Properties

Label 3042.2.a.u.1.2
Level $3042$
Weight $2$
Character 3042.1
Self dual yes
Analytic conductor $24.290$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3042,2,Mod(1,3042)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3042, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3042.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3042 = 2 \cdot 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3042.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.2904922949\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 234)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 3042.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} +1.00000 q^{8} -3.00000 q^{10} +1.00000 q^{16} +5.19615 q^{17} -6.92820 q^{19} -3.00000 q^{20} +4.00000 q^{25} -5.19615 q^{29} +6.92820 q^{31} +1.00000 q^{32} +5.19615 q^{34} +1.73205 q^{37} -6.92820 q^{38} -3.00000 q^{40} -9.00000 q^{41} +4.00000 q^{43} -12.0000 q^{47} -7.00000 q^{49} +4.00000 q^{50} -5.19615 q^{53} -5.19615 q^{58} -12.0000 q^{59} -5.00000 q^{61} +6.92820 q^{62} +1.00000 q^{64} +13.8564 q^{67} +5.19615 q^{68} -12.0000 q^{71} -8.66025 q^{73} +1.73205 q^{74} -6.92820 q^{76} +4.00000 q^{79} -3.00000 q^{80} -9.00000 q^{82} -12.0000 q^{83} -15.5885 q^{85} +4.00000 q^{86} +6.00000 q^{89} -12.0000 q^{94} +20.7846 q^{95} +13.8564 q^{97} -7.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 6 q^{5} + 2 q^{8} - 6 q^{10} + 2 q^{16} - 6 q^{20} + 8 q^{25} + 2 q^{32} - 6 q^{40} - 18 q^{41} + 8 q^{43} - 24 q^{47} - 14 q^{49} + 8 q^{50} - 24 q^{59} - 10 q^{61} + 2 q^{64}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.19615 1.26025 0.630126 0.776493i \(-0.283003\pi\)
0.630126 + 0.776493i \(0.283003\pi\)
\(18\) 0 0
\(19\) −6.92820 −1.58944 −0.794719 0.606977i \(-0.792382\pi\)
−0.794719 + 0.606977i \(0.792382\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.19615 −0.964901 −0.482451 0.875923i \(-0.660253\pi\)
−0.482451 + 0.875923i \(0.660253\pi\)
\(30\) 0 0
\(31\) 6.92820 1.24434 0.622171 0.782881i \(-0.286251\pi\)
0.622171 + 0.782881i \(0.286251\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 5.19615 0.891133
\(35\) 0 0
\(36\) 0 0
\(37\) 1.73205 0.284747 0.142374 0.989813i \(-0.454527\pi\)
0.142374 + 0.989813i \(0.454527\pi\)
\(38\) −6.92820 −1.12390
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 4.00000 0.565685
\(51\) 0 0
\(52\) 0 0
\(53\) −5.19615 −0.713746 −0.356873 0.934153i \(-0.616157\pi\)
−0.356873 + 0.934153i \(0.616157\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −5.19615 −0.682288
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 6.92820 0.879883
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 13.8564 1.69283 0.846415 0.532524i \(-0.178756\pi\)
0.846415 + 0.532524i \(0.178756\pi\)
\(68\) 5.19615 0.630126
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −8.66025 −1.01361 −0.506803 0.862062i \(-0.669173\pi\)
−0.506803 + 0.862062i \(0.669173\pi\)
\(74\) 1.73205 0.201347
\(75\) 0 0
\(76\) −6.92820 −0.794719
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) −9.00000 −0.993884
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −15.5885 −1.69081
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 20.7846 2.13246
\(96\) 0 0
\(97\) 13.8564 1.40690 0.703452 0.710742i \(-0.251641\pi\)
0.703452 + 0.710742i \(0.251641\pi\)
\(98\) −7.00000 −0.707107
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 5.19615 0.517036 0.258518 0.966006i \(-0.416766\pi\)
0.258518 + 0.966006i \(0.416766\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −5.19615 −0.504695
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −6.92820 −0.663602 −0.331801 0.943349i \(-0.607656\pi\)
−0.331801 + 0.943349i \(0.607656\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −15.5885 −1.46644 −0.733219 0.679992i \(-0.761983\pi\)
−0.733219 + 0.679992i \(0.761983\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.19615 −0.482451
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −5.00000 −0.452679
\(123\) 0 0
\(124\) 6.92820 0.622171
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −20.7846 −1.81596 −0.907980 0.419014i \(-0.862376\pi\)
−0.907980 + 0.419014i \(0.862376\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 13.8564 1.19701
\(135\) 0 0
\(136\) 5.19615 0.445566
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) 0 0
\(144\) 0 0
\(145\) 15.5885 1.29455
\(146\) −8.66025 −0.716728
\(147\) 0 0
\(148\) 1.73205 0.142374
\(149\) 3.00000 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(150\) 0 0
\(151\) −13.8564 −1.12762 −0.563809 0.825905i \(-0.690665\pi\)
−0.563809 + 0.825905i \(0.690665\pi\)
\(152\) −6.92820 −0.561951
\(153\) 0 0
\(154\) 0 0
\(155\) −20.7846 −1.66946
\(156\) 0 0
\(157\) −7.00000 −0.558661 −0.279330 0.960195i \(-0.590112\pi\)
−0.279330 + 0.960195i \(0.590112\pi\)
\(158\) 4.00000 0.318223
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −15.5885 −1.19558
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 20.7846 1.58022 0.790112 0.612962i \(-0.210022\pi\)
0.790112 + 0.612962i \(0.210022\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 20.7846 1.55351 0.776757 0.629800i \(-0.216863\pi\)
0.776757 + 0.629800i \(0.216863\pi\)
\(180\) 0 0
\(181\) 1.00000 0.0743294 0.0371647 0.999309i \(-0.488167\pi\)
0.0371647 + 0.999309i \(0.488167\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.19615 −0.382029
\(186\) 0 0
\(187\) 0 0
\(188\) −12.0000 −0.875190
\(189\) 0 0
\(190\) 20.7846 1.50787
\(191\) 20.7846 1.50392 0.751961 0.659208i \(-0.229108\pi\)
0.751961 + 0.659208i \(0.229108\pi\)
\(192\) 0 0
\(193\) 5.19615 0.374027 0.187014 0.982357i \(-0.440119\pi\)
0.187014 + 0.982357i \(0.440119\pi\)
\(194\) 13.8564 0.994832
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 4.00000 0.282843
\(201\) 0 0
\(202\) 5.19615 0.365600
\(203\) 0 0
\(204\) 0 0
\(205\) 27.0000 1.88576
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −5.19615 −0.356873
\(213\) 0 0
\(214\) 0 0
\(215\) −12.0000 −0.818393
\(216\) 0 0
\(217\) 0 0
\(218\) −6.92820 −0.469237
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −20.7846 −1.39184 −0.695920 0.718119i \(-0.745003\pi\)
−0.695920 + 0.718119i \(0.745003\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −15.5885 −1.03693
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) −20.7846 −1.37349 −0.686743 0.726900i \(-0.740960\pi\)
−0.686743 + 0.726900i \(0.740960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.19615 −0.341144
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 36.0000 2.34838
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 8.66025 0.557856 0.278928 0.960312i \(-0.410021\pi\)
0.278928 + 0.960312i \(0.410021\pi\)
\(242\) −11.0000 −0.707107
\(243\) 0 0
\(244\) −5.00000 −0.320092
\(245\) 21.0000 1.34164
\(246\) 0 0
\(247\) 0 0
\(248\) 6.92820 0.439941
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) −20.7846 −1.31191 −0.655956 0.754799i \(-0.727735\pi\)
−0.655956 + 0.754799i \(0.727735\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 15.5885 0.972381 0.486191 0.873853i \(-0.338386\pi\)
0.486191 + 0.873853i \(0.338386\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −20.7846 −1.28408
\(263\) 20.7846 1.28163 0.640817 0.767694i \(-0.278596\pi\)
0.640817 + 0.767694i \(0.278596\pi\)
\(264\) 0 0
\(265\) 15.5885 0.957591
\(266\) 0 0
\(267\) 0 0
\(268\) 13.8564 0.846415
\(269\) −20.7846 −1.26726 −0.633630 0.773636i \(-0.718436\pi\)
−0.633630 + 0.773636i \(0.718436\pi\)
\(270\) 0 0
\(271\) 20.7846 1.26258 0.631288 0.775549i \(-0.282527\pi\)
0.631288 + 0.775549i \(0.282527\pi\)
\(272\) 5.19615 0.315063
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) 0 0
\(276\) 0 0
\(277\) 19.0000 1.14160 0.570800 0.821089i \(-0.306633\pi\)
0.570800 + 0.821089i \(0.306633\pi\)
\(278\) −16.0000 −0.959616
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00000 0.178965 0.0894825 0.995988i \(-0.471479\pi\)
0.0894825 + 0.995988i \(0.471479\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 10.0000 0.588235
\(290\) 15.5885 0.915386
\(291\) 0 0
\(292\) −8.66025 −0.506803
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 0 0
\(295\) 36.0000 2.09600
\(296\) 1.73205 0.100673
\(297\) 0 0
\(298\) 3.00000 0.173785
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −13.8564 −0.797347
\(303\) 0 0
\(304\) −6.92820 −0.397360
\(305\) 15.0000 0.858898
\(306\) 0 0
\(307\) 13.8564 0.790827 0.395413 0.918503i \(-0.370601\pi\)
0.395413 + 0.918503i \(0.370601\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −20.7846 −1.18049
\(311\) −20.7846 −1.17859 −0.589294 0.807919i \(-0.700594\pi\)
−0.589294 + 0.807919i \(0.700594\pi\)
\(312\) 0 0
\(313\) 22.0000 1.24351 0.621757 0.783210i \(-0.286419\pi\)
0.621757 + 0.783210i \(0.286419\pi\)
\(314\) −7.00000 −0.395033
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 9.00000 0.505490 0.252745 0.967533i \(-0.418667\pi\)
0.252745 + 0.967533i \(0.418667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) 0 0
\(323\) −36.0000 −2.00309
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) −13.8564 −0.761617 −0.380808 0.924654i \(-0.624354\pi\)
−0.380808 + 0.924654i \(0.624354\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) −41.5692 −2.27117
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −15.5885 −0.845403
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 20.7846 1.11739
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 6.92820 0.370858 0.185429 0.982658i \(-0.440632\pi\)
0.185429 + 0.982658i \(0.440632\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 15.0000 0.798369 0.399185 0.916871i \(-0.369293\pi\)
0.399185 + 0.916871i \(0.369293\pi\)
\(354\) 0 0
\(355\) 36.0000 1.91068
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 20.7846 1.09850
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 29.0000 1.52632
\(362\) 1.00000 0.0525588
\(363\) 0 0
\(364\) 0 0
\(365\) 25.9808 1.35990
\(366\) 0 0
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −5.19615 −0.270135
\(371\) 0 0
\(372\) 0 0
\(373\) −23.0000 −1.19089 −0.595447 0.803394i \(-0.703025\pi\)
−0.595447 + 0.803394i \(0.703025\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −12.0000 −0.618853
\(377\) 0 0
\(378\) 0 0
\(379\) −13.8564 −0.711756 −0.355878 0.934532i \(-0.615818\pi\)
−0.355878 + 0.934532i \(0.615818\pi\)
\(380\) 20.7846 1.06623
\(381\) 0 0
\(382\) 20.7846 1.06343
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.19615 0.264477
\(387\) 0 0
\(388\) 13.8564 0.703452
\(389\) 5.19615 0.263455 0.131728 0.991286i \(-0.457948\pi\)
0.131728 + 0.991286i \(0.457948\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −7.00000 −0.353553
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) 6.92820 0.347717 0.173858 0.984771i \(-0.444377\pi\)
0.173858 + 0.984771i \(0.444377\pi\)
\(398\) 8.00000 0.401004
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −3.00000 −0.149813 −0.0749064 0.997191i \(-0.523866\pi\)
−0.0749064 + 0.997191i \(0.523866\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 5.19615 0.258518
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 15.5885 0.770800 0.385400 0.922750i \(-0.374064\pi\)
0.385400 + 0.922750i \(0.374064\pi\)
\(410\) 27.0000 1.33343
\(411\) 0 0
\(412\) 4.00000 0.197066
\(413\) 0 0
\(414\) 0 0
\(415\) 36.0000 1.76717
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −20.7846 −1.01539 −0.507697 0.861536i \(-0.669503\pi\)
−0.507697 + 0.861536i \(0.669503\pi\)
\(420\) 0 0
\(421\) −15.5885 −0.759735 −0.379867 0.925041i \(-0.624030\pi\)
−0.379867 + 0.925041i \(0.624030\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) −5.19615 −0.252347
\(425\) 20.7846 1.00820
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.92820 −0.331801
\(437\) 0 0
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) −20.7846 −0.984180
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −15.5885 −0.733219
\(453\) 0 0
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 12.1244 0.567153 0.283577 0.958950i \(-0.408479\pi\)
0.283577 + 0.958950i \(0.408479\pi\)
\(458\) −20.7846 −0.971201
\(459\) 0 0
\(460\) 0 0
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) −6.92820 −0.321981 −0.160990 0.986956i \(-0.551469\pi\)
−0.160990 + 0.986956i \(0.551469\pi\)
\(464\) −5.19615 −0.241225
\(465\) 0 0
\(466\) 0 0
\(467\) 41.5692 1.92359 0.961797 0.273764i \(-0.0882686\pi\)
0.961797 + 0.273764i \(0.0882686\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 36.0000 1.66056
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) 0 0
\(474\) 0 0
\(475\) −27.7128 −1.27155
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 8.66025 0.394464
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) −41.5692 −1.88756
\(486\) 0 0
\(487\) 6.92820 0.313947 0.156973 0.987603i \(-0.449826\pi\)
0.156973 + 0.987603i \(0.449826\pi\)
\(488\) −5.00000 −0.226339
\(489\) 0 0
\(490\) 21.0000 0.948683
\(491\) 20.7846 0.937996 0.468998 0.883199i \(-0.344615\pi\)
0.468998 + 0.883199i \(0.344615\pi\)
\(492\) 0 0
\(493\) −27.0000 −1.21602
\(494\) 0 0
\(495\) 0 0
\(496\) 6.92820 0.311086
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) −20.7846 −0.927663
\(503\) 20.7846 0.926740 0.463370 0.886165i \(-0.346640\pi\)
0.463370 + 0.886165i \(0.346640\pi\)
\(504\) 0 0
\(505\) −15.5885 −0.693677
\(506\) 0 0
\(507\) 0 0
\(508\) 8.00000 0.354943
\(509\) −15.0000 −0.664863 −0.332432 0.943127i \(-0.607869\pi\)
−0.332432 + 0.943127i \(0.607869\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 15.5885 0.687577
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.5885 0.682943 0.341471 0.939892i \(-0.389075\pi\)
0.341471 + 0.939892i \(0.389075\pi\)
\(522\) 0 0
\(523\) 8.00000 0.349816 0.174908 0.984585i \(-0.444037\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) −20.7846 −0.907980
\(525\) 0 0
\(526\) 20.7846 0.906252
\(527\) 36.0000 1.56818
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 15.5885 0.677119
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 13.8564 0.598506
\(537\) 0 0
\(538\) −20.7846 −0.896088
\(539\) 0 0
\(540\) 0 0
\(541\) −32.9090 −1.41487 −0.707433 0.706780i \(-0.750147\pi\)
−0.707433 + 0.706780i \(0.750147\pi\)
\(542\) 20.7846 0.892775
\(543\) 0 0
\(544\) 5.19615 0.222783
\(545\) 20.7846 0.890315
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) −9.00000 −0.384461
\(549\) 0 0
\(550\) 0 0
\(551\) 36.0000 1.53365
\(552\) 0 0
\(553\) 0 0
\(554\) 19.0000 0.807233
\(555\) 0 0
\(556\) −16.0000 −0.678551
\(557\) −45.0000 −1.90671 −0.953356 0.301849i \(-0.902396\pi\)
−0.953356 + 0.301849i \(0.902396\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 0.126547
\(563\) −20.7846 −0.875967 −0.437983 0.898983i \(-0.644307\pi\)
−0.437983 + 0.898983i \(0.644307\pi\)
\(564\) 0 0
\(565\) 46.7654 1.96743
\(566\) −16.0000 −0.672530
\(567\) 0 0
\(568\) −12.0000 −0.503509
\(569\) −41.5692 −1.74267 −0.871336 0.490687i \(-0.836746\pi\)
−0.871336 + 0.490687i \(0.836746\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −43.3013 −1.80266 −0.901328 0.433138i \(-0.857406\pi\)
−0.901328 + 0.433138i \(0.857406\pi\)
\(578\) 10.0000 0.415945
\(579\) 0 0
\(580\) 15.5885 0.647275
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −8.66025 −0.358364
\(585\) 0 0
\(586\) −9.00000 −0.371787
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −48.0000 −1.97781
\(590\) 36.0000 1.48210
\(591\) 0 0
\(592\) 1.73205 0.0711868
\(593\) 9.00000 0.369586 0.184793 0.982777i \(-0.440839\pi\)
0.184793 + 0.982777i \(0.440839\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.00000 0.122885
\(597\) 0 0
\(598\) 0 0
\(599\) 20.7846 0.849236 0.424618 0.905373i \(-0.360408\pi\)
0.424618 + 0.905373i \(0.360408\pi\)
\(600\) 0 0
\(601\) −35.0000 −1.42768 −0.713840 0.700309i \(-0.753046\pi\)
−0.713840 + 0.700309i \(0.753046\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −13.8564 −0.563809
\(605\) 33.0000 1.34164
\(606\) 0 0
\(607\) −16.0000 −0.649420 −0.324710 0.945814i \(-0.605267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(608\) −6.92820 −0.280976
\(609\) 0 0
\(610\) 15.0000 0.607332
\(611\) 0 0
\(612\) 0 0
\(613\) 39.8372 1.60901 0.804504 0.593947i \(-0.202431\pi\)
0.804504 + 0.593947i \(0.202431\pi\)
\(614\) 13.8564 0.559199
\(615\) 0 0
\(616\) 0 0
\(617\) −21.0000 −0.845428 −0.422714 0.906263i \(-0.638923\pi\)
−0.422714 + 0.906263i \(0.638923\pi\)
\(618\) 0 0
\(619\) 20.7846 0.835404 0.417702 0.908584i \(-0.362836\pi\)
0.417702 + 0.908584i \(0.362836\pi\)
\(620\) −20.7846 −0.834730
\(621\) 0 0
\(622\) −20.7846 −0.833387
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 22.0000 0.879297
\(627\) 0 0
\(628\) −7.00000 −0.279330
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) 13.8564 0.551615 0.275807 0.961213i \(-0.411055\pi\)
0.275807 + 0.961213i \(0.411055\pi\)
\(632\) 4.00000 0.159111
\(633\) 0 0
\(634\) 9.00000 0.357436
\(635\) −24.0000 −0.952411
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) −5.19615 −0.205236 −0.102618 0.994721i \(-0.532722\pi\)
−0.102618 + 0.994721i \(0.532722\pi\)
\(642\) 0 0
\(643\) −34.6410 −1.36611 −0.683054 0.730368i \(-0.739349\pi\)
−0.683054 + 0.730368i \(0.739349\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −36.0000 −1.41640
\(647\) −20.7846 −0.817127 −0.408564 0.912730i \(-0.633970\pi\)
−0.408564 + 0.912730i \(0.633970\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.7846 0.813365 0.406682 0.913570i \(-0.366686\pi\)
0.406682 + 0.913570i \(0.366686\pi\)
\(654\) 0 0
\(655\) 62.3538 2.43637
\(656\) −9.00000 −0.351391
\(657\) 0 0
\(658\) 0 0
\(659\) −41.5692 −1.61931 −0.809653 0.586908i \(-0.800345\pi\)
−0.809653 + 0.586908i \(0.800345\pi\)
\(660\) 0 0
\(661\) −5.19615 −0.202107 −0.101053 0.994881i \(-0.532221\pi\)
−0.101053 + 0.994881i \(0.532221\pi\)
\(662\) −13.8564 −0.538545
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 12.0000 0.464294
\(669\) 0 0
\(670\) −41.5692 −1.60596
\(671\) 0 0
\(672\) 0 0
\(673\) −5.00000 −0.192736 −0.0963679 0.995346i \(-0.530723\pi\)
−0.0963679 + 0.995346i \(0.530723\pi\)
\(674\) −7.00000 −0.269630
\(675\) 0 0
\(676\) 0 0
\(677\) −20.7846 −0.798817 −0.399409 0.916773i \(-0.630785\pi\)
−0.399409 + 0.916773i \(0.630785\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −15.5885 −0.597790
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 27.0000 1.03162
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 0 0
\(690\) 0 0
\(691\) 13.8564 0.527123 0.263561 0.964643i \(-0.415103\pi\)
0.263561 + 0.964643i \(0.415103\pi\)
\(692\) 20.7846 0.790112
\(693\) 0 0
\(694\) 0 0
\(695\) 48.0000 1.82074
\(696\) 0 0
\(697\) −46.7654 −1.77136
\(698\) 6.92820 0.262236
\(699\) 0 0
\(700\) 0 0
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) 0 0
\(703\) −12.0000 −0.452589
\(704\) 0 0
\(705\) 0 0
\(706\) 15.0000 0.564532
\(707\) 0 0
\(708\) 0 0
\(709\) −25.9808 −0.975728 −0.487864 0.872920i \(-0.662224\pi\)
−0.487864 + 0.872920i \(0.662224\pi\)
\(710\) 36.0000 1.35106
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 20.7846 0.776757
\(717\) 0 0
\(718\) 12.0000 0.447836
\(719\) −20.7846 −0.775135 −0.387568 0.921841i \(-0.626685\pi\)
−0.387568 + 0.921841i \(0.626685\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 29.0000 1.07927
\(723\) 0 0
\(724\) 1.00000 0.0371647
\(725\) −20.7846 −0.771921
\(726\) 0 0
\(727\) 32.0000 1.18681 0.593407 0.804902i \(-0.297782\pi\)
0.593407 + 0.804902i \(0.297782\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 25.9808 0.961591
\(731\) 20.7846 0.768747
\(732\) 0 0
\(733\) 8.66025 0.319874 0.159937 0.987127i \(-0.448871\pi\)
0.159937 + 0.987127i \(0.448871\pi\)
\(734\) 32.0000 1.18114
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 41.5692 1.52915 0.764574 0.644536i \(-0.222949\pi\)
0.764574 + 0.644536i \(0.222949\pi\)
\(740\) −5.19615 −0.191014
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −9.00000 −0.329734
\(746\) −23.0000 −0.842090
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) −12.0000 −0.437595
\(753\) 0 0
\(754\) 0 0
\(755\) 41.5692 1.51286
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) −13.8564 −0.503287
\(759\) 0 0
\(760\) 20.7846 0.753937
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 20.7846 0.751961
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −13.8564 −0.499675 −0.249837 0.968288i \(-0.580377\pi\)
−0.249837 + 0.968288i \(0.580377\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.19615 0.187014
\(773\) −42.0000 −1.51064 −0.755318 0.655359i \(-0.772517\pi\)
−0.755318 + 0.655359i \(0.772517\pi\)
\(774\) 0 0
\(775\) 27.7128 0.995474
\(776\) 13.8564 0.497416
\(777\) 0 0
\(778\) 5.19615 0.186291
\(779\) 62.3538 2.23406
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −7.00000 −0.250000
\(785\) 21.0000 0.749522
\(786\) 0 0
\(787\) 48.4974 1.72875 0.864373 0.502851i \(-0.167715\pi\)
0.864373 + 0.502851i \(0.167715\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) −12.0000 −0.426941
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 6.92820 0.245873
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) −20.7846 −0.736229 −0.368114 0.929781i \(-0.619996\pi\)
−0.368114 + 0.929781i \(0.619996\pi\)
\(798\) 0 0
\(799\) −62.3538 −2.20592
\(800\) 4.00000 0.141421
\(801\) 0 0
\(802\) −3.00000 −0.105934
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 5.19615 0.182800
\(809\) −15.5885 −0.548061 −0.274030 0.961721i \(-0.588357\pi\)
−0.274030 + 0.961721i \(0.588357\pi\)
\(810\) 0 0
\(811\) 6.92820 0.243282 0.121641 0.992574i \(-0.461184\pi\)
0.121641 + 0.992574i \(0.461184\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −27.7128 −0.969549
\(818\) 15.5885 0.545038
\(819\) 0 0
\(820\) 27.0000 0.942881
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 0 0
\(823\) 52.0000 1.81261 0.906303 0.422628i \(-0.138892\pi\)
0.906303 + 0.422628i \(0.138892\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) −37.0000 −1.28506 −0.642532 0.766259i \(-0.722116\pi\)
−0.642532 + 0.766259i \(0.722116\pi\)
\(830\) 36.0000 1.24958
\(831\) 0 0
\(832\) 0 0
\(833\) −36.3731 −1.26025
\(834\) 0 0
\(835\) −36.0000 −1.24583
\(836\) 0 0
\(837\) 0 0
\(838\) −20.7846 −0.717992
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) −2.00000 −0.0689655
\(842\) −15.5885 −0.537214
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −5.19615 −0.178437
\(849\) 0 0
\(850\) 20.7846 0.712906
\(851\) 0 0
\(852\) 0 0
\(853\) 36.3731 1.24539 0.622695 0.782465i \(-0.286038\pi\)
0.622695 + 0.782465i \(0.286038\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.9808 −0.887486 −0.443743 0.896154i \(-0.646350\pi\)
−0.443743 + 0.896154i \(0.646350\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) −12.0000 −0.409197
\(861\) 0 0
\(862\) 12.0000 0.408722
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) −62.3538 −2.12009
\(866\) −19.0000 −0.645646
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −6.92820 −0.234619
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 19.0526 0.643359 0.321680 0.946849i \(-0.395753\pi\)
0.321680 + 0.946849i \(0.395753\pi\)
\(878\) 4.00000 0.134993
\(879\) 0 0
\(880\) 0 0
\(881\) 25.9808 0.875314 0.437657 0.899142i \(-0.355808\pi\)
0.437657 + 0.899142i \(0.355808\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20.7846 −0.697879 −0.348939 0.937145i \(-0.613458\pi\)
−0.348939 + 0.937145i \(0.613458\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −18.0000 −0.603361
\(891\) 0 0
\(892\) −20.7846 −0.695920
\(893\) 83.1384 2.78212
\(894\) 0 0
\(895\) −62.3538 −2.08426
\(896\) 0 0
\(897\) 0 0
\(898\) 30.0000 1.00111
\(899\) −36.0000 −1.20067
\(900\) 0 0
\(901\) −27.0000 −0.899500
\(902\) 0 0
\(903\) 0 0
\(904\) −15.5885 −0.518464
\(905\) −3.00000 −0.0997234
\(906\) 0 0
\(907\) −40.0000 −1.32818 −0.664089 0.747653i \(-0.731180\pi\)
−0.664089 + 0.747653i \(0.731180\pi\)
\(908\) −12.0000 −0.398234
\(909\) 0 0
\(910\) 0 0
\(911\) 20.7846 0.688625 0.344312 0.938855i \(-0.388112\pi\)
0.344312 + 0.938855i \(0.388112\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 12.1244 0.401038
\(915\) 0 0
\(916\) −20.7846 −0.686743
\(917\) 0 0
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 21.0000 0.691598
\(923\) 0 0
\(924\) 0 0
\(925\) 6.92820 0.227798
\(926\) −6.92820 −0.227675
\(927\) 0 0
\(928\) −5.19615 −0.170572
\(929\) 27.0000 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(930\) 0 0
\(931\) 48.4974 1.58944
\(932\) 0 0
\(933\) 0 0
\(934\) 41.5692 1.36019
\(935\) 0 0
\(936\) 0 0
\(937\) −53.0000 −1.73143 −0.865717 0.500533i \(-0.833137\pi\)
−0.865717 + 0.500533i \(0.833137\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 36.0000 1.17419
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −27.7128 −0.899122
\(951\) 0 0
\(952\) 0 0
\(953\) −41.5692 −1.34656 −0.673280 0.739388i \(-0.735115\pi\)
−0.673280 + 0.739388i \(0.735115\pi\)
\(954\) 0 0
\(955\) −62.3538 −2.01772
\(956\) 0 0
\(957\) 0 0
\(958\) 24.0000 0.775405
\(959\) 0 0
\(960\) 0 0
\(961\) 17.0000 0.548387
\(962\) 0 0
\(963\) 0 0
\(964\) 8.66025 0.278928
\(965\) −15.5885 −0.501810
\(966\) 0 0
\(967\) −6.92820 −0.222796 −0.111398 0.993776i \(-0.535533\pi\)
−0.111398 + 0.993776i \(0.535533\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) −41.5692 −1.33471
\(971\) −41.5692 −1.33402 −0.667010 0.745049i \(-0.732426\pi\)
−0.667010 + 0.745049i \(0.732426\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 6.92820 0.221994
\(975\) 0 0
\(976\) −5.00000 −0.160046
\(977\) −3.00000 −0.0959785 −0.0479893 0.998848i \(-0.515281\pi\)
−0.0479893 + 0.998848i \(0.515281\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 21.0000 0.670820
\(981\) 0 0
\(982\) 20.7846 0.663264
\(983\) −36.0000 −1.14822 −0.574111 0.818778i \(-0.694652\pi\)
−0.574111 + 0.818778i \(0.694652\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) −27.0000 −0.859855
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 44.0000 1.39771 0.698853 0.715265i \(-0.253694\pi\)
0.698853 + 0.715265i \(0.253694\pi\)
\(992\) 6.92820 0.219971
\(993\) 0 0
\(994\) 0 0
\(995\) −24.0000 −0.760851
\(996\) 0 0
\(997\) −13.0000 −0.411714 −0.205857 0.978582i \(-0.565998\pi\)
−0.205857 + 0.978582i \(0.565998\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.u.1.2 2
3.2 odd 2 3042.2.a.t.1.1 2
13.2 odd 12 234.2.l.b.199.2 yes 4
13.5 odd 4 3042.2.b.m.1351.1 4
13.7 odd 12 234.2.l.b.127.2 yes 4
13.8 odd 4 3042.2.b.m.1351.3 4
13.12 even 2 3042.2.a.t.1.2 2
39.2 even 12 234.2.l.b.199.1 yes 4
39.5 even 4 3042.2.b.m.1351.4 4
39.8 even 4 3042.2.b.m.1351.2 4
39.20 even 12 234.2.l.b.127.1 4
39.38 odd 2 inner 3042.2.a.u.1.1 2
52.7 even 12 1872.2.by.i.1297.1 4
52.15 even 12 1872.2.by.i.433.2 4
156.59 odd 12 1872.2.by.i.1297.2 4
156.119 odd 12 1872.2.by.i.433.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.l.b.127.1 4 39.20 even 12
234.2.l.b.127.2 yes 4 13.7 odd 12
234.2.l.b.199.1 yes 4 39.2 even 12
234.2.l.b.199.2 yes 4 13.2 odd 12
1872.2.by.i.433.1 4 156.119 odd 12
1872.2.by.i.433.2 4 52.15 even 12
1872.2.by.i.1297.1 4 52.7 even 12
1872.2.by.i.1297.2 4 156.59 odd 12
3042.2.a.t.1.1 2 3.2 odd 2
3042.2.a.t.1.2 2 13.12 even 2
3042.2.a.u.1.1 2 39.38 odd 2 inner
3042.2.a.u.1.2 2 1.1 even 1 trivial
3042.2.b.m.1351.1 4 13.5 odd 4
3042.2.b.m.1351.2 4 39.8 even 4
3042.2.b.m.1351.3 4 13.8 odd 4
3042.2.b.m.1351.4 4 39.5 even 4