Properties

Label 2304.2.k.f
Level $2304$
Weight $2$
Character orbit 2304.k
Analytic conductor $18.398$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2304,2,Mod(577,2304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2304, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2304.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2304 = 2^{8} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2304.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3975326257\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 256)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{5} - \beta_{3} q^{7} + ( - \beta_{7} - \beta_{4} + \cdots + \beta_1) q^{11} + ( - \beta_{5} - 2 \beta_{2} - 2) q^{13} + (\beta_{6} + \beta_{5}) q^{17} + ( - \beta_{4} - \beta_{3}) q^{19}+ \cdots + ( - \beta_{6} - \beta_{5}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{13} + 16 q^{37} - 8 q^{49} - 48 q^{53} + 16 q^{61} + 48 q^{65} + 48 q^{77} - 48 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{24}^{7} + 2\zeta_{24}^{3} - 2\zeta_{24} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{6} + 2\zeta_{24}^{4} + 2\zeta_{24}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{6} - 2\zeta_{24}^{4} + 2\zeta_{24}^{2} + 1 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -2\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} - \beta_{3} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{6} + \beta_{5} + 2\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( \beta_{4} + \beta_{3} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( -\beta_{6} + \beta_{5} + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{7} - \beta_{4} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -\beta_{7} + \beta_{4} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2304\mathbb{Z}\right)^\times\).

\(n\) \(1279\) \(1793\) \(2053\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
−0.965926 0.258819i
0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
0 0 0 −1.73205 + 1.73205i 0 1.03528i 0 0 0
577.2 0 0 0 −1.73205 + 1.73205i 0 1.03528i 0 0 0
577.3 0 0 0 1.73205 1.73205i 0 3.86370i 0 0 0
577.4 0 0 0 1.73205 1.73205i 0 3.86370i 0 0 0
1729.1 0 0 0 −1.73205 1.73205i 0 1.03528i 0 0 0
1729.2 0 0 0 −1.73205 1.73205i 0 1.03528i 0 0 0
1729.3 0 0 0 1.73205 + 1.73205i 0 3.86370i 0 0 0
1729.4 0 0 0 1.73205 + 1.73205i 0 3.86370i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
16.e even 4 1 inner
16.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2304.2.k.f 8
3.b odd 2 1 256.2.e.a 8
4.b odd 2 1 inner 2304.2.k.f 8
8.b even 2 1 2304.2.k.k 8
8.d odd 2 1 2304.2.k.k 8
12.b even 2 1 256.2.e.a 8
16.e even 4 1 inner 2304.2.k.f 8
16.e even 4 1 2304.2.k.k 8
16.f odd 4 1 inner 2304.2.k.f 8
16.f odd 4 1 2304.2.k.k 8
24.f even 2 1 256.2.e.b yes 8
24.h odd 2 1 256.2.e.b yes 8
32.g even 8 1 9216.2.a.bb 4
32.g even 8 1 9216.2.a.bk 4
32.h odd 8 1 9216.2.a.bb 4
32.h odd 8 1 9216.2.a.bk 4
48.i odd 4 1 256.2.e.a 8
48.i odd 4 1 256.2.e.b yes 8
48.k even 4 1 256.2.e.a 8
48.k even 4 1 256.2.e.b yes 8
96.o even 8 1 1024.2.a.g 4
96.o even 8 1 1024.2.a.j 4
96.o even 8 2 1024.2.b.h 8
96.p odd 8 1 1024.2.a.g 4
96.p odd 8 1 1024.2.a.j 4
96.p odd 8 2 1024.2.b.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
256.2.e.a 8 3.b odd 2 1
256.2.e.a 8 12.b even 2 1
256.2.e.a 8 48.i odd 4 1
256.2.e.a 8 48.k even 4 1
256.2.e.b yes 8 24.f even 2 1
256.2.e.b yes 8 24.h odd 2 1
256.2.e.b yes 8 48.i odd 4 1
256.2.e.b yes 8 48.k even 4 1
1024.2.a.g 4 96.o even 8 1
1024.2.a.g 4 96.p odd 8 1
1024.2.a.j 4 96.o even 8 1
1024.2.a.j 4 96.p odd 8 1
1024.2.b.h 8 96.o even 8 2
1024.2.b.h 8 96.p odd 8 2
2304.2.k.f 8 1.a even 1 1 trivial
2304.2.k.f 8 4.b odd 2 1 inner
2304.2.k.f 8 16.e even 4 1 inner
2304.2.k.f 8 16.f odd 4 1 inner
2304.2.k.k 8 8.b even 2 1
2304.2.k.k 8 8.d odd 2 1
2304.2.k.k 8 16.e even 4 1
2304.2.k.k 8 16.f odd 4 1
9216.2.a.bb 4 32.g even 8 1
9216.2.a.bb 4 32.h odd 8 1
9216.2.a.bk 4 32.g even 8 1
9216.2.a.bk 4 32.h odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2304, [\chi])\):

\( T_{5}^{4} + 36 \) Copy content Toggle raw display
\( T_{7}^{4} + 16T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{4} + 8T_{13}^{3} + 32T_{13}^{2} + 16T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 36)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 16 T^{2} + 16)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 504T^{4} + 1296 \) Copy content Toggle raw display
$13$ \( (T^{4} + 8 T^{3} + 32 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$19$ \( T^{8} + 504T^{4} + 1296 \) Copy content Toggle raw display
$23$ \( (T^{4} + 48 T^{2} + 144)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 36)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 32)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} - 8 T^{3} + 32 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 48)^{4} \) Copy content Toggle raw display
$43$ \( T^{8} + 4536 T^{4} + 104976 \) Copy content Toggle raw display
$47$ \( (T^{2} - 96)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} + 24 T^{3} + \cdots + 4356)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} + 16056 T^{4} + 37015056 \) Copy content Toggle raw display
$61$ \( (T^{4} - 8 T^{3} + 32 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 1784 T^{4} + 456976 \) Copy content Toggle raw display
$71$ \( (T^{4} + 48 T^{2} + 144)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 96 T^{2} + 576)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 256 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 4536 T^{4} + 104976 \) Copy content Toggle raw display
$89$ \( (T^{4} + 96 T^{2} + 576)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
show more
show less