Properties

Label 234.2.l.b.199.2
Level $234$
Weight $2$
Character 234.199
Analytic conductor $1.868$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [234,2,Mod(127,234)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(234, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("234.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 234.199
Dual form 234.2.l.b.127.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +3.00000i q^{5} +1.00000i q^{8} +(-1.50000 + 2.59808i) q^{10} +(-2.50000 - 2.59808i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(2.59808 + 4.50000i) q^{17} +(6.00000 - 3.46410i) q^{19} +(-2.59808 + 1.50000i) q^{20} -4.00000 q^{25} +(-0.866025 - 3.50000i) q^{26} +(2.59808 - 4.50000i) q^{29} -6.92820i q^{31} +(-0.866025 + 0.500000i) q^{32} +5.19615i q^{34} +(-1.50000 - 0.866025i) q^{37} +6.92820 q^{38} -3.00000 q^{40} +(-7.79423 - 4.50000i) q^{41} +(2.00000 + 3.46410i) q^{43} -12.0000i q^{47} +(-3.50000 + 6.06218i) q^{49} +(-3.46410 - 2.00000i) q^{50} +(1.00000 - 3.46410i) q^{52} -5.19615 q^{53} +(4.50000 - 2.59808i) q^{58} +(-10.3923 + 6.00000i) q^{59} +(2.50000 + 4.33013i) q^{61} +(3.46410 - 6.00000i) q^{62} -1.00000 q^{64} +(7.79423 - 7.50000i) q^{65} +(12.0000 + 6.92820i) q^{67} +(-2.59808 + 4.50000i) q^{68} +(10.3923 - 6.00000i) q^{71} -8.66025i q^{73} +(-0.866025 - 1.50000i) q^{74} +(6.00000 + 3.46410i) q^{76} +4.00000 q^{79} +(-2.59808 - 1.50000i) q^{80} +(-4.50000 - 7.79423i) q^{82} +12.0000i q^{83} +(-13.5000 + 7.79423i) q^{85} +4.00000i q^{86} +(-5.19615 - 3.00000i) q^{89} +(6.00000 - 10.3923i) q^{94} +(10.3923 + 18.0000i) q^{95} +(-12.0000 + 6.92820i) q^{97} +(-6.06218 + 3.50000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 6 q^{10} - 10 q^{13} - 2 q^{16} + 24 q^{19} - 16 q^{25} - 6 q^{37} - 12 q^{40} + 8 q^{43} - 14 q^{49} + 4 q^{52} + 18 q^{58} + 10 q^{61} - 4 q^{64} + 48 q^{67} + 24 q^{76} + 16 q^{79} - 18 q^{82}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 3.00000i 1.34164i 0.741620 + 0.670820i \(0.234058\pi\)
−0.741620 + 0.670820i \(0.765942\pi\)
\(6\) 0 0
\(7\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) −2.50000 2.59808i −0.693375 0.720577i
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.59808 + 4.50000i 0.630126 + 1.09141i 0.987526 + 0.157459i \(0.0503301\pi\)
−0.357400 + 0.933952i \(0.616337\pi\)
\(18\) 0 0
\(19\) 6.00000 3.46410i 1.37649 0.794719i 0.384759 0.923017i \(-0.374285\pi\)
0.991736 + 0.128298i \(0.0409513\pi\)
\(20\) −2.59808 + 1.50000i −0.580948 + 0.335410i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −0.866025 3.50000i −0.169842 0.686406i
\(27\) 0 0
\(28\) 0 0
\(29\) 2.59808 4.50000i 0.482451 0.835629i −0.517346 0.855776i \(-0.673080\pi\)
0.999797 + 0.0201471i \(0.00641344\pi\)
\(30\) 0 0
\(31\) 6.92820i 1.24434i −0.782881 0.622171i \(-0.786251\pi\)
0.782881 0.622171i \(-0.213749\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 5.19615i 0.891133i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.50000 0.866025i −0.246598 0.142374i 0.371607 0.928390i \(-0.378807\pi\)
−0.618206 + 0.786016i \(0.712140\pi\)
\(38\) 6.92820 1.12390
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −7.79423 4.50000i −1.21725 0.702782i −0.252924 0.967486i \(-0.581392\pi\)
−0.964330 + 0.264704i \(0.914726\pi\)
\(42\) 0 0
\(43\) 2.00000 + 3.46410i 0.304997 + 0.528271i 0.977261 0.212041i \(-0.0680112\pi\)
−0.672264 + 0.740312i \(0.734678\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.0000i 1.75038i −0.483779 0.875190i \(-0.660736\pi\)
0.483779 0.875190i \(-0.339264\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) −3.46410 2.00000i −0.489898 0.282843i
\(51\) 0 0
\(52\) 1.00000 3.46410i 0.138675 0.480384i
\(53\) −5.19615 −0.713746 −0.356873 0.934153i \(-0.616157\pi\)
−0.356873 + 0.934153i \(0.616157\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 4.50000 2.59808i 0.590879 0.341144i
\(59\) −10.3923 + 6.00000i −1.35296 + 0.781133i −0.988663 0.150148i \(-0.952025\pi\)
−0.364299 + 0.931282i \(0.618692\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 3.46410 6.00000i 0.439941 0.762001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 7.79423 7.50000i 0.966755 0.930261i
\(66\) 0 0
\(67\) 12.0000 + 6.92820i 1.46603 + 0.846415i 0.999279 0.0379722i \(-0.0120898\pi\)
0.466755 + 0.884387i \(0.345423\pi\)
\(68\) −2.59808 + 4.50000i −0.315063 + 0.545705i
\(69\) 0 0
\(70\) 0 0
\(71\) 10.3923 6.00000i 1.23334 0.712069i 0.265615 0.964079i \(-0.414425\pi\)
0.967725 + 0.252010i \(0.0810916\pi\)
\(72\) 0 0
\(73\) 8.66025i 1.01361i −0.862062 0.506803i \(-0.830827\pi\)
0.862062 0.506803i \(-0.169173\pi\)
\(74\) −0.866025 1.50000i −0.100673 0.174371i
\(75\) 0 0
\(76\) 6.00000 + 3.46410i 0.688247 + 0.397360i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −2.59808 1.50000i −0.290474 0.167705i
\(81\) 0 0
\(82\) −4.50000 7.79423i −0.496942 0.860729i
\(83\) 12.0000i 1.31717i 0.752506 + 0.658586i \(0.228845\pi\)
−0.752506 + 0.658586i \(0.771155\pi\)
\(84\) 0 0
\(85\) −13.5000 + 7.79423i −1.46428 + 0.845403i
\(86\) 4.00000i 0.431331i
\(87\) 0 0
\(88\) 0 0
\(89\) −5.19615 3.00000i −0.550791 0.317999i 0.198650 0.980071i \(-0.436344\pi\)
−0.749441 + 0.662071i \(0.769678\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 6.00000 10.3923i 0.618853 1.07188i
\(95\) 10.3923 + 18.0000i 1.06623 + 1.84676i
\(96\) 0 0
\(97\) −12.0000 + 6.92820i −1.21842 + 0.703452i −0.964579 0.263795i \(-0.915026\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(98\) −6.06218 + 3.50000i −0.612372 + 0.353553i
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) 2.59808 4.50000i 0.258518 0.447767i −0.707327 0.706887i \(-0.750099\pi\)
0.965845 + 0.259120i \(0.0834325\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 2.59808 2.50000i 0.254762 0.245145i
\(105\) 0 0
\(106\) −4.50000 2.59808i −0.437079 0.252347i
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 0 0
\(109\) 6.92820i 0.663602i 0.943349 + 0.331801i \(0.107656\pi\)
−0.943349 + 0.331801i \(0.892344\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.79423 + 13.5000i 0.733219 + 1.26997i 0.955500 + 0.294990i \(0.0953165\pi\)
−0.222281 + 0.974983i \(0.571350\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 5.19615 0.482451
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 5.00000i 0.452679i
\(123\) 0 0
\(124\) 6.00000 3.46410i 0.538816 0.311086i
\(125\) 3.00000i 0.268328i
\(126\) 0 0
\(127\) 4.00000 6.92820i 0.354943 0.614779i −0.632166 0.774833i \(-0.717834\pi\)
0.987108 + 0.160055i \(0.0511671\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 10.5000 2.59808i 0.920911 0.227866i
\(131\) −20.7846 −1.81596 −0.907980 0.419014i \(-0.862376\pi\)
−0.907980 + 0.419014i \(0.862376\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.92820 + 12.0000i 0.598506 + 1.03664i
\(135\) 0 0
\(136\) −4.50000 + 2.59808i −0.385872 + 0.222783i
\(137\) −7.79423 + 4.50000i −0.665906 + 0.384461i −0.794524 0.607233i \(-0.792279\pi\)
0.128618 + 0.991694i \(0.458946\pi\)
\(138\) 0 0
\(139\) 8.00000 + 13.8564i 0.678551 + 1.17529i 0.975417 + 0.220366i \(0.0707252\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) 0 0
\(145\) 13.5000 + 7.79423i 1.12111 + 0.647275i
\(146\) 4.33013 7.50000i 0.358364 0.620704i
\(147\) 0 0
\(148\) 1.73205i 0.142374i
\(149\) −2.59808 + 1.50000i −0.212843 + 0.122885i −0.602632 0.798019i \(-0.705881\pi\)
0.389789 + 0.920904i \(0.372548\pi\)
\(150\) 0 0
\(151\) 13.8564i 1.12762i −0.825905 0.563809i \(-0.809335\pi\)
0.825905 0.563809i \(-0.190665\pi\)
\(152\) 3.46410 + 6.00000i 0.280976 + 0.486664i
\(153\) 0 0
\(154\) 0 0
\(155\) 20.7846 1.66946
\(156\) 0 0
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) 3.46410 + 2.00000i 0.275589 + 0.159111i
\(159\) 0 0
\(160\) −1.50000 2.59808i −0.118585 0.205396i
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(164\) 9.00000i 0.702782i
\(165\) 0 0
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) −10.3923 6.00000i −0.804181 0.464294i 0.0407502 0.999169i \(-0.487025\pi\)
−0.844931 + 0.534875i \(0.820359\pi\)
\(168\) 0 0
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) −15.5885 −1.19558
\(171\) 0 0
\(172\) −2.00000 + 3.46410i −0.152499 + 0.264135i
\(173\) 10.3923 + 18.0000i 0.790112 + 1.36851i 0.925897 + 0.377776i \(0.123311\pi\)
−0.135785 + 0.990738i \(0.543356\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) 10.3923 18.0000i 0.776757 1.34538i −0.157044 0.987592i \(-0.550196\pi\)
0.933801 0.357792i \(-0.116470\pi\)
\(180\) 0 0
\(181\) −1.00000 −0.0743294 −0.0371647 0.999309i \(-0.511833\pi\)
−0.0371647 + 0.999309i \(0.511833\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.59808 4.50000i 0.191014 0.330847i
\(186\) 0 0
\(187\) 0 0
\(188\) 10.3923 6.00000i 0.757937 0.437595i
\(189\) 0 0
\(190\) 20.7846i 1.50787i
\(191\) −10.3923 18.0000i −0.751961 1.30243i −0.946871 0.321613i \(-0.895775\pi\)
0.194910 0.980821i \(-0.437558\pi\)
\(192\) 0 0
\(193\) −4.50000 2.59808i −0.323917 0.187014i 0.329220 0.944253i \(-0.393214\pi\)
−0.653137 + 0.757240i \(0.726548\pi\)
\(194\) −13.8564 −0.994832
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −5.19615 3.00000i −0.370211 0.213741i 0.303340 0.952882i \(-0.401898\pi\)
−0.673550 + 0.739141i \(0.735232\pi\)
\(198\) 0 0
\(199\) 4.00000 + 6.92820i 0.283552 + 0.491127i 0.972257 0.233915i \(-0.0751537\pi\)
−0.688705 + 0.725042i \(0.741820\pi\)
\(200\) 4.00000i 0.282843i
\(201\) 0 0
\(202\) 4.50000 2.59808i 0.316619 0.182800i
\(203\) 0 0
\(204\) 0 0
\(205\) 13.5000 23.3827i 0.942881 1.63312i
\(206\) −3.46410 2.00000i −0.241355 0.139347i
\(207\) 0 0
\(208\) 3.50000 0.866025i 0.242681 0.0600481i
\(209\) 0 0
\(210\) 0 0
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) −2.59808 4.50000i −0.178437 0.309061i
\(213\) 0 0
\(214\) 0 0
\(215\) −10.3923 + 6.00000i −0.708749 + 0.409197i
\(216\) 0 0
\(217\) 0 0
\(218\) −3.46410 + 6.00000i −0.234619 + 0.406371i
\(219\) 0 0
\(220\) 0 0
\(221\) 5.19615 18.0000i 0.349531 1.21081i
\(222\) 0 0
\(223\) −18.0000 10.3923i −1.20537 0.695920i −0.243625 0.969870i \(-0.578337\pi\)
−0.961744 + 0.273949i \(0.911670\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 15.5885i 1.03693i
\(227\) 10.3923 6.00000i 0.689761 0.398234i −0.113761 0.993508i \(-0.536290\pi\)
0.803523 + 0.595274i \(0.202957\pi\)
\(228\) 0 0
\(229\) 20.7846i 1.37349i −0.726900 0.686743i \(-0.759040\pi\)
0.726900 0.686743i \(-0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.50000 + 2.59808i 0.295439 + 0.170572i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 36.0000 2.34838
\(236\) −10.3923 6.00000i −0.676481 0.390567i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 7.50000 4.33013i 0.483117 0.278928i −0.238597 0.971119i \(-0.576688\pi\)
0.721715 + 0.692191i \(0.243354\pi\)
\(242\) 11.0000i 0.707107i
\(243\) 0 0
\(244\) −2.50000 + 4.33013i −0.160046 + 0.277208i
\(245\) −18.1865 10.5000i −1.16190 0.670820i
\(246\) 0 0
\(247\) −24.0000 6.92820i −1.52708 0.440831i
\(248\) 6.92820 0.439941
\(249\) 0 0
\(250\) −1.50000 + 2.59808i −0.0948683 + 0.164317i
\(251\) −10.3923 18.0000i −0.655956 1.13615i −0.981653 0.190676i \(-0.938932\pi\)
0.325697 0.945474i \(-0.394401\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 6.92820 4.00000i 0.434714 0.250982i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.79423 13.5000i 0.486191 0.842107i −0.513683 0.857980i \(-0.671719\pi\)
0.999874 + 0.0158730i \(0.00505273\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.3923 + 3.00000i 0.644503 + 0.186052i
\(261\) 0 0
\(262\) −18.0000 10.3923i −1.11204 0.642039i
\(263\) −10.3923 + 18.0000i −0.640817 + 1.10993i 0.344434 + 0.938811i \(0.388071\pi\)
−0.985251 + 0.171117i \(0.945262\pi\)
\(264\) 0 0
\(265\) 15.5885i 0.957591i
\(266\) 0 0
\(267\) 0 0
\(268\) 13.8564i 0.846415i
\(269\) 10.3923 + 18.0000i 0.633630 + 1.09748i 0.986804 + 0.161922i \(0.0517692\pi\)
−0.353174 + 0.935558i \(0.614898\pi\)
\(270\) 0 0
\(271\) −18.0000 10.3923i −1.09342 0.631288i −0.158937 0.987289i \(-0.550807\pi\)
−0.934485 + 0.356001i \(0.884140\pi\)
\(272\) −5.19615 −0.315063
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) 0 0
\(276\) 0 0
\(277\) 9.50000 + 16.4545i 0.570800 + 0.988654i 0.996484 + 0.0837823i \(0.0267000\pi\)
−0.425684 + 0.904872i \(0.639967\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00000i 0.178965i 0.995988 + 0.0894825i \(0.0285213\pi\)
−0.995988 + 0.0894825i \(0.971479\pi\)
\(282\) 0 0
\(283\) −8.00000 + 13.8564i −0.475551 + 0.823678i −0.999608 0.0280052i \(-0.991084\pi\)
0.524057 + 0.851683i \(0.324418\pi\)
\(284\) 10.3923 + 6.00000i 0.616670 + 0.356034i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −5.00000 + 8.66025i −0.294118 + 0.509427i
\(290\) 7.79423 + 13.5000i 0.457693 + 0.792747i
\(291\) 0 0
\(292\) 7.50000 4.33013i 0.438904 0.253402i
\(293\) −7.79423 + 4.50000i −0.455344 + 0.262893i −0.710084 0.704117i \(-0.751343\pi\)
0.254741 + 0.967009i \(0.418010\pi\)
\(294\) 0 0
\(295\) −18.0000 31.1769i −1.04800 1.81519i
\(296\) 0.866025 1.50000i 0.0503367 0.0871857i
\(297\) 0 0
\(298\) −3.00000 −0.173785
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 6.92820 12.0000i 0.398673 0.690522i
\(303\) 0 0
\(304\) 6.92820i 0.397360i
\(305\) −12.9904 + 7.50000i −0.743827 + 0.429449i
\(306\) 0 0
\(307\) 13.8564i 0.790827i 0.918503 + 0.395413i \(0.129399\pi\)
−0.918503 + 0.395413i \(0.870601\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 18.0000 + 10.3923i 1.02233 + 0.590243i
\(311\) 20.7846 1.17859 0.589294 0.807919i \(-0.299406\pi\)
0.589294 + 0.807919i \(0.299406\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) −6.06218 3.50000i −0.342108 0.197516i
\(315\) 0 0
\(316\) 2.00000 + 3.46410i 0.112509 + 0.194871i
\(317\) 9.00000i 0.505490i −0.967533 0.252745i \(-0.918667\pi\)
0.967533 0.252745i \(-0.0813334\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 3.00000i 0.167705i
\(321\) 0 0
\(322\) 0 0
\(323\) 31.1769 + 18.0000i 1.73473 + 1.00155i
\(324\) 0 0
\(325\) 10.0000 + 10.3923i 0.554700 + 0.576461i
\(326\) 0 0
\(327\) 0 0
\(328\) 4.50000 7.79423i 0.248471 0.430364i
\(329\) 0 0
\(330\) 0 0
\(331\) 12.0000 6.92820i 0.659580 0.380808i −0.132537 0.991178i \(-0.542312\pi\)
0.792117 + 0.610370i \(0.208979\pi\)
\(332\) −10.3923 + 6.00000i −0.570352 + 0.329293i
\(333\) 0 0
\(334\) −6.00000 10.3923i −0.328305 0.568642i
\(335\) −20.7846 + 36.0000i −1.13558 + 1.96689i
\(336\) 0 0
\(337\) 7.00000 0.381314 0.190657 0.981657i \(-0.438938\pi\)
0.190657 + 0.981657i \(0.438938\pi\)
\(338\) −6.92820 + 11.0000i −0.376845 + 0.598321i
\(339\) 0 0
\(340\) −13.5000 7.79423i −0.732140 0.422701i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) −3.46410 + 2.00000i −0.186772 + 0.107833i
\(345\) 0 0
\(346\) 20.7846i 1.11739i
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) −6.00000 3.46410i −0.321173 0.185429i 0.330743 0.943721i \(-0.392701\pi\)
−0.651915 + 0.758292i \(0.726034\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.9904 + 7.50000i 0.691408 + 0.399185i 0.804139 0.594441i \(-0.202627\pi\)
−0.112731 + 0.993626i \(0.535960\pi\)
\(354\) 0 0
\(355\) 18.0000 + 31.1769i 0.955341 + 1.65470i
\(356\) 6.00000i 0.317999i
\(357\) 0 0
\(358\) 18.0000 10.3923i 0.951330 0.549250i
\(359\) 12.0000i 0.633336i 0.948536 + 0.316668i \(0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(360\) 0 0
\(361\) 14.5000 25.1147i 0.763158 1.32183i
\(362\) −0.866025 0.500000i −0.0455173 0.0262794i
\(363\) 0 0
\(364\) 0 0
\(365\) 25.9808 1.35990
\(366\) 0 0
\(367\) −16.0000 + 27.7128i −0.835193 + 1.44660i 0.0586798 + 0.998277i \(0.481311\pi\)
−0.893873 + 0.448320i \(0.852022\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 4.50000 2.59808i 0.233944 0.135068i
\(371\) 0 0
\(372\) 0 0
\(373\) 11.5000 + 19.9186i 0.595447 + 1.03135i 0.993484 + 0.113975i \(0.0363585\pi\)
−0.398036 + 0.917370i \(0.630308\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) −18.1865 + 4.50000i −0.936654 + 0.231762i
\(378\) 0 0
\(379\) −12.0000 6.92820i −0.616399 0.355878i 0.159067 0.987268i \(-0.449151\pi\)
−0.775466 + 0.631390i \(0.782485\pi\)
\(380\) −10.3923 + 18.0000i −0.533114 + 0.923381i
\(381\) 0 0
\(382\) 20.7846i 1.06343i
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.59808 4.50000i −0.132239 0.229044i
\(387\) 0 0
\(388\) −12.0000 6.92820i −0.609208 0.351726i
\(389\) −5.19615 −0.263455 −0.131728 0.991286i \(-0.542052\pi\)
−0.131728 + 0.991286i \(0.542052\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −6.06218 3.50000i −0.306186 0.176777i
\(393\) 0 0
\(394\) −3.00000 5.19615i −0.151138 0.261778i
\(395\) 12.0000i 0.603786i
\(396\) 0 0
\(397\) 6.00000 3.46410i 0.301131 0.173858i −0.341820 0.939766i \(-0.611043\pi\)
0.642951 + 0.765907i \(0.277710\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) 2.59808 + 1.50000i 0.129742 + 0.0749064i 0.563466 0.826139i \(-0.309468\pi\)
−0.433724 + 0.901046i \(0.642801\pi\)
\(402\) 0 0
\(403\) −18.0000 + 17.3205i −0.896644 + 0.862796i
\(404\) 5.19615 0.258518
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −13.5000 + 7.79423i −0.667532 + 0.385400i −0.795141 0.606425i \(-0.792603\pi\)
0.127609 + 0.991825i \(0.459270\pi\)
\(410\) 23.3827 13.5000i 1.15479 0.666717i
\(411\) 0 0
\(412\) −2.00000 3.46410i −0.0985329 0.170664i
\(413\) 0 0
\(414\) 0 0
\(415\) −36.0000 −1.76717
\(416\) 3.46410 + 1.00000i 0.169842 + 0.0490290i
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3923 18.0000i 0.507697 0.879358i −0.492263 0.870447i \(-0.663830\pi\)
0.999960 0.00891102i \(-0.00283650\pi\)
\(420\) 0 0
\(421\) 15.5885i 0.759735i 0.925041 + 0.379867i \(0.124030\pi\)
−0.925041 + 0.379867i \(0.875970\pi\)
\(422\) −3.46410 + 2.00000i −0.168630 + 0.0973585i
\(423\) 0 0
\(424\) 5.19615i 0.252347i
\(425\) −10.3923 18.0000i −0.504101 0.873128i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 10.3923 + 6.00000i 0.500580 + 0.289010i 0.728953 0.684564i \(-0.240007\pi\)
−0.228373 + 0.973574i \(0.573341\pi\)
\(432\) 0 0
\(433\) −9.50000 16.4545i −0.456541 0.790752i 0.542234 0.840227i \(-0.317578\pi\)
−0.998775 + 0.0494752i \(0.984245\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.00000 + 3.46410i −0.287348 + 0.165900i
\(437\) 0 0
\(438\) 0 0
\(439\) 2.00000 3.46410i 0.0954548 0.165333i −0.814344 0.580383i \(-0.802903\pi\)
0.909798 + 0.415051i \(0.136236\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 13.5000 12.9904i 0.642130 0.617889i
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 9.00000 15.5885i 0.426641 0.738964i
\(446\) −10.3923 18.0000i −0.492090 0.852325i
\(447\) 0 0
\(448\) 0 0
\(449\) 25.9808 15.0000i 1.22611 0.707894i 0.259895 0.965637i \(-0.416312\pi\)
0.966213 + 0.257743i \(0.0829789\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −7.79423 + 13.5000i −0.366610 + 0.634987i
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 10.5000 + 6.06218i 0.491169 + 0.283577i 0.725059 0.688686i \(-0.241812\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 10.3923 18.0000i 0.485601 0.841085i
\(459\) 0 0
\(460\) 0 0
\(461\) −18.1865 + 10.5000i −0.847031 + 0.489034i −0.859648 0.510887i \(-0.829317\pi\)
0.0126168 + 0.999920i \(0.495984\pi\)
\(462\) 0 0
\(463\) 6.92820i 0.321981i −0.986956 0.160990i \(-0.948531\pi\)
0.986956 0.160990i \(-0.0514688\pi\)
\(464\) 2.59808 + 4.50000i 0.120613 + 0.208907i
\(465\) 0 0
\(466\) 0 0
\(467\) −41.5692 −1.92359 −0.961797 0.273764i \(-0.911731\pi\)
−0.961797 + 0.273764i \(0.911731\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 31.1769 + 18.0000i 1.43808 + 0.830278i
\(471\) 0 0
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) 0 0
\(474\) 0 0
\(475\) −24.0000 + 13.8564i −1.10120 + 0.635776i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −20.7846 12.0000i −0.949673 0.548294i −0.0566937 0.998392i \(-0.518056\pi\)
−0.892979 + 0.450098i \(0.851389\pi\)
\(480\) 0 0
\(481\) 1.50000 + 6.06218i 0.0683941 + 0.276412i
\(482\) 8.66025 0.394464
\(483\) 0 0
\(484\) 5.50000 9.52628i 0.250000 0.433013i
\(485\) −20.7846 36.0000i −0.943781 1.63468i
\(486\) 0 0
\(487\) −6.00000 + 3.46410i −0.271886 + 0.156973i −0.629744 0.776802i \(-0.716840\pi\)
0.357858 + 0.933776i \(0.383507\pi\)
\(488\) −4.33013 + 2.50000i −0.196016 + 0.113170i
\(489\) 0 0
\(490\) −10.5000 18.1865i −0.474342 0.821584i
\(491\) 10.3923 18.0000i 0.468998 0.812329i −0.530374 0.847764i \(-0.677948\pi\)
0.999372 + 0.0354353i \(0.0112818\pi\)
\(492\) 0 0
\(493\) 27.0000 1.21602
\(494\) −17.3205 18.0000i −0.779287 0.809858i
\(495\) 0 0
\(496\) 6.00000 + 3.46410i 0.269408 + 0.155543i
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −2.59808 + 1.50000i −0.116190 + 0.0670820i
\(501\) 0 0
\(502\) 20.7846i 0.927663i
\(503\) −10.3923 18.0000i −0.463370 0.802580i 0.535756 0.844373i \(-0.320027\pi\)
−0.999126 + 0.0417923i \(0.986693\pi\)
\(504\) 0 0
\(505\) 13.5000 + 7.79423i 0.600742 + 0.346839i
\(506\) 0 0
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) −12.9904 7.50000i −0.575789 0.332432i 0.183669 0.982988i \(-0.441202\pi\)
−0.759458 + 0.650556i \(0.774536\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 13.5000 7.79423i 0.595459 0.343789i
\(515\) 12.0000i 0.528783i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 7.50000 + 7.79423i 0.328897 + 0.341800i
\(521\) 15.5885 0.682943 0.341471 0.939892i \(-0.389075\pi\)
0.341471 + 0.939892i \(0.389075\pi\)
\(522\) 0 0
\(523\) −4.00000 + 6.92820i −0.174908 + 0.302949i −0.940129 0.340818i \(-0.889296\pi\)
0.765222 + 0.643767i \(0.222629\pi\)
\(524\) −10.3923 18.0000i −0.453990 0.786334i
\(525\) 0 0
\(526\) −18.0000 + 10.3923i −0.784837 + 0.453126i
\(527\) 31.1769 18.0000i 1.35809 0.784092i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 7.79423 13.5000i 0.338560 0.586403i
\(531\) 0 0
\(532\) 0 0
\(533\) 7.79423 + 31.5000i 0.337606 + 1.36442i
\(534\) 0 0
\(535\) 0 0
\(536\) −6.92820 + 12.0000i −0.299253 + 0.518321i
\(537\) 0 0
\(538\) 20.7846i 0.896088i
\(539\) 0 0
\(540\) 0 0
\(541\) 32.9090i 1.41487i −0.706780 0.707433i \(-0.749853\pi\)
0.706780 0.707433i \(-0.250147\pi\)
\(542\) −10.3923 18.0000i −0.446388 0.773166i
\(543\) 0 0
\(544\) −4.50000 2.59808i −0.192936 0.111392i
\(545\) −20.7846 −0.890315
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) −7.79423 4.50000i −0.332953 0.192230i
\(549\) 0 0
\(550\) 0 0
\(551\) 36.0000i 1.53365i
\(552\) 0 0
\(553\) 0 0
\(554\) 19.0000i 0.807233i
\(555\) 0 0
\(556\) −8.00000 + 13.8564i −0.339276 + 0.587643i
\(557\) 38.9711 + 22.5000i 1.65126 + 0.953356i 0.976555 + 0.215268i \(0.0690627\pi\)
0.674705 + 0.738087i \(0.264271\pi\)
\(558\) 0 0
\(559\) 4.00000 13.8564i 0.169182 0.586064i
\(560\) 0 0
\(561\) 0 0
\(562\) −1.50000 + 2.59808i −0.0632737 + 0.109593i
\(563\) −10.3923 18.0000i −0.437983 0.758610i 0.559550 0.828796i \(-0.310974\pi\)
−0.997534 + 0.0701867i \(0.977640\pi\)
\(564\) 0 0
\(565\) −40.5000 + 23.3827i −1.70385 + 0.983717i
\(566\) −13.8564 + 8.00000i −0.582428 + 0.336265i
\(567\) 0 0
\(568\) 6.00000 + 10.3923i 0.251754 + 0.436051i
\(569\) −20.7846 + 36.0000i −0.871336 + 1.50920i −0.0107211 + 0.999943i \(0.503413\pi\)
−0.860615 + 0.509256i \(0.829921\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 43.3013i 1.80266i 0.433138 + 0.901328i \(0.357406\pi\)
−0.433138 + 0.901328i \(0.642594\pi\)
\(578\) −8.66025 + 5.00000i −0.360219 + 0.207973i
\(579\) 0 0
\(580\) 15.5885i 0.647275i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 8.66025 0.358364
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(588\) 0 0
\(589\) −24.0000 41.5692i −0.988903 1.71283i
\(590\) 36.0000i 1.48210i
\(591\) 0 0
\(592\) 1.50000 0.866025i 0.0616496 0.0355934i
\(593\) 9.00000i 0.369586i 0.982777 + 0.184793i \(0.0591614\pi\)
−0.982777 + 0.184793i \(0.940839\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.59808 1.50000i −0.106421 0.0614424i
\(597\) 0 0
\(598\) 0 0
\(599\) 20.7846 0.849236 0.424618 0.905373i \(-0.360408\pi\)
0.424618 + 0.905373i \(0.360408\pi\)
\(600\) 0 0
\(601\) 17.5000 30.3109i 0.713840 1.23641i −0.249565 0.968358i \(-0.580288\pi\)
0.963405 0.268049i \(-0.0863789\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12.0000 6.92820i 0.488273 0.281905i
\(605\) 28.5788 16.5000i 1.16190 0.670820i
\(606\) 0 0
\(607\) 8.00000 + 13.8564i 0.324710 + 0.562414i 0.981454 0.191700i \(-0.0614000\pi\)
−0.656744 + 0.754114i \(0.728067\pi\)
\(608\) −3.46410 + 6.00000i −0.140488 + 0.243332i
\(609\) 0 0
\(610\) −15.0000 −0.607332
\(611\) −31.1769 + 30.0000i −1.26128 + 1.21367i
\(612\) 0 0
\(613\) 34.5000 + 19.9186i 1.39344 + 0.804504i 0.993695 0.112121i \(-0.0357645\pi\)
0.399747 + 0.916625i \(0.369098\pi\)
\(614\) −6.92820 + 12.0000i −0.279600 + 0.484281i
\(615\) 0 0
\(616\) 0 0
\(617\) 18.1865 10.5000i 0.732162 0.422714i −0.0870504 0.996204i \(-0.527744\pi\)
0.819213 + 0.573490i \(0.194411\pi\)
\(618\) 0 0
\(619\) 20.7846i 0.835404i 0.908584 + 0.417702i \(0.137164\pi\)
−0.908584 + 0.417702i \(0.862836\pi\)
\(620\) 10.3923 + 18.0000i 0.417365 + 0.722897i
\(621\) 0 0
\(622\) 18.0000 + 10.3923i 0.721734 + 0.416693i
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 19.0526 + 11.0000i 0.761493 + 0.439648i
\(627\) 0 0
\(628\) −3.50000 6.06218i −0.139665 0.241907i
\(629\) 9.00000i 0.358854i
\(630\) 0 0
\(631\) 12.0000 6.92820i 0.477712 0.275807i −0.241750 0.970339i \(-0.577721\pi\)
0.719463 + 0.694531i \(0.244388\pi\)
\(632\) 4.00000i 0.159111i
\(633\) 0 0
\(634\) 4.50000 7.79423i 0.178718 0.309548i
\(635\) 20.7846 + 12.0000i 0.824812 + 0.476205i
\(636\) 0 0
\(637\) 24.5000 6.06218i 0.970725 0.240192i
\(638\) 0 0
\(639\) 0 0
\(640\) 1.50000 2.59808i 0.0592927 0.102698i
\(641\) −2.59808 4.50000i −0.102618 0.177739i 0.810145 0.586230i \(-0.199389\pi\)
−0.912762 + 0.408491i \(0.866055\pi\)
\(642\) 0 0
\(643\) 30.0000 17.3205i 1.18308 0.683054i 0.226358 0.974044i \(-0.427318\pi\)
0.956726 + 0.290990i \(0.0939846\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 18.0000 + 31.1769i 0.708201 + 1.22664i
\(647\) −10.3923 + 18.0000i −0.408564 + 0.707653i −0.994729 0.102538i \(-0.967304\pi\)
0.586165 + 0.810191i \(0.300637\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 3.46410 + 14.0000i 0.135873 + 0.549125i
\(651\) 0 0
\(652\) 0 0
\(653\) −10.3923 + 18.0000i −0.406682 + 0.704394i −0.994516 0.104588i \(-0.966648\pi\)
0.587833 + 0.808982i \(0.299981\pi\)
\(654\) 0 0
\(655\) 62.3538i 2.43637i
\(656\) 7.79423 4.50000i 0.304314 0.175695i
\(657\) 0 0
\(658\) 0 0
\(659\) 20.7846 + 36.0000i 0.809653 + 1.40236i 0.913104 + 0.407726i \(0.133678\pi\)
−0.103451 + 0.994635i \(0.532988\pi\)
\(660\) 0 0
\(661\) 4.50000 + 2.59808i 0.175030 + 0.101053i 0.584955 0.811065i \(-0.301112\pi\)
−0.409926 + 0.912119i \(0.634445\pi\)
\(662\) 13.8564 0.538545
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 12.0000i 0.464294i
\(669\) 0 0
\(670\) −36.0000 + 20.7846i −1.39080 + 0.802980i
\(671\) 0 0
\(672\) 0 0
\(673\) −2.50000 + 4.33013i −0.0963679 + 0.166914i −0.910179 0.414216i \(-0.864056\pi\)
0.813811 + 0.581130i \(0.197389\pi\)
\(674\) 6.06218 + 3.50000i 0.233506 + 0.134815i
\(675\) 0 0
\(676\) −11.5000 + 6.06218i −0.442308 + 0.233161i
\(677\) −20.7846 −0.798817 −0.399409 0.916773i \(-0.630785\pi\)
−0.399409 + 0.916773i \(0.630785\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −7.79423 13.5000i −0.298895 0.517701i
\(681\) 0 0
\(682\) 0 0
\(683\) 10.3923 6.00000i 0.397650 0.229584i −0.287819 0.957685i \(-0.592930\pi\)
0.685470 + 0.728101i \(0.259597\pi\)
\(684\) 0 0
\(685\) −13.5000 23.3827i −0.515808 0.893407i
\(686\) 0 0
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) 12.9904 + 13.5000i 0.494894 + 0.514309i
\(690\) 0 0
\(691\) 12.0000 + 6.92820i 0.456502 + 0.263561i 0.710572 0.703624i \(-0.248436\pi\)
−0.254071 + 0.967186i \(0.581770\pi\)
\(692\) −10.3923 + 18.0000i −0.395056 + 0.684257i
\(693\) 0 0
\(694\) 0 0
\(695\) −41.5692 + 24.0000i −1.57681 + 0.910372i
\(696\) 0 0
\(697\) 46.7654i 1.77136i
\(698\) −3.46410 6.00000i −0.131118 0.227103i
\(699\) 0 0
\(700\) 0 0
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) 0 0
\(703\) −12.0000 −0.452589
\(704\) 0 0
\(705\) 0 0
\(706\) 7.50000 + 12.9904i 0.282266 + 0.488899i
\(707\) 0 0
\(708\) 0 0
\(709\) −22.5000 + 12.9904i −0.845005 + 0.487864i −0.858962 0.512039i \(-0.828890\pi\)
0.0139572 + 0.999903i \(0.495557\pi\)
\(710\) 36.0000i 1.35106i
\(711\) 0 0
\(712\) 3.00000 5.19615i 0.112430 0.194734i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 20.7846 0.776757
\(717\) 0 0
\(718\) −6.00000 + 10.3923i −0.223918 + 0.387837i
\(719\) −10.3923 18.0000i −0.387568 0.671287i 0.604554 0.796564i \(-0.293351\pi\)
−0.992122 + 0.125277i \(0.960018\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 25.1147 14.5000i 0.934674 0.539634i
\(723\) 0 0
\(724\) −0.500000 0.866025i −0.0185824 0.0321856i
\(725\) −10.3923 + 18.0000i −0.385961 + 0.668503i
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 22.5000 + 12.9904i 0.832762 + 0.480796i
\(731\) −10.3923 + 18.0000i −0.384373 + 0.665754i
\(732\) 0 0
\(733\) 8.66025i 0.319874i −0.987127 0.159937i \(-0.948871\pi\)
0.987127 0.159937i \(-0.0511291\pi\)
\(734\) −27.7128 + 16.0000i −1.02290 + 0.590571i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −36.0000 20.7846i −1.32428 0.764574i −0.339873 0.940471i \(-0.610384\pi\)
−0.984409 + 0.175897i \(0.943717\pi\)
\(740\) 5.19615 0.191014
\(741\) 0 0
\(742\) 0 0
\(743\) 20.7846 + 12.0000i 0.762513 + 0.440237i 0.830197 0.557470i \(-0.188228\pi\)
−0.0676840 + 0.997707i \(0.521561\pi\)
\(744\) 0 0
\(745\) −4.50000 7.79423i −0.164867 0.285558i
\(746\) 23.0000i 0.842090i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −10.0000 + 17.3205i −0.364905 + 0.632034i −0.988761 0.149505i \(-0.952232\pi\)
0.623856 + 0.781540i \(0.285565\pi\)
\(752\) 10.3923 + 6.00000i 0.378968 + 0.218797i
\(753\) 0 0
\(754\) −18.0000 5.19615i −0.655521 0.189233i
\(755\) 41.5692 1.51286
\(756\) 0 0
\(757\) −5.00000 + 8.66025i −0.181728 + 0.314762i −0.942469 0.334293i \(-0.891502\pi\)
0.760741 + 0.649056i \(0.224836\pi\)
\(758\) −6.92820 12.0000i −0.251644 0.435860i
\(759\) 0 0
\(760\) −18.0000 + 10.3923i −0.652929 + 0.376969i
\(761\) −5.19615 + 3.00000i −0.188360 + 0.108750i −0.591215 0.806514i \(-0.701351\pi\)
0.402854 + 0.915264i \(0.368018\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 10.3923 18.0000i 0.375980 0.651217i
\(765\) 0 0
\(766\) 0 0
\(767\) 41.5692 + 12.0000i 1.50098 + 0.433295i
\(768\) 0 0
\(769\) −12.0000 6.92820i −0.432731 0.249837i 0.267778 0.963481i \(-0.413711\pi\)
−0.700509 + 0.713643i \(0.747044\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.19615i 0.187014i
\(773\) 36.3731 21.0000i 1.30825 0.755318i 0.326445 0.945216i \(-0.394149\pi\)
0.981804 + 0.189899i \(0.0608160\pi\)
\(774\) 0 0
\(775\) 27.7128i 0.995474i
\(776\) −6.92820 12.0000i −0.248708 0.430775i
\(777\) 0 0
\(778\) −4.50000 2.59808i −0.161333 0.0931455i
\(779\) −62.3538 −2.23406
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −3.50000 6.06218i −0.125000 0.216506i
\(785\) 21.0000i 0.749522i
\(786\) 0 0
\(787\) 42.0000 24.2487i 1.49714 0.864373i 0.497144 0.867668i \(-0.334382\pi\)
0.999995 + 0.00329499i \(0.00104883\pi\)
\(788\) 6.00000i 0.213741i
\(789\) 0 0
\(790\) −6.00000 + 10.3923i −0.213470 + 0.369742i
\(791\) 0 0
\(792\) 0 0
\(793\) 5.00000 17.3205i 0.177555 0.615069i
\(794\) 6.92820 0.245873
\(795\) 0 0
\(796\) −4.00000 + 6.92820i −0.141776 + 0.245564i
\(797\) −10.3923 18.0000i −0.368114 0.637593i 0.621156 0.783687i \(-0.286663\pi\)
−0.989271 + 0.146094i \(0.953330\pi\)
\(798\) 0 0
\(799\) 54.0000 31.1769i 1.91038 1.10296i
\(800\) 3.46410 2.00000i 0.122474 0.0707107i
\(801\) 0 0
\(802\) 1.50000 + 2.59808i 0.0529668 + 0.0917413i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −24.2487 + 6.00000i −0.854124 + 0.211341i
\(807\) 0 0
\(808\) 4.50000 + 2.59808i 0.158309 + 0.0914000i
\(809\) 7.79423 13.5000i 0.274030 0.474635i −0.695860 0.718178i \(-0.744976\pi\)
0.969890 + 0.243543i \(0.0783097\pi\)
\(810\) 0 0
\(811\) 6.92820i 0.243282i −0.992574 0.121641i \(-0.961184\pi\)
0.992574 0.121641i \(-0.0388157\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 24.0000 + 13.8564i 0.839654 + 0.484774i
\(818\) −15.5885 −0.545038
\(819\) 0 0
\(820\) 27.0000 0.942881
\(821\) 46.7654 + 27.0000i 1.63212 + 0.942306i 0.983437 + 0.181250i \(0.0580143\pi\)
0.648686 + 0.761056i \(0.275319\pi\)
\(822\) 0 0
\(823\) 26.0000 + 45.0333i 0.906303 + 1.56976i 0.819159 + 0.573567i \(0.194441\pi\)
0.0871445 + 0.996196i \(0.472226\pi\)
\(824\) 4.00000i 0.139347i
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) −18.5000 + 32.0429i −0.642532 + 1.11290i 0.342334 + 0.939578i \(0.388783\pi\)
−0.984866 + 0.173319i \(0.944551\pi\)
\(830\) −31.1769 18.0000i −1.08217 0.624789i
\(831\) 0 0
\(832\) 2.50000 + 2.59808i 0.0866719 + 0.0900721i
\(833\) −36.3731 −1.26025
\(834\) 0 0
\(835\) 18.0000 31.1769i 0.622916 1.07892i
\(836\) 0 0
\(837\) 0 0
\(838\) 18.0000 10.3923i 0.621800 0.358996i
\(839\) 41.5692 24.0000i 1.43513 0.828572i 0.437623 0.899158i \(-0.355820\pi\)
0.997506 + 0.0705865i \(0.0224871\pi\)
\(840\) 0 0
\(841\) 1.00000 + 1.73205i 0.0344828 + 0.0597259i
\(842\) −7.79423 + 13.5000i −0.268607 + 0.465241i
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) −38.9711 1.50000i −1.34065 0.0516016i
\(846\) 0 0
\(847\) 0 0
\(848\) 2.59808 4.50000i 0.0892183 0.154531i
\(849\) 0 0
\(850\) 20.7846i 0.712906i
\(851\) 0 0
\(852\) 0 0
\(853\) 36.3731i 1.24539i 0.782465 + 0.622695i \(0.213962\pi\)
−0.782465 + 0.622695i \(0.786038\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.9808 0.887486 0.443743 0.896154i \(-0.353650\pi\)
0.443743 + 0.896154i \(0.353650\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) −10.3923 6.00000i −0.354375 0.204598i
\(861\) 0 0
\(862\) 6.00000 + 10.3923i 0.204361 + 0.353963i
\(863\) 24.0000i 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0 0
\(865\) −54.0000 + 31.1769i −1.83606 + 1.06005i
\(866\) 19.0000i 0.645646i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −12.0000 48.4974i −0.406604 1.64327i
\(872\) −6.92820 −0.234619
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −16.5000 + 9.52628i −0.557165 + 0.321680i −0.752007 0.659155i \(-0.770914\pi\)
0.194842 + 0.980835i \(0.437581\pi\)
\(878\) 3.46410 2.00000i 0.116908 0.0674967i
\(879\) 0 0
\(880\) 0 0
\(881\) 12.9904 22.5000i 0.437657 0.758044i −0.559851 0.828593i \(-0.689142\pi\)
0.997508 + 0.0705489i \(0.0224751\pi\)
\(882\) 0 0
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 18.1865 4.50000i 0.611679 0.151351i
\(885\) 0 0
\(886\) 0 0
\(887\) 10.3923 18.0000i 0.348939 0.604381i −0.637122 0.770763i \(-0.719875\pi\)
0.986061 + 0.166382i \(0.0532086\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 15.5885 9.00000i 0.522526 0.301681i
\(891\) 0 0
\(892\) 20.7846i 0.695920i
\(893\) −41.5692 72.0000i −1.39106 2.40939i
\(894\) 0 0
\(895\) 54.0000 + 31.1769i 1.80502 + 1.04213i
\(896\) 0 0
\(897\) 0 0
\(898\) 30.0000 1.00111
\(899\) −31.1769 18.0000i −1.03981 0.600334i
\(900\) 0 0
\(901\) −13.5000 23.3827i −0.449750 0.778990i
\(902\) 0 0
\(903\) 0 0
\(904\) −13.5000 + 7.79423i −0.449003 + 0.259232i
\(905\) 3.00000i 0.0997234i
\(906\) 0 0
\(907\) −20.0000 + 34.6410i −0.664089 + 1.15024i 0.315442 + 0.948945i \(0.397847\pi\)
−0.979531 + 0.201291i \(0.935486\pi\)
\(908\) 10.3923 + 6.00000i 0.344881 + 0.199117i
\(909\) 0 0
\(910\) 0 0
\(911\) 20.7846 0.688625 0.344312 0.938855i \(-0.388112\pi\)
0.344312 + 0.938855i \(0.388112\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 6.06218 + 10.5000i 0.200519 + 0.347309i
\(915\) 0 0
\(916\) 18.0000 10.3923i 0.594737 0.343371i
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 13.8564i −0.263896 0.457081i 0.703378 0.710816i \(-0.251674\pi\)
−0.967274 + 0.253735i \(0.918341\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −21.0000 −0.691598
\(923\) −41.5692 12.0000i −1.36827 0.394985i
\(924\) 0 0
\(925\) 6.00000 + 3.46410i 0.197279 + 0.113899i
\(926\) 3.46410 6.00000i 0.113837 0.197172i
\(927\) 0 0
\(928\) 5.19615i 0.170572i
\(929\) −23.3827 + 13.5000i −0.767161 + 0.442921i −0.831861 0.554984i \(-0.812724\pi\)
0.0646999 + 0.997905i \(0.479391\pi\)
\(930\) 0 0
\(931\) 48.4974i 1.58944i
\(932\) 0 0
\(933\) 0 0
\(934\) −36.0000 20.7846i −1.17796 0.680093i
\(935\) 0 0
\(936\) 0 0
\(937\) −53.0000 −1.73143 −0.865717 0.500533i \(-0.833137\pi\)
−0.865717 + 0.500533i \(0.833137\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 18.0000 + 31.1769i 0.587095 + 1.01688i
\(941\) 18.0000i 0.586783i 0.955992 + 0.293392i \(0.0947840\pi\)
−0.955992 + 0.293392i \(0.905216\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 12.0000i 0.390567i
\(945\) 0 0
\(946\) 0 0
\(947\) −20.7846 12.0000i −0.675409 0.389948i 0.122714 0.992442i \(-0.460840\pi\)
−0.798123 + 0.602494i \(0.794174\pi\)
\(948\) 0 0
\(949\) −22.5000 + 21.6506i −0.730381 + 0.702809i
\(950\) −27.7128 −0.899122
\(951\) 0 0
\(952\) 0 0
\(953\) −20.7846 36.0000i −0.673280 1.16615i −0.976969 0.213383i \(-0.931552\pi\)
0.303689 0.952771i \(-0.401782\pi\)
\(954\) 0 0
\(955\) 54.0000 31.1769i 1.74740 1.00886i
\(956\) 0 0
\(957\) 0 0
\(958\) −12.0000 20.7846i −0.387702 0.671520i
\(959\) 0 0
\(960\) 0 0
\(961\) −17.0000 −0.548387
\(962\) −1.73205 + 6.00000i −0.0558436 + 0.193448i
\(963\) 0 0
\(964\) 7.50000 + 4.33013i 0.241559 + 0.139464i
\(965\) 7.79423 13.5000i 0.250905 0.434580i
\(966\) 0 0
\(967\) 6.92820i 0.222796i 0.993776 + 0.111398i \(0.0355328\pi\)
−0.993776 + 0.111398i \(0.964467\pi\)
\(968\) 9.52628 5.50000i 0.306186 0.176777i
\(969\) 0 0
\(970\) 41.5692i 1.33471i
\(971\) 20.7846 + 36.0000i 0.667010 + 1.15529i 0.978736 + 0.205123i \(0.0657595\pi\)
−0.311726 + 0.950172i \(0.600907\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −6.92820 −0.221994
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) −2.59808 1.50000i −0.0831198 0.0479893i 0.457864 0.889022i \(-0.348615\pi\)
−0.540984 + 0.841033i \(0.681948\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 21.0000i 0.670820i
\(981\) 0 0
\(982\) 18.0000 10.3923i 0.574403 0.331632i
\(983\) 36.0000i 1.14822i −0.818778 0.574111i \(-0.805348\pi\)
0.818778 0.574111i \(-0.194652\pi\)
\(984\) 0 0
\(985\) 9.00000 15.5885i 0.286764 0.496690i
\(986\) 23.3827 + 13.5000i 0.744656 + 0.429928i
\(987\) 0 0
\(988\) −6.00000 24.2487i −0.190885 0.771454i
\(989\) 0 0
\(990\) 0 0
\(991\) −22.0000 + 38.1051i −0.698853 + 1.21045i 0.270011 + 0.962857i \(0.412973\pi\)
−0.968864 + 0.247592i \(0.920361\pi\)
\(992\) 3.46410 + 6.00000i 0.109985 + 0.190500i
\(993\) 0 0
\(994\) 0 0
\(995\) −20.7846 + 12.0000i −0.658916 + 0.380426i
\(996\) 0 0
\(997\) 6.50000 + 11.2583i 0.205857 + 0.356555i 0.950405 0.311014i \(-0.100668\pi\)
−0.744548 + 0.667568i \(0.767335\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.l.b.199.2 yes 4
3.2 odd 2 inner 234.2.l.b.199.1 yes 4
4.3 odd 2 1872.2.by.i.433.2 4
12.11 even 2 1872.2.by.i.433.1 4
13.4 even 6 3042.2.b.m.1351.3 4
13.6 odd 12 3042.2.a.t.1.2 2
13.7 odd 12 3042.2.a.u.1.2 2
13.9 even 3 3042.2.b.m.1351.1 4
13.10 even 6 inner 234.2.l.b.127.2 yes 4
39.17 odd 6 3042.2.b.m.1351.2 4
39.20 even 12 3042.2.a.t.1.1 2
39.23 odd 6 inner 234.2.l.b.127.1 4
39.32 even 12 3042.2.a.u.1.1 2
39.35 odd 6 3042.2.b.m.1351.4 4
52.23 odd 6 1872.2.by.i.1297.1 4
156.23 even 6 1872.2.by.i.1297.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.l.b.127.1 4 39.23 odd 6 inner
234.2.l.b.127.2 yes 4 13.10 even 6 inner
234.2.l.b.199.1 yes 4 3.2 odd 2 inner
234.2.l.b.199.2 yes 4 1.1 even 1 trivial
1872.2.by.i.433.1 4 12.11 even 2
1872.2.by.i.433.2 4 4.3 odd 2
1872.2.by.i.1297.1 4 52.23 odd 6
1872.2.by.i.1297.2 4 156.23 even 6
3042.2.a.t.1.1 2 39.20 even 12
3042.2.a.t.1.2 2 13.6 odd 12
3042.2.a.u.1.1 2 39.32 even 12
3042.2.a.u.1.2 2 13.7 odd 12
3042.2.b.m.1351.1 4 13.9 even 3
3042.2.b.m.1351.2 4 39.17 odd 6
3042.2.b.m.1351.3 4 13.4 even 6
3042.2.b.m.1351.4 4 39.35 odd 6