Properties

Label 2352.3.f.g.97.8
Level $2352$
Weight $3$
Character 2352.97
Analytic conductor $64.087$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,3,Mod(97,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.97");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2352.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.0873581775\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.35911766016.9
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 7x^{6} - 2x^{5} + 78x^{4} - 18x^{3} - 153x^{2} - 230x + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.8
Root \(1.83172 + 0.480194i\) of defining polynomial
Character \(\chi\) \(=\) 2352.97
Dual form 2352.3.f.g.97.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +6.12627i q^{5} -3.00000 q^{9} +3.78258 q^{11} -9.29319i q^{13} -10.6110 q^{15} -6.75202i q^{17} -6.59962i q^{19} +39.1840 q^{23} -12.5311 q^{25} -5.19615i q^{27} -6.57302 q^{29} -21.9325i q^{31} +6.55161i q^{33} +67.0668 q^{37} +16.0963 q^{39} -53.6570i q^{41} +42.0426 q^{43} -18.3788i q^{45} +57.5392i q^{47} +11.6948 q^{51} -11.4218 q^{53} +23.1731i q^{55} +11.4309 q^{57} +62.4038i q^{59} -119.635i q^{61} +56.9326 q^{65} +55.7480 q^{67} +67.8687i q^{69} +131.158 q^{71} -77.0426i q^{73} -21.7046i q^{75} -149.493 q^{79} +9.00000 q^{81} +39.7649i q^{83} +41.3647 q^{85} -11.3848i q^{87} +56.0011i q^{89} +37.9882 q^{93} +40.4311 q^{95} +142.413i q^{97} -11.3477 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 24 q^{9} - 44 q^{11} + 12 q^{15} + 96 q^{23} - 84 q^{25} + 68 q^{29} + 236 q^{37} - 36 q^{39} + 92 q^{43} + 72 q^{51} - 20 q^{53} + 84 q^{57} + 296 q^{65} + 44 q^{67} + 392 q^{71} + 328 q^{79} + 72 q^{81}+ \cdots + 132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2352\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1471\) \(1765\) \(2257\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 6.12627i 1.22525i 0.790372 + 0.612627i \(0.209887\pi\)
−0.790372 + 0.612627i \(0.790113\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 3.78258 0.343871 0.171935 0.985108i \(-0.444998\pi\)
0.171935 + 0.985108i \(0.444998\pi\)
\(12\) 0 0
\(13\) − 9.29319i − 0.714861i −0.933940 0.357431i \(-0.883653\pi\)
0.933940 0.357431i \(-0.116347\pi\)
\(14\) 0 0
\(15\) −10.6110 −0.707400
\(16\) 0 0
\(17\) − 6.75202i − 0.397178i −0.980083 0.198589i \(-0.936364\pi\)
0.980083 0.198589i \(-0.0636358\pi\)
\(18\) 0 0
\(19\) − 6.59962i − 0.347349i −0.984803 0.173674i \(-0.944436\pi\)
0.984803 0.173674i \(-0.0555640\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 39.1840 1.70365 0.851827 0.523824i \(-0.175495\pi\)
0.851827 + 0.523824i \(0.175495\pi\)
\(24\) 0 0
\(25\) −12.5311 −0.501245
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) −6.57302 −0.226656 −0.113328 0.993558i \(-0.536151\pi\)
−0.113328 + 0.993558i \(0.536151\pi\)
\(30\) 0 0
\(31\) − 21.9325i − 0.707499i −0.935340 0.353750i \(-0.884906\pi\)
0.935340 0.353750i \(-0.115094\pi\)
\(32\) 0 0
\(33\) 6.55161i 0.198534i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 67.0668 1.81262 0.906309 0.422616i \(-0.138888\pi\)
0.906309 + 0.422616i \(0.138888\pi\)
\(38\) 0 0
\(39\) 16.0963 0.412725
\(40\) 0 0
\(41\) − 53.6570i − 1.30871i −0.756189 0.654353i \(-0.772941\pi\)
0.756189 0.654353i \(-0.227059\pi\)
\(42\) 0 0
\(43\) 42.0426 0.977734 0.488867 0.872358i \(-0.337410\pi\)
0.488867 + 0.872358i \(0.337410\pi\)
\(44\) 0 0
\(45\) − 18.3788i − 0.408418i
\(46\) 0 0
\(47\) 57.5392i 1.22424i 0.790765 + 0.612119i \(0.209683\pi\)
−0.790765 + 0.612119i \(0.790317\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 11.6948 0.229311
\(52\) 0 0
\(53\) −11.4218 −0.215506 −0.107753 0.994178i \(-0.534366\pi\)
−0.107753 + 0.994178i \(0.534366\pi\)
\(54\) 0 0
\(55\) 23.1731i 0.421329i
\(56\) 0 0
\(57\) 11.4309 0.200542
\(58\) 0 0
\(59\) 62.4038i 1.05769i 0.848718 + 0.528846i \(0.177375\pi\)
−0.848718 + 0.528846i \(0.822625\pi\)
\(60\) 0 0
\(61\) − 119.635i − 1.96123i −0.195936 0.980617i \(-0.562775\pi\)
0.195936 0.980617i \(-0.437225\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 56.9326 0.875886
\(66\) 0 0
\(67\) 55.7480 0.832059 0.416030 0.909351i \(-0.363421\pi\)
0.416030 + 0.909351i \(0.363421\pi\)
\(68\) 0 0
\(69\) 67.8687i 0.983605i
\(70\) 0 0
\(71\) 131.158 1.84730 0.923648 0.383243i \(-0.125193\pi\)
0.923648 + 0.383243i \(0.125193\pi\)
\(72\) 0 0
\(73\) − 77.0426i − 1.05538i −0.849438 0.527689i \(-0.823059\pi\)
0.849438 0.527689i \(-0.176941\pi\)
\(74\) 0 0
\(75\) − 21.7046i − 0.289394i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −149.493 −1.89232 −0.946160 0.323699i \(-0.895074\pi\)
−0.946160 + 0.323699i \(0.895074\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 39.7649i 0.479096i 0.970885 + 0.239548i \(0.0769992\pi\)
−0.970885 + 0.239548i \(0.923001\pi\)
\(84\) 0 0
\(85\) 41.3647 0.486643
\(86\) 0 0
\(87\) − 11.3848i − 0.130860i
\(88\) 0 0
\(89\) 56.0011i 0.629226i 0.949220 + 0.314613i \(0.101875\pi\)
−0.949220 + 0.314613i \(0.898125\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 37.9882 0.408475
\(94\) 0 0
\(95\) 40.4311 0.425590
\(96\) 0 0
\(97\) 142.413i 1.46818i 0.679054 + 0.734089i \(0.262390\pi\)
−0.679054 + 0.734089i \(0.737610\pi\)
\(98\) 0 0
\(99\) −11.3477 −0.114624
\(100\) 0 0
\(101\) − 146.671i − 1.45218i −0.687598 0.726092i \(-0.741335\pi\)
0.687598 0.726092i \(-0.258665\pi\)
\(102\) 0 0
\(103\) 7.69922i 0.0747497i 0.999301 + 0.0373748i \(0.0118996\pi\)
−0.999301 + 0.0373748i \(0.988100\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 139.594 1.30462 0.652308 0.757954i \(-0.273801\pi\)
0.652308 + 0.757954i \(0.273801\pi\)
\(108\) 0 0
\(109\) −151.612 −1.39093 −0.695467 0.718558i \(-0.744802\pi\)
−0.695467 + 0.718558i \(0.744802\pi\)
\(110\) 0 0
\(111\) 116.163i 1.04652i
\(112\) 0 0
\(113\) −40.4809 −0.358238 −0.179119 0.983827i \(-0.557325\pi\)
−0.179119 + 0.983827i \(0.557325\pi\)
\(114\) 0 0
\(115\) 240.052i 2.08741i
\(116\) 0 0
\(117\) 27.8796i 0.238287i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −106.692 −0.881753
\(122\) 0 0
\(123\) 92.9366 0.755582
\(124\) 0 0
\(125\) 76.3876i 0.611101i
\(126\) 0 0
\(127\) 88.3367 0.695565 0.347782 0.937575i \(-0.386935\pi\)
0.347782 + 0.937575i \(0.386935\pi\)
\(128\) 0 0
\(129\) 72.8199i 0.564495i
\(130\) 0 0
\(131\) − 67.6480i − 0.516397i −0.966092 0.258198i \(-0.916871\pi\)
0.966092 0.258198i \(-0.0831288\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 31.8330 0.235800
\(136\) 0 0
\(137\) −165.238 −1.20612 −0.603058 0.797697i \(-0.706051\pi\)
−0.603058 + 0.797697i \(0.706051\pi\)
\(138\) 0 0
\(139\) 73.0610i 0.525619i 0.964848 + 0.262809i \(0.0846490\pi\)
−0.964848 + 0.262809i \(0.915351\pi\)
\(140\) 0 0
\(141\) −99.6609 −0.706815
\(142\) 0 0
\(143\) − 35.1522i − 0.245820i
\(144\) 0 0
\(145\) − 40.2681i − 0.277711i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 150.588 1.01066 0.505329 0.862927i \(-0.331371\pi\)
0.505329 + 0.862927i \(0.331371\pi\)
\(150\) 0 0
\(151\) −138.984 −0.920425 −0.460213 0.887809i \(-0.652227\pi\)
−0.460213 + 0.887809i \(0.652227\pi\)
\(152\) 0 0
\(153\) 20.2561i 0.132393i
\(154\) 0 0
\(155\) 134.364 0.866866
\(156\) 0 0
\(157\) − 157.251i − 1.00160i −0.865563 0.500800i \(-0.833039\pi\)
0.865563 0.500800i \(-0.166961\pi\)
\(158\) 0 0
\(159\) − 19.7832i − 0.124423i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 21.3227 0.130814 0.0654069 0.997859i \(-0.479165\pi\)
0.0654069 + 0.997859i \(0.479165\pi\)
\(164\) 0 0
\(165\) −40.1369 −0.243254
\(166\) 0 0
\(167\) 177.968i 1.06567i 0.846218 + 0.532837i \(0.178874\pi\)
−0.846218 + 0.532837i \(0.821126\pi\)
\(168\) 0 0
\(169\) 82.6365 0.488974
\(170\) 0 0
\(171\) 19.7989i 0.115783i
\(172\) 0 0
\(173\) 110.102i 0.636428i 0.948019 + 0.318214i \(0.103083\pi\)
−0.948019 + 0.318214i \(0.896917\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −108.087 −0.610659
\(178\) 0 0
\(179\) 28.2449 0.157793 0.0788964 0.996883i \(-0.474860\pi\)
0.0788964 + 0.996883i \(0.474860\pi\)
\(180\) 0 0
\(181\) 206.410i 1.14039i 0.821510 + 0.570195i \(0.193132\pi\)
−0.821510 + 0.570195i \(0.806868\pi\)
\(182\) 0 0
\(183\) 207.214 1.13232
\(184\) 0 0
\(185\) 410.869i 2.22092i
\(186\) 0 0
\(187\) − 25.5400i − 0.136578i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 63.7368 0.333701 0.166850 0.985982i \(-0.446640\pi\)
0.166850 + 0.985982i \(0.446640\pi\)
\(192\) 0 0
\(193\) −67.3523 −0.348976 −0.174488 0.984659i \(-0.555827\pi\)
−0.174488 + 0.984659i \(0.555827\pi\)
\(194\) 0 0
\(195\) 98.6101i 0.505693i
\(196\) 0 0
\(197\) 96.0707 0.487668 0.243834 0.969817i \(-0.421595\pi\)
0.243834 + 0.969817i \(0.421595\pi\)
\(198\) 0 0
\(199\) 205.990i 1.03512i 0.855645 + 0.517562i \(0.173160\pi\)
−0.855645 + 0.517562i \(0.826840\pi\)
\(200\) 0 0
\(201\) 96.5583i 0.480390i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 328.717 1.60350
\(206\) 0 0
\(207\) −117.552 −0.567884
\(208\) 0 0
\(209\) − 24.9636i − 0.119443i
\(210\) 0 0
\(211\) 121.942 0.577925 0.288963 0.957340i \(-0.406690\pi\)
0.288963 + 0.957340i \(0.406690\pi\)
\(212\) 0 0
\(213\) 227.172i 1.06654i
\(214\) 0 0
\(215\) 257.564i 1.19797i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 133.442 0.609323
\(220\) 0 0
\(221\) −62.7478 −0.283927
\(222\) 0 0
\(223\) 18.5026i 0.0829712i 0.999139 + 0.0414856i \(0.0132091\pi\)
−0.999139 + 0.0414856i \(0.986791\pi\)
\(224\) 0 0
\(225\) 37.5934 0.167082
\(226\) 0 0
\(227\) − 147.049i − 0.647791i −0.946093 0.323896i \(-0.895007\pi\)
0.946093 0.323896i \(-0.104993\pi\)
\(228\) 0 0
\(229\) − 359.915i − 1.57168i −0.618430 0.785840i \(-0.712231\pi\)
0.618430 0.785840i \(-0.287769\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 44.0681 0.189133 0.0945667 0.995519i \(-0.469853\pi\)
0.0945667 + 0.995519i \(0.469853\pi\)
\(234\) 0 0
\(235\) −352.501 −1.50000
\(236\) 0 0
\(237\) − 258.930i − 1.09253i
\(238\) 0 0
\(239\) −165.077 −0.690698 −0.345349 0.938474i \(-0.612239\pi\)
−0.345349 + 0.938474i \(0.612239\pi\)
\(240\) 0 0
\(241\) 133.746i 0.554964i 0.960731 + 0.277482i \(0.0894999\pi\)
−0.960731 + 0.277482i \(0.910500\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −61.3316 −0.248306
\(248\) 0 0
\(249\) −68.8749 −0.276606
\(250\) 0 0
\(251\) − 403.639i − 1.60812i −0.594545 0.804062i \(-0.702668\pi\)
0.594545 0.804062i \(-0.297332\pi\)
\(252\) 0 0
\(253\) 148.217 0.585836
\(254\) 0 0
\(255\) 71.6457i 0.280963i
\(256\) 0 0
\(257\) 279.920i 1.08918i 0.838701 + 0.544592i \(0.183315\pi\)
−0.838701 + 0.544592i \(0.816685\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 19.7191 0.0755519
\(262\) 0 0
\(263\) 141.892 0.539515 0.269758 0.962928i \(-0.413056\pi\)
0.269758 + 0.962928i \(0.413056\pi\)
\(264\) 0 0
\(265\) − 69.9731i − 0.264050i
\(266\) 0 0
\(267\) −96.9968 −0.363284
\(268\) 0 0
\(269\) − 397.803i − 1.47882i −0.673254 0.739411i \(-0.735104\pi\)
0.673254 0.739411i \(-0.264896\pi\)
\(270\) 0 0
\(271\) 437.126i 1.61301i 0.591227 + 0.806505i \(0.298644\pi\)
−0.591227 + 0.806505i \(0.701356\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −47.4000 −0.172364
\(276\) 0 0
\(277\) 5.30807 0.0191627 0.00958136 0.999954i \(-0.496950\pi\)
0.00958136 + 0.999954i \(0.496950\pi\)
\(278\) 0 0
\(279\) 65.7974i 0.235833i
\(280\) 0 0
\(281\) 297.662 1.05930 0.529648 0.848217i \(-0.322324\pi\)
0.529648 + 0.848217i \(0.322324\pi\)
\(282\) 0 0
\(283\) 205.878i 0.727484i 0.931500 + 0.363742i \(0.118501\pi\)
−0.931500 + 0.363742i \(0.881499\pi\)
\(284\) 0 0
\(285\) 70.0286i 0.245715i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 243.410 0.842250
\(290\) 0 0
\(291\) −246.667 −0.847652
\(292\) 0 0
\(293\) 138.398i 0.472347i 0.971711 + 0.236173i \(0.0758933\pi\)
−0.971711 + 0.236173i \(0.924107\pi\)
\(294\) 0 0
\(295\) −382.302 −1.29594
\(296\) 0 0
\(297\) − 19.6548i − 0.0661779i
\(298\) 0 0
\(299\) − 364.145i − 1.21788i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 254.041 0.838419
\(304\) 0 0
\(305\) 732.917 2.40301
\(306\) 0 0
\(307\) 157.473i 0.512941i 0.966552 + 0.256471i \(0.0825597\pi\)
−0.966552 + 0.256471i \(0.917440\pi\)
\(308\) 0 0
\(309\) −13.3354 −0.0431567
\(310\) 0 0
\(311\) − 274.812i − 0.883638i −0.897104 0.441819i \(-0.854333\pi\)
0.897104 0.441819i \(-0.145667\pi\)
\(312\) 0 0
\(313\) 176.210i 0.562970i 0.959566 + 0.281485i \(0.0908270\pi\)
−0.959566 + 0.281485i \(0.909173\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −292.367 −0.922293 −0.461146 0.887324i \(-0.652562\pi\)
−0.461146 + 0.887324i \(0.652562\pi\)
\(318\) 0 0
\(319\) −24.8629 −0.0779403
\(320\) 0 0
\(321\) 241.784i 0.753221i
\(322\) 0 0
\(323\) −44.5608 −0.137959
\(324\) 0 0
\(325\) 116.454i 0.358321i
\(326\) 0 0
\(327\) − 262.599i − 0.803056i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −142.597 −0.430806 −0.215403 0.976525i \(-0.569107\pi\)
−0.215403 + 0.976525i \(0.569107\pi\)
\(332\) 0 0
\(333\) −201.201 −0.604206
\(334\) 0 0
\(335\) 341.527i 1.01948i
\(336\) 0 0
\(337\) 477.413 1.41666 0.708328 0.705884i \(-0.249450\pi\)
0.708328 + 0.705884i \(0.249450\pi\)
\(338\) 0 0
\(339\) − 70.1149i − 0.206829i
\(340\) 0 0
\(341\) − 82.9613i − 0.243288i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −415.782 −1.20516
\(346\) 0 0
\(347\) 453.373 1.30655 0.653275 0.757121i \(-0.273395\pi\)
0.653275 + 0.757121i \(0.273395\pi\)
\(348\) 0 0
\(349\) 55.8211i 0.159946i 0.996797 + 0.0799730i \(0.0254834\pi\)
−0.996797 + 0.0799730i \(0.974517\pi\)
\(350\) 0 0
\(351\) −48.2889 −0.137575
\(352\) 0 0
\(353\) 228.213i 0.646496i 0.946314 + 0.323248i \(0.104775\pi\)
−0.946314 + 0.323248i \(0.895225\pi\)
\(354\) 0 0
\(355\) 803.509i 2.26340i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 467.810 1.30309 0.651547 0.758609i \(-0.274120\pi\)
0.651547 + 0.758609i \(0.274120\pi\)
\(360\) 0 0
\(361\) 317.445 0.879349
\(362\) 0 0
\(363\) − 184.796i − 0.509080i
\(364\) 0 0
\(365\) 471.983 1.29311
\(366\) 0 0
\(367\) − 305.649i − 0.832830i −0.909175 0.416415i \(-0.863286\pi\)
0.909175 0.416415i \(-0.136714\pi\)
\(368\) 0 0
\(369\) 160.971i 0.436235i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 262.433 0.703574 0.351787 0.936080i \(-0.385574\pi\)
0.351787 + 0.936080i \(0.385574\pi\)
\(374\) 0 0
\(375\) −132.307 −0.352819
\(376\) 0 0
\(377\) 61.0843i 0.162027i
\(378\) 0 0
\(379\) 489.503 1.29156 0.645782 0.763522i \(-0.276531\pi\)
0.645782 + 0.763522i \(0.276531\pi\)
\(380\) 0 0
\(381\) 153.004i 0.401585i
\(382\) 0 0
\(383\) − 333.734i − 0.871368i −0.900100 0.435684i \(-0.856506\pi\)
0.900100 0.435684i \(-0.143494\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −126.128 −0.325911
\(388\) 0 0
\(389\) 596.084 1.53235 0.766174 0.642633i \(-0.222158\pi\)
0.766174 + 0.642633i \(0.222158\pi\)
\(390\) 0 0
\(391\) − 264.571i − 0.676653i
\(392\) 0 0
\(393\) 117.170 0.298142
\(394\) 0 0
\(395\) − 915.836i − 2.31857i
\(396\) 0 0
\(397\) 309.915i 0.780641i 0.920679 + 0.390321i \(0.127636\pi\)
−0.920679 + 0.390321i \(0.872364\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −335.146 −0.835776 −0.417888 0.908498i \(-0.637230\pi\)
−0.417888 + 0.908498i \(0.637230\pi\)
\(402\) 0 0
\(403\) −203.823 −0.505764
\(404\) 0 0
\(405\) 55.1364i 0.136139i
\(406\) 0 0
\(407\) 253.685 0.623306
\(408\) 0 0
\(409\) 349.246i 0.853902i 0.904275 + 0.426951i \(0.140412\pi\)
−0.904275 + 0.426951i \(0.859588\pi\)
\(410\) 0 0
\(411\) − 286.201i − 0.696352i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −243.611 −0.587013
\(416\) 0 0
\(417\) −126.545 −0.303466
\(418\) 0 0
\(419\) 359.369i 0.857683i 0.903380 + 0.428841i \(0.141078\pi\)
−0.903380 + 0.428841i \(0.858922\pi\)
\(420\) 0 0
\(421\) −831.803 −1.97578 −0.987890 0.155159i \(-0.950411\pi\)
−0.987890 + 0.155159i \(0.950411\pi\)
\(422\) 0 0
\(423\) − 172.618i − 0.408080i
\(424\) 0 0
\(425\) 84.6104i 0.199083i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 60.8854 0.141924
\(430\) 0 0
\(431\) −322.840 −0.749048 −0.374524 0.927217i \(-0.622194\pi\)
−0.374524 + 0.927217i \(0.622194\pi\)
\(432\) 0 0
\(433\) 523.962i 1.21007i 0.796197 + 0.605037i \(0.206842\pi\)
−0.796197 + 0.605037i \(0.793158\pi\)
\(434\) 0 0
\(435\) 69.7463 0.160336
\(436\) 0 0
\(437\) − 258.600i − 0.591762i
\(438\) 0 0
\(439\) − 700.766i − 1.59628i −0.602474 0.798138i \(-0.705818\pi\)
0.602474 0.798138i \(-0.294182\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 96.8893 0.218712 0.109356 0.994003i \(-0.465121\pi\)
0.109356 + 0.994003i \(0.465121\pi\)
\(444\) 0 0
\(445\) −343.078 −0.770962
\(446\) 0 0
\(447\) 260.826i 0.583504i
\(448\) 0 0
\(449\) −499.063 −1.11150 −0.555749 0.831350i \(-0.687568\pi\)
−0.555749 + 0.831350i \(0.687568\pi\)
\(450\) 0 0
\(451\) − 202.962i − 0.450026i
\(452\) 0 0
\(453\) − 240.728i − 0.531408i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 316.568 0.692708 0.346354 0.938104i \(-0.387420\pi\)
0.346354 + 0.938104i \(0.387420\pi\)
\(458\) 0 0
\(459\) −35.0845 −0.0764369
\(460\) 0 0
\(461\) − 387.287i − 0.840103i −0.907500 0.420051i \(-0.862012\pi\)
0.907500 0.420051i \(-0.137988\pi\)
\(462\) 0 0
\(463\) −909.661 −1.96471 −0.982355 0.187027i \(-0.940115\pi\)
−0.982355 + 0.187027i \(0.940115\pi\)
\(464\) 0 0
\(465\) 232.726i 0.500485i
\(466\) 0 0
\(467\) 44.3876i 0.0950483i 0.998870 + 0.0475242i \(0.0151331\pi\)
−0.998870 + 0.0475242i \(0.984867\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 272.367 0.578274
\(472\) 0 0
\(473\) 159.029 0.336214
\(474\) 0 0
\(475\) 82.7008i 0.174107i
\(476\) 0 0
\(477\) 34.2655 0.0718354
\(478\) 0 0
\(479\) 149.548i 0.312209i 0.987741 + 0.156105i \(0.0498937\pi\)
−0.987741 + 0.156105i \(0.950106\pi\)
\(480\) 0 0
\(481\) − 623.265i − 1.29577i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −872.461 −1.79889
\(486\) 0 0
\(487\) −57.0282 −0.117101 −0.0585505 0.998284i \(-0.518648\pi\)
−0.0585505 + 0.998284i \(0.518648\pi\)
\(488\) 0 0
\(489\) 36.9319i 0.0755254i
\(490\) 0 0
\(491\) 563.958 1.14859 0.574296 0.818648i \(-0.305276\pi\)
0.574296 + 0.818648i \(0.305276\pi\)
\(492\) 0 0
\(493\) 44.3811i 0.0900226i
\(494\) 0 0
\(495\) − 69.5192i − 0.140443i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 388.037 0.777629 0.388815 0.921316i \(-0.372885\pi\)
0.388815 + 0.921316i \(0.372885\pi\)
\(500\) 0 0
\(501\) −308.249 −0.615267
\(502\) 0 0
\(503\) − 712.944i − 1.41738i −0.705518 0.708692i \(-0.749286\pi\)
0.705518 0.708692i \(-0.250714\pi\)
\(504\) 0 0
\(505\) 898.543 1.77929
\(506\) 0 0
\(507\) 143.131i 0.282309i
\(508\) 0 0
\(509\) 515.042i 1.01187i 0.862571 + 0.505935i \(0.168853\pi\)
−0.862571 + 0.505935i \(0.831147\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −34.2927 −0.0668473
\(514\) 0 0
\(515\) −47.1674 −0.0915873
\(516\) 0 0
\(517\) 217.647i 0.420980i
\(518\) 0 0
\(519\) −190.702 −0.367442
\(520\) 0 0
\(521\) − 31.9925i − 0.0614059i −0.999529 0.0307030i \(-0.990225\pi\)
0.999529 0.0307030i \(-0.00977459\pi\)
\(522\) 0 0
\(523\) − 318.149i − 0.608316i −0.952622 0.304158i \(-0.901625\pi\)
0.952622 0.304158i \(-0.0983750\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −148.089 −0.281003
\(528\) 0 0
\(529\) 1006.39 1.90243
\(530\) 0 0
\(531\) − 187.211i − 0.352564i
\(532\) 0 0
\(533\) −498.645 −0.935543
\(534\) 0 0
\(535\) 855.190i 1.59849i
\(536\) 0 0
\(537\) 48.9216i 0.0911018i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 239.017 0.441806 0.220903 0.975296i \(-0.429100\pi\)
0.220903 + 0.975296i \(0.429100\pi\)
\(542\) 0 0
\(543\) −357.513 −0.658404
\(544\) 0 0
\(545\) − 928.814i − 1.70425i
\(546\) 0 0
\(547\) −436.346 −0.797707 −0.398854 0.917015i \(-0.630592\pi\)
−0.398854 + 0.917015i \(0.630592\pi\)
\(548\) 0 0
\(549\) 358.906i 0.653744i
\(550\) 0 0
\(551\) 43.3795i 0.0787286i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −711.647 −1.28225
\(556\) 0 0
\(557\) −885.577 −1.58991 −0.794953 0.606672i \(-0.792504\pi\)
−0.794953 + 0.606672i \(0.792504\pi\)
\(558\) 0 0
\(559\) − 390.710i − 0.698944i
\(560\) 0 0
\(561\) 44.2366 0.0788532
\(562\) 0 0
\(563\) − 178.076i − 0.316299i −0.987415 0.158150i \(-0.949447\pi\)
0.987415 0.158150i \(-0.0505528\pi\)
\(564\) 0 0
\(565\) − 247.996i − 0.438932i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 902.576 1.58625 0.793125 0.609059i \(-0.208453\pi\)
0.793125 + 0.609059i \(0.208453\pi\)
\(570\) 0 0
\(571\) −80.0281 −0.140154 −0.0700771 0.997542i \(-0.522325\pi\)
−0.0700771 + 0.997542i \(0.522325\pi\)
\(572\) 0 0
\(573\) 110.395i 0.192662i
\(574\) 0 0
\(575\) −491.020 −0.853948
\(576\) 0 0
\(577\) − 503.848i − 0.873220i −0.899651 0.436610i \(-0.856179\pi\)
0.899651 0.436610i \(-0.143821\pi\)
\(578\) 0 0
\(579\) − 116.658i − 0.201481i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −43.2039 −0.0741062
\(584\) 0 0
\(585\) −170.798 −0.291962
\(586\) 0 0
\(587\) − 458.274i − 0.780706i −0.920665 0.390353i \(-0.872353\pi\)
0.920665 0.390353i \(-0.127647\pi\)
\(588\) 0 0
\(589\) −144.746 −0.245749
\(590\) 0 0
\(591\) 166.399i 0.281556i
\(592\) 0 0
\(593\) − 670.468i − 1.13064i −0.824873 0.565318i \(-0.808753\pi\)
0.824873 0.565318i \(-0.191247\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −356.785 −0.597630
\(598\) 0 0
\(599\) 440.129 0.734773 0.367387 0.930068i \(-0.380253\pi\)
0.367387 + 0.930068i \(0.380253\pi\)
\(600\) 0 0
\(601\) 732.160i 1.21824i 0.793080 + 0.609118i \(0.208476\pi\)
−0.793080 + 0.609118i \(0.791524\pi\)
\(602\) 0 0
\(603\) −167.244 −0.277353
\(604\) 0 0
\(605\) − 653.624i − 1.08037i
\(606\) 0 0
\(607\) 326.897i 0.538546i 0.963064 + 0.269273i \(0.0867834\pi\)
−0.963064 + 0.269273i \(0.913217\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 534.723 0.875161
\(612\) 0 0
\(613\) −988.663 −1.61283 −0.806414 0.591352i \(-0.798594\pi\)
−0.806414 + 0.591352i \(0.798594\pi\)
\(614\) 0 0
\(615\) 569.354i 0.925779i
\(616\) 0 0
\(617\) 280.536 0.454678 0.227339 0.973816i \(-0.426997\pi\)
0.227339 + 0.973816i \(0.426997\pi\)
\(618\) 0 0
\(619\) 1032.81i 1.66851i 0.551377 + 0.834256i \(0.314103\pi\)
−0.551377 + 0.834256i \(0.685897\pi\)
\(620\) 0 0
\(621\) − 203.606i − 0.327868i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −781.249 −1.25000
\(626\) 0 0
\(627\) 43.2382 0.0689604
\(628\) 0 0
\(629\) − 452.837i − 0.719931i
\(630\) 0 0
\(631\) −178.252 −0.282491 −0.141245 0.989975i \(-0.545111\pi\)
−0.141245 + 0.989975i \(0.545111\pi\)
\(632\) 0 0
\(633\) 211.210i 0.333665i
\(634\) 0 0
\(635\) 541.174i 0.852243i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −393.474 −0.615765
\(640\) 0 0
\(641\) 668.526 1.04294 0.521471 0.853269i \(-0.325383\pi\)
0.521471 + 0.853269i \(0.325383\pi\)
\(642\) 0 0
\(643\) 313.584i 0.487690i 0.969814 + 0.243845i \(0.0784088\pi\)
−0.969814 + 0.243845i \(0.921591\pi\)
\(644\) 0 0
\(645\) −446.114 −0.691649
\(646\) 0 0
\(647\) − 337.531i − 0.521686i −0.965381 0.260843i \(-0.916000\pi\)
0.965381 0.260843i \(-0.0840005\pi\)
\(648\) 0 0
\(649\) 236.047i 0.363709i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 903.354 1.38339 0.691695 0.722189i \(-0.256864\pi\)
0.691695 + 0.722189i \(0.256864\pi\)
\(654\) 0 0
\(655\) 414.430 0.632717
\(656\) 0 0
\(657\) 231.128i 0.351793i
\(658\) 0 0
\(659\) −768.092 −1.16554 −0.582771 0.812637i \(-0.698031\pi\)
−0.582771 + 0.812637i \(0.698031\pi\)
\(660\) 0 0
\(661\) − 411.223i − 0.622123i −0.950390 0.311062i \(-0.899315\pi\)
0.950390 0.311062i \(-0.100685\pi\)
\(662\) 0 0
\(663\) − 108.682i − 0.163925i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −257.557 −0.386143
\(668\) 0 0
\(669\) −32.0474 −0.0479034
\(670\) 0 0
\(671\) − 452.529i − 0.674410i
\(672\) 0 0
\(673\) −818.448 −1.21612 −0.608060 0.793891i \(-0.708052\pi\)
−0.608060 + 0.793891i \(0.708052\pi\)
\(674\) 0 0
\(675\) 65.1137i 0.0964647i
\(676\) 0 0
\(677\) − 55.5247i − 0.0820158i −0.999159 0.0410079i \(-0.986943\pi\)
0.999159 0.0410079i \(-0.0130569\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 254.696 0.374003
\(682\) 0 0
\(683\) −76.2838 −0.111689 −0.0558447 0.998439i \(-0.517785\pi\)
−0.0558447 + 0.998439i \(0.517785\pi\)
\(684\) 0 0
\(685\) − 1012.29i − 1.47780i
\(686\) 0 0
\(687\) 623.391 0.907410
\(688\) 0 0
\(689\) 106.145i 0.154057i
\(690\) 0 0
\(691\) 22.4912i 0.0325488i 0.999868 + 0.0162744i \(0.00518053\pi\)
−0.999868 + 0.0162744i \(0.994819\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −447.591 −0.644016
\(696\) 0 0
\(697\) −362.293 −0.519789
\(698\) 0 0
\(699\) 76.3282i 0.109196i
\(700\) 0 0
\(701\) −854.197 −1.21854 −0.609270 0.792963i \(-0.708538\pi\)
−0.609270 + 0.792963i \(0.708538\pi\)
\(702\) 0 0
\(703\) − 442.616i − 0.629610i
\(704\) 0 0
\(705\) − 610.549i − 0.866027i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −158.602 −0.223698 −0.111849 0.993725i \(-0.535677\pi\)
−0.111849 + 0.993725i \(0.535677\pi\)
\(710\) 0 0
\(711\) 448.480 0.630773
\(712\) 0 0
\(713\) − 859.403i − 1.20533i
\(714\) 0 0
\(715\) 215.352 0.301191
\(716\) 0 0
\(717\) − 285.921i − 0.398775i
\(718\) 0 0
\(719\) 380.118i 0.528675i 0.964430 + 0.264338i \(0.0851533\pi\)
−0.964430 + 0.264338i \(0.914847\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −231.656 −0.320409
\(724\) 0 0
\(725\) 82.3674 0.113610
\(726\) 0 0
\(727\) 159.283i 0.219096i 0.993981 + 0.109548i \(0.0349404\pi\)
−0.993981 + 0.109548i \(0.965060\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 283.872i − 0.388334i
\(732\) 0 0
\(733\) − 178.179i − 0.243082i −0.992586 0.121541i \(-0.961216\pi\)
0.992586 0.121541i \(-0.0387836\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 210.871 0.286121
\(738\) 0 0
\(739\) −317.386 −0.429481 −0.214740 0.976671i \(-0.568891\pi\)
−0.214740 + 0.976671i \(0.568891\pi\)
\(740\) 0 0
\(741\) − 106.229i − 0.143360i
\(742\) 0 0
\(743\) 1055.73 1.42090 0.710450 0.703748i \(-0.248492\pi\)
0.710450 + 0.703748i \(0.248492\pi\)
\(744\) 0 0
\(745\) 922.542i 1.23831i
\(746\) 0 0
\(747\) − 119.295i − 0.159699i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −307.209 −0.409067 −0.204533 0.978860i \(-0.565568\pi\)
−0.204533 + 0.978860i \(0.565568\pi\)
\(752\) 0 0
\(753\) 699.124 0.928451
\(754\) 0 0
\(755\) − 851.454i − 1.12775i
\(756\) 0 0
\(757\) −711.179 −0.939470 −0.469735 0.882808i \(-0.655651\pi\)
−0.469735 + 0.882808i \(0.655651\pi\)
\(758\) 0 0
\(759\) 256.719i 0.338233i
\(760\) 0 0
\(761\) 527.953i 0.693763i 0.937909 + 0.346881i \(0.112759\pi\)
−0.937909 + 0.346881i \(0.887241\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −124.094 −0.162214
\(766\) 0 0
\(767\) 579.931 0.756103
\(768\) 0 0
\(769\) − 831.961i − 1.08187i −0.841063 0.540937i \(-0.818070\pi\)
0.841063 0.540937i \(-0.181930\pi\)
\(770\) 0 0
\(771\) −484.836 −0.628840
\(772\) 0 0
\(773\) − 758.707i − 0.981510i −0.871298 0.490755i \(-0.836721\pi\)
0.871298 0.490755i \(-0.163279\pi\)
\(774\) 0 0
\(775\) 274.839i 0.354631i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −354.116 −0.454577
\(780\) 0 0
\(781\) 496.115 0.635231
\(782\) 0 0
\(783\) 34.1544i 0.0436199i
\(784\) 0 0
\(785\) 963.363 1.22721
\(786\) 0 0
\(787\) − 687.187i − 0.873173i −0.899662 0.436586i \(-0.856187\pi\)
0.899662 0.436586i \(-0.143813\pi\)
\(788\) 0 0
\(789\) 245.765i 0.311489i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1111.79 −1.40201
\(794\) 0 0
\(795\) 121.197 0.152449
\(796\) 0 0
\(797\) − 716.069i − 0.898456i −0.893417 0.449228i \(-0.851699\pi\)
0.893417 0.449228i \(-0.148301\pi\)
\(798\) 0 0
\(799\) 388.506 0.486240
\(800\) 0 0
\(801\) − 168.003i − 0.209742i
\(802\) 0 0
\(803\) − 291.419i − 0.362913i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 689.015 0.853798
\(808\) 0 0
\(809\) −136.167 −0.168315 −0.0841577 0.996452i \(-0.526820\pi\)
−0.0841577 + 0.996452i \(0.526820\pi\)
\(810\) 0 0
\(811\) 421.599i 0.519851i 0.965629 + 0.259926i \(0.0836981\pi\)
−0.965629 + 0.259926i \(0.916302\pi\)
\(812\) 0 0
\(813\) −757.124 −0.931272
\(814\) 0 0
\(815\) 130.628i 0.160280i
\(816\) 0 0
\(817\) − 277.465i − 0.339615i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 79.6476 0.0970130 0.0485065 0.998823i \(-0.484554\pi\)
0.0485065 + 0.998823i \(0.484554\pi\)
\(822\) 0 0
\(823\) 1332.30 1.61883 0.809416 0.587236i \(-0.199784\pi\)
0.809416 + 0.587236i \(0.199784\pi\)
\(824\) 0 0
\(825\) − 82.0991i − 0.0995141i
\(826\) 0 0
\(827\) −468.548 −0.566564 −0.283282 0.959037i \(-0.591423\pi\)
−0.283282 + 0.959037i \(0.591423\pi\)
\(828\) 0 0
\(829\) − 492.032i − 0.593524i −0.954951 0.296762i \(-0.904093\pi\)
0.954951 0.296762i \(-0.0959068\pi\)
\(830\) 0 0
\(831\) 9.19385i 0.0110636i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1090.28 −1.30572
\(836\) 0 0
\(837\) −113.965 −0.136158
\(838\) 0 0
\(839\) − 1045.41i − 1.24602i −0.782214 0.623010i \(-0.785910\pi\)
0.782214 0.623010i \(-0.214090\pi\)
\(840\) 0 0
\(841\) −797.795 −0.948627
\(842\) 0 0
\(843\) 515.566i 0.611585i
\(844\) 0 0
\(845\) 506.253i 0.599116i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −356.591 −0.420013
\(850\) 0 0
\(851\) 2627.95 3.08807
\(852\) 0 0
\(853\) − 339.686i − 0.398225i −0.979977 0.199113i \(-0.936194\pi\)
0.979977 0.199113i \(-0.0638060\pi\)
\(854\) 0 0
\(855\) −121.293 −0.141863
\(856\) 0 0
\(857\) − 1404.99i − 1.63943i −0.572769 0.819717i \(-0.694131\pi\)
0.572769 0.819717i \(-0.305869\pi\)
\(858\) 0 0
\(859\) − 1209.22i − 1.40771i −0.710346 0.703853i \(-0.751462\pi\)
0.710346 0.703853i \(-0.248538\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −994.257 −1.15209 −0.576047 0.817416i \(-0.695406\pi\)
−0.576047 + 0.817416i \(0.695406\pi\)
\(864\) 0 0
\(865\) −674.514 −0.779785
\(866\) 0 0
\(867\) 421.599i 0.486273i
\(868\) 0 0
\(869\) −565.470 −0.650713
\(870\) 0 0
\(871\) − 518.077i − 0.594807i
\(872\) 0 0
\(873\) − 427.240i − 0.489392i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1554.74 −1.77279 −0.886396 0.462928i \(-0.846799\pi\)
−0.886396 + 0.462928i \(0.846799\pi\)
\(878\) 0 0
\(879\) −239.712 −0.272710
\(880\) 0 0
\(881\) 921.015i 1.04542i 0.852511 + 0.522710i \(0.175079\pi\)
−0.852511 + 0.522710i \(0.824921\pi\)
\(882\) 0 0
\(883\) 156.823 0.177603 0.0888014 0.996049i \(-0.471696\pi\)
0.0888014 + 0.996049i \(0.471696\pi\)
\(884\) 0 0
\(885\) − 662.167i − 0.748212i
\(886\) 0 0
\(887\) 1618.72i 1.82494i 0.409141 + 0.912471i \(0.365828\pi\)
−0.409141 + 0.912471i \(0.634172\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 34.0432 0.0382078
\(892\) 0 0
\(893\) 379.737 0.425238
\(894\) 0 0
\(895\) 173.036i 0.193336i
\(896\) 0 0
\(897\) 630.717 0.703141
\(898\) 0 0
\(899\) 144.163i 0.160359i
\(900\) 0 0
\(901\) 77.1204i 0.0855942i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1264.53 −1.39727
\(906\) 0 0
\(907\) 558.690 0.615975 0.307988 0.951390i \(-0.400344\pi\)
0.307988 + 0.951390i \(0.400344\pi\)
\(908\) 0 0
\(909\) 440.012i 0.484061i
\(910\) 0 0
\(911\) −510.774 −0.560674 −0.280337 0.959902i \(-0.590446\pi\)
−0.280337 + 0.959902i \(0.590446\pi\)
\(912\) 0 0
\(913\) 150.414i 0.164747i
\(914\) 0 0
\(915\) 1269.45i 1.38738i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −667.354 −0.726174 −0.363087 0.931755i \(-0.618277\pi\)
−0.363087 + 0.931755i \(0.618277\pi\)
\(920\) 0 0
\(921\) −272.751 −0.296147
\(922\) 0 0
\(923\) − 1218.88i − 1.32056i
\(924\) 0 0
\(925\) −840.424 −0.908566
\(926\) 0 0
\(927\) − 23.0977i − 0.0249166i
\(928\) 0 0
\(929\) 877.672i 0.944749i 0.881398 + 0.472375i \(0.156603\pi\)
−0.881398 + 0.472375i \(0.843397\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 475.988 0.510169
\(934\) 0 0
\(935\) 156.465 0.167342
\(936\) 0 0
\(937\) − 211.107i − 0.225301i −0.993635 0.112650i \(-0.964066\pi\)
0.993635 0.112650i \(-0.0359340\pi\)
\(938\) 0 0
\(939\) −305.204 −0.325031
\(940\) 0 0
\(941\) − 1526.19i − 1.62188i −0.585132 0.810938i \(-0.698957\pi\)
0.585132 0.810938i \(-0.301043\pi\)
\(942\) 0 0
\(943\) − 2102.50i − 2.22958i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 642.310 0.678257 0.339129 0.940740i \(-0.389868\pi\)
0.339129 + 0.940740i \(0.389868\pi\)
\(948\) 0 0
\(949\) −715.972 −0.754449
\(950\) 0 0
\(951\) − 506.394i − 0.532486i
\(952\) 0 0
\(953\) 208.041 0.218302 0.109151 0.994025i \(-0.465187\pi\)
0.109151 + 0.994025i \(0.465187\pi\)
\(954\) 0 0
\(955\) 390.469i 0.408868i
\(956\) 0 0
\(957\) − 43.0639i − 0.0449988i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 479.966 0.499445
\(962\) 0 0
\(963\) −418.782 −0.434872
\(964\) 0 0
\(965\) − 412.618i − 0.427584i
\(966\) 0 0
\(967\) 1485.38 1.53607 0.768034 0.640409i \(-0.221235\pi\)
0.768034 + 0.640409i \(0.221235\pi\)
\(968\) 0 0
\(969\) − 77.1815i − 0.0796507i
\(970\) 0 0
\(971\) − 342.856i − 0.353096i −0.984292 0.176548i \(-0.943507\pi\)
0.984292 0.176548i \(-0.0564931\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −201.705 −0.206877
\(976\) 0 0
\(977\) 1670.18 1.70950 0.854748 0.519043i \(-0.173711\pi\)
0.854748 + 0.519043i \(0.173711\pi\)
\(978\) 0 0
\(979\) 211.829i 0.216372i
\(980\) 0 0
\(981\) 454.835 0.463644
\(982\) 0 0
\(983\) 805.192i 0.819117i 0.912284 + 0.409558i \(0.134317\pi\)
−0.912284 + 0.409558i \(0.865683\pi\)
\(984\) 0 0
\(985\) 588.555i 0.597517i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1647.40 1.66572
\(990\) 0 0
\(991\) −1503.00 −1.51665 −0.758326 0.651875i \(-0.773983\pi\)
−0.758326 + 0.651875i \(0.773983\pi\)
\(992\) 0 0
\(993\) − 246.985i − 0.248726i
\(994\) 0 0
\(995\) −1261.95 −1.26829
\(996\) 0 0
\(997\) − 704.037i − 0.706156i −0.935594 0.353078i \(-0.885135\pi\)
0.935594 0.353078i \(-0.114865\pi\)
\(998\) 0 0
\(999\) − 348.490i − 0.348838i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2352.3.f.g.97.8 8
4.3 odd 2 1176.3.f.c.97.4 8
7.2 even 3 336.3.bh.g.241.4 8
7.3 odd 6 336.3.bh.g.145.4 8
7.6 odd 2 inner 2352.3.f.g.97.1 8
12.11 even 2 3528.3.f.b.2449.2 8
21.2 odd 6 1008.3.cg.p.577.1 8
21.17 even 6 1008.3.cg.p.145.1 8
28.3 even 6 168.3.z.b.145.4 yes 8
28.11 odd 6 1176.3.z.c.313.1 8
28.19 even 6 1176.3.z.c.913.1 8
28.23 odd 6 168.3.z.b.73.4 8
28.27 even 2 1176.3.f.c.97.5 8
84.23 even 6 504.3.by.c.73.1 8
84.59 odd 6 504.3.by.c.145.1 8
84.83 odd 2 3528.3.f.b.2449.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.z.b.73.4 8 28.23 odd 6
168.3.z.b.145.4 yes 8 28.3 even 6
336.3.bh.g.145.4 8 7.3 odd 6
336.3.bh.g.241.4 8 7.2 even 3
504.3.by.c.73.1 8 84.23 even 6
504.3.by.c.145.1 8 84.59 odd 6
1008.3.cg.p.145.1 8 21.17 even 6
1008.3.cg.p.577.1 8 21.2 odd 6
1176.3.f.c.97.4 8 4.3 odd 2
1176.3.f.c.97.5 8 28.27 even 2
1176.3.z.c.313.1 8 28.11 odd 6
1176.3.z.c.913.1 8 28.19 even 6
2352.3.f.g.97.1 8 7.6 odd 2 inner
2352.3.f.g.97.8 8 1.1 even 1 trivial
3528.3.f.b.2449.2 8 12.11 even 2
3528.3.f.b.2449.7 8 84.83 odd 2