 3.84033 3.84033
\(394\) 1.81784 + 2.27951i 1.81784 + 2.27951i
\(395\) 0 0
\(396\) 0 0
\(397\) 1.79468 0.864274i 1.79468 0.864274i 0.858449 0.512899i \(-0.171429\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.07047 1.34232i 1.07047 1.34232i 0.134233 0.990950i \(-0.457143\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −0.0966604 0.423497i −0.0966604 0.423497i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) −0.481812 0.232029i −0.481812 0.232029i
\(409\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.396697 + 1.73804i 0.396697 + 1.73804i
\(413\) 0.932507 1.73289i 0.932507 1.73289i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(420\) 0 0
\(421\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(422\) 0 0
\(423\) 2.96786 2.96786
\(424\) −0.174913 0.766342i −0.174913 0.766342i
\(425\) −0.241880 0.116483i −0.241880 0.116483i
\(426\) −4.00289 + 5.01946i −4.00289 + 5.01946i
\(427\) −1.89694 + 0.344244i −1.89694 + 0.344244i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(432\) 0 0
\(433\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.12349 1.40881i −1.12349 1.40881i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(440\) 0 0
\(441\) −2.05098 + 2.14515i −2.05098 + 2.14515i
\(442\) 0 0
\(443\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(444\) −3.19945 + 1.54078i −3.19945 + 1.54078i
\(445\) 0 0
\(446\) 0 0
\(447\) 3.08129 + 1.48387i 3.08129 + 1.48387i
\(448\) −1.21850 1.06457i −1.21850 1.06457i
\(449\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(450\) −2.99406 + 3.75443i −2.99406 + 3.75443i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.241880 0.116483i −0.241880 0.116483i 0.309017 0.951057i \(-0.400000\pi\)
−0.550897 + 0.834573i \(0.685714\pi\)
\(458\) 0 0
\(459\) −1.05236 −1.05236
\(460\) 0 0
\(461\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(462\) 0 0
\(463\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.178737 0.178737
\(472\) −1.96786 −1.96786
\(473\) 0 0
\(474\) 4.01350 + 1.93280i 4.01350 + 1.93280i
\(475\) 0 0
\(476\) −0.0194887 + 0.433951i −0.0194887 + 0.433951i
\(477\) −1.45453 1.82392i −1.45453 1.82392i
\(478\) −0.396697 1.73804i −0.396697 1.73804i
\(479\) 0.939065 + 1.17755i 0.939065 + 1.17755i 0.983930 + 0.178557i \(0.0571429\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.72968 1.31455i 2.72968 1.31455i
\(483\) 0 0
\(484\) −1.45780 0.702039i −1.45780 0.702039i
\(485\) 0 0
\(486\) −2.06012 + 9.02597i −2.06012 + 9.02597i
\(487\) −1.12349 + 0.541044i −1.12349 + 0.541044i −0.900969 0.433884i \(-0.857143\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(488\) 1.20204 + 1.50731i 1.20204 + 1.50731i
\(489\) 0 0
\(490\) 0 0
\(491\) 0.947737 0.947737 0.473869 0.880596i \(-0.342857\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.92016 + 0.529932i 1.92016 + 0.529932i
\(498\) 1.29234 0.622358i 1.29234 0.622358i
\(499\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −0.497629 2.18026i −0.497629 2.18026i
\(503\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(504\) 2.86091 + 0.789560i 2.86091 + 0.789560i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.443250 + 1.94201i 0.443250 + 1.94201i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 1.34253 + 1.17293i 1.34253 + 1.17293i
\(519\) −0.348417 1.52651i −0.348417 1.52651i
\(520\) 0 0
\(521\) −0.0897297 −0.0897297 −0.0448648 0.998993i \(-0.514286\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(522\) 0 0
\(523\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(524\) −1.94494 + 2.43888i −1.94494 + 2.43888i
\(525\) 1.92016 + 0.529932i 1.92016 + 0.529932i
\(526\) 1.94494 + 2.43888i 1.94494 + 2.43888i
\(527\) 0 0
\(528\) 0 0
\(529\) −0.900969 0.433884i −0.900969 0.433884i
\(530\) 0 0
\(531\) −5.26195 + 2.53402i −5.26195 + 2.53402i
\(532\) 0 0
\(533\) 0 0
\(534\) 4.69854 2.26270i 4.69854 2.26270i
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 2.91560 2.91560
\(539\) 0 0
\(540\) 0 0
\(541\) −0.0559455 0.0701535i −0.0559455 0.0701535i 0.753071 0.657939i \(-0.228571\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) −1.60619 + 0.773502i −1.60619 + 0.773502i
\(543\) 0 0
\(544\) −0.241880 + 0.116483i −0.241880 + 0.116483i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(548\) 0 0
\(549\) 5.15517 + 2.48260i 5.15517 + 2.48260i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.0620088 1.38073i 0.0620088 1.38073i
\(554\) 1.11152 1.39380i 1.11152 1.39380i
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(564\) −2.00953 + 2.51987i −2.00953 + 2.51987i
\(565\) 0 0
\(566\) −0.0323068 + 0.141546i −0.0323068 + 0.141546i
\(567\) 4.76254 0.864274i 4.76254 0.864274i
\(568\) −0.443250 1.94201i −0.443250 1.94201i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −0.416664 1.82552i −0.416664 1.82552i −0.550897 0.834573i \(-0.685714\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(572\) 0 0
\(573\) −1.54870 + 1.94201i −1.54870 + 1.94201i
\(574\) 0 0
\(575\) 0 0
\(576\) 1.06857 + 4.68170i 1.06857 + 4.68170i
\(577\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(578\) −1.35273 0.651440i −1.35273 0.651440i
\(579\) 0 0
\(580\) 0 0
\(581\) −0.335148 0.292810i −0.335148 0.292810i
\(582\) 4.69854 + 2.26270i 4.69854 + 2.26270i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −0.432639 3.19387i −0.432639 3.19387i
\(589\) 0 0
\(590\) 0 0
\(591\) −3.23391 + 1.55737i −3.23391 + 1.55737i
\(592\) 0 0
\(593\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.50289 + 1.20533i −2.50289 + 1.20533i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(600\) −0.443250 1.94201i −0.443250 1.94201i
\(601\) 1.22694 + 1.53853i 1.22694 + 1.53853i 0.753071 + 0.657939i \(0.228571\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0.865279 0.865279
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.803805 1.00794i 0.803805 1.00794i
\(613\) 0.939065 1.17755i 0.939065 1.17755i −0.0448648 0.998993i \(-0.514286\pi\)
0.983930 0.178557i \(-0.0571429\pi\)
\(614\) −0.717194 + 3.14223i −0.717194 + 3.14223i
\(615\) 0 0
\(616\) 0 0
\(617\) −0.416664 1.82552i −0.416664 1.82552i −0.550897 0.834573i \(-0.685714\pi\)
0.134233 0.990950i \(-0.457143\pi\)
\(618\) −3.55113 −3.55113
\(619\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.21850 1.06457i −1.21850 1.06457i
\(624\) 0 0
\(625\) −0.222521 0.974928i −0.222521 0.974928i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.0905218 + 0.113511i −0.0905218 + 0.113511i
\(629\) 0.266502 0.128341i 0.266502 0.128341i
\(630\) 0 0
\(631\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(632\) −1.24525 + 0.599682i −1.24525 + 0.599682i
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 2.53347 2.53347
\(637\) 0 0
\(638\) 0 0
\(639\) −3.68596 4.62205i −3.68596 4.62205i
\(640\) 0 0
\(641\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(642\) 0 0
\(643\) −1.35699 0.653491i −1.35699 0.653491i −0.393025 0.919528i \(-0.628571\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.77298 0.853822i −1.77298 0.853822i −0.963963 0.266037i \(-0.914286\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(648\) −3.01790 3.78432i −3.01790 3.78432i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.54687 0.744934i −1.54687 0.744934i −0.550897 0.834573i \(-0.685714\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 1.55972 + 0.430457i 1.55972 + 0.430457i
\(659\) 0.245172 1.07417i 0.245172 1.07417i −0.691063 0.722795i \(-0.742857\pi\)
0.936235 0.351375i \(-0.114286\pi\)
\(660\) 0 0
\(661\) 1.16747 1.46396i 1.16747 1.46396i 0.309017 0.951057i \(-0.400000\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(662\) 0.792989 0.994377i 0.792989 0.994377i
\(663\) 0 0
\(664\) −0.0990311 + 0.433884i −0.0990311 + 0.433884i
\(665\) 0 0
\(666\) −1.17734 5.15827i −1.17734 5.15827i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 1.61152 1.17084i 1.61152 1.17084i
\(673\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(674\) 0.542281 + 2.37589i 0.542281 + 2.37589i
\(675\) −2.44400 3.06468i −2.44400 3.06468i
\(676\) −1.45780 0.702039i −1.45780 0.702039i
\(677\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(678\) 0 0
\(679\) 0.0725928 1.61640i 0.0725928 1.61640i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.45780 0.702039i 1.45780 0.702039i 0.473869 0.880596i \(-0.342857\pi\)
0.983930 + 0.178557i \(0.0571429\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.38900 + 0.829888i −1.38900 + 0.829888i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(692\) 1.14590 + 0.551838i 1.14590 + 0.551838i
\(693\) 0 0
\(694\) −2.01486 + 0.970305i −2.01486 + 0.970305i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(701\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.582567 2.55239i −0.582567 2.55239i
\(707\) −0.105514 0.246862i −0.105514 0.246862i
\(708\) 1.41134 6.18347i 1.41134 6.18347i
\(709\) −0.437890 + 1.91852i −0.437890 + 1.91852i −0.0448648 + 0.998993i \(0.514286\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(710\) 0 0
\(711\) −2.55753 + 3.20704i −2.55753 + 3.20704i
\(712\) −0.360046 + 1.57747i −0.360046 + 1.57747i
\(713\) 0 0
\(714\) −0.834096 0.230196i −0.834096 0.230196i
\(715\) 0 0
\(716\) 0 0
\(717\) 2.19472 2.19472
\(718\) 0 0
\(719\) 0.0808436 + 0.0389322i 0.0808436 + 0.0389322i 0.473869 0.880596i \(-0.342857\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(720\) 0 0
\(721\) 0.433033 + 1.01313i 0.433033 + 1.01313i
\(722\) −1.00883 1.26503i −1.00883 1.26503i
\(723\) 0.829973 + 3.63635i 0.829973 + 3.63635i
\(724\) 0 0
\(725\) 0 0
\(726\) 2.00953 2.51987i 2.00953 2.51987i
\(727\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(728\) 0 0
\(729\) −5.90786 2.84507i −5.90786 2.84507i
\(730\) 0 0
\(731\) 0 0
\(732\) −5.59842 + 2.69606i −5.59842 + 2.69606i
\(733\) 1.07047 + 1.34232i 1.07047 + 1.34232i 0.936235 + 0.351375i \(0.114286\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.429004 1.87959i 0.429004 1.87959i −0.0448648 0.998993i \(-0.514286\pi\)
0.473869 0.880596i \(-0.342857\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.499871 1.16951i −0.499871 1.16951i
\(743\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.293910 + 1.28771i 0.293910 + 1.28771i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(752\) 0 0
\(753\) 2.75312 2.75312
\(754\) 0 0
\(755\) 0 0
\(756\) −3.00551 + 5.58517i −3.00551 + 5.58517i
\(757\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(758\) 0.708521 3.10423i 0.708521 3.10423i
\(759\) 0 0
\(760\) 0 0
\(761\) −0.277479 + 1.21572i −0.277479 + 1.21572i 0.623490 + 0.781831i \(0.285714\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.448971 1.96707i −0.448971 1.96707i
\(765\) 0 0
\(766\) 3.22304 3.22304
\(767\) 0 0
\(768\) −1.79468 0.864274i −1.79468 0.864274i
\(769\) 0.167386 0.209896i 0.167386 0.209896i −0.691063 0.722795i \(-0.742857\pi\)
0.858449 + 0.512899i \(0.171429\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.686957 0.861417i −0.686957 0.861417i 0.309017 0.951057i \(-0.400000\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.45780 + 0.702039i −1.45780 + 0.702039i
\(777\) −1.77556 + 1.29002i −1.77556 + 1.29002i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) −3.87423 4.85813i −3.87423 4.85813i
\(787\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(788\) 0.648781 2.84250i 0.648781 2.84250i
\(789\) −3.46002 + 1.66626i −3.46002 + 1.66626i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −2.90386 1.39842i −2.90386 1.39842i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(798\) 0 0
\(799\) 0.167386 0.209896i 0.167386 0.209896i
\(800\) −0.900969 0.433884i −0.900969 0.433884i
\(801\) 1.06857 + 4.68170i 1.06857 + 4.68170i
\(802\) −2.77800 −2.77800
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.798709 + 3.49937i −0.798709 + 3.49937i
\(808\) −0.167386 + 0.209896i −0.167386 + 0.209896i
\(809\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(810\) 0 0
\(811\) −0.137526 + 0.602539i −0.137526 + 0.602539i 0.858449 + 0.512899i \(0.171429\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(812\) 0 0
\(813\) −0.488370 2.13969i −0.488370 2.13969i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(822\) 0 0
\(823\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(824\) 0.686957 0.861417i 0.686957 0.861417i
\(825\) 0 0
\(826\) −3.13289 + 0.568536i −3.13289 + 0.568536i
\(827\) −0.853882 0.411208i −0.853882 0.411208i −0.0448648 0.998993i \(-0.514286\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(828\) 0 0
\(829\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(830\) 0 0
\(831\) 1.36838 + 1.71590i 1.36838 + 1.71590i
\(832\) 0 0
\(833\) 0.0360371 + 0.266037i 0.0360371 + 0.266037i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(840\) 0 0
\(841\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) −2.99406 3.75443i −2.99406 3.75443i
\(847\) −0.963963 0.266037i −0.963963 0.266037i
\(848\) 0 0
\(849\) −0.161036 0.0775510i −0.161036 0.0775510i
\(850\) 0.0966604 + 0.423497i 0.0966604 + 0.423497i
\(851\) 0 0
\(852\) 6.42013 6.42013
\(853\) −0.137526 0.602539i −0.137526 0.602539i −0.995974 0.0896393i \(-0.971429\pi\)
0.858449 0.512899i \(-0.171429\pi\)
\(854\) 2.34917 + 2.05241i 2.34917 + 2.05241i
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(858\) 0 0
\(859\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.542281 + 2.37589i 0.542281 + 2.37589i
\(863\) −1.99195 −1.99195 −0.995974 0.0896393i \(-0.971429\pi\)
−0.995974 + 0.0896393i \(0.971429\pi\)
\(864\) −3.91987 −3.91987
\(865\) 0 0
\(866\) 0 0
\(867\) 1.15245 1.44512i 1.15245 1.44512i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.99406 + 3.75443i −2.99406 + 3.75443i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(878\) −0.648781 + 2.84250i −0.648781 + 2.84250i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 4.78277 + 0.430457i 4.78277 + 0.430457i
\(883\) 0.947737 0.947737 0.473869 0.880596i \(-0.342857\pi\)
0.473869 + 0.880596i \(0.342857\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(888\) 1.97737 + 0.952252i 1.97737 + 0.952252i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −1.23135 5.39489i −1.23135 5.39489i
\(895\) 0 0
\(896\) −0.0725928 + 1.61640i −0.0725928 + 1.61640i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 4.80210 4.80210
\(901\) −0.211028 −0.211028
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.24698 1.56366i 1.24698 1.56366i 0.623490 0.781831i \(-0.285714\pi\)
0.623490 0.781831i \(-0.285714\pi\)
\(908\) 0 0
\(909\) −0.177298 + 0.776794i −0.177298 + 0.776794i
\(910\) 0 0
\(911\) 0.429004 + 1.87959i 0.429004 + 1.87959i 0.473869 + 0.880596i \(0.342857\pi\)
−0.0448648 + 0.998993i \(0.514286\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0.0966604 + 0.423497i 0.0966604 + 0.423497i
\(915\) 0 0
\(916\) 0 0
\(917\) −0.913584 + 1.69772i −0.913584 + 1.69772i
\(918\) 1.06164 + 1.33126i 1.06164 + 1.33126i
\(919\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(920\) 0 0
\(921\) −3.57492 1.72159i −3.57492 1.72159i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.992682 + 0.478050i 0.992682 + 0.478050i
\(926\) 0 0
\(927\) 0.727637 3.18798i 0.727637 3.18798i
\(928\) 0 0
\(929\) 1.07047 + 1.34232i 1.07047 + 1.34232i 0.936235 + 0.351375i \(0.114286\pi\)
0.134233 + 0.990950i \(0.457143\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.853882 0.411208i −0.853882 0.411208i −0.0448648 0.998993i \(-0.514286\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(942\) −0.180315 0.226107i −0.180315 0.226107i
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(948\) −0.991252 4.34296i −0.991252 4.34296i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0.217194 0.157801i 0.217194 0.157801i
\(953\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(954\) −0.839947 + 3.68005i −0.839947 + 3.68005i
\(955\) 0 0
\(956\) −1.11152 + 1.39380i −1.11152 + 1.39380i
\(957\) 0 0
\(958\) 0.542281 2.37589i 0.542281 2.37589i
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) −2.72968 1.31455i −2.72968 1.31455i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.590905 + 0.740971i 0.590905 + 0.740971i 0.983930 0.178557i \(-0.0571429\pi\)
−0.393025 + 0.919528i \(0.628571\pi\)
\(968\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(972\) 8.34125 4.01693i 8.34125 4.01693i
\(973\) 0 0
\(974\) 1.81784 + 0.875428i 1.81784 + 0.875428i
\(975\) 0 0
\(976\) 0 0
\(977\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −0.956104 1.19892i −0.956104 1.19892i
\(983\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.943922 + 1.75410i −0.943922 + 1.75410i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −0.490094 0.614559i −0.490094 0.614559i 0.473869 0.880596i \(-0.342857\pi\)
−0.963963 + 0.266037i \(0.914286\pi\)
\(992\) 0 0
\(993\) 0.976242 + 1.22417i 0.976242 + 1.22417i
\(994\) −1.26674 2.96368i −1.26674 2.96368i
\(995\) 0 0
\(996\) −1.29234 0.622358i −1.29234 0.622358i
\(997\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(998\) 0 0
\(999\) 4.31889 4.31889
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2303.1.j.b.939.2 24
47.46 odd 2 CM 2303.1.j.b.939.2 24
49.43 even 7 inner 2303.1.j.b.1268.2 yes 24
2303.1268 odd 14 inner 2303.1.j.b.1268.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2303.1.j.b.939.2 24 1.1 even 1 trivial
2303.1.j.b.939.2 24 47.46 odd 2 CM
2303.1.j.b.1268.2 yes 24 49.43 even 7 inner
2303.1.j.b.1268.2 yes 24 2303.1268 odd 14 inner