Properties

Label 2352.2.q.x.1537.1
Level $2352$
Weight $2$
Character 2352.1537
Analytic conductor $18.781$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,2,Mod(961,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2352.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.7808145554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1537.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2352.1537
Dual form 2352.2.q.x.961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(1.00000 + 1.73205i) q^{5} +(-0.500000 - 0.866025i) q^{9} +(2.00000 - 3.46410i) q^{11} -2.00000 q^{13} +2.00000 q^{15} +(3.00000 - 5.19615i) q^{17} +(2.00000 + 3.46410i) q^{19} +(0.500000 - 0.866025i) q^{25} -1.00000 q^{27} -2.00000 q^{29} +(-2.00000 - 3.46410i) q^{33} +(-3.00000 - 5.19615i) q^{37} +(-1.00000 + 1.73205i) q^{39} +2.00000 q^{41} +4.00000 q^{43} +(1.00000 - 1.73205i) q^{45} +(-3.00000 - 5.19615i) q^{51} +(-3.00000 + 5.19615i) q^{53} +8.00000 q^{55} +4.00000 q^{57} +(6.00000 - 10.3923i) q^{59} +(1.00000 + 1.73205i) q^{61} +(-2.00000 - 3.46410i) q^{65} +(2.00000 - 3.46410i) q^{67} +(3.00000 - 5.19615i) q^{73} +(-0.500000 - 0.866025i) q^{75} +(-8.00000 - 13.8564i) q^{79} +(-0.500000 + 0.866025i) q^{81} +12.0000 q^{83} +12.0000 q^{85} +(-1.00000 + 1.73205i) q^{87} +(7.00000 + 12.1244i) q^{89} +(-4.00000 + 6.92820i) q^{95} +18.0000 q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 2 q^{5} - q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{15} + 6 q^{17} + 4 q^{19} + q^{25} - 2 q^{27} - 4 q^{29} - 4 q^{33} - 6 q^{37} - 2 q^{39} + 4 q^{41} + 8 q^{43} + 2 q^{45} - 6 q^{51} - 6 q^{53}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 0 0
\(5\) 1.00000 + 1.73205i 0.447214 + 0.774597i 0.998203 0.0599153i \(-0.0190830\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) 2.00000 3.46410i 0.603023 1.04447i −0.389338 0.921095i \(-0.627296\pi\)
0.992361 0.123371i \(-0.0393705\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 0 0
\(19\) 2.00000 + 3.46410i 0.458831 + 0.794719i 0.998899 0.0469020i \(-0.0149348\pi\)
−0.540068 + 0.841621i \(0.681602\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0.500000 0.866025i 0.100000 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(32\) 0 0
\(33\) −2.00000 3.46410i −0.348155 0.603023i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 5.19615i −0.493197 0.854242i 0.506772 0.862080i \(-0.330838\pi\)
−0.999969 + 0.00783774i \(0.997505\pi\)
\(38\) 0 0
\(39\) −1.00000 + 1.73205i −0.160128 + 0.277350i
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) 0 0
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 3.46410i −0.248069 0.429669i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.00000 5.19615i 0.351123 0.608164i −0.635323 0.772246i \(-0.719133\pi\)
0.986447 + 0.164083i \(0.0524664\pi\)
\(74\) 0 0
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 13.8564i −0.900070 1.55897i −0.827401 0.561611i \(-0.810182\pi\)
−0.0726692 0.997356i \(-0.523152\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 0 0
\(87\) −1.00000 + 1.73205i −0.107211 + 0.185695i
\(88\) 0 0
\(89\) 7.00000 + 12.1244i 0.741999 + 1.28518i 0.951584 + 0.307389i \(0.0994552\pi\)
−0.209585 + 0.977790i \(0.567211\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.00000 + 6.92820i −0.410391 + 0.710819i
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −7.00000 + 12.1244i −0.696526 + 1.20642i 0.273138 + 0.961975i \(0.411939\pi\)
−0.969664 + 0.244443i \(0.921395\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000 + 3.46410i 0.193347 + 0.334887i 0.946357 0.323122i \(-0.104732\pi\)
−0.753010 + 0.658009i \(0.771399\pi\)
\(108\) 0 0
\(109\) 9.00000 15.5885i 0.862044 1.49310i −0.00790932 0.999969i \(-0.502518\pi\)
0.869953 0.493135i \(-0.164149\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000 + 1.73205i 0.0924500 + 0.160128i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 0 0
\(123\) 1.00000 1.73205i 0.0901670 0.156174i
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 2.00000 3.46410i 0.176090 0.304997i
\(130\) 0 0
\(131\) 2.00000 + 3.46410i 0.174741 + 0.302660i 0.940072 0.340977i \(-0.110758\pi\)
−0.765331 + 0.643637i \(0.777425\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 1.73205i −0.0860663 0.149071i
\(136\) 0 0
\(137\) 3.00000 5.19615i 0.256307 0.443937i −0.708942 0.705266i \(-0.750827\pi\)
0.965250 + 0.261329i \(0.0841608\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.00000 + 6.92820i −0.334497 + 0.579365i
\(144\) 0 0
\(145\) −2.00000 3.46410i −0.166091 0.287678i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 4.00000 6.92820i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.00000 1.73205i 0.0798087 0.138233i −0.823359 0.567521i \(-0.807902\pi\)
0.903167 + 0.429289i \(0.141236\pi\)
\(158\) 0 0
\(159\) 3.00000 + 5.19615i 0.237915 + 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.00000 + 3.46410i 0.156652 + 0.271329i 0.933659 0.358162i \(-0.116597\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(164\) 0 0
\(165\) 4.00000 6.92820i 0.311400 0.539360i
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 2.00000 3.46410i 0.152944 0.264906i
\(172\) 0 0
\(173\) 5.00000 + 8.66025i 0.380143 + 0.658427i 0.991082 0.133250i \(-0.0425415\pi\)
−0.610939 + 0.791677i \(0.709208\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.00000 10.3923i −0.450988 0.781133i
\(178\) 0 0
\(179\) −2.00000 + 3.46410i −0.149487 + 0.258919i −0.931038 0.364922i \(-0.881096\pi\)
0.781551 + 0.623841i \(0.214429\pi\)
\(180\) 0 0
\(181\) −26.0000 −1.93256 −0.966282 0.257485i \(-0.917106\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 6.00000 10.3923i 0.441129 0.764057i
\(186\) 0 0
\(187\) −12.0000 20.7846i −0.877527 1.51992i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 0 0
\(195\) −4.00000 −0.286446
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 12.0000 20.7846i 0.850657 1.47338i −0.0299585 0.999551i \(-0.509538\pi\)
0.880616 0.473831i \(-0.157129\pi\)
\(200\) 0 0
\(201\) −2.00000 3.46410i −0.141069 0.244339i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000 + 3.46410i 0.139686 + 0.241943i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.00000 + 6.92820i 0.272798 + 0.472500i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.00000 5.19615i −0.202721 0.351123i
\(220\) 0 0
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) 0 0
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −6.00000 + 10.3923i −0.398234 + 0.689761i −0.993508 0.113761i \(-0.963710\pi\)
0.595274 + 0.803523i \(0.297043\pi\)
\(228\) 0 0
\(229\) 5.00000 + 8.66025i 0.330409 + 0.572286i 0.982592 0.185776i \(-0.0594799\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −1.00000 + 1.73205i −0.0644157 + 0.111571i −0.896435 0.443176i \(-0.853852\pi\)
0.832019 + 0.554747i \(0.187185\pi\)
\(242\) 0 0
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 6.92820i −0.254514 0.440831i
\(248\) 0 0
\(249\) 6.00000 10.3923i 0.380235 0.658586i
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 6.00000 10.3923i 0.375735 0.650791i
\(256\) 0 0
\(257\) −13.0000 22.5167i −0.810918 1.40455i −0.912222 0.409695i \(-0.865635\pi\)
0.101305 0.994855i \(-0.467698\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.00000 + 1.73205i 0.0618984 + 0.107211i
\(262\) 0 0
\(263\) 8.00000 13.8564i 0.493301 0.854423i −0.506669 0.862141i \(-0.669123\pi\)
0.999970 + 0.00771799i \(0.00245674\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 14.0000 0.856786
\(268\) 0 0
\(269\) −3.00000 + 5.19615i −0.182913 + 0.316815i −0.942871 0.333157i \(-0.891886\pi\)
0.759958 + 0.649972i \(0.225219\pi\)
\(270\) 0 0
\(271\) 8.00000 + 13.8564i 0.485965 + 0.841717i 0.999870 0.0161307i \(-0.00513477\pi\)
−0.513905 + 0.857847i \(0.671801\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 3.46410i −0.120605 0.208893i
\(276\) 0 0
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) −10.0000 + 17.3205i −0.594438 + 1.02960i 0.399188 + 0.916869i \(0.369292\pi\)
−0.993626 + 0.112728i \(0.964041\pi\)
\(284\) 0 0
\(285\) 4.00000 + 6.92820i 0.236940 + 0.410391i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 9.00000 15.5885i 0.527589 0.913812i
\(292\) 0 0
\(293\) 14.0000 0.817889 0.408944 0.912559i \(-0.365897\pi\)
0.408944 + 0.912559i \(0.365897\pi\)
\(294\) 0 0
\(295\) 24.0000 1.39733
\(296\) 0 0
\(297\) −2.00000 + 3.46410i −0.116052 + 0.201008i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 7.00000 + 12.1244i 0.402139 + 0.696526i
\(304\) 0 0
\(305\) −2.00000 + 3.46410i −0.114520 + 0.198354i
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) −13.0000 22.5167i −0.734803 1.27272i −0.954810 0.297218i \(-0.903941\pi\)
0.220006 0.975499i \(-0.429392\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.00000 + 15.5885i 0.505490 + 0.875535i 0.999980 + 0.00635137i \(0.00202172\pi\)
−0.494489 + 0.869184i \(0.664645\pi\)
\(318\) 0 0
\(319\) −4.00000 + 6.92820i −0.223957 + 0.387905i
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) −1.00000 + 1.73205i −0.0554700 + 0.0960769i
\(326\) 0 0
\(327\) −9.00000 15.5885i −0.497701 0.862044i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.00000 3.46410i −0.109930 0.190404i 0.805812 0.592172i \(-0.201729\pi\)
−0.915742 + 0.401768i \(0.868396\pi\)
\(332\) 0 0
\(333\) −3.00000 + 5.19615i −0.164399 + 0.284747i
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) −7.00000 + 12.1244i −0.380188 + 0.658505i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.0000 + 24.2487i −0.751559 + 1.30174i 0.195507 + 0.980702i \(0.437365\pi\)
−0.947067 + 0.321037i \(0.895969\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −5.00000 + 8.66025i −0.266123 + 0.460939i −0.967857 0.251500i \(-0.919076\pi\)
0.701734 + 0.712439i \(0.252409\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000 + 27.7128i 0.844448 + 1.46263i 0.886100 + 0.463494i \(0.153404\pi\)
−0.0416523 + 0.999132i \(0.513262\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) −1.00000 1.73205i −0.0520579 0.0901670i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) 0 0
\(375\) 6.00000 10.3923i 0.309839 0.536656i
\(376\) 0 0
\(377\) 4.00000 0.206010
\(378\) 0 0
\(379\) −12.0000 −0.616399 −0.308199 0.951322i \(-0.599726\pi\)
−0.308199 + 0.951322i \(0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.00000 3.46410i −0.101666 0.176090i
\(388\) 0 0
\(389\) −3.00000 + 5.19615i −0.152106 + 0.263455i −0.932002 0.362454i \(-0.881939\pi\)
0.779895 + 0.625910i \(0.215272\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 4.00000 0.201773
\(394\) 0 0
\(395\) 16.0000 27.7128i 0.805047 1.39438i
\(396\) 0 0
\(397\) 9.00000 + 15.5885i 0.451697 + 0.782362i 0.998492 0.0549046i \(-0.0174855\pi\)
−0.546795 + 0.837267i \(0.684152\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.0000 + 25.9808i 0.749064 + 1.29742i 0.948272 + 0.317460i \(0.102830\pi\)
−0.199207 + 0.979957i \(0.563837\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −2.00000 −0.0993808
\(406\) 0 0
\(407\) −24.0000 −1.18964
\(408\) 0 0
\(409\) 11.0000 19.0526i 0.543915 0.942088i −0.454759 0.890614i \(-0.650275\pi\)
0.998674 0.0514740i \(-0.0163919\pi\)
\(410\) 0 0
\(411\) −3.00000 5.19615i −0.147979 0.256307i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0000 + 20.7846i 0.589057 + 1.02028i
\(416\) 0 0
\(417\) −6.00000 + 10.3923i −0.293821 + 0.508913i
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 38.0000 1.85201 0.926003 0.377515i \(-0.123221\pi\)
0.926003 + 0.377515i \(0.123221\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 5.19615i −0.145521 0.252050i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.00000 + 6.92820i 0.193122 + 0.334497i
\(430\) 0 0
\(431\) −12.0000 + 20.7846i −0.578020 + 1.00116i 0.417687 + 0.908591i \(0.362841\pi\)
−0.995706 + 0.0925683i \(0.970492\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) −4.00000 −0.191785
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.0000 + 31.1769i 0.855206 + 1.48126i 0.876454 + 0.481486i \(0.159903\pi\)
−0.0212481 + 0.999774i \(0.506764\pi\)
\(444\) 0 0
\(445\) −14.0000 + 24.2487i −0.663664 + 1.14950i
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 4.00000 6.92820i 0.188353 0.326236i
\(452\) 0 0
\(453\) −4.00000 6.92820i −0.187936 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.00000 8.66025i −0.233890 0.405110i 0.725059 0.688686i \(-0.241812\pi\)
−0.958950 + 0.283577i \(0.908479\pi\)
\(458\) 0 0
\(459\) −3.00000 + 5.19615i −0.140028 + 0.242536i
\(460\) 0 0
\(461\) −10.0000 −0.465746 −0.232873 0.972507i \(-0.574813\pi\)
−0.232873 + 0.972507i \(0.574813\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.0000 + 31.1769i 0.832941 + 1.44270i 0.895696 + 0.444667i \(0.146678\pi\)
−0.0627555 + 0.998029i \(0.519989\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.00000 1.73205i −0.0460776 0.0798087i
\(472\) 0 0
\(473\) 8.00000 13.8564i 0.367840 0.637118i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) −8.00000 + 13.8564i −0.365529 + 0.633115i −0.988861 0.148842i \(-0.952445\pi\)
0.623332 + 0.781958i \(0.285779\pi\)
\(480\) 0 0
\(481\) 6.00000 + 10.3923i 0.273576 + 0.473848i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.0000 + 31.1769i 0.817338 + 1.41567i
\(486\) 0 0
\(487\) −4.00000 + 6.92820i −0.181257 + 0.313947i −0.942309 0.334744i \(-0.891350\pi\)
0.761052 + 0.648691i \(0.224683\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −6.00000 + 10.3923i −0.270226 + 0.468046i
\(494\) 0 0
\(495\) −4.00000 6.92820i −0.179787 0.311400i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.00000 + 3.46410i 0.0895323 + 0.155074i 0.907314 0.420455i \(-0.138129\pi\)
−0.817781 + 0.575529i \(0.804796\pi\)
\(500\) 0 0
\(501\) 4.00000 6.92820i 0.178707 0.309529i
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) −28.0000 −1.24598
\(506\) 0 0
\(507\) −4.50000 + 7.79423i −0.199852 + 0.346154i
\(508\) 0 0
\(509\) 5.00000 + 8.66025i 0.221621 + 0.383859i 0.955300 0.295637i \(-0.0955319\pi\)
−0.733679 + 0.679496i \(0.762199\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.00000 3.46410i −0.0883022 0.152944i
\(514\) 0 0
\(515\) −8.00000 + 13.8564i −0.352522 + 0.610586i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 10.0000 0.438951
\(520\) 0 0
\(521\) −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i \(-0.962345\pi\)
0.598714 + 0.800963i \(0.295679\pi\)
\(522\) 0 0
\(523\) −10.0000 17.3205i −0.437269 0.757373i 0.560208 0.828352i \(-0.310721\pi\)
−0.997478 + 0.0709788i \(0.977388\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) −4.00000 −0.173259
\(534\) 0 0
\(535\) −4.00000 + 6.92820i −0.172935 + 0.299532i
\(536\) 0 0
\(537\) 2.00000 + 3.46410i 0.0863064 + 0.149487i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 + 29.4449i 0.730887 + 1.26593i 0.956504 + 0.291718i \(0.0942267\pi\)
−0.225617 + 0.974216i \(0.572440\pi\)
\(542\) 0 0
\(543\) −13.0000 + 22.5167i −0.557883 + 0.966282i
\(544\) 0 0
\(545\) 36.0000 1.54207
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 0 0
\(549\) 1.00000 1.73205i 0.0426790 0.0739221i
\(550\) 0 0
\(551\) −4.00000 6.92820i −0.170406 0.295151i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −6.00000 10.3923i −0.254686 0.441129i
\(556\) 0 0
\(557\) 1.00000 1.73205i 0.0423714 0.0733893i −0.844062 0.536246i \(-0.819842\pi\)
0.886433 + 0.462856i \(0.153175\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) 2.00000 3.46410i 0.0842900 0.145994i −0.820798 0.571218i \(-0.806471\pi\)
0.905088 + 0.425223i \(0.139804\pi\)
\(564\) 0 0
\(565\) −14.0000 24.2487i −0.588984 1.02015i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.00000 8.66025i −0.209611 0.363057i 0.741981 0.670421i \(-0.233886\pi\)
−0.951592 + 0.307364i \(0.900553\pi\)
\(570\) 0 0
\(571\) −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i \(-0.860006\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) 0 0
\(573\) −8.00000 −0.334205
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −17.0000 + 29.4449i −0.707719 + 1.22581i 0.257982 + 0.966150i \(0.416942\pi\)
−0.965701 + 0.259656i \(0.916391\pi\)
\(578\) 0 0
\(579\) 1.00000 + 1.73205i 0.0415586 + 0.0719816i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) −2.00000 + 3.46410i −0.0826898 + 0.143223i
\(586\) 0 0
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 11.0000 19.0526i 0.452480 0.783718i
\(592\) 0 0
\(593\) 3.00000 + 5.19615i 0.123195 + 0.213380i 0.921026 0.389501i \(-0.127353\pi\)
−0.797831 + 0.602881i \(0.794019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.0000 20.7846i −0.491127 0.850657i
\(598\) 0 0
\(599\) 24.0000 41.5692i 0.980613 1.69847i 0.320607 0.947212i \(-0.396113\pi\)
0.660006 0.751260i \(-0.270554\pi\)
\(600\) 0 0
\(601\) −6.00000 −0.244745 −0.122373 0.992484i \(-0.539050\pi\)
−0.122373 + 0.992484i \(0.539050\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 5.00000 8.66025i 0.203279 0.352089i
\(606\) 0 0
\(607\) −8.00000 13.8564i −0.324710 0.562414i 0.656744 0.754114i \(-0.271933\pi\)
−0.981454 + 0.191700i \(0.938600\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 13.0000 22.5167i 0.525065 0.909439i −0.474509 0.880251i \(-0.657374\pi\)
0.999574 0.0291886i \(-0.00929235\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) −10.0000 + 17.3205i −0.401934 + 0.696170i −0.993959 0.109749i \(-0.964995\pi\)
0.592025 + 0.805919i \(0.298329\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9.50000 + 16.4545i 0.380000 + 0.658179i
\(626\) 0 0
\(627\) 8.00000 13.8564i 0.319489 0.553372i
\(628\) 0 0
\(629\) −36.0000 −1.43541
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 0 0
\(633\) −2.00000 + 3.46410i −0.0794929 + 0.137686i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.00000 + 15.5885i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(642\) 0 0
\(643\) −20.0000 −0.788723 −0.394362 0.918955i \(-0.629034\pi\)
−0.394362 + 0.918955i \(0.629034\pi\)
\(644\) 0 0
\(645\) 8.00000 0.315000
\(646\) 0 0
\(647\) −20.0000 + 34.6410i −0.786281 + 1.36188i 0.141950 + 0.989874i \(0.454663\pi\)
−0.928231 + 0.372005i \(0.878670\pi\)
\(648\) 0 0
\(649\) −24.0000 41.5692i −0.942082 1.63173i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00000 + 15.5885i 0.352197 + 0.610023i 0.986634 0.162951i \(-0.0521013\pi\)
−0.634437 + 0.772975i \(0.718768\pi\)
\(654\) 0 0
\(655\) −4.00000 + 6.92820i −0.156293 + 0.270707i
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −11.0000 + 19.0526i −0.427850 + 0.741059i −0.996682 0.0813955i \(-0.974062\pi\)
0.568831 + 0.822454i \(0.307396\pi\)
\(662\) 0 0
\(663\) 6.00000 + 10.3923i 0.233021 + 0.403604i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −8.00000 + 13.8564i −0.309298 + 0.535720i
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) −0.500000 + 0.866025i −0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) 9.00000 + 15.5885i 0.345898 + 0.599113i 0.985517 0.169580i \(-0.0542410\pi\)
−0.639618 + 0.768693i \(0.720908\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.00000 + 10.3923i 0.229920 + 0.398234i
\(682\) 0 0
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 10.0000 0.381524
\(688\) 0 0
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 0 0
\(691\) 10.0000 + 17.3205i 0.380418 + 0.658903i 0.991122 0.132956i \(-0.0424468\pi\)
−0.610704 + 0.791859i \(0.709113\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.0000 20.7846i −0.455186 0.788405i
\(696\) 0 0
\(697\) 6.00000 10.3923i 0.227266 0.393637i
\(698\) 0 0
\(699\) 6.00000 0.226941
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 12.0000 20.7846i 0.452589 0.783906i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3.00000 5.19615i −0.112667 0.195146i 0.804178 0.594389i \(-0.202606\pi\)
−0.916845 + 0.399244i \(0.869273\pi\)
\(710\) 0 0
\(711\) −8.00000 + 13.8564i −0.300023 + 0.519656i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −16.0000 −0.598366
\(716\) 0 0
\(717\) −12.0000 + 20.7846i −0.448148 + 0.776215i
\(718\) 0 0
\(719\) −24.0000 41.5692i −0.895049 1.55027i −0.833744 0.552151i \(-0.813807\pi\)
−0.0613050 0.998119i \(-0.519526\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.00000 + 1.73205i 0.0371904 + 0.0644157i
\(724\) 0 0
\(725\) −1.00000 + 1.73205i −0.0371391 + 0.0643268i
\(726\) 0 0
\(727\) 40.0000 1.48352 0.741759 0.670667i \(-0.233992\pi\)
0.741759 + 0.670667i \(0.233992\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 12.0000 20.7846i 0.443836 0.768747i
\(732\) 0 0
\(733\) 9.00000 + 15.5885i 0.332423 + 0.575773i 0.982986 0.183679i \(-0.0588007\pi\)
−0.650564 + 0.759452i \(0.725467\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 13.8564i −0.294684 0.510407i
\(738\) 0 0
\(739\) 18.0000 31.1769i 0.662141 1.14686i −0.317911 0.948120i \(-0.602981\pi\)
0.980052 0.198741i \(-0.0636852\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 6.00000 10.3923i 0.219823 0.380745i
\(746\) 0 0
\(747\) −6.00000 10.3923i −0.219529 0.380235i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −16.0000 27.7128i −0.583848 1.01125i −0.995018 0.0996961i \(-0.968213\pi\)
0.411170 0.911559i \(-0.365120\pi\)
\(752\) 0 0
\(753\) 10.0000 17.3205i 0.364420 0.631194i
\(754\) 0 0
\(755\) 16.0000 0.582300
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 15.5885i −0.326250 0.565081i 0.655515 0.755182i \(-0.272452\pi\)
−0.981764 + 0.190101i \(0.939118\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.00000 10.3923i −0.216930 0.375735i
\(766\) 0 0
\(767\) −12.0000 + 20.7846i −0.433295 + 0.750489i
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) −26.0000 −0.936367
\(772\) 0 0
\(773\) −7.00000 + 12.1244i −0.251773 + 0.436083i −0.964014 0.265852i \(-0.914347\pi\)
0.712241 + 0.701935i \(0.247680\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.00000 + 6.92820i 0.143315 + 0.248229i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 4.00000 0.142766
\(786\) 0 0
\(787\) −22.0000 + 38.1051i −0.784215 + 1.35830i 0.145251 + 0.989395i \(0.453601\pi\)
−0.929467 + 0.368906i \(0.879732\pi\)
\(788\) 0 0
\(789\) −8.00000 13.8564i −0.284808 0.493301i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.00000 3.46410i −0.0710221 0.123014i
\(794\) 0 0
\(795\) −6.00000 + 10.3923i −0.212798 + 0.368577i
\(796\) 0 0
\(797\) −26.0000 −0.920967 −0.460484 0.887668i \(-0.652324\pi\)
−0.460484 + 0.887668i \(0.652324\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 7.00000 12.1244i 0.247333 0.428393i
\(802\) 0 0
\(803\) −12.0000 20.7846i −0.423471 0.733473i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.00000 + 5.19615i 0.105605 + 0.182913i
\(808\) 0 0
\(809\) −21.0000 + 36.3731i −0.738321 + 1.27881i 0.214930 + 0.976629i \(0.431048\pi\)
−0.953251 + 0.302180i \(0.902286\pi\)
\(810\) 0 0
\(811\) −44.0000 −1.54505 −0.772524 0.634985i \(-0.781006\pi\)
−0.772524 + 0.634985i \(0.781006\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) −4.00000 + 6.92820i −0.140114 + 0.242684i
\(816\) 0 0
\(817\) 8.00000 + 13.8564i 0.279885 + 0.484774i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.0000 32.9090i −0.663105 1.14853i −0.979795 0.200002i \(-0.935905\pi\)
0.316691 0.948529i \(-0.397428\pi\)
\(822\) 0 0
\(823\) 12.0000 20.7846i 0.418294 0.724506i −0.577474 0.816409i \(-0.695962\pi\)
0.995768 + 0.0919029i \(0.0292950\pi\)
\(824\) 0 0
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −7.00000 + 12.1244i −0.243120 + 0.421096i −0.961601 0.274450i \(-0.911504\pi\)
0.718481 + 0.695546i \(0.244838\pi\)
\(830\) 0 0
\(831\) 11.0000 + 19.0526i 0.381586 + 0.660926i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 + 13.8564i 0.276851 + 0.479521i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.00000 0.276191 0.138095 0.990419i \(-0.455902\pi\)
0.138095 + 0.990419i \(0.455902\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −11.0000 + 19.0526i −0.378860 + 0.656205i
\(844\) 0 0
\(845\) −9.00000 15.5885i −0.309609 0.536259i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 10.0000 + 17.3205i 0.343199 + 0.594438i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 8.00000 0.273594
\(856\) 0 0
\(857\) 7.00000 12.1244i 0.239115 0.414160i −0.721345 0.692576i \(-0.756476\pi\)
0.960461 + 0.278416i \(0.0898092\pi\)
\(858\) 0 0
\(859\) 22.0000 + 38.1051i 0.750630 + 1.30013i 0.947518 + 0.319704i \(0.103583\pi\)
−0.196887 + 0.980426i \(0.563083\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 20.7846i −0.408485 0.707516i 0.586235 0.810141i \(-0.300609\pi\)
−0.994720 + 0.102624i \(0.967276\pi\)
\(864\) 0 0
\(865\) −10.0000 + 17.3205i −0.340010 + 0.588915i
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) −64.0000 −2.17105
\(870\) 0 0
\(871\) −4.00000 + 6.92820i −0.135535 + 0.234753i
\(872\) 0 0
\(873\) −9.00000 15.5885i −0.304604 0.527589i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −23.0000 39.8372i −0.776655 1.34521i −0.933860 0.357640i \(-0.883582\pi\)
0.157205 0.987566i \(-0.449752\pi\)
\(878\) 0 0
\(879\) 7.00000 12.1244i 0.236104 0.408944i
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 0 0
\(885\) 12.0000 20.7846i 0.403376 0.698667i
\(886\) 0 0
\(887\) 4.00000 + 6.92820i 0.134307 + 0.232626i 0.925332 0.379157i \(-0.123786\pi\)
−0.791026 + 0.611783i \(0.790453\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.00000 + 3.46410i 0.0670025 + 0.116052i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −8.00000 −0.267411
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 18.0000 + 31.1769i 0.599667 + 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −26.0000 45.0333i −0.864269 1.49696i
\(906\) 0 0
\(907\) −2.00000 + 3.46410i −0.0664089 + 0.115024i −0.897318 0.441384i \(-0.854488\pi\)
0.830909 + 0.556408i \(0.187821\pi\)
\(908\) 0 0
\(909\) 14.0000 0.464351
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 24.0000 41.5692i 0.794284 1.37574i
\(914\) 0 0
\(915\) 2.00000 + 3.46410i 0.0661180 + 0.114520i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 4.00000 + 6.92820i 0.131948 + 0.228540i 0.924427 0.381358i \(-0.124544\pi\)
−0.792480 + 0.609898i \(0.791210\pi\)
\(920\) 0 0
\(921\) −2.00000 + 3.46410i −0.0659022 + 0.114146i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 0 0
\(927\) 4.00000 6.92820i 0.131377 0.227552i
\(928\) 0 0
\(929\) −13.0000 22.5167i −0.426516 0.738748i 0.570045 0.821614i \(-0.306926\pi\)
−0.996561 + 0.0828661i \(0.973593\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 12.0000 + 20.7846i 0.392862 + 0.680458i
\(934\) 0 0
\(935\) 24.0000 41.5692i 0.784884 1.35946i
\(936\) 0 0
\(937\) 42.0000 1.37208 0.686040 0.727564i \(-0.259347\pi\)
0.686040 + 0.727564i \(0.259347\pi\)
\(938\) 0 0
\(939\) −26.0000 −0.848478
\(940\) 0 0
\(941\) −19.0000 + 32.9090i −0.619382 + 1.07280i 0.370216 + 0.928946i \(0.379284\pi\)
−0.989599 + 0.143856i \(0.954050\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.0000 + 38.1051i 0.714904 + 1.23825i 0.962997 + 0.269514i \(0.0868629\pi\)
−0.248093 + 0.968736i \(0.579804\pi\)
\(948\) 0 0
\(949\) −6.00000 + 10.3923i −0.194768 + 0.337348i
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 0 0
\(955\) 8.00000 13.8564i 0.258874 0.448383i
\(956\) 0 0
\(957\) 4.00000 + 6.92820i 0.129302 + 0.223957i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.5000 + 26.8468i 0.500000 + 0.866025i
\(962\) 0 0
\(963\) 2.00000 3.46410i 0.0644491 0.111629i
\(964\) 0 0
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 0 0
\(969\) 12.0000 20.7846i 0.385496 0.667698i
\(970\) 0 0
\(971\) 6.00000 + 10.3923i 0.192549 + 0.333505i 0.946094 0.323891i \(-0.104991\pi\)
−0.753545 + 0.657396i \(0.771658\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.00000 + 1.73205i 0.0320256 + 0.0554700i
\(976\) 0 0
\(977\) 15.0000 25.9808i 0.479893 0.831198i −0.519841 0.854263i \(-0.674009\pi\)
0.999734 + 0.0230645i \(0.00734232\pi\)
\(978\) 0 0
\(979\) 56.0000 1.78977
\(980\) 0 0
\(981\) −18.0000 −0.574696
\(982\) 0 0
\(983\) 12.0000 20.7846i 0.382741 0.662926i −0.608712 0.793391i \(-0.708314\pi\)
0.991453 + 0.130465i \(0.0416470\pi\)
\(984\) 0 0
\(985\) 22.0000 + 38.1051i 0.700978 + 1.21413i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −8.00000 + 13.8564i −0.254128 + 0.440163i −0.964658 0.263504i \(-0.915122\pi\)
0.710530 + 0.703667i \(0.248455\pi\)
\(992\) 0 0
\(993\) −4.00000 −0.126936
\(994\) 0 0
\(995\) 48.0000 1.52170
\(996\) 0 0
\(997\) 13.0000 22.5167i 0.411714 0.713110i −0.583363 0.812211i \(-0.698264\pi\)
0.995077 + 0.0991016i \(0.0315969\pi\)
\(998\) 0 0
\(999\) 3.00000 + 5.19615i 0.0949158 + 0.164399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.2.q.x.1537.1 2
4.3 odd 2 147.2.e.b.67.1 2
7.2 even 3 inner 2352.2.q.x.961.1 2
7.3 odd 6 2352.2.a.v.1.1 1
7.4 even 3 336.2.a.a.1.1 1
7.5 odd 6 2352.2.q.e.961.1 2
7.6 odd 2 2352.2.q.e.1537.1 2
12.11 even 2 441.2.e.a.361.1 2
21.11 odd 6 1008.2.a.l.1.1 1
21.17 even 6 7056.2.a.p.1.1 1
28.3 even 6 147.2.a.a.1.1 1
28.11 odd 6 21.2.a.a.1.1 1
28.19 even 6 147.2.e.c.79.1 2
28.23 odd 6 147.2.e.b.79.1 2
28.27 even 2 147.2.e.c.67.1 2
35.4 even 6 8400.2.a.bn.1.1 1
56.3 even 6 9408.2.a.bv.1.1 1
56.11 odd 6 1344.2.a.g.1.1 1
56.45 odd 6 9408.2.a.m.1.1 1
56.53 even 6 1344.2.a.s.1.1 1
84.11 even 6 63.2.a.a.1.1 1
84.23 even 6 441.2.e.a.226.1 2
84.47 odd 6 441.2.e.b.226.1 2
84.59 odd 6 441.2.a.f.1.1 1
84.83 odd 2 441.2.e.b.361.1 2
112.11 odd 12 5376.2.c.r.2689.1 2
112.53 even 12 5376.2.c.l.2689.2 2
112.67 odd 12 5376.2.c.r.2689.2 2
112.109 even 12 5376.2.c.l.2689.1 2
140.39 odd 6 525.2.a.d.1.1 1
140.59 even 6 3675.2.a.n.1.1 1
140.67 even 12 525.2.d.a.274.1 2
140.123 even 12 525.2.d.a.274.2 2
168.11 even 6 4032.2.a.h.1.1 1
168.53 odd 6 4032.2.a.k.1.1 1
252.11 even 6 567.2.f.b.190.1 2
252.67 odd 6 567.2.f.g.379.1 2
252.95 even 6 567.2.f.b.379.1 2
252.151 odd 6 567.2.f.g.190.1 2
308.263 even 6 2541.2.a.j.1.1 1
364.207 odd 6 3549.2.a.c.1.1 1
420.179 even 6 1575.2.a.c.1.1 1
420.263 odd 12 1575.2.d.a.1324.1 2
420.347 odd 12 1575.2.d.a.1324.2 2
476.67 odd 6 6069.2.a.b.1.1 1
532.151 even 6 7581.2.a.d.1.1 1
924.263 odd 6 7623.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.2.a.a.1.1 1 28.11 odd 6
63.2.a.a.1.1 1 84.11 even 6
147.2.a.a.1.1 1 28.3 even 6
147.2.e.b.67.1 2 4.3 odd 2
147.2.e.b.79.1 2 28.23 odd 6
147.2.e.c.67.1 2 28.27 even 2
147.2.e.c.79.1 2 28.19 even 6
336.2.a.a.1.1 1 7.4 even 3
441.2.a.f.1.1 1 84.59 odd 6
441.2.e.a.226.1 2 84.23 even 6
441.2.e.a.361.1 2 12.11 even 2
441.2.e.b.226.1 2 84.47 odd 6
441.2.e.b.361.1 2 84.83 odd 2
525.2.a.d.1.1 1 140.39 odd 6
525.2.d.a.274.1 2 140.67 even 12
525.2.d.a.274.2 2 140.123 even 12
567.2.f.b.190.1 2 252.11 even 6
567.2.f.b.379.1 2 252.95 even 6
567.2.f.g.190.1 2 252.151 odd 6
567.2.f.g.379.1 2 252.67 odd 6
1008.2.a.l.1.1 1 21.11 odd 6
1344.2.a.g.1.1 1 56.11 odd 6
1344.2.a.s.1.1 1 56.53 even 6
1575.2.a.c.1.1 1 420.179 even 6
1575.2.d.a.1324.1 2 420.263 odd 12
1575.2.d.a.1324.2 2 420.347 odd 12
2352.2.a.v.1.1 1 7.3 odd 6
2352.2.q.e.961.1 2 7.5 odd 6
2352.2.q.e.1537.1 2 7.6 odd 2
2352.2.q.x.961.1 2 7.2 even 3 inner
2352.2.q.x.1537.1 2 1.1 even 1 trivial
2541.2.a.j.1.1 1 308.263 even 6
3549.2.a.c.1.1 1 364.207 odd 6
3675.2.a.n.1.1 1 140.59 even 6
4032.2.a.h.1.1 1 168.11 even 6
4032.2.a.k.1.1 1 168.53 odd 6
5376.2.c.l.2689.1 2 112.109 even 12
5376.2.c.l.2689.2 2 112.53 even 12
5376.2.c.r.2689.1 2 112.11 odd 12
5376.2.c.r.2689.2 2 112.67 odd 12
6069.2.a.b.1.1 1 476.67 odd 6
7056.2.a.p.1.1 1 21.17 even 6
7581.2.a.d.1.1 1 532.151 even 6
7623.2.a.g.1.1 1 924.263 odd 6
8400.2.a.bn.1.1 1 35.4 even 6
9408.2.a.m.1.1 1 56.45 odd 6
9408.2.a.bv.1.1 1 56.3 even 6