Properties

Label 2352.4.a.k
Level $2352$
Weight $4$
Character orbit 2352.a
Self dual yes
Analytic conductor $138.772$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2352,4,Mod(1,2352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2352, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2352.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2352.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(138.772492334\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} + 2 q^{5} + 9 q^{9} - 12 q^{11} + 66 q^{13} - 6 q^{15} + 70 q^{17} - 92 q^{19} - 16 q^{23} - 121 q^{25} - 27 q^{27} - 122 q^{29} + 64 q^{31} + 36 q^{33} - 306 q^{37} - 198 q^{39} - 50 q^{41}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 2.00000 0 0 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2352.4.a.k 1
4.b odd 2 1 1176.4.a.l 1
7.b odd 2 1 336.4.a.i 1
21.c even 2 1 1008.4.a.k 1
28.d even 2 1 168.4.a.b 1
56.e even 2 1 1344.4.a.u 1
56.h odd 2 1 1344.4.a.h 1
84.h odd 2 1 504.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.a.b 1 28.d even 2 1
336.4.a.i 1 7.b odd 2 1
504.4.a.d 1 84.h odd 2 1
1008.4.a.k 1 21.c even 2 1
1176.4.a.l 1 4.b odd 2 1
1344.4.a.h 1 56.h odd 2 1
1344.4.a.u 1 56.e even 2 1
2352.4.a.k 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2352))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{11} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 12 \) Copy content Toggle raw display
$13$ \( T - 66 \) Copy content Toggle raw display
$17$ \( T - 70 \) Copy content Toggle raw display
$19$ \( T + 92 \) Copy content Toggle raw display
$23$ \( T + 16 \) Copy content Toggle raw display
$29$ \( T + 122 \) Copy content Toggle raw display
$31$ \( T - 64 \) Copy content Toggle raw display
$37$ \( T + 306 \) Copy content Toggle raw display
$41$ \( T + 50 \) Copy content Toggle raw display
$43$ \( T + 20 \) Copy content Toggle raw display
$47$ \( T + 176 \) Copy content Toggle raw display
$53$ \( T - 526 \) Copy content Toggle raw display
$59$ \( T - 540 \) Copy content Toggle raw display
$61$ \( T - 818 \) Copy content Toggle raw display
$67$ \( T - 228 \) Copy content Toggle raw display
$71$ \( T + 864 \) Copy content Toggle raw display
$73$ \( T + 106 \) Copy content Toggle raw display
$79$ \( T + 736 \) Copy content Toggle raw display
$83$ \( T + 588 \) Copy content Toggle raw display
$89$ \( T + 146 \) Copy content Toggle raw display
$97$ \( T - 1214 \) Copy content Toggle raw display
show more
show less