Properties

Label 2320.4.a.o.1.5
Level $2320$
Weight $4$
Character 2320.1
Self dual yes
Analytic conductor $136.884$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2320,4,Mod(1,2320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2320.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2320 = 2^{4} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2320.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(136.884431213\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 91x^{4} + 90x^{3} + 1784x^{2} - 1456x - 3720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(5.06881\) of defining polynomial
Character \(\chi\) \(=\) 2320.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.49913 q^{3} -5.00000 q^{5} +2.97283 q^{7} +15.2386 q^{9} -26.0077 q^{11} -14.3733 q^{13} -32.4956 q^{15} +100.181 q^{17} +99.3664 q^{19} +19.3208 q^{21} -102.055 q^{23} +25.0000 q^{25} -76.4386 q^{27} -29.0000 q^{29} -253.319 q^{31} -169.027 q^{33} -14.8641 q^{35} -348.399 q^{37} -93.4137 q^{39} +106.824 q^{41} -68.0944 q^{43} -76.1932 q^{45} +285.052 q^{47} -334.162 q^{49} +651.088 q^{51} +409.075 q^{53} +130.038 q^{55} +645.795 q^{57} +395.912 q^{59} -835.967 q^{61} +45.3018 q^{63} +71.8663 q^{65} -4.99986 q^{67} -663.268 q^{69} +67.3198 q^{71} +124.328 q^{73} +162.478 q^{75} -77.3163 q^{77} +923.032 q^{79} -908.227 q^{81} -455.719 q^{83} -500.905 q^{85} -188.475 q^{87} -1017.98 q^{89} -42.7292 q^{91} -1646.35 q^{93} -496.832 q^{95} -5.39427 q^{97} -396.322 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 30 q^{5} - 9 q^{7} + 45 q^{9} + 10 q^{11} + 13 q^{13} - 25 q^{15} - 23 q^{17} - 10 q^{19} - 52 q^{21} - 75 q^{23} + 150 q^{25} + 116 q^{27} - 174 q^{29} + 127 q^{31} - 72 q^{33} + 45 q^{35}+ \cdots + 2976 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.49913 1.25076 0.625379 0.780321i \(-0.284945\pi\)
0.625379 + 0.780321i \(0.284945\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 2.97283 0.160518 0.0802588 0.996774i \(-0.474425\pi\)
0.0802588 + 0.996774i \(0.474425\pi\)
\(8\) 0 0
\(9\) 15.2386 0.564394
\(10\) 0 0
\(11\) −26.0077 −0.712874 −0.356437 0.934319i \(-0.616009\pi\)
−0.356437 + 0.934319i \(0.616009\pi\)
\(12\) 0 0
\(13\) −14.3733 −0.306648 −0.153324 0.988176i \(-0.548998\pi\)
−0.153324 + 0.988176i \(0.548998\pi\)
\(14\) 0 0
\(15\) −32.4956 −0.559356
\(16\) 0 0
\(17\) 100.181 1.42926 0.714631 0.699502i \(-0.246595\pi\)
0.714631 + 0.699502i \(0.246595\pi\)
\(18\) 0 0
\(19\) 99.3664 1.19980 0.599900 0.800075i \(-0.295207\pi\)
0.599900 + 0.800075i \(0.295207\pi\)
\(20\) 0 0
\(21\) 19.3208 0.200768
\(22\) 0 0
\(23\) −102.055 −0.925215 −0.462607 0.886563i \(-0.653086\pi\)
−0.462607 + 0.886563i \(0.653086\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −76.4386 −0.544837
\(28\) 0 0
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −253.319 −1.46766 −0.733829 0.679334i \(-0.762269\pi\)
−0.733829 + 0.679334i \(0.762269\pi\)
\(32\) 0 0
\(33\) −169.027 −0.891632
\(34\) 0 0
\(35\) −14.8641 −0.0717856
\(36\) 0 0
\(37\) −348.399 −1.54801 −0.774007 0.633177i \(-0.781750\pi\)
−0.774007 + 0.633177i \(0.781750\pi\)
\(38\) 0 0
\(39\) −93.4137 −0.383543
\(40\) 0 0
\(41\) 106.824 0.406905 0.203453 0.979085i \(-0.434784\pi\)
0.203453 + 0.979085i \(0.434784\pi\)
\(42\) 0 0
\(43\) −68.0944 −0.241495 −0.120748 0.992683i \(-0.538529\pi\)
−0.120748 + 0.992683i \(0.538529\pi\)
\(44\) 0 0
\(45\) −76.1932 −0.252405
\(46\) 0 0
\(47\) 285.052 0.884662 0.442331 0.896852i \(-0.354152\pi\)
0.442331 + 0.896852i \(0.354152\pi\)
\(48\) 0 0
\(49\) −334.162 −0.974234
\(50\) 0 0
\(51\) 651.088 1.78766
\(52\) 0 0
\(53\) 409.075 1.06020 0.530102 0.847934i \(-0.322154\pi\)
0.530102 + 0.847934i \(0.322154\pi\)
\(54\) 0 0
\(55\) 130.038 0.318807
\(56\) 0 0
\(57\) 645.795 1.50066
\(58\) 0 0
\(59\) 395.912 0.873615 0.436808 0.899555i \(-0.356109\pi\)
0.436808 + 0.899555i \(0.356109\pi\)
\(60\) 0 0
\(61\) −835.967 −1.75467 −0.877333 0.479882i \(-0.840680\pi\)
−0.877333 + 0.479882i \(0.840680\pi\)
\(62\) 0 0
\(63\) 45.3018 0.0905951
\(64\) 0 0
\(65\) 71.8663 0.137137
\(66\) 0 0
\(67\) −4.99986 −0.00911686 −0.00455843 0.999990i \(-0.501451\pi\)
−0.00455843 + 0.999990i \(0.501451\pi\)
\(68\) 0 0
\(69\) −663.268 −1.15722
\(70\) 0 0
\(71\) 67.3198 0.112527 0.0562633 0.998416i \(-0.482081\pi\)
0.0562633 + 0.998416i \(0.482081\pi\)
\(72\) 0 0
\(73\) 124.328 0.199336 0.0996679 0.995021i \(-0.468222\pi\)
0.0996679 + 0.995021i \(0.468222\pi\)
\(74\) 0 0
\(75\) 162.478 0.250151
\(76\) 0 0
\(77\) −77.3163 −0.114429
\(78\) 0 0
\(79\) 923.032 1.31455 0.657273 0.753652i \(-0.271710\pi\)
0.657273 + 0.753652i \(0.271710\pi\)
\(80\) 0 0
\(81\) −908.227 −1.24585
\(82\) 0 0
\(83\) −455.719 −0.602671 −0.301335 0.953518i \(-0.597432\pi\)
−0.301335 + 0.953518i \(0.597432\pi\)
\(84\) 0 0
\(85\) −500.905 −0.639185
\(86\) 0 0
\(87\) −188.475 −0.232260
\(88\) 0 0
\(89\) −1017.98 −1.21243 −0.606214 0.795301i \(-0.707313\pi\)
−0.606214 + 0.795301i \(0.707313\pi\)
\(90\) 0 0
\(91\) −42.7292 −0.0492224
\(92\) 0 0
\(93\) −1646.35 −1.83568
\(94\) 0 0
\(95\) −496.832 −0.536567
\(96\) 0 0
\(97\) −5.39427 −0.00564645 −0.00282322 0.999996i \(-0.500899\pi\)
−0.00282322 + 0.999996i \(0.500899\pi\)
\(98\) 0 0
\(99\) −396.322 −0.402342
\(100\) 0 0
\(101\) 132.305 0.130345 0.0651727 0.997874i \(-0.479240\pi\)
0.0651727 + 0.997874i \(0.479240\pi\)
\(102\) 0 0
\(103\) −1966.82 −1.88152 −0.940762 0.339068i \(-0.889888\pi\)
−0.940762 + 0.339068i \(0.889888\pi\)
\(104\) 0 0
\(105\) −96.6039 −0.0897864
\(106\) 0 0
\(107\) 1734.39 1.56701 0.783503 0.621388i \(-0.213431\pi\)
0.783503 + 0.621388i \(0.213431\pi\)
\(108\) 0 0
\(109\) −302.909 −0.266178 −0.133089 0.991104i \(-0.542490\pi\)
−0.133089 + 0.991104i \(0.542490\pi\)
\(110\) 0 0
\(111\) −2264.29 −1.93619
\(112\) 0 0
\(113\) −2240.47 −1.86518 −0.932591 0.360935i \(-0.882458\pi\)
−0.932591 + 0.360935i \(0.882458\pi\)
\(114\) 0 0
\(115\) 510.275 0.413769
\(116\) 0 0
\(117\) −219.029 −0.173070
\(118\) 0 0
\(119\) 297.820 0.229421
\(120\) 0 0
\(121\) −654.600 −0.491811
\(122\) 0 0
\(123\) 694.263 0.508940
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 665.245 0.464811 0.232405 0.972619i \(-0.425340\pi\)
0.232405 + 0.972619i \(0.425340\pi\)
\(128\) 0 0
\(129\) −442.554 −0.302052
\(130\) 0 0
\(131\) 692.115 0.461606 0.230803 0.973000i \(-0.425865\pi\)
0.230803 + 0.973000i \(0.425865\pi\)
\(132\) 0 0
\(133\) 295.399 0.192589
\(134\) 0 0
\(135\) 382.193 0.243659
\(136\) 0 0
\(137\) −98.9702 −0.0617197 −0.0308598 0.999524i \(-0.509825\pi\)
−0.0308598 + 0.999524i \(0.509825\pi\)
\(138\) 0 0
\(139\) −402.504 −0.245611 −0.122805 0.992431i \(-0.539189\pi\)
−0.122805 + 0.992431i \(0.539189\pi\)
\(140\) 0 0
\(141\) 1852.59 1.10650
\(142\) 0 0
\(143\) 373.815 0.218602
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) −2171.76 −1.21853
\(148\) 0 0
\(149\) −1711.74 −0.941150 −0.470575 0.882360i \(-0.655954\pi\)
−0.470575 + 0.882360i \(0.655954\pi\)
\(150\) 0 0
\(151\) −1203.82 −0.648777 −0.324388 0.945924i \(-0.605158\pi\)
−0.324388 + 0.945924i \(0.605158\pi\)
\(152\) 0 0
\(153\) 1526.62 0.806667
\(154\) 0 0
\(155\) 1266.59 0.656356
\(156\) 0 0
\(157\) 361.941 0.183987 0.0919937 0.995760i \(-0.470676\pi\)
0.0919937 + 0.995760i \(0.470676\pi\)
\(158\) 0 0
\(159\) 2658.63 1.32606
\(160\) 0 0
\(161\) −303.392 −0.148513
\(162\) 0 0
\(163\) −2651.37 −1.27406 −0.637029 0.770840i \(-0.719837\pi\)
−0.637029 + 0.770840i \(0.719837\pi\)
\(164\) 0 0
\(165\) 845.136 0.398750
\(166\) 0 0
\(167\) −3195.76 −1.48081 −0.740405 0.672161i \(-0.765366\pi\)
−0.740405 + 0.672161i \(0.765366\pi\)
\(168\) 0 0
\(169\) −1990.41 −0.905967
\(170\) 0 0
\(171\) 1514.21 0.677160
\(172\) 0 0
\(173\) −2763.62 −1.21453 −0.607266 0.794498i \(-0.707734\pi\)
−0.607266 + 0.794498i \(0.707734\pi\)
\(174\) 0 0
\(175\) 74.3207 0.0321035
\(176\) 0 0
\(177\) 2573.08 1.09268
\(178\) 0 0
\(179\) −504.337 −0.210592 −0.105296 0.994441i \(-0.533579\pi\)
−0.105296 + 0.994441i \(0.533579\pi\)
\(180\) 0 0
\(181\) 4790.96 1.96746 0.983728 0.179664i \(-0.0575010\pi\)
0.983728 + 0.179664i \(0.0575010\pi\)
\(182\) 0 0
\(183\) −5433.06 −2.19466
\(184\) 0 0
\(185\) 1742.00 0.692293
\(186\) 0 0
\(187\) −2605.47 −1.01888
\(188\) 0 0
\(189\) −227.239 −0.0874560
\(190\) 0 0
\(191\) −3285.91 −1.24482 −0.622408 0.782693i \(-0.713846\pi\)
−0.622408 + 0.782693i \(0.713846\pi\)
\(192\) 0 0
\(193\) 3294.61 1.22876 0.614382 0.789008i \(-0.289405\pi\)
0.614382 + 0.789008i \(0.289405\pi\)
\(194\) 0 0
\(195\) 467.068 0.171525
\(196\) 0 0
\(197\) −4449.47 −1.60920 −0.804598 0.593819i \(-0.797619\pi\)
−0.804598 + 0.593819i \(0.797619\pi\)
\(198\) 0 0
\(199\) 3672.29 1.30815 0.654075 0.756430i \(-0.273058\pi\)
0.654075 + 0.756430i \(0.273058\pi\)
\(200\) 0 0
\(201\) −32.4947 −0.0114030
\(202\) 0 0
\(203\) −86.2120 −0.0298074
\(204\) 0 0
\(205\) −534.120 −0.181973
\(206\) 0 0
\(207\) −1555.18 −0.522186
\(208\) 0 0
\(209\) −2584.29 −0.855307
\(210\) 0 0
\(211\) 668.691 0.218173 0.109087 0.994032i \(-0.465207\pi\)
0.109087 + 0.994032i \(0.465207\pi\)
\(212\) 0 0
\(213\) 437.520 0.140744
\(214\) 0 0
\(215\) 340.472 0.108000
\(216\) 0 0
\(217\) −753.072 −0.235585
\(218\) 0 0
\(219\) 808.024 0.249321
\(220\) 0 0
\(221\) −1439.93 −0.438281
\(222\) 0 0
\(223\) 5643.52 1.69470 0.847350 0.531035i \(-0.178197\pi\)
0.847350 + 0.531035i \(0.178197\pi\)
\(224\) 0 0
\(225\) 380.966 0.112879
\(226\) 0 0
\(227\) −4175.69 −1.22093 −0.610463 0.792045i \(-0.709017\pi\)
−0.610463 + 0.792045i \(0.709017\pi\)
\(228\) 0 0
\(229\) 867.046 0.250201 0.125100 0.992144i \(-0.460075\pi\)
0.125100 + 0.992144i \(0.460075\pi\)
\(230\) 0 0
\(231\) −502.489 −0.143123
\(232\) 0 0
\(233\) −2728.36 −0.767128 −0.383564 0.923514i \(-0.625303\pi\)
−0.383564 + 0.923514i \(0.625303\pi\)
\(234\) 0 0
\(235\) −1425.26 −0.395633
\(236\) 0 0
\(237\) 5998.90 1.64418
\(238\) 0 0
\(239\) −3895.60 −1.05433 −0.527166 0.849762i \(-0.676746\pi\)
−0.527166 + 0.849762i \(0.676746\pi\)
\(240\) 0 0
\(241\) −5911.50 −1.58005 −0.790027 0.613072i \(-0.789934\pi\)
−0.790027 + 0.613072i \(0.789934\pi\)
\(242\) 0 0
\(243\) −3838.84 −1.01342
\(244\) 0 0
\(245\) 1670.81 0.435691
\(246\) 0 0
\(247\) −1428.22 −0.367917
\(248\) 0 0
\(249\) −2961.78 −0.753795
\(250\) 0 0
\(251\) 2067.87 0.520012 0.260006 0.965607i \(-0.416275\pi\)
0.260006 + 0.965607i \(0.416275\pi\)
\(252\) 0 0
\(253\) 2654.21 0.659561
\(254\) 0 0
\(255\) −3255.44 −0.799466
\(256\) 0 0
\(257\) 1838.83 0.446316 0.223158 0.974782i \(-0.428363\pi\)
0.223158 + 0.974782i \(0.428363\pi\)
\(258\) 0 0
\(259\) −1035.73 −0.248483
\(260\) 0 0
\(261\) −441.920 −0.104805
\(262\) 0 0
\(263\) −3993.15 −0.936230 −0.468115 0.883668i \(-0.655067\pi\)
−0.468115 + 0.883668i \(0.655067\pi\)
\(264\) 0 0
\(265\) −2045.38 −0.474138
\(266\) 0 0
\(267\) −6616.01 −1.51645
\(268\) 0 0
\(269\) −3614.51 −0.819259 −0.409629 0.912252i \(-0.634342\pi\)
−0.409629 + 0.912252i \(0.634342\pi\)
\(270\) 0 0
\(271\) −3085.36 −0.691596 −0.345798 0.938309i \(-0.612392\pi\)
−0.345798 + 0.938309i \(0.612392\pi\)
\(272\) 0 0
\(273\) −277.703 −0.0615653
\(274\) 0 0
\(275\) −650.192 −0.142575
\(276\) 0 0
\(277\) −4446.23 −0.964434 −0.482217 0.876052i \(-0.660168\pi\)
−0.482217 + 0.876052i \(0.660168\pi\)
\(278\) 0 0
\(279\) −3860.23 −0.828337
\(280\) 0 0
\(281\) −1257.07 −0.266870 −0.133435 0.991058i \(-0.542601\pi\)
−0.133435 + 0.991058i \(0.542601\pi\)
\(282\) 0 0
\(283\) 7200.93 1.51255 0.756274 0.654255i \(-0.227018\pi\)
0.756274 + 0.654255i \(0.227018\pi\)
\(284\) 0 0
\(285\) −3228.97 −0.671115
\(286\) 0 0
\(287\) 317.569 0.0653154
\(288\) 0 0
\(289\) 5123.22 1.04279
\(290\) 0 0
\(291\) −35.0581 −0.00706234
\(292\) 0 0
\(293\) 198.916 0.0396615 0.0198307 0.999803i \(-0.493687\pi\)
0.0198307 + 0.999803i \(0.493687\pi\)
\(294\) 0 0
\(295\) −1979.56 −0.390693
\(296\) 0 0
\(297\) 1987.99 0.388400
\(298\) 0 0
\(299\) 1466.86 0.283716
\(300\) 0 0
\(301\) −202.433 −0.0387642
\(302\) 0 0
\(303\) 859.870 0.163030
\(304\) 0 0
\(305\) 4179.84 0.784711
\(306\) 0 0
\(307\) −3888.12 −0.722824 −0.361412 0.932406i \(-0.617705\pi\)
−0.361412 + 0.932406i \(0.617705\pi\)
\(308\) 0 0
\(309\) −12782.6 −2.35333
\(310\) 0 0
\(311\) 10812.0 1.97135 0.985675 0.168654i \(-0.0539419\pi\)
0.985675 + 0.168654i \(0.0539419\pi\)
\(312\) 0 0
\(313\) 1572.54 0.283979 0.141989 0.989868i \(-0.454650\pi\)
0.141989 + 0.989868i \(0.454650\pi\)
\(314\) 0 0
\(315\) −226.509 −0.0405154
\(316\) 0 0
\(317\) −2195.35 −0.388969 −0.194485 0.980906i \(-0.562303\pi\)
−0.194485 + 0.980906i \(0.562303\pi\)
\(318\) 0 0
\(319\) 754.223 0.132377
\(320\) 0 0
\(321\) 11272.0 1.95994
\(322\) 0 0
\(323\) 9954.62 1.71483
\(324\) 0 0
\(325\) −359.332 −0.0613297
\(326\) 0 0
\(327\) −1968.64 −0.332924
\(328\) 0 0
\(329\) 847.410 0.142004
\(330\) 0 0
\(331\) 5686.75 0.944326 0.472163 0.881511i \(-0.343473\pi\)
0.472163 + 0.881511i \(0.343473\pi\)
\(332\) 0 0
\(333\) −5309.13 −0.873690
\(334\) 0 0
\(335\) 24.9993 0.00407718
\(336\) 0 0
\(337\) 3628.49 0.586517 0.293259 0.956033i \(-0.405260\pi\)
0.293259 + 0.956033i \(0.405260\pi\)
\(338\) 0 0
\(339\) −14561.1 −2.33289
\(340\) 0 0
\(341\) 6588.23 1.04625
\(342\) 0 0
\(343\) −2013.09 −0.316899
\(344\) 0 0
\(345\) 3316.34 0.517524
\(346\) 0 0
\(347\) −191.273 −0.0295910 −0.0147955 0.999891i \(-0.504710\pi\)
−0.0147955 + 0.999891i \(0.504710\pi\)
\(348\) 0 0
\(349\) −2249.21 −0.344979 −0.172489 0.985011i \(-0.555181\pi\)
−0.172489 + 0.985011i \(0.555181\pi\)
\(350\) 0 0
\(351\) 1098.67 0.167073
\(352\) 0 0
\(353\) 869.155 0.131049 0.0655247 0.997851i \(-0.479128\pi\)
0.0655247 + 0.997851i \(0.479128\pi\)
\(354\) 0 0
\(355\) −336.599 −0.0503235
\(356\) 0 0
\(357\) 1935.57 0.286951
\(358\) 0 0
\(359\) 435.740 0.0640598 0.0320299 0.999487i \(-0.489803\pi\)
0.0320299 + 0.999487i \(0.489803\pi\)
\(360\) 0 0
\(361\) 3014.68 0.439522
\(362\) 0 0
\(363\) −4254.33 −0.615136
\(364\) 0 0
\(365\) −621.641 −0.0891457
\(366\) 0 0
\(367\) −5161.88 −0.734190 −0.367095 0.930183i \(-0.619648\pi\)
−0.367095 + 0.930183i \(0.619648\pi\)
\(368\) 0 0
\(369\) 1627.85 0.229655
\(370\) 0 0
\(371\) 1216.11 0.170181
\(372\) 0 0
\(373\) −8548.53 −1.18667 −0.593333 0.804957i \(-0.702188\pi\)
−0.593333 + 0.804957i \(0.702188\pi\)
\(374\) 0 0
\(375\) −812.391 −0.111871
\(376\) 0 0
\(377\) 416.825 0.0569432
\(378\) 0 0
\(379\) 12546.5 1.70045 0.850227 0.526417i \(-0.176465\pi\)
0.850227 + 0.526417i \(0.176465\pi\)
\(380\) 0 0
\(381\) 4323.51 0.581365
\(382\) 0 0
\(383\) 3567.15 0.475909 0.237954 0.971276i \(-0.423523\pi\)
0.237954 + 0.971276i \(0.423523\pi\)
\(384\) 0 0
\(385\) 386.582 0.0511741
\(386\) 0 0
\(387\) −1037.67 −0.136299
\(388\) 0 0
\(389\) −6004.87 −0.782671 −0.391335 0.920248i \(-0.627987\pi\)
−0.391335 + 0.920248i \(0.627987\pi\)
\(390\) 0 0
\(391\) −10224.0 −1.32237
\(392\) 0 0
\(393\) 4498.15 0.577357
\(394\) 0 0
\(395\) −4615.16 −0.587883
\(396\) 0 0
\(397\) 13820.9 1.74723 0.873615 0.486617i \(-0.161769\pi\)
0.873615 + 0.486617i \(0.161769\pi\)
\(398\) 0 0
\(399\) 1919.84 0.240882
\(400\) 0 0
\(401\) −2014.54 −0.250876 −0.125438 0.992101i \(-0.540034\pi\)
−0.125438 + 0.992101i \(0.540034\pi\)
\(402\) 0 0
\(403\) 3641.02 0.450055
\(404\) 0 0
\(405\) 4541.14 0.557163
\(406\) 0 0
\(407\) 9061.06 1.10354
\(408\) 0 0
\(409\) 14205.1 1.71735 0.858673 0.512523i \(-0.171289\pi\)
0.858673 + 0.512523i \(0.171289\pi\)
\(410\) 0 0
\(411\) −643.220 −0.0771963
\(412\) 0 0
\(413\) 1176.98 0.140231
\(414\) 0 0
\(415\) 2278.60 0.269523
\(416\) 0 0
\(417\) −2615.92 −0.307200
\(418\) 0 0
\(419\) 10085.5 1.17592 0.587959 0.808891i \(-0.299932\pi\)
0.587959 + 0.808891i \(0.299932\pi\)
\(420\) 0 0
\(421\) −6518.42 −0.754604 −0.377302 0.926090i \(-0.623148\pi\)
−0.377302 + 0.926090i \(0.623148\pi\)
\(422\) 0 0
\(423\) 4343.80 0.499298
\(424\) 0 0
\(425\) 2504.52 0.285852
\(426\) 0 0
\(427\) −2485.19 −0.281655
\(428\) 0 0
\(429\) 2429.47 0.273417
\(430\) 0 0
\(431\) 13862.6 1.54928 0.774640 0.632402i \(-0.217931\pi\)
0.774640 + 0.632402i \(0.217931\pi\)
\(432\) 0 0
\(433\) −6101.22 −0.677150 −0.338575 0.940939i \(-0.609945\pi\)
−0.338575 + 0.940939i \(0.609945\pi\)
\(434\) 0 0
\(435\) 942.373 0.103870
\(436\) 0 0
\(437\) −10140.8 −1.11007
\(438\) 0 0
\(439\) −10724.4 −1.16594 −0.582969 0.812494i \(-0.698109\pi\)
−0.582969 + 0.812494i \(0.698109\pi\)
\(440\) 0 0
\(441\) −5092.18 −0.549852
\(442\) 0 0
\(443\) 4143.85 0.444425 0.222212 0.974998i \(-0.428672\pi\)
0.222212 + 0.974998i \(0.428672\pi\)
\(444\) 0 0
\(445\) 5089.92 0.542215
\(446\) 0 0
\(447\) −11124.8 −1.17715
\(448\) 0 0
\(449\) 9826.95 1.03288 0.516439 0.856324i \(-0.327257\pi\)
0.516439 + 0.856324i \(0.327257\pi\)
\(450\) 0 0
\(451\) −2778.25 −0.290072
\(452\) 0 0
\(453\) −7823.76 −0.811462
\(454\) 0 0
\(455\) 213.646 0.0220129
\(456\) 0 0
\(457\) −10652.1 −1.09034 −0.545171 0.838325i \(-0.683535\pi\)
−0.545171 + 0.838325i \(0.683535\pi\)
\(458\) 0 0
\(459\) −7657.69 −0.778715
\(460\) 0 0
\(461\) −12007.3 −1.21310 −0.606548 0.795047i \(-0.707446\pi\)
−0.606548 + 0.795047i \(0.707446\pi\)
\(462\) 0 0
\(463\) 5616.06 0.563715 0.281858 0.959456i \(-0.409049\pi\)
0.281858 + 0.959456i \(0.409049\pi\)
\(464\) 0 0
\(465\) 8231.75 0.820943
\(466\) 0 0
\(467\) −12086.0 −1.19759 −0.598796 0.800902i \(-0.704354\pi\)
−0.598796 + 0.800902i \(0.704354\pi\)
\(468\) 0 0
\(469\) −14.8637 −0.00146342
\(470\) 0 0
\(471\) 2352.30 0.230123
\(472\) 0 0
\(473\) 1770.98 0.172156
\(474\) 0 0
\(475\) 2484.16 0.239960
\(476\) 0 0
\(477\) 6233.75 0.598373
\(478\) 0 0
\(479\) −4775.46 −0.455525 −0.227762 0.973717i \(-0.573141\pi\)
−0.227762 + 0.973717i \(0.573141\pi\)
\(480\) 0 0
\(481\) 5007.64 0.474696
\(482\) 0 0
\(483\) −1971.78 −0.185754
\(484\) 0 0
\(485\) 26.9714 0.00252517
\(486\) 0 0
\(487\) −3447.42 −0.320776 −0.160388 0.987054i \(-0.551274\pi\)
−0.160388 + 0.987054i \(0.551274\pi\)
\(488\) 0 0
\(489\) −17231.6 −1.59354
\(490\) 0 0
\(491\) 2066.67 0.189954 0.0949770 0.995479i \(-0.469722\pi\)
0.0949770 + 0.995479i \(0.469722\pi\)
\(492\) 0 0
\(493\) −2905.25 −0.265407
\(494\) 0 0
\(495\) 1981.61 0.179933
\(496\) 0 0
\(497\) 200.130 0.0180625
\(498\) 0 0
\(499\) 14328.9 1.28547 0.642735 0.766089i \(-0.277800\pi\)
0.642735 + 0.766089i \(0.277800\pi\)
\(500\) 0 0
\(501\) −20769.6 −1.85213
\(502\) 0 0
\(503\) −3941.99 −0.349433 −0.174717 0.984619i \(-0.555901\pi\)
−0.174717 + 0.984619i \(0.555901\pi\)
\(504\) 0 0
\(505\) −661.527 −0.0582922
\(506\) 0 0
\(507\) −12935.9 −1.13314
\(508\) 0 0
\(509\) −20252.4 −1.76360 −0.881798 0.471627i \(-0.843667\pi\)
−0.881798 + 0.471627i \(0.843667\pi\)
\(510\) 0 0
\(511\) 369.606 0.0319969
\(512\) 0 0
\(513\) −7595.43 −0.653696
\(514\) 0 0
\(515\) 9834.12 0.841443
\(516\) 0 0
\(517\) −7413.54 −0.630652
\(518\) 0 0
\(519\) −17961.1 −1.51909
\(520\) 0 0
\(521\) 1176.42 0.0989252 0.0494626 0.998776i \(-0.484249\pi\)
0.0494626 + 0.998776i \(0.484249\pi\)
\(522\) 0 0
\(523\) 21238.2 1.77568 0.887840 0.460152i \(-0.152205\pi\)
0.887840 + 0.460152i \(0.152205\pi\)
\(524\) 0 0
\(525\) 483.019 0.0401537
\(526\) 0 0
\(527\) −25377.7 −2.09767
\(528\) 0 0
\(529\) −1751.77 −0.143977
\(530\) 0 0
\(531\) 6033.15 0.493063
\(532\) 0 0
\(533\) −1535.41 −0.124777
\(534\) 0 0
\(535\) −8671.94 −0.700786
\(536\) 0 0
\(537\) −3277.75 −0.263399
\(538\) 0 0
\(539\) 8690.79 0.694506
\(540\) 0 0
\(541\) −12027.2 −0.955806 −0.477903 0.878413i \(-0.658603\pi\)
−0.477903 + 0.878413i \(0.658603\pi\)
\(542\) 0 0
\(543\) 31137.1 2.46081
\(544\) 0 0
\(545\) 1514.54 0.119038
\(546\) 0 0
\(547\) −7446.70 −0.582080 −0.291040 0.956711i \(-0.594001\pi\)
−0.291040 + 0.956711i \(0.594001\pi\)
\(548\) 0 0
\(549\) −12739.0 −0.990323
\(550\) 0 0
\(551\) −2881.63 −0.222797
\(552\) 0 0
\(553\) 2744.01 0.211008
\(554\) 0 0
\(555\) 11321.5 0.865890
\(556\) 0 0
\(557\) −12073.1 −0.918411 −0.459205 0.888330i \(-0.651866\pi\)
−0.459205 + 0.888330i \(0.651866\pi\)
\(558\) 0 0
\(559\) 978.740 0.0740542
\(560\) 0 0
\(561\) −16933.3 −1.27438
\(562\) 0 0
\(563\) 1468.95 0.109962 0.0549811 0.998487i \(-0.482490\pi\)
0.0549811 + 0.998487i \(0.482490\pi\)
\(564\) 0 0
\(565\) 11202.3 0.834135
\(566\) 0 0
\(567\) −2700.00 −0.199981
\(568\) 0 0
\(569\) 18719.0 1.37916 0.689579 0.724211i \(-0.257796\pi\)
0.689579 + 0.724211i \(0.257796\pi\)
\(570\) 0 0
\(571\) 5871.02 0.430288 0.215144 0.976582i \(-0.430978\pi\)
0.215144 + 0.976582i \(0.430978\pi\)
\(572\) 0 0
\(573\) −21355.5 −1.55696
\(574\) 0 0
\(575\) −2551.38 −0.185043
\(576\) 0 0
\(577\) −9824.70 −0.708852 −0.354426 0.935084i \(-0.615324\pi\)
−0.354426 + 0.935084i \(0.615324\pi\)
\(578\) 0 0
\(579\) 21412.1 1.53689
\(580\) 0 0
\(581\) −1354.77 −0.0967392
\(582\) 0 0
\(583\) −10639.1 −0.755792
\(584\) 0 0
\(585\) 1095.15 0.0773995
\(586\) 0 0
\(587\) 11739.1 0.825428 0.412714 0.910861i \(-0.364581\pi\)
0.412714 + 0.910861i \(0.364581\pi\)
\(588\) 0 0
\(589\) −25171.4 −1.76090
\(590\) 0 0
\(591\) −28917.7 −2.01271
\(592\) 0 0
\(593\) −12880.0 −0.891938 −0.445969 0.895048i \(-0.647141\pi\)
−0.445969 + 0.895048i \(0.647141\pi\)
\(594\) 0 0
\(595\) −1489.10 −0.102600
\(596\) 0 0
\(597\) 23866.7 1.63618
\(598\) 0 0
\(599\) 15371.2 1.04850 0.524249 0.851565i \(-0.324346\pi\)
0.524249 + 0.851565i \(0.324346\pi\)
\(600\) 0 0
\(601\) 23982.6 1.62774 0.813869 0.581049i \(-0.197357\pi\)
0.813869 + 0.581049i \(0.197357\pi\)
\(602\) 0 0
\(603\) −76.1910 −0.00514550
\(604\) 0 0
\(605\) 3273.00 0.219945
\(606\) 0 0
\(607\) 13988.2 0.935363 0.467682 0.883897i \(-0.345089\pi\)
0.467682 + 0.883897i \(0.345089\pi\)
\(608\) 0 0
\(609\) −560.302 −0.0372818
\(610\) 0 0
\(611\) −4097.13 −0.271280
\(612\) 0 0
\(613\) 16612.1 1.09454 0.547271 0.836955i \(-0.315667\pi\)
0.547271 + 0.836955i \(0.315667\pi\)
\(614\) 0 0
\(615\) −3471.31 −0.227605
\(616\) 0 0
\(617\) −17478.6 −1.14046 −0.570230 0.821485i \(-0.693146\pi\)
−0.570230 + 0.821485i \(0.693146\pi\)
\(618\) 0 0
\(619\) 4812.20 0.312470 0.156235 0.987720i \(-0.450064\pi\)
0.156235 + 0.987720i \(0.450064\pi\)
\(620\) 0 0
\(621\) 7800.94 0.504092
\(622\) 0 0
\(623\) −3026.29 −0.194616
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −16795.6 −1.06978
\(628\) 0 0
\(629\) −34903.0 −2.21252
\(630\) 0 0
\(631\) 22189.4 1.39992 0.699958 0.714184i \(-0.253202\pi\)
0.699958 + 0.714184i \(0.253202\pi\)
\(632\) 0 0
\(633\) 4345.91 0.272882
\(634\) 0 0
\(635\) −3326.23 −0.207870
\(636\) 0 0
\(637\) 4803.00 0.298747
\(638\) 0 0
\(639\) 1025.86 0.0635094
\(640\) 0 0
\(641\) 3065.54 0.188895 0.0944475 0.995530i \(-0.469892\pi\)
0.0944475 + 0.995530i \(0.469892\pi\)
\(642\) 0 0
\(643\) 885.503 0.0543092 0.0271546 0.999631i \(-0.491355\pi\)
0.0271546 + 0.999631i \(0.491355\pi\)
\(644\) 0 0
\(645\) 2212.77 0.135082
\(646\) 0 0
\(647\) −8412.98 −0.511203 −0.255602 0.966782i \(-0.582274\pi\)
−0.255602 + 0.966782i \(0.582274\pi\)
\(648\) 0 0
\(649\) −10296.7 −0.622778
\(650\) 0 0
\(651\) −4894.31 −0.294659
\(652\) 0 0
\(653\) −23947.0 −1.43510 −0.717549 0.696509i \(-0.754736\pi\)
−0.717549 + 0.696509i \(0.754736\pi\)
\(654\) 0 0
\(655\) −3460.58 −0.206437
\(656\) 0 0
\(657\) 1894.59 0.112504
\(658\) 0 0
\(659\) −28707.2 −1.69692 −0.848462 0.529256i \(-0.822471\pi\)
−0.848462 + 0.529256i \(0.822471\pi\)
\(660\) 0 0
\(661\) 17136.5 1.00837 0.504186 0.863595i \(-0.331792\pi\)
0.504186 + 0.863595i \(0.331792\pi\)
\(662\) 0 0
\(663\) −9358.27 −0.548183
\(664\) 0 0
\(665\) −1477.00 −0.0861284
\(666\) 0 0
\(667\) 2959.60 0.171808
\(668\) 0 0
\(669\) 36677.9 2.11966
\(670\) 0 0
\(671\) 21741.6 1.25086
\(672\) 0 0
\(673\) 19734.2 1.13031 0.565153 0.824986i \(-0.308817\pi\)
0.565153 + 0.824986i \(0.308817\pi\)
\(674\) 0 0
\(675\) −1910.96 −0.108967
\(676\) 0 0
\(677\) −19825.1 −1.12547 −0.562734 0.826638i \(-0.690250\pi\)
−0.562734 + 0.826638i \(0.690250\pi\)
\(678\) 0 0
\(679\) −16.0362 −0.000906354 0
\(680\) 0 0
\(681\) −27138.3 −1.52708
\(682\) 0 0
\(683\) 15653.0 0.876932 0.438466 0.898748i \(-0.355522\pi\)
0.438466 + 0.898748i \(0.355522\pi\)
\(684\) 0 0
\(685\) 494.851 0.0276019
\(686\) 0 0
\(687\) 5635.04 0.312941
\(688\) 0 0
\(689\) −5879.75 −0.325110
\(690\) 0 0
\(691\) −23665.2 −1.30285 −0.651424 0.758714i \(-0.725828\pi\)
−0.651424 + 0.758714i \(0.725828\pi\)
\(692\) 0 0
\(693\) −1178.20 −0.0645829
\(694\) 0 0
\(695\) 2012.52 0.109840
\(696\) 0 0
\(697\) 10701.7 0.581574
\(698\) 0 0
\(699\) −17732.0 −0.959491
\(700\) 0 0
\(701\) 30202.1 1.62727 0.813635 0.581376i \(-0.197485\pi\)
0.813635 + 0.581376i \(0.197485\pi\)
\(702\) 0 0
\(703\) −34619.2 −1.85731
\(704\) 0 0
\(705\) −9262.94 −0.494841
\(706\) 0 0
\(707\) 393.321 0.0209227
\(708\) 0 0
\(709\) 23356.3 1.23719 0.618594 0.785711i \(-0.287703\pi\)
0.618594 + 0.785711i \(0.287703\pi\)
\(710\) 0 0
\(711\) 14065.7 0.741922
\(712\) 0 0
\(713\) 25852.4 1.35790
\(714\) 0 0
\(715\) −1869.08 −0.0977616
\(716\) 0 0
\(717\) −25318.0 −1.31871
\(718\) 0 0
\(719\) −558.362 −0.0289616 −0.0144808 0.999895i \(-0.504610\pi\)
−0.0144808 + 0.999895i \(0.504610\pi\)
\(720\) 0 0
\(721\) −5847.03 −0.302018
\(722\) 0 0
\(723\) −38419.6 −1.97626
\(724\) 0 0
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −32033.8 −1.63421 −0.817104 0.576490i \(-0.804422\pi\)
−0.817104 + 0.576490i \(0.804422\pi\)
\(728\) 0 0
\(729\) −426.979 −0.0216928
\(730\) 0 0
\(731\) −6821.76 −0.345160
\(732\) 0 0
\(733\) 16773.2 0.845203 0.422602 0.906316i \(-0.361117\pi\)
0.422602 + 0.906316i \(0.361117\pi\)
\(734\) 0 0
\(735\) 10858.8 0.544943
\(736\) 0 0
\(737\) 130.035 0.00649917
\(738\) 0 0
\(739\) −15616.0 −0.777324 −0.388662 0.921380i \(-0.627063\pi\)
−0.388662 + 0.921380i \(0.627063\pi\)
\(740\) 0 0
\(741\) −9282.18 −0.460175
\(742\) 0 0
\(743\) −3856.76 −0.190432 −0.0952159 0.995457i \(-0.530354\pi\)
−0.0952159 + 0.995457i \(0.530354\pi\)
\(744\) 0 0
\(745\) 8558.71 0.420895
\(746\) 0 0
\(747\) −6944.54 −0.340144
\(748\) 0 0
\(749\) 5156.03 0.251532
\(750\) 0 0
\(751\) −21787.6 −1.05864 −0.529322 0.848421i \(-0.677554\pi\)
−0.529322 + 0.848421i \(0.677554\pi\)
\(752\) 0 0
\(753\) 13439.4 0.650409
\(754\) 0 0
\(755\) 6019.09 0.290142
\(756\) 0 0
\(757\) 29481.7 1.41550 0.707749 0.706464i \(-0.249711\pi\)
0.707749 + 0.706464i \(0.249711\pi\)
\(758\) 0 0
\(759\) 17250.1 0.824951
\(760\) 0 0
\(761\) 32922.7 1.56826 0.784130 0.620596i \(-0.213109\pi\)
0.784130 + 0.620596i \(0.213109\pi\)
\(762\) 0 0
\(763\) −900.495 −0.0427262
\(764\) 0 0
\(765\) −7633.10 −0.360752
\(766\) 0 0
\(767\) −5690.54 −0.267893
\(768\) 0 0
\(769\) −6327.30 −0.296708 −0.148354 0.988934i \(-0.547397\pi\)
−0.148354 + 0.988934i \(0.547397\pi\)
\(770\) 0 0
\(771\) 11950.8 0.558232
\(772\) 0 0
\(773\) 23743.5 1.10478 0.552390 0.833585i \(-0.313716\pi\)
0.552390 + 0.833585i \(0.313716\pi\)
\(774\) 0 0
\(775\) −6332.97 −0.293532
\(776\) 0 0
\(777\) −6731.34 −0.310792
\(778\) 0 0
\(779\) 10614.7 0.488205
\(780\) 0 0
\(781\) −1750.83 −0.0802173
\(782\) 0 0
\(783\) 2216.72 0.101174
\(784\) 0 0
\(785\) −1809.70 −0.0822816
\(786\) 0 0
\(787\) −7159.21 −0.324267 −0.162134 0.986769i \(-0.551838\pi\)
−0.162134 + 0.986769i \(0.551838\pi\)
\(788\) 0 0
\(789\) −25952.0 −1.17100
\(790\) 0 0
\(791\) −6660.52 −0.299394
\(792\) 0 0
\(793\) 12015.6 0.538065
\(794\) 0 0
\(795\) −13293.2 −0.593031
\(796\) 0 0
\(797\) 4921.88 0.218748 0.109374 0.994001i \(-0.465115\pi\)
0.109374 + 0.994001i \(0.465115\pi\)
\(798\) 0 0
\(799\) 28556.8 1.26441
\(800\) 0 0
\(801\) −15512.7 −0.684287
\(802\) 0 0
\(803\) −3233.49 −0.142101
\(804\) 0 0
\(805\) 1516.96 0.0664171
\(806\) 0 0
\(807\) −23491.2 −1.02469
\(808\) 0 0
\(809\) −30499.1 −1.32545 −0.662727 0.748861i \(-0.730601\pi\)
−0.662727 + 0.748861i \(0.730601\pi\)
\(810\) 0 0
\(811\) 16300.7 0.705791 0.352895 0.935663i \(-0.385197\pi\)
0.352895 + 0.935663i \(0.385197\pi\)
\(812\) 0 0
\(813\) −20052.2 −0.865018
\(814\) 0 0
\(815\) 13256.9 0.569776
\(816\) 0 0
\(817\) −6766.30 −0.289746
\(818\) 0 0
\(819\) −651.135 −0.0277808
\(820\) 0 0
\(821\) 16211.0 0.689121 0.344560 0.938764i \(-0.388028\pi\)
0.344560 + 0.938764i \(0.388028\pi\)
\(822\) 0 0
\(823\) 294.632 0.0124790 0.00623950 0.999981i \(-0.498014\pi\)
0.00623950 + 0.999981i \(0.498014\pi\)
\(824\) 0 0
\(825\) −4225.68 −0.178326
\(826\) 0 0
\(827\) 2458.78 0.103386 0.0516929 0.998663i \(-0.483538\pi\)
0.0516929 + 0.998663i \(0.483538\pi\)
\(828\) 0 0
\(829\) 13131.0 0.550132 0.275066 0.961425i \(-0.411300\pi\)
0.275066 + 0.961425i \(0.411300\pi\)
\(830\) 0 0
\(831\) −28896.6 −1.20627
\(832\) 0 0
\(833\) −33476.7 −1.39244
\(834\) 0 0
\(835\) 15978.8 0.662238
\(836\) 0 0
\(837\) 19363.3 0.799635
\(838\) 0 0
\(839\) −15681.7 −0.645281 −0.322641 0.946522i \(-0.604571\pi\)
−0.322641 + 0.946522i \(0.604571\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 0 0
\(843\) −8169.86 −0.333790
\(844\) 0 0
\(845\) 9952.05 0.405161
\(846\) 0 0
\(847\) −1946.01 −0.0789443
\(848\) 0 0
\(849\) 46799.8 1.89183
\(850\) 0 0
\(851\) 35555.9 1.43225
\(852\) 0 0
\(853\) 35024.3 1.40587 0.702935 0.711254i \(-0.251872\pi\)
0.702935 + 0.711254i \(0.251872\pi\)
\(854\) 0 0
\(855\) −7571.04 −0.302835
\(856\) 0 0
\(857\) 3236.70 0.129012 0.0645062 0.997917i \(-0.479453\pi\)
0.0645062 + 0.997917i \(0.479453\pi\)
\(858\) 0 0
\(859\) −7616.20 −0.302516 −0.151258 0.988494i \(-0.548332\pi\)
−0.151258 + 0.988494i \(0.548332\pi\)
\(860\) 0 0
\(861\) 2063.92 0.0816937
\(862\) 0 0
\(863\) −6154.46 −0.242758 −0.121379 0.992606i \(-0.538732\pi\)
−0.121379 + 0.992606i \(0.538732\pi\)
\(864\) 0 0
\(865\) 13818.1 0.543156
\(866\) 0 0
\(867\) 33296.4 1.30427
\(868\) 0 0
\(869\) −24005.9 −0.937106
\(870\) 0 0
\(871\) 71.8643 0.00279567
\(872\) 0 0
\(873\) −82.2014 −0.00318682
\(874\) 0 0
\(875\) −371.603 −0.0143571
\(876\) 0 0
\(877\) −19519.1 −0.751555 −0.375777 0.926710i \(-0.622624\pi\)
−0.375777 + 0.926710i \(0.622624\pi\)
\(878\) 0 0
\(879\) 1292.78 0.0496069
\(880\) 0 0
\(881\) 35413.4 1.35427 0.677133 0.735860i \(-0.263222\pi\)
0.677133 + 0.735860i \(0.263222\pi\)
\(882\) 0 0
\(883\) 38576.4 1.47021 0.735107 0.677951i \(-0.237132\pi\)
0.735107 + 0.677951i \(0.237132\pi\)
\(884\) 0 0
\(885\) −12865.4 −0.488662
\(886\) 0 0
\(887\) −23091.9 −0.874127 −0.437063 0.899431i \(-0.643981\pi\)
−0.437063 + 0.899431i \(0.643981\pi\)
\(888\) 0 0
\(889\) 1977.66 0.0746103
\(890\) 0 0
\(891\) 23620.9 0.888136
\(892\) 0 0
\(893\) 28324.6 1.06142
\(894\) 0 0
\(895\) 2521.69 0.0941796
\(896\) 0 0
\(897\) 9533.33 0.354859
\(898\) 0 0
\(899\) 7346.24 0.272537
\(900\) 0 0
\(901\) 40981.5 1.51531
\(902\) 0 0
\(903\) −1315.64 −0.0484847
\(904\) 0 0
\(905\) −23954.8 −0.879873
\(906\) 0 0
\(907\) 8145.16 0.298187 0.149094 0.988823i \(-0.452364\pi\)
0.149094 + 0.988823i \(0.452364\pi\)
\(908\) 0 0
\(909\) 2016.15 0.0735662
\(910\) 0 0
\(911\) 15778.0 0.573819 0.286909 0.957958i \(-0.407372\pi\)
0.286909 + 0.957958i \(0.407372\pi\)
\(912\) 0 0
\(913\) 11852.2 0.429628
\(914\) 0 0
\(915\) 27165.3 0.981483
\(916\) 0 0
\(917\) 2057.54 0.0740959
\(918\) 0 0
\(919\) 345.621 0.0124058 0.00620292 0.999981i \(-0.498026\pi\)
0.00620292 + 0.999981i \(0.498026\pi\)
\(920\) 0 0
\(921\) −25269.4 −0.904077
\(922\) 0 0
\(923\) −967.606 −0.0345061
\(924\) 0 0
\(925\) −8709.98 −0.309603
\(926\) 0 0
\(927\) −29971.7 −1.06192
\(928\) 0 0
\(929\) −28488.0 −1.00609 −0.503047 0.864259i \(-0.667788\pi\)
−0.503047 + 0.864259i \(0.667788\pi\)
\(930\) 0 0
\(931\) −33204.5 −1.16889
\(932\) 0 0
\(933\) 70268.3 2.46568
\(934\) 0 0
\(935\) 13027.4 0.455658
\(936\) 0 0
\(937\) 4470.09 0.155850 0.0779250 0.996959i \(-0.475171\pi\)
0.0779250 + 0.996959i \(0.475171\pi\)
\(938\) 0 0
\(939\) 10220.1 0.355188
\(940\) 0 0
\(941\) 713.170 0.0247063 0.0123532 0.999924i \(-0.496068\pi\)
0.0123532 + 0.999924i \(0.496068\pi\)
\(942\) 0 0
\(943\) −10901.9 −0.376475
\(944\) 0 0
\(945\) 1136.19 0.0391115
\(946\) 0 0
\(947\) 16449.1 0.564440 0.282220 0.959350i \(-0.408929\pi\)
0.282220 + 0.959350i \(0.408929\pi\)
\(948\) 0 0
\(949\) −1787.00 −0.0611260
\(950\) 0 0
\(951\) −14267.9 −0.486506
\(952\) 0 0
\(953\) −29150.9 −0.990860 −0.495430 0.868648i \(-0.664990\pi\)
−0.495430 + 0.868648i \(0.664990\pi\)
\(954\) 0 0
\(955\) 16429.5 0.556699
\(956\) 0 0
\(957\) 4901.79 0.165572
\(958\) 0 0
\(959\) −294.221 −0.00990709
\(960\) 0 0
\(961\) 34379.4 1.15402
\(962\) 0 0
\(963\) 26429.7 0.884409
\(964\) 0 0
\(965\) −16473.1 −0.549520
\(966\) 0 0
\(967\) 42765.7 1.42219 0.711093 0.703098i \(-0.248201\pi\)
0.711093 + 0.703098i \(0.248201\pi\)
\(968\) 0 0
\(969\) 64696.3 2.14484
\(970\) 0 0
\(971\) −8642.06 −0.285620 −0.142810 0.989750i \(-0.545614\pi\)
−0.142810 + 0.989750i \(0.545614\pi\)
\(972\) 0 0
\(973\) −1196.57 −0.0394248
\(974\) 0 0
\(975\) −2335.34 −0.0767085
\(976\) 0 0
\(977\) 1244.09 0.0407391 0.0203695 0.999793i \(-0.493516\pi\)
0.0203695 + 0.999793i \(0.493516\pi\)
\(978\) 0 0
\(979\) 26475.4 0.864309
\(980\) 0 0
\(981\) −4615.92 −0.150229
\(982\) 0 0
\(983\) 30642.6 0.994248 0.497124 0.867679i \(-0.334389\pi\)
0.497124 + 0.867679i \(0.334389\pi\)
\(984\) 0 0
\(985\) 22247.4 0.719655
\(986\) 0 0
\(987\) 5507.42 0.177612
\(988\) 0 0
\(989\) 6949.38 0.223435
\(990\) 0 0
\(991\) −15647.6 −0.501577 −0.250788 0.968042i \(-0.580690\pi\)
−0.250788 + 0.968042i \(0.580690\pi\)
\(992\) 0 0
\(993\) 36958.9 1.18112
\(994\) 0 0
\(995\) −18361.5 −0.585022
\(996\) 0 0
\(997\) 20097.5 0.638411 0.319205 0.947686i \(-0.396584\pi\)
0.319205 + 0.947686i \(0.396584\pi\)
\(998\) 0 0
\(999\) 26631.1 0.843416
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2320.4.a.o.1.5 6
4.3 odd 2 580.4.a.a.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.4.a.a.1.2 6 4.3 odd 2
2320.4.a.o.1.5 6 1.1 even 1 trivial