Properties

Label 2320.4.a.o.1.1
Level $2320$
Weight $4$
Character 2320.1
Self dual yes
Analytic conductor $136.884$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,4,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(136.884431213\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 91x^{4} + 90x^{3} + 1784x^{2} - 1456x - 3720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.14528\) of defining polynomial
Character \(\chi\) \(=\) 2320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.69185 q^{3} -5.00000 q^{5} +16.0448 q^{7} +32.1646 q^{9} +31.0846 q^{11} +15.0566 q^{13} +38.4593 q^{15} -83.1924 q^{17} -11.6142 q^{19} -123.414 q^{21} -22.9471 q^{23} +25.0000 q^{25} -39.7251 q^{27} -29.0000 q^{29} +117.340 q^{31} -239.098 q^{33} -80.2241 q^{35} -126.486 q^{37} -115.813 q^{39} -500.344 q^{41} +5.84778 q^{43} -160.823 q^{45} +301.232 q^{47} -85.5639 q^{49} +639.903 q^{51} +31.2007 q^{53} -155.423 q^{55} +89.3350 q^{57} -31.3542 q^{59} +80.8436 q^{61} +516.074 q^{63} -75.2828 q^{65} +191.752 q^{67} +176.506 q^{69} -269.462 q^{71} +600.914 q^{73} -192.296 q^{75} +498.746 q^{77} -389.072 q^{79} -562.884 q^{81} +271.037 q^{83} +415.962 q^{85} +223.064 q^{87} -165.976 q^{89} +241.580 q^{91} -902.559 q^{93} +58.0712 q^{95} +1209.58 q^{97} +999.822 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 30 q^{5} - 9 q^{7} + 45 q^{9} + 10 q^{11} + 13 q^{13} - 25 q^{15} - 23 q^{17} - 10 q^{19} - 52 q^{21} - 75 q^{23} + 150 q^{25} + 116 q^{27} - 174 q^{29} + 127 q^{31} - 72 q^{33} + 45 q^{35}+ \cdots + 2976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −7.69185 −1.48030 −0.740149 0.672443i \(-0.765245\pi\)
−0.740149 + 0.672443i \(0.765245\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 16.0448 0.866339 0.433169 0.901313i \(-0.357395\pi\)
0.433169 + 0.901313i \(0.357395\pi\)
\(8\) 0 0
\(9\) 32.1646 1.19128
\(10\) 0 0
\(11\) 31.0846 0.852032 0.426016 0.904716i \(-0.359917\pi\)
0.426016 + 0.904716i \(0.359917\pi\)
\(12\) 0 0
\(13\) 15.0566 0.321226 0.160613 0.987017i \(-0.448653\pi\)
0.160613 + 0.987017i \(0.448653\pi\)
\(14\) 0 0
\(15\) 38.4593 0.662009
\(16\) 0 0
\(17\) −83.1924 −1.18689 −0.593444 0.804875i \(-0.702232\pi\)
−0.593444 + 0.804875i \(0.702232\pi\)
\(18\) 0 0
\(19\) −11.6142 −0.140236 −0.0701181 0.997539i \(-0.522338\pi\)
−0.0701181 + 0.997539i \(0.522338\pi\)
\(20\) 0 0
\(21\) −123.414 −1.28244
\(22\) 0 0
\(23\) −22.9471 −0.208035 −0.104018 0.994575i \(-0.533170\pi\)
−0.104018 + 0.994575i \(0.533170\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −39.7251 −0.283152
\(28\) 0 0
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 117.340 0.679833 0.339917 0.940456i \(-0.389601\pi\)
0.339917 + 0.940456i \(0.389601\pi\)
\(32\) 0 0
\(33\) −239.098 −1.26126
\(34\) 0 0
\(35\) −80.2241 −0.387438
\(36\) 0 0
\(37\) −126.486 −0.562003 −0.281001 0.959707i \(-0.590667\pi\)
−0.281001 + 0.959707i \(0.590667\pi\)
\(38\) 0 0
\(39\) −115.813 −0.475510
\(40\) 0 0
\(41\) −500.344 −1.90587 −0.952935 0.303175i \(-0.901953\pi\)
−0.952935 + 0.303175i \(0.901953\pi\)
\(42\) 0 0
\(43\) 5.84778 0.0207390 0.0103695 0.999946i \(-0.496699\pi\)
0.0103695 + 0.999946i \(0.496699\pi\)
\(44\) 0 0
\(45\) −160.823 −0.532757
\(46\) 0 0
\(47\) 301.232 0.934876 0.467438 0.884026i \(-0.345177\pi\)
0.467438 + 0.884026i \(0.345177\pi\)
\(48\) 0 0
\(49\) −85.5639 −0.249458
\(50\) 0 0
\(51\) 639.903 1.75695
\(52\) 0 0
\(53\) 31.2007 0.0808632 0.0404316 0.999182i \(-0.487127\pi\)
0.0404316 + 0.999182i \(0.487127\pi\)
\(54\) 0 0
\(55\) −155.423 −0.381040
\(56\) 0 0
\(57\) 89.3350 0.207591
\(58\) 0 0
\(59\) −31.3542 −0.0691859 −0.0345930 0.999401i \(-0.511013\pi\)
−0.0345930 + 0.999401i \(0.511013\pi\)
\(60\) 0 0
\(61\) 80.8436 0.169688 0.0848440 0.996394i \(-0.472961\pi\)
0.0848440 + 0.996394i \(0.472961\pi\)
\(62\) 0 0
\(63\) 516.074 1.03205
\(64\) 0 0
\(65\) −75.2828 −0.143657
\(66\) 0 0
\(67\) 191.752 0.349645 0.174822 0.984600i \(-0.444065\pi\)
0.174822 + 0.984600i \(0.444065\pi\)
\(68\) 0 0
\(69\) 176.506 0.307954
\(70\) 0 0
\(71\) −269.462 −0.450412 −0.225206 0.974311i \(-0.572306\pi\)
−0.225206 + 0.974311i \(0.572306\pi\)
\(72\) 0 0
\(73\) 600.914 0.963447 0.481724 0.876323i \(-0.340011\pi\)
0.481724 + 0.876323i \(0.340011\pi\)
\(74\) 0 0
\(75\) −192.296 −0.296059
\(76\) 0 0
\(77\) 498.746 0.738148
\(78\) 0 0
\(79\) −389.072 −0.554101 −0.277050 0.960855i \(-0.589357\pi\)
−0.277050 + 0.960855i \(0.589357\pi\)
\(80\) 0 0
\(81\) −562.884 −0.772132
\(82\) 0 0
\(83\) 271.037 0.358435 0.179218 0.983809i \(-0.442643\pi\)
0.179218 + 0.983809i \(0.442643\pi\)
\(84\) 0 0
\(85\) 415.962 0.530793
\(86\) 0 0
\(87\) 223.064 0.274884
\(88\) 0 0
\(89\) −165.976 −0.197679 −0.0988397 0.995103i \(-0.531513\pi\)
−0.0988397 + 0.995103i \(0.531513\pi\)
\(90\) 0 0
\(91\) 241.580 0.278290
\(92\) 0 0
\(93\) −902.559 −1.00636
\(94\) 0 0
\(95\) 58.0712 0.0627156
\(96\) 0 0
\(97\) 1209.58 1.26612 0.633061 0.774102i \(-0.281798\pi\)
0.633061 + 0.774102i \(0.281798\pi\)
\(98\) 0 0
\(99\) 999.822 1.01501
\(100\) 0 0
\(101\) 1545.49 1.52259 0.761295 0.648405i \(-0.224564\pi\)
0.761295 + 0.648405i \(0.224564\pi\)
\(102\) 0 0
\(103\) 378.011 0.361617 0.180808 0.983518i \(-0.442129\pi\)
0.180808 + 0.983518i \(0.442129\pi\)
\(104\) 0 0
\(105\) 617.072 0.573524
\(106\) 0 0
\(107\) 262.102 0.236807 0.118403 0.992966i \(-0.462222\pi\)
0.118403 + 0.992966i \(0.462222\pi\)
\(108\) 0 0
\(109\) 1337.54 1.17535 0.587676 0.809096i \(-0.300043\pi\)
0.587676 + 0.809096i \(0.300043\pi\)
\(110\) 0 0
\(111\) 972.908 0.831931
\(112\) 0 0
\(113\) −501.976 −0.417893 −0.208947 0.977927i \(-0.567004\pi\)
−0.208947 + 0.977927i \(0.567004\pi\)
\(114\) 0 0
\(115\) 114.736 0.0930362
\(116\) 0 0
\(117\) 484.288 0.382670
\(118\) 0 0
\(119\) −1334.81 −1.02825
\(120\) 0 0
\(121\) −364.750 −0.274042
\(122\) 0 0
\(123\) 3848.57 2.82125
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1572.60 1.09878 0.549392 0.835565i \(-0.314859\pi\)
0.549392 + 0.835565i \(0.314859\pi\)
\(128\) 0 0
\(129\) −44.9802 −0.0306999
\(130\) 0 0
\(131\) 487.458 0.325110 0.162555 0.986700i \(-0.448027\pi\)
0.162555 + 0.986700i \(0.448027\pi\)
\(132\) 0 0
\(133\) −186.348 −0.121492
\(134\) 0 0
\(135\) 198.625 0.126629
\(136\) 0 0
\(137\) 561.363 0.350076 0.175038 0.984562i \(-0.443995\pi\)
0.175038 + 0.984562i \(0.443995\pi\)
\(138\) 0 0
\(139\) −527.373 −0.321807 −0.160904 0.986970i \(-0.551441\pi\)
−0.160904 + 0.986970i \(0.551441\pi\)
\(140\) 0 0
\(141\) −2317.03 −1.38389
\(142\) 0 0
\(143\) 468.027 0.273695
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) 658.145 0.369271
\(148\) 0 0
\(149\) 190.524 0.104754 0.0523768 0.998627i \(-0.483320\pi\)
0.0523768 + 0.998627i \(0.483320\pi\)
\(150\) 0 0
\(151\) 1056.81 0.569550 0.284775 0.958594i \(-0.408081\pi\)
0.284775 + 0.958594i \(0.408081\pi\)
\(152\) 0 0
\(153\) −2675.85 −1.41392
\(154\) 0 0
\(155\) −586.698 −0.304031
\(156\) 0 0
\(157\) −708.890 −0.360354 −0.180177 0.983634i \(-0.557667\pi\)
−0.180177 + 0.983634i \(0.557667\pi\)
\(158\) 0 0
\(159\) −239.991 −0.119702
\(160\) 0 0
\(161\) −368.183 −0.180229
\(162\) 0 0
\(163\) 443.505 0.213116 0.106558 0.994306i \(-0.466017\pi\)
0.106558 + 0.994306i \(0.466017\pi\)
\(164\) 0 0
\(165\) 1195.49 0.564053
\(166\) 0 0
\(167\) −3330.52 −1.54325 −0.771627 0.636075i \(-0.780557\pi\)
−0.771627 + 0.636075i \(0.780557\pi\)
\(168\) 0 0
\(169\) −1970.30 −0.896814
\(170\) 0 0
\(171\) −373.567 −0.167061
\(172\) 0 0
\(173\) −2160.18 −0.949339 −0.474670 0.880164i \(-0.657432\pi\)
−0.474670 + 0.880164i \(0.657432\pi\)
\(174\) 0 0
\(175\) 401.120 0.173268
\(176\) 0 0
\(177\) 241.172 0.102416
\(178\) 0 0
\(179\) 108.508 0.0453087 0.0226544 0.999743i \(-0.492788\pi\)
0.0226544 + 0.999743i \(0.492788\pi\)
\(180\) 0 0
\(181\) 687.869 0.282480 0.141240 0.989975i \(-0.454891\pi\)
0.141240 + 0.989975i \(0.454891\pi\)
\(182\) 0 0
\(183\) −621.837 −0.251189
\(184\) 0 0
\(185\) 632.428 0.251335
\(186\) 0 0
\(187\) −2586.00 −1.01127
\(188\) 0 0
\(189\) −637.381 −0.245305
\(190\) 0 0
\(191\) −3943.02 −1.49375 −0.746877 0.664963i \(-0.768447\pi\)
−0.746877 + 0.664963i \(0.768447\pi\)
\(192\) 0 0
\(193\) −3124.06 −1.16516 −0.582578 0.812775i \(-0.697956\pi\)
−0.582578 + 0.812775i \(0.697956\pi\)
\(194\) 0 0
\(195\) 579.064 0.212655
\(196\) 0 0
\(197\) −2176.53 −0.787164 −0.393582 0.919290i \(-0.628764\pi\)
−0.393582 + 0.919290i \(0.628764\pi\)
\(198\) 0 0
\(199\) 1250.92 0.445604 0.222802 0.974864i \(-0.428480\pi\)
0.222802 + 0.974864i \(0.428480\pi\)
\(200\) 0 0
\(201\) −1474.93 −0.517578
\(202\) 0 0
\(203\) −465.300 −0.160875
\(204\) 0 0
\(205\) 2501.72 0.852331
\(206\) 0 0
\(207\) −738.085 −0.247828
\(208\) 0 0
\(209\) −361.024 −0.119486
\(210\) 0 0
\(211\) −3838.31 −1.25232 −0.626162 0.779693i \(-0.715375\pi\)
−0.626162 + 0.779693i \(0.715375\pi\)
\(212\) 0 0
\(213\) 2072.66 0.666744
\(214\) 0 0
\(215\) −29.2389 −0.00927477
\(216\) 0 0
\(217\) 1882.69 0.588966
\(218\) 0 0
\(219\) −4622.14 −1.42619
\(220\) 0 0
\(221\) −1252.59 −0.381260
\(222\) 0 0
\(223\) −1723.40 −0.517521 −0.258761 0.965942i \(-0.583314\pi\)
−0.258761 + 0.965942i \(0.583314\pi\)
\(224\) 0 0
\(225\) 804.114 0.238256
\(226\) 0 0
\(227\) 3406.40 0.995995 0.497997 0.867179i \(-0.334069\pi\)
0.497997 + 0.867179i \(0.334069\pi\)
\(228\) 0 0
\(229\) 4538.85 1.30976 0.654881 0.755732i \(-0.272719\pi\)
0.654881 + 0.755732i \(0.272719\pi\)
\(230\) 0 0
\(231\) −3836.28 −1.09268
\(232\) 0 0
\(233\) 414.870 0.116648 0.0583242 0.998298i \(-0.481424\pi\)
0.0583242 + 0.998298i \(0.481424\pi\)
\(234\) 0 0
\(235\) −1506.16 −0.418089
\(236\) 0 0
\(237\) 2992.68 0.820234
\(238\) 0 0
\(239\) 1307.91 0.353982 0.176991 0.984212i \(-0.443364\pi\)
0.176991 + 0.984212i \(0.443364\pi\)
\(240\) 0 0
\(241\) −3942.50 −1.05377 −0.526886 0.849936i \(-0.676641\pi\)
−0.526886 + 0.849936i \(0.676641\pi\)
\(242\) 0 0
\(243\) 5402.20 1.42614
\(244\) 0 0
\(245\) 427.820 0.111561
\(246\) 0 0
\(247\) −174.870 −0.0450475
\(248\) 0 0
\(249\) −2084.77 −0.530591
\(250\) 0 0
\(251\) −921.189 −0.231653 −0.115827 0.993269i \(-0.536952\pi\)
−0.115827 + 0.993269i \(0.536952\pi\)
\(252\) 0 0
\(253\) −713.302 −0.177253
\(254\) 0 0
\(255\) −3199.52 −0.785731
\(256\) 0 0
\(257\) −679.151 −0.164841 −0.0824207 0.996598i \(-0.526265\pi\)
−0.0824207 + 0.996598i \(0.526265\pi\)
\(258\) 0 0
\(259\) −2029.44 −0.486885
\(260\) 0 0
\(261\) −932.772 −0.221215
\(262\) 0 0
\(263\) −5846.60 −1.37079 −0.685393 0.728173i \(-0.740370\pi\)
−0.685393 + 0.728173i \(0.740370\pi\)
\(264\) 0 0
\(265\) −156.004 −0.0361631
\(266\) 0 0
\(267\) 1276.67 0.292624
\(268\) 0 0
\(269\) −921.923 −0.208961 −0.104481 0.994527i \(-0.533318\pi\)
−0.104481 + 0.994527i \(0.533318\pi\)
\(270\) 0 0
\(271\) −6533.88 −1.46459 −0.732297 0.680985i \(-0.761552\pi\)
−0.732297 + 0.680985i \(0.761552\pi\)
\(272\) 0 0
\(273\) −1858.19 −0.411953
\(274\) 0 0
\(275\) 777.114 0.170406
\(276\) 0 0
\(277\) 6758.46 1.46598 0.732990 0.680239i \(-0.238124\pi\)
0.732990 + 0.680239i \(0.238124\pi\)
\(278\) 0 0
\(279\) 3774.18 0.809872
\(280\) 0 0
\(281\) −9049.56 −1.92118 −0.960590 0.277970i \(-0.910338\pi\)
−0.960590 + 0.277970i \(0.910338\pi\)
\(282\) 0 0
\(283\) −7660.93 −1.60917 −0.804585 0.593837i \(-0.797612\pi\)
−0.804585 + 0.593837i \(0.797612\pi\)
\(284\) 0 0
\(285\) −446.675 −0.0928377
\(286\) 0 0
\(287\) −8027.93 −1.65113
\(288\) 0 0
\(289\) 2007.97 0.408705
\(290\) 0 0
\(291\) −9303.88 −1.87424
\(292\) 0 0
\(293\) 4977.90 0.992533 0.496267 0.868170i \(-0.334704\pi\)
0.496267 + 0.868170i \(0.334704\pi\)
\(294\) 0 0
\(295\) 156.771 0.0309409
\(296\) 0 0
\(297\) −1234.84 −0.241254
\(298\) 0 0
\(299\) −345.505 −0.0668263
\(300\) 0 0
\(301\) 93.8265 0.0179670
\(302\) 0 0
\(303\) −11887.7 −2.25389
\(304\) 0 0
\(305\) −404.218 −0.0758868
\(306\) 0 0
\(307\) 171.110 0.0318103 0.0159052 0.999874i \(-0.494937\pi\)
0.0159052 + 0.999874i \(0.494937\pi\)
\(308\) 0 0
\(309\) −2907.60 −0.535300
\(310\) 0 0
\(311\) 3881.41 0.707700 0.353850 0.935302i \(-0.384872\pi\)
0.353850 + 0.935302i \(0.384872\pi\)
\(312\) 0 0
\(313\) 3578.45 0.646217 0.323108 0.946362i \(-0.395272\pi\)
0.323108 + 0.946362i \(0.395272\pi\)
\(314\) 0 0
\(315\) −2580.37 −0.461548
\(316\) 0 0
\(317\) 4025.99 0.713319 0.356660 0.934234i \(-0.383916\pi\)
0.356660 + 0.934234i \(0.383916\pi\)
\(318\) 0 0
\(319\) −901.452 −0.158218
\(320\) 0 0
\(321\) −2016.05 −0.350544
\(322\) 0 0
\(323\) 966.216 0.166445
\(324\) 0 0
\(325\) 376.414 0.0642452
\(326\) 0 0
\(327\) −10288.2 −1.73987
\(328\) 0 0
\(329\) 4833.21 0.809919
\(330\) 0 0
\(331\) 446.811 0.0741962 0.0370981 0.999312i \(-0.488189\pi\)
0.0370981 + 0.999312i \(0.488189\pi\)
\(332\) 0 0
\(333\) −4068.35 −0.669503
\(334\) 0 0
\(335\) −958.758 −0.156366
\(336\) 0 0
\(337\) 3235.03 0.522918 0.261459 0.965215i \(-0.415796\pi\)
0.261459 + 0.965215i \(0.415796\pi\)
\(338\) 0 0
\(339\) 3861.13 0.618607
\(340\) 0 0
\(341\) 3647.45 0.579240
\(342\) 0 0
\(343\) −6876.23 −1.08245
\(344\) 0 0
\(345\) −882.530 −0.137721
\(346\) 0 0
\(347\) −3281.37 −0.507646 −0.253823 0.967251i \(-0.581688\pi\)
−0.253823 + 0.967251i \(0.581688\pi\)
\(348\) 0 0
\(349\) −8576.39 −1.31543 −0.657713 0.753269i \(-0.728476\pi\)
−0.657713 + 0.753269i \(0.728476\pi\)
\(350\) 0 0
\(351\) −598.123 −0.0909556
\(352\) 0 0
\(353\) −12116.6 −1.82692 −0.913459 0.406931i \(-0.866599\pi\)
−0.913459 + 0.406931i \(0.866599\pi\)
\(354\) 0 0
\(355\) 1347.31 0.201431
\(356\) 0 0
\(357\) 10267.1 1.52211
\(358\) 0 0
\(359\) 8234.49 1.21058 0.605292 0.796004i \(-0.293056\pi\)
0.605292 + 0.796004i \(0.293056\pi\)
\(360\) 0 0
\(361\) −6724.11 −0.980334
\(362\) 0 0
\(363\) 2805.60 0.405663
\(364\) 0 0
\(365\) −3004.57 −0.430867
\(366\) 0 0
\(367\) −6135.07 −0.872611 −0.436306 0.899799i \(-0.643713\pi\)
−0.436306 + 0.899799i \(0.643713\pi\)
\(368\) 0 0
\(369\) −16093.4 −2.27042
\(370\) 0 0
\(371\) 500.610 0.0700549
\(372\) 0 0
\(373\) 5421.05 0.752524 0.376262 0.926513i \(-0.377209\pi\)
0.376262 + 0.926513i \(0.377209\pi\)
\(374\) 0 0
\(375\) 961.481 0.132402
\(376\) 0 0
\(377\) −436.640 −0.0596502
\(378\) 0 0
\(379\) 13190.8 1.78777 0.893884 0.448298i \(-0.147969\pi\)
0.893884 + 0.448298i \(0.147969\pi\)
\(380\) 0 0
\(381\) −12096.2 −1.62653
\(382\) 0 0
\(383\) 8801.65 1.17426 0.587132 0.809491i \(-0.300257\pi\)
0.587132 + 0.809491i \(0.300257\pi\)
\(384\) 0 0
\(385\) −2493.73 −0.330110
\(386\) 0 0
\(387\) 188.091 0.0247060
\(388\) 0 0
\(389\) −7098.28 −0.925185 −0.462593 0.886571i \(-0.653081\pi\)
−0.462593 + 0.886571i \(0.653081\pi\)
\(390\) 0 0
\(391\) 1909.03 0.246915
\(392\) 0 0
\(393\) −3749.45 −0.481259
\(394\) 0 0
\(395\) 1945.36 0.247801
\(396\) 0 0
\(397\) −983.121 −0.124286 −0.0621428 0.998067i \(-0.519793\pi\)
−0.0621428 + 0.998067i \(0.519793\pi\)
\(398\) 0 0
\(399\) 1433.36 0.179844
\(400\) 0 0
\(401\) −11566.4 −1.44039 −0.720196 0.693771i \(-0.755948\pi\)
−0.720196 + 0.693771i \(0.755948\pi\)
\(402\) 0 0
\(403\) 1766.73 0.218380
\(404\) 0 0
\(405\) 2814.42 0.345308
\(406\) 0 0
\(407\) −3931.75 −0.478844
\(408\) 0 0
\(409\) −5076.95 −0.613787 −0.306893 0.951744i \(-0.599290\pi\)
−0.306893 + 0.951744i \(0.599290\pi\)
\(410\) 0 0
\(411\) −4317.92 −0.518217
\(412\) 0 0
\(413\) −503.072 −0.0599384
\(414\) 0 0
\(415\) −1355.18 −0.160297
\(416\) 0 0
\(417\) 4056.48 0.476370
\(418\) 0 0
\(419\) 7054.26 0.822490 0.411245 0.911525i \(-0.365094\pi\)
0.411245 + 0.911525i \(0.365094\pi\)
\(420\) 0 0
\(421\) −47.7238 −0.00552474 −0.00276237 0.999996i \(-0.500879\pi\)
−0.00276237 + 0.999996i \(0.500879\pi\)
\(422\) 0 0
\(423\) 9688.99 1.11370
\(424\) 0 0
\(425\) −2079.81 −0.237378
\(426\) 0 0
\(427\) 1297.12 0.147007
\(428\) 0 0
\(429\) −3599.99 −0.405150
\(430\) 0 0
\(431\) −11596.3 −1.29600 −0.647999 0.761641i \(-0.724394\pi\)
−0.647999 + 0.761641i \(0.724394\pi\)
\(432\) 0 0
\(433\) 3017.20 0.334867 0.167434 0.985883i \(-0.446452\pi\)
0.167434 + 0.985883i \(0.446452\pi\)
\(434\) 0 0
\(435\) −1115.32 −0.122932
\(436\) 0 0
\(437\) 266.514 0.0291741
\(438\) 0 0
\(439\) 2030.54 0.220757 0.110379 0.993890i \(-0.464794\pi\)
0.110379 + 0.993890i \(0.464794\pi\)
\(440\) 0 0
\(441\) −2752.13 −0.297174
\(442\) 0 0
\(443\) 2622.89 0.281303 0.140652 0.990059i \(-0.455080\pi\)
0.140652 + 0.990059i \(0.455080\pi\)
\(444\) 0 0
\(445\) 829.882 0.0884049
\(446\) 0 0
\(447\) −1465.48 −0.155067
\(448\) 0 0
\(449\) −8289.68 −0.871301 −0.435651 0.900116i \(-0.643482\pi\)
−0.435651 + 0.900116i \(0.643482\pi\)
\(450\) 0 0
\(451\) −15553.0 −1.62386
\(452\) 0 0
\(453\) −8128.83 −0.843103
\(454\) 0 0
\(455\) −1207.90 −0.124455
\(456\) 0 0
\(457\) 11291.3 1.15577 0.577885 0.816118i \(-0.303878\pi\)
0.577885 + 0.816118i \(0.303878\pi\)
\(458\) 0 0
\(459\) 3304.82 0.336069
\(460\) 0 0
\(461\) −4292.63 −0.433683 −0.216841 0.976207i \(-0.569575\pi\)
−0.216841 + 0.976207i \(0.569575\pi\)
\(462\) 0 0
\(463\) −4006.35 −0.402140 −0.201070 0.979577i \(-0.564442\pi\)
−0.201070 + 0.979577i \(0.564442\pi\)
\(464\) 0 0
\(465\) 4512.80 0.450056
\(466\) 0 0
\(467\) −7220.10 −0.715432 −0.357716 0.933831i \(-0.616444\pi\)
−0.357716 + 0.933831i \(0.616444\pi\)
\(468\) 0 0
\(469\) 3076.62 0.302911
\(470\) 0 0
\(471\) 5452.67 0.533431
\(472\) 0 0
\(473\) 181.776 0.0176703
\(474\) 0 0
\(475\) −290.356 −0.0280472
\(476\) 0 0
\(477\) 1003.56 0.0963307
\(478\) 0 0
\(479\) 16656.9 1.58888 0.794438 0.607346i \(-0.207766\pi\)
0.794438 + 0.607346i \(0.207766\pi\)
\(480\) 0 0
\(481\) −1904.44 −0.180530
\(482\) 0 0
\(483\) 2832.01 0.266792
\(484\) 0 0
\(485\) −6047.88 −0.566227
\(486\) 0 0
\(487\) 10289.5 0.957412 0.478706 0.877975i \(-0.341106\pi\)
0.478706 + 0.877975i \(0.341106\pi\)
\(488\) 0 0
\(489\) −3411.37 −0.315475
\(490\) 0 0
\(491\) −14263.3 −1.31099 −0.655493 0.755201i \(-0.727539\pi\)
−0.655493 + 0.755201i \(0.727539\pi\)
\(492\) 0 0
\(493\) 2412.58 0.220400
\(494\) 0 0
\(495\) −4999.11 −0.453926
\(496\) 0 0
\(497\) −4323.47 −0.390210
\(498\) 0 0
\(499\) −1843.00 −0.165339 −0.0826693 0.996577i \(-0.526345\pi\)
−0.0826693 + 0.996577i \(0.526345\pi\)
\(500\) 0 0
\(501\) 25617.9 2.28448
\(502\) 0 0
\(503\) 4350.87 0.385678 0.192839 0.981230i \(-0.438231\pi\)
0.192839 + 0.981230i \(0.438231\pi\)
\(504\) 0 0
\(505\) −7727.43 −0.680923
\(506\) 0 0
\(507\) 15155.3 1.32755
\(508\) 0 0
\(509\) 16783.1 1.46148 0.730742 0.682653i \(-0.239174\pi\)
0.730742 + 0.682653i \(0.239174\pi\)
\(510\) 0 0
\(511\) 9641.55 0.834671
\(512\) 0 0
\(513\) 461.376 0.0397081
\(514\) 0 0
\(515\) −1890.06 −0.161720
\(516\) 0 0
\(517\) 9363.66 0.796544
\(518\) 0 0
\(519\) 16615.8 1.40530
\(520\) 0 0
\(521\) −4014.47 −0.337576 −0.168788 0.985652i \(-0.553985\pi\)
−0.168788 + 0.985652i \(0.553985\pi\)
\(522\) 0 0
\(523\) −15944.4 −1.33308 −0.666538 0.745471i \(-0.732225\pi\)
−0.666538 + 0.745471i \(0.732225\pi\)
\(524\) 0 0
\(525\) −3085.36 −0.256488
\(526\) 0 0
\(527\) −9761.76 −0.806886
\(528\) 0 0
\(529\) −11640.4 −0.956721
\(530\) 0 0
\(531\) −1008.49 −0.0824198
\(532\) 0 0
\(533\) −7533.46 −0.612215
\(534\) 0 0
\(535\) −1310.51 −0.105903
\(536\) 0 0
\(537\) −834.627 −0.0670704
\(538\) 0 0
\(539\) −2659.72 −0.212546
\(540\) 0 0
\(541\) −20434.2 −1.62391 −0.811954 0.583721i \(-0.801596\pi\)
−0.811954 + 0.583721i \(0.801596\pi\)
\(542\) 0 0
\(543\) −5290.99 −0.418155
\(544\) 0 0
\(545\) −6687.72 −0.525634
\(546\) 0 0
\(547\) −6626.20 −0.517945 −0.258973 0.965885i \(-0.583384\pi\)
−0.258973 + 0.965885i \(0.583384\pi\)
\(548\) 0 0
\(549\) 2600.30 0.202146
\(550\) 0 0
\(551\) 336.813 0.0260412
\(552\) 0 0
\(553\) −6242.58 −0.480039
\(554\) 0 0
\(555\) −4864.54 −0.372051
\(556\) 0 0
\(557\) −10434.1 −0.793727 −0.396864 0.917878i \(-0.629901\pi\)
−0.396864 + 0.917878i \(0.629901\pi\)
\(558\) 0 0
\(559\) 88.0474 0.00666191
\(560\) 0 0
\(561\) 19891.1 1.49698
\(562\) 0 0
\(563\) 7846.64 0.587383 0.293691 0.955900i \(-0.405116\pi\)
0.293691 + 0.955900i \(0.405116\pi\)
\(564\) 0 0
\(565\) 2509.88 0.186888
\(566\) 0 0
\(567\) −9031.37 −0.668927
\(568\) 0 0
\(569\) −25122.3 −1.85093 −0.925465 0.378832i \(-0.876326\pi\)
−0.925465 + 0.378832i \(0.876326\pi\)
\(570\) 0 0
\(571\) −11500.3 −0.842862 −0.421431 0.906861i \(-0.638472\pi\)
−0.421431 + 0.906861i \(0.638472\pi\)
\(572\) 0 0
\(573\) 30329.1 2.21120
\(574\) 0 0
\(575\) −573.679 −0.0416071
\(576\) 0 0
\(577\) −9164.70 −0.661233 −0.330617 0.943765i \(-0.607257\pi\)
−0.330617 + 0.943765i \(0.607257\pi\)
\(578\) 0 0
\(579\) 24029.8 1.72478
\(580\) 0 0
\(581\) 4348.73 0.310526
\(582\) 0 0
\(583\) 969.861 0.0688980
\(584\) 0 0
\(585\) −2421.44 −0.171135
\(586\) 0 0
\(587\) 4624.15 0.325143 0.162572 0.986697i \(-0.448021\pi\)
0.162572 + 0.986697i \(0.448021\pi\)
\(588\) 0 0
\(589\) −1362.81 −0.0953373
\(590\) 0 0
\(591\) 16741.5 1.16524
\(592\) 0 0
\(593\) −17603.7 −1.21905 −0.609526 0.792766i \(-0.708640\pi\)
−0.609526 + 0.792766i \(0.708640\pi\)
\(594\) 0 0
\(595\) 6674.03 0.459846
\(596\) 0 0
\(597\) −9621.86 −0.659626
\(598\) 0 0
\(599\) −16865.8 −1.15044 −0.575222 0.817997i \(-0.695084\pi\)
−0.575222 + 0.817997i \(0.695084\pi\)
\(600\) 0 0
\(601\) 13746.3 0.932987 0.466494 0.884525i \(-0.345517\pi\)
0.466494 + 0.884525i \(0.345517\pi\)
\(602\) 0 0
\(603\) 6167.61 0.416525
\(604\) 0 0
\(605\) 1823.75 0.122555
\(606\) 0 0
\(607\) 9415.05 0.629564 0.314782 0.949164i \(-0.398069\pi\)
0.314782 + 0.949164i \(0.398069\pi\)
\(608\) 0 0
\(609\) 3579.02 0.238143
\(610\) 0 0
\(611\) 4535.52 0.300307
\(612\) 0 0
\(613\) −11753.3 −0.774409 −0.387205 0.921994i \(-0.626559\pi\)
−0.387205 + 0.921994i \(0.626559\pi\)
\(614\) 0 0
\(615\) −19242.9 −1.26170
\(616\) 0 0
\(617\) 11464.2 0.748027 0.374014 0.927423i \(-0.377981\pi\)
0.374014 + 0.927423i \(0.377981\pi\)
\(618\) 0 0
\(619\) 7416.72 0.481588 0.240794 0.970576i \(-0.422592\pi\)
0.240794 + 0.970576i \(0.422592\pi\)
\(620\) 0 0
\(621\) 911.577 0.0589055
\(622\) 0 0
\(623\) −2663.06 −0.171257
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 2776.94 0.176874
\(628\) 0 0
\(629\) 10522.6 0.667035
\(630\) 0 0
\(631\) 13552.5 0.855020 0.427510 0.904011i \(-0.359391\pi\)
0.427510 + 0.904011i \(0.359391\pi\)
\(632\) 0 0
\(633\) 29523.7 1.85381
\(634\) 0 0
\(635\) −7862.99 −0.491391
\(636\) 0 0
\(637\) −1288.30 −0.0801322
\(638\) 0 0
\(639\) −8667.13 −0.536567
\(640\) 0 0
\(641\) −21456.3 −1.32211 −0.661055 0.750337i \(-0.729891\pi\)
−0.661055 + 0.750337i \(0.729891\pi\)
\(642\) 0 0
\(643\) 5794.95 0.355413 0.177706 0.984084i \(-0.443132\pi\)
0.177706 + 0.984084i \(0.443132\pi\)
\(644\) 0 0
\(645\) 224.901 0.0137294
\(646\) 0 0
\(647\) 13848.5 0.841486 0.420743 0.907180i \(-0.361769\pi\)
0.420743 + 0.907180i \(0.361769\pi\)
\(648\) 0 0
\(649\) −974.632 −0.0589486
\(650\) 0 0
\(651\) −14481.4 −0.871844
\(652\) 0 0
\(653\) −7835.40 −0.469561 −0.234780 0.972048i \(-0.575437\pi\)
−0.234780 + 0.972048i \(0.575437\pi\)
\(654\) 0 0
\(655\) −2437.29 −0.145394
\(656\) 0 0
\(657\) 19328.1 1.14774
\(658\) 0 0
\(659\) −21053.2 −1.24449 −0.622243 0.782824i \(-0.713779\pi\)
−0.622243 + 0.782824i \(0.713779\pi\)
\(660\) 0 0
\(661\) 2587.65 0.152266 0.0761330 0.997098i \(-0.475743\pi\)
0.0761330 + 0.997098i \(0.475743\pi\)
\(662\) 0 0
\(663\) 9634.74 0.564377
\(664\) 0 0
\(665\) 931.741 0.0543329
\(666\) 0 0
\(667\) 665.467 0.0386312
\(668\) 0 0
\(669\) 13256.1 0.766085
\(670\) 0 0
\(671\) 2512.99 0.144580
\(672\) 0 0
\(673\) 20359.3 1.16611 0.583057 0.812431i \(-0.301856\pi\)
0.583057 + 0.812431i \(0.301856\pi\)
\(674\) 0 0
\(675\) −993.127 −0.0566303
\(676\) 0 0
\(677\) 16020.3 0.909471 0.454736 0.890627i \(-0.349734\pi\)
0.454736 + 0.890627i \(0.349734\pi\)
\(678\) 0 0
\(679\) 19407.4 1.09689
\(680\) 0 0
\(681\) −26201.5 −1.47437
\(682\) 0 0
\(683\) 11079.7 0.620722 0.310361 0.950619i \(-0.399550\pi\)
0.310361 + 0.950619i \(0.399550\pi\)
\(684\) 0 0
\(685\) −2806.81 −0.156559
\(686\) 0 0
\(687\) −34912.2 −1.93884
\(688\) 0 0
\(689\) 469.775 0.0259753
\(690\) 0 0
\(691\) 1573.50 0.0866265 0.0433133 0.999062i \(-0.486209\pi\)
0.0433133 + 0.999062i \(0.486209\pi\)
\(692\) 0 0
\(693\) 16042.0 0.879341
\(694\) 0 0
\(695\) 2636.87 0.143917
\(696\) 0 0
\(697\) 41624.8 2.26206
\(698\) 0 0
\(699\) −3191.12 −0.172674
\(700\) 0 0
\(701\) −28271.6 −1.52326 −0.761630 0.648012i \(-0.775600\pi\)
−0.761630 + 0.648012i \(0.775600\pi\)
\(702\) 0 0
\(703\) 1469.03 0.0788132
\(704\) 0 0
\(705\) 11585.2 0.618897
\(706\) 0 0
\(707\) 24797.0 1.31908
\(708\) 0 0
\(709\) −14638.5 −0.775401 −0.387700 0.921785i \(-0.626730\pi\)
−0.387700 + 0.921785i \(0.626730\pi\)
\(710\) 0 0
\(711\) −12514.3 −0.660089
\(712\) 0 0
\(713\) −2692.61 −0.141429
\(714\) 0 0
\(715\) −2340.13 −0.122400
\(716\) 0 0
\(717\) −10060.3 −0.523999
\(718\) 0 0
\(719\) 2609.41 0.135347 0.0676735 0.997708i \(-0.478442\pi\)
0.0676735 + 0.997708i \(0.478442\pi\)
\(720\) 0 0
\(721\) 6065.12 0.313283
\(722\) 0 0
\(723\) 30325.2 1.55990
\(724\) 0 0
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −8386.64 −0.427845 −0.213923 0.976851i \(-0.568624\pi\)
−0.213923 + 0.976851i \(0.568624\pi\)
\(728\) 0 0
\(729\) −26355.0 −1.33897
\(730\) 0 0
\(731\) −486.490 −0.0246149
\(732\) 0 0
\(733\) 29969.0 1.51014 0.755068 0.655646i \(-0.227604\pi\)
0.755068 + 0.655646i \(0.227604\pi\)
\(734\) 0 0
\(735\) −3290.73 −0.165143
\(736\) 0 0
\(737\) 5960.52 0.297908
\(738\) 0 0
\(739\) −908.616 −0.0452286 −0.0226143 0.999744i \(-0.507199\pi\)
−0.0226143 + 0.999744i \(0.507199\pi\)
\(740\) 0 0
\(741\) 1345.08 0.0666837
\(742\) 0 0
\(743\) 32141.4 1.58702 0.793508 0.608560i \(-0.208253\pi\)
0.793508 + 0.608560i \(0.208253\pi\)
\(744\) 0 0
\(745\) −952.618 −0.0468473
\(746\) 0 0
\(747\) 8717.77 0.426997
\(748\) 0 0
\(749\) 4205.37 0.205155
\(750\) 0 0
\(751\) −9075.10 −0.440952 −0.220476 0.975392i \(-0.570761\pi\)
−0.220476 + 0.975392i \(0.570761\pi\)
\(752\) 0 0
\(753\) 7085.65 0.342915
\(754\) 0 0
\(755\) −5284.05 −0.254711
\(756\) 0 0
\(757\) −28009.3 −1.34480 −0.672402 0.740187i \(-0.734737\pi\)
−0.672402 + 0.740187i \(0.734737\pi\)
\(758\) 0 0
\(759\) 5486.61 0.262387
\(760\) 0 0
\(761\) −18706.3 −0.891066 −0.445533 0.895265i \(-0.646986\pi\)
−0.445533 + 0.895265i \(0.646986\pi\)
\(762\) 0 0
\(763\) 21460.6 1.01825
\(764\) 0 0
\(765\) 13379.2 0.632323
\(766\) 0 0
\(767\) −472.086 −0.0222243
\(768\) 0 0
\(769\) 7774.27 0.364561 0.182280 0.983247i \(-0.441652\pi\)
0.182280 + 0.983247i \(0.441652\pi\)
\(770\) 0 0
\(771\) 5223.92 0.244014
\(772\) 0 0
\(773\) −24000.1 −1.11672 −0.558359 0.829600i \(-0.688569\pi\)
−0.558359 + 0.829600i \(0.688569\pi\)
\(774\) 0 0
\(775\) 2933.49 0.135967
\(776\) 0 0
\(777\) 15610.1 0.720734
\(778\) 0 0
\(779\) 5811.12 0.267272
\(780\) 0 0
\(781\) −8376.12 −0.383766
\(782\) 0 0
\(783\) 1152.03 0.0525799
\(784\) 0 0
\(785\) 3544.45 0.161155
\(786\) 0 0
\(787\) −20749.3 −0.939814 −0.469907 0.882716i \(-0.655713\pi\)
−0.469907 + 0.882716i \(0.655713\pi\)
\(788\) 0 0
\(789\) 44971.2 2.02917
\(790\) 0 0
\(791\) −8054.12 −0.362037
\(792\) 0 0
\(793\) 1217.23 0.0545082
\(794\) 0 0
\(795\) 1199.96 0.0535321
\(796\) 0 0
\(797\) 1546.40 0.0687282 0.0343641 0.999409i \(-0.489059\pi\)
0.0343641 + 0.999409i \(0.489059\pi\)
\(798\) 0 0
\(799\) −25060.2 −1.10959
\(800\) 0 0
\(801\) −5338.56 −0.235491
\(802\) 0 0
\(803\) 18679.1 0.820888
\(804\) 0 0
\(805\) 1840.91 0.0806008
\(806\) 0 0
\(807\) 7091.29 0.309325
\(808\) 0 0
\(809\) 14261.2 0.619773 0.309886 0.950774i \(-0.399709\pi\)
0.309886 + 0.950774i \(0.399709\pi\)
\(810\) 0 0
\(811\) 8098.05 0.350630 0.175315 0.984512i \(-0.443906\pi\)
0.175315 + 0.984512i \(0.443906\pi\)
\(812\) 0 0
\(813\) 50257.7 2.16804
\(814\) 0 0
\(815\) −2217.52 −0.0953085
\(816\) 0 0
\(817\) −67.9175 −0.00290836
\(818\) 0 0
\(819\) 7770.31 0.331522
\(820\) 0 0
\(821\) −31734.9 −1.34903 −0.674517 0.738259i \(-0.735648\pi\)
−0.674517 + 0.738259i \(0.735648\pi\)
\(822\) 0 0
\(823\) −9300.47 −0.393918 −0.196959 0.980412i \(-0.563107\pi\)
−0.196959 + 0.980412i \(0.563107\pi\)
\(824\) 0 0
\(825\) −5977.45 −0.252252
\(826\) 0 0
\(827\) 19533.5 0.821338 0.410669 0.911784i \(-0.365295\pi\)
0.410669 + 0.911784i \(0.365295\pi\)
\(828\) 0 0
\(829\) 1108.39 0.0464366 0.0232183 0.999730i \(-0.492609\pi\)
0.0232183 + 0.999730i \(0.492609\pi\)
\(830\) 0 0
\(831\) −51985.1 −2.17009
\(832\) 0 0
\(833\) 7118.27 0.296078
\(834\) 0 0
\(835\) 16652.6 0.690164
\(836\) 0 0
\(837\) −4661.33 −0.192496
\(838\) 0 0
\(839\) −40285.1 −1.65768 −0.828841 0.559484i \(-0.810999\pi\)
−0.828841 + 0.559484i \(0.810999\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) 69607.9 2.84392
\(844\) 0 0
\(845\) 9851.50 0.401067
\(846\) 0 0
\(847\) −5852.34 −0.237413
\(848\) 0 0
\(849\) 58926.8 2.38205
\(850\) 0 0
\(851\) 2902.48 0.116916
\(852\) 0 0
\(853\) −4959.80 −0.199086 −0.0995430 0.995033i \(-0.531738\pi\)
−0.0995430 + 0.995033i \(0.531738\pi\)
\(854\) 0 0
\(855\) 1867.83 0.0747118
\(856\) 0 0
\(857\) 2961.63 0.118048 0.0590241 0.998257i \(-0.481201\pi\)
0.0590241 + 0.998257i \(0.481201\pi\)
\(858\) 0 0
\(859\) 10657.4 0.423312 0.211656 0.977344i \(-0.432114\pi\)
0.211656 + 0.977344i \(0.432114\pi\)
\(860\) 0 0
\(861\) 61749.7 2.44416
\(862\) 0 0
\(863\) −10244.1 −0.404072 −0.202036 0.979378i \(-0.564756\pi\)
−0.202036 + 0.979378i \(0.564756\pi\)
\(864\) 0 0
\(865\) 10800.9 0.424557
\(866\) 0 0
\(867\) −15445.0 −0.605005
\(868\) 0 0
\(869\) −12094.1 −0.472112
\(870\) 0 0
\(871\) 2887.12 0.112315
\(872\) 0 0
\(873\) 38905.5 1.50831
\(874\) 0 0
\(875\) −2005.60 −0.0774877
\(876\) 0 0
\(877\) −43671.7 −1.68151 −0.840757 0.541413i \(-0.817889\pi\)
−0.840757 + 0.541413i \(0.817889\pi\)
\(878\) 0 0
\(879\) −38289.3 −1.46924
\(880\) 0 0
\(881\) −37652.8 −1.43990 −0.719952 0.694024i \(-0.755836\pi\)
−0.719952 + 0.694024i \(0.755836\pi\)
\(882\) 0 0
\(883\) 26609.6 1.01414 0.507070 0.861905i \(-0.330728\pi\)
0.507070 + 0.861905i \(0.330728\pi\)
\(884\) 0 0
\(885\) −1205.86 −0.0458017
\(886\) 0 0
\(887\) 49149.8 1.86053 0.930265 0.366889i \(-0.119577\pi\)
0.930265 + 0.366889i \(0.119577\pi\)
\(888\) 0 0
\(889\) 25232.1 0.951919
\(890\) 0 0
\(891\) −17497.0 −0.657881
\(892\) 0 0
\(893\) −3498.58 −0.131104
\(894\) 0 0
\(895\) −542.540 −0.0202627
\(896\) 0 0
\(897\) 2657.57 0.0989228
\(898\) 0 0
\(899\) −3402.85 −0.126242
\(900\) 0 0
\(901\) −2595.66 −0.0959756
\(902\) 0 0
\(903\) −721.700 −0.0265965
\(904\) 0 0
\(905\) −3439.35 −0.126329
\(906\) 0 0
\(907\) −36813.3 −1.34770 −0.673852 0.738867i \(-0.735361\pi\)
−0.673852 + 0.738867i \(0.735361\pi\)
\(908\) 0 0
\(909\) 49709.9 1.81383
\(910\) 0 0
\(911\) −17126.7 −0.622868 −0.311434 0.950268i \(-0.600809\pi\)
−0.311434 + 0.950268i \(0.600809\pi\)
\(912\) 0 0
\(913\) 8425.05 0.305398
\(914\) 0 0
\(915\) 3109.18 0.112335
\(916\) 0 0
\(917\) 7821.17 0.281655
\(918\) 0 0
\(919\) −30450.8 −1.09301 −0.546507 0.837455i \(-0.684043\pi\)
−0.546507 + 0.837455i \(0.684043\pi\)
\(920\) 0 0
\(921\) −1316.15 −0.0470888
\(922\) 0 0
\(923\) −4057.17 −0.144684
\(924\) 0 0
\(925\) −3162.14 −0.112401
\(926\) 0 0
\(927\) 12158.6 0.430787
\(928\) 0 0
\(929\) −19086.8 −0.674077 −0.337038 0.941491i \(-0.609425\pi\)
−0.337038 + 0.941491i \(0.609425\pi\)
\(930\) 0 0
\(931\) 993.760 0.0349830
\(932\) 0 0
\(933\) −29855.3 −1.04761
\(934\) 0 0
\(935\) 12930.0 0.452252
\(936\) 0 0
\(937\) 17125.4 0.597079 0.298540 0.954397i \(-0.403500\pi\)
0.298540 + 0.954397i \(0.403500\pi\)
\(938\) 0 0
\(939\) −27524.9 −0.956593
\(940\) 0 0
\(941\) −34308.1 −1.18854 −0.594269 0.804267i \(-0.702558\pi\)
−0.594269 + 0.804267i \(0.702558\pi\)
\(942\) 0 0
\(943\) 11481.5 0.396488
\(944\) 0 0
\(945\) 3186.91 0.109704
\(946\) 0 0
\(947\) 4103.52 0.140809 0.0704046 0.997519i \(-0.477571\pi\)
0.0704046 + 0.997519i \(0.477571\pi\)
\(948\) 0 0
\(949\) 9047.69 0.309484
\(950\) 0 0
\(951\) −30967.3 −1.05592
\(952\) 0 0
\(953\) 24975.5 0.848936 0.424468 0.905443i \(-0.360461\pi\)
0.424468 + 0.905443i \(0.360461\pi\)
\(954\) 0 0
\(955\) 19715.1 0.668027
\(956\) 0 0
\(957\) 6933.84 0.234210
\(958\) 0 0
\(959\) 9006.96 0.303285
\(960\) 0 0
\(961\) −16022.4 −0.537827
\(962\) 0 0
\(963\) 8430.38 0.282103
\(964\) 0 0
\(965\) 15620.3 0.521073
\(966\) 0 0
\(967\) −16482.8 −0.548140 −0.274070 0.961710i \(-0.588370\pi\)
−0.274070 + 0.961710i \(0.588370\pi\)
\(968\) 0 0
\(969\) −7431.99 −0.246388
\(970\) 0 0
\(971\) 40016.5 1.32254 0.661272 0.750146i \(-0.270017\pi\)
0.661272 + 0.750146i \(0.270017\pi\)
\(972\) 0 0
\(973\) −8461.60 −0.278794
\(974\) 0 0
\(975\) −2895.32 −0.0951020
\(976\) 0 0
\(977\) 43518.5 1.42506 0.712529 0.701643i \(-0.247550\pi\)
0.712529 + 0.701643i \(0.247550\pi\)
\(978\) 0 0
\(979\) −5159.30 −0.168429
\(980\) 0 0
\(981\) 43021.5 1.40017
\(982\) 0 0
\(983\) −31243.2 −1.01374 −0.506869 0.862023i \(-0.669197\pi\)
−0.506869 + 0.862023i \(0.669197\pi\)
\(984\) 0 0
\(985\) 10882.6 0.352030
\(986\) 0 0
\(987\) −37176.3 −1.19892
\(988\) 0 0
\(989\) −134.190 −0.00431445
\(990\) 0 0
\(991\) −20703.7 −0.663648 −0.331824 0.943341i \(-0.607664\pi\)
−0.331824 + 0.943341i \(0.607664\pi\)
\(992\) 0 0
\(993\) −3436.80 −0.109832
\(994\) 0 0
\(995\) −6254.58 −0.199280
\(996\) 0 0
\(997\) 57742.0 1.83421 0.917104 0.398647i \(-0.130520\pi\)
0.917104 + 0.398647i \(0.130520\pi\)
\(998\) 0 0
\(999\) 5024.65 0.159132
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.4.a.o.1.1 6
4.3 odd 2 580.4.a.a.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.4.a.a.1.6 6 4.3 odd 2
2320.4.a.o.1.1 6 1.1 even 1 trivial